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1.  Introduction

As roboticists, we hope to one day construct robots 
that can complete tasks autonomously, adaptively, 
and in a truly intelligent fashion. To design such a 
control system, our work looks to the abilities of 
animals as inspiration—specifically insects, whose 
nervous systems may be more tractable than those 
of vertebrates—and to understand the neurological 
underpinnings of these abilities. Of particular interest 
to us is how animals are able to employ many sensor 
types and integrate their inputs seamlessly within the 
brain. One such task that requires multimodal inputs 
(and will serve as a proof-of-concept task within this 
paper) is the ability to track body position within the 
environment. The work presented here simulates the 
experimental setup of Varga and Ritzmann where 
a rotating platform is able to induce rotational cues 
in an animal that is fixed to the turntable [1]. In the 
simulation, when the table rotates, idiothetic updates 
are detected by approximated chordotonal stretch 
sensors at the base of the antennae and relayed to a 

biologically-inspired sensory integrator responsible 
for tracking body heading. Although the connectivity 
and dynamical behavior of this integrator are not fully 
mapped or understood, neurobiology has offered 
insight into the brain substructures that appear to play 
a pivotal role in this task [1–6].

A region of great interest to neurobiologists is a 
structure known as the central complex (CX). The CX 
is a midline brain structure found in all arthropods 
[7] and in most species, it is comprised of four neu-
ropils: the protocerebral bridge (PB), the fan shaped 
body (FB), the ellipsoid body (EB), and the noduli 
[7–9]. Wolff et al contributed an excellent survey of 
CX connectivity that showed a richly complex net-
work between the PB, FB and EB, and although Wolff’s 
paper does not address functional roles of the cell 
types, it provides a detailed framework for the ‘wiring 
rules’ of these neuropils [9].

CX mutant and lesion studies found this brain 
region to be pivotal in sensory integration [6, 10–13] 
and neuromodulation for adaptive output behaviors 
such as flight [14, 15], walking [12, 16, 17], turning 
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Abstract
It is imperative that an animal has the ability to contextually integrate received sensory information 
to formulate appropriate behavioral responses. Determining a body heading based on a multitude of 
ego-motion cues and visual landmarks is an example of such a task that requires this context dependent 
integration. The work presented here simulates a sensory integrator in the insect brain called the central 
complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two 
structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal 
dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation 
direction and speed to activity bumps within the EB as well as updating the believed heading with quick 
secondary system updates. With this model, we performed sensitivity analysis of certain neuronal 
parameters as a possible means to control multi-system gains during sensory integration. We found 
that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in 
which a sensory system could affect the memory stability and gain of another input, respectively. This 
model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic 
cues in the task of body tracking and determining contextually dependent behavioral outputs.
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[18, 19], and navigation [20, 21]. Recent optogenetic 
studies have shown the participation of the CX in navi-
gational tasks, where a two photon calcium imaging 
technique enables researchers to monitor population 
activity of genetically manipulated neurons within the 
CX while the animal is walking and visually engaged 
with virtual landmark inputs [22]. From these stud-
ies, populations of neurons within the EB showed 
correlative activity to body rotational position and 
landmark cues. Building on these experiments, studies 
into the neuronal architecture of the CX determined 
a well structured connectivity and coordinated activ-
ity between the PB and EB [2, 4]. Specifically, a recur-
sive excitatory connectivity between the eight P-EN 
cell populations of the PB (PBG2-9.s-EBt.b-NO1.b 
[9]) and the eight E-PG tile cell populations of the 
EB (PBG1-8.b-EBw.s-D/Vgall.b [9]) maintain activity 
correlated to body heading and speed. In brief, activ-
ity is initiated in the EB ring by input currents from 
rotational sensors and due to the internal inhibition 
networks of the EB, a unimodal distribution of electri-
cal activity emerges, dubbed the ‘bump’ activity. This 
bump activity is able to oscillate about the EB ring and 
corresponds to the animal’s heading [2, 4, 23].

If this bump activity seen in the EB is the brain’s 
representation of the body’s heading, how might mul-
tiple sensory systems that give analogous information 
about the true heading be integrated by the brain to 
produce this believed position? For instance, if chor-
dotonal antennal inputs as well as visual inputs can 
both provide ego-motion cues, how might the brain 
combine these input signals to finalize the perceived 
body position? Experimentation from Kim et al and 
Green et al both give insight to this question of posi-
tion updates through the use of artificial stimulations 
deployed in the EB and the PB, respectively [2, 24]. Kim 
et al explored how direct photon stimulation to vari-
ous EB tiles can cause quick updates to believed body 
position, or ‘bump jumps’, within the EB. This causes 
the locus of activity to quickly jump without continu-
ous flow through sequential tiles [24]. Related to this, 
Green et  al induced bump jumps within the E-PG 
populations from targeted P-EN ATP injections [2]. 
These studies provided inspiration for several simu-
lated experiments in our work, wherein sensory infor-
mation from a more reliable sensory input could cause 
a ‘bump jump’ to the correct orientation and offset 
accumulated error from different sensory inputs.

Several recent models have sought to reproduce 
and explain the dynamics of the CX, to explore how 
this brain region may give rise to navigational abilities 
[3, 25–31]. Like the work presented here, these models 
present a similar biologically-constrained connectivity 
and use dynamical neural components to reproduce 
key features of the CX. Although there is similarity 
across the connectivities of the models, the questions 
being asked by the respective groups are unique. In this 
paper, we pose a question about the relevance of the 
bump width. Specifically, does the width of the bump 

change and if so, is it a proxy for certitude in the deter-
mined heading? We ask this question because in the 
field of robotics, probabilistic algorithms are used to 
combine noisy readings from multiple sensor types 
(such as the antennal and visual inputs mentioned 
above), compare said sensory inputs with approxi-
mate kinematic models, and output a single predicted 
heading. The similarities to this Bayesian algorithmic 
approach to sensory integration and neural integra-
tion have been suggested in mammals as well as arthro-
pods [32, 33]. If such similarities prove true, does the 
CX contextually integrate inputs and give more weight 
to trusted modalities? 

In this paper, we first show that the biologically-
inspired connectivity [2, 4, 9] in combination with 
neuronal dynamics, is sufficient in reproducing in vivo 
CX behavior for a rotating body in the yaw plane. By 
reproducing these behaviors [2, 4], we hope to estab-
lish a credible simulation framework for the basic 
mechanisms of the PB-EB communications. In sum-
mary, four behaviors of the CX that we are able to 
reproduce in simulation include:

	1.	�The direction of body rotation dictates the 
activity bump’s direction of motion in the EB 
layer.

	2.	�The body’s rotational speed correlates to bump 
activity speed in the EB.

	3.	�The heading, determined by peak bump activity, 
can be updated with artificial stimulation 
applied to an EB neuron population, thereby 
causing a ‘bump jump’.

	4.	�A ‘bump jump’ can be induced through 
artificial stimulation applied to the PB neuronal 
populations as well.

Subsequently, we present several potential 
mechanisms by which real time gain modulation 
of competing sensory inputs can be integrated 
asymmetrically at the level of the CX. We aim to show 
that through plasticity in EB memory connections 
and internal inhibitory connections, the width of the 
activity bump can be controlled, thereby encoding the 
variance of the EB’s believed body orientation. When 
mapping output motor commands to the efferent 
pathways, this modulated EB projection can relay both 
the determined body heading and the level of certainty 
in which this heading is believed to be true.

2.  Methods

2.1.  Self-motion detection with chordotonal 
sensors
We constructed a model in Animatlab, a 3D graphics 
environment for neuromechanical simulations [34], 
to simulate an agent on a rotating platform. Our 
simulation setup is a reproduction of a Varga and 
Ritzmann experiment aimed at assessing the interplay 
of visual and chordotonal inputs within the CX of a 
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fixed animal on a turntable [1]. During the experiment 
performed by Varga, the animal’s head was covered in 
foil, eliminating visual input and presumably reducing 
wind input [1]. We assumed that the primary idiothetic 
sensory modality available to detect motion would be 
the stretch of chordotonal organs (COs), specifically 
Johnston’s organs, in the base of the antennae. The 
CO stretch would signify rotational acceleration and 
steady-state rotational velocity, much like an inertial 
measurement unit [35–41].

In the simulation environment, we reproduced this 
rotational platform with a fixed body and antennae 
setup which served as a dynamically responsive sensor 
to rotational cues (figures 1(A) and (B)).The anten-
nae were modeled as critically damped mass-spring-
damper systems (figure 1(C)) and serve as a means to 
detect rotational velocity. Each antenna converted the 
positive elongation of the spring (i.e. the CO) to cur
rent input to a sensory neuron [42]. Thus, as the circu-
lar platform experienced rotational acceleration, one 
CO would stretch and induce current into its sensory 
neuron while the other compressed and did not induce 
current into its sensory neuron, yielding an asymmet-
rical response. These two sensory neurons mutually 
inhibit one another to form a bistable network. This 
bistable network is necessary because once the disk is 
spinning at a constant, steady-state angular velocity, 
both antennae will be deflected symmetrically toward 
the midline of the body due to centrifugal force, with 
no net neural activation. However, the bistable net-
work ensures that whichever CO relaxed during accel-
eration is silenced by the CO that stretched, enabling 
an asymmetrical neural response from the symmetri-
cal mechanical response.

The mechanical stimulus is then linearly mapped 
to an electrical current value, Iapp, that is injected into 
the CX as will be discussed in section 2.3. The transfer 
function that maps the chordotonal stretch to a cur
rent [43] is given by

Iapp = R · θ − θmin

θmax − θmin
,� (1)

where θ is the sensory input and R is the user-defined 
functional range of the sensory neuron (defined here 
to be  −0.06 V to  −0.04 V). This mapping function has 
great utility when considering that any sensor with a 
characteristic operational range could be mapped to 
the sensory neurons. Parameters for the sensor can 
be calculated from the fundamental equations  of 
rotational motion provided in appendix A.1.

2.2.  Neurons are modeled as leaky integrators
1 The neurons were modeled with linear conductance 
dynamics [43] to represent time dependent electrical 
properties. The voltage of the postsynpatic neuron 
above rest has the dynamics

Cmem
dV

dt
= ILeak + Isyn + Iapp.� (2)

Equation (2) states that the change of the mem-
brane voltage V  times the capacitance of the mem-
brane Cmem (left hand side) is equal to the total current 
across the cell membrane (right hand side). The total 
current is made up of the incoming, applied current 
Iapp, plus the current due to ion flux through mem-
brane gates, ILeak, plus the current across the synapse 
(transmitter induced), Isyn. Substituting current equa-
tions (3) and (4) into (2), gives the form seen in equa-
tion (5)

ILeak = Gmem · (Erest − V)� (3)

ISyn = gsyn · (Esyn − V)� (4)

Cmem
dV

dt
= Gmem · (Erest − V) + gsyn · (Esyn − V) + Iapp,

� (5)

where Gmem  is the constant membrane conductance, 
Erest is the equilibrium potential constant (voltage 
where inward and outward currents are equal), ESyn is 
the reversal potential of the synapse (sets the minimum 
postsynaptic neuron voltage activity), and gsyn is the 
varying conductance of the synapse dependent on the 
activity of the presynaptic neuron as follows:

gsyn = Gsynmax ·




0 if Vpre < Erest
Vpre−Erest
Ehigh−Erest

if Erest � Vpre � Ehigh

1 if Vpre > Ehigh

.

Here, Ehigh represents the upper bound of activity. The 
synaptic conductance saturates for any voltage activity 
exceeding this value. Taken together, Erest and Ehigh 
define the functional range of the postsynaptic neuron 
[43].

2.3.  In silico neuron connectivity
The dynamical neural model of the CX was 
constructed in Animatlab to work in conjunction with 
the mechanical stimulus of the turning disk and the 
antennal chordotonal sensor discussed in section 2.1.

We constructed a neuron-to-neuron connectiv-
ity representative of the observed recursive excita-
tory connectivity between the PB and EB (figure 2), 
where each neuron is modeled with the leaky integra-
tor dynamics discussed in section 2.2. This schematic 
represents the assembly of the processing layers of our 
simulation while remaining representative of in vivo 
neuronal connectivity. As seen in figure 2(A), the P-EN 
cell type have their dendritic inputs located in the PB 
[9], where they receive inhibition signaling from the 
lateral interneurons, while their axonal outputs extend 
to the EB to articulate bilaterally with E-PG networks 
[2]. After receiving inputs from the P-ENs, the E-PGs 
have their axonal projections terminate in the PB and 
communicate with the adjacent column of P-ENs—
thereby moving the activity to the adjacent column  
[2, 4, 9]. Extrapolating the connectivity seen in lit-
erature, two cell types and an internal EB inhibition 
network were required for proper activity. While  

Bioinspir. Biomim. 15 (2020) 026003
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constructing the simulation, certain assumptions were 
employed in order to produce the dynamics seen in 
animals.

First, the lateral interneurons (figure 2(A)) are situ-
ated such that while active, these cells are able to inhibit 
their respective side of the PB-EB axis proportionally 
to the degree of their activity. These lateral interneu-
rons function in a tonic mode until they are hyperpo-
larized by chordotonal sensor currents thus permitting 
the P-ENs to be depolarized and participate in the EB/
PB communication loop. Second, autaptic disinhibi-
tory connections of the E-PGs form memory networks 
(figure 2(B)) that are required for long term memory 
(i.e. persistent bump activity) when the body is at 
standstill [43], as well as coordinating network oscil-
latory activity while the body is in motion. Third, the 
internal inhibition of the EB comes into play when the 
activity of a single E-PG causes hyperpolarization of  
all other E-PGs except those immediately adjacent 
(figure 2(B)). This mechanism permits the localized 
maximal activity—the bump—and prevents ambigu-
ity of multiple peaks within the EB.

2.4.  Tuning network parameters
These equations contain many parameter values that 
must be tuned. Using developed methods for selecting 
parameter values based on the function of network 

components [43], we were able to assemble a network 
whose overall behavior satisfied our goals in section 1. 
Thus, we created a dynamical neural model of the 
‘bump handoff’ using known neuroanatomy and our 
functional subnetwork approach. Using this approach, 
we can assign functional roles to the neuron populations 
of EB/PB axis to have them perform specific signal 
modulation operations. Figure 2(C) shows a simplified 
functional representation of our CX model.

Lateral interneurons in the PB modulate the con-
ductance and therefore, the sensitivity of all P-EN 
cells in one half of the PB. The parameter values of 
these lateral interneurons allow them to act as a mul-
tiplication network that controls the level of disinhi-
bition of the P-EN cell populations [43]. That is, the 
current received from the stretching of the antennal 
CO is able to modulate the gain of the E-PG-to-E-PG 
signal transmission through this interneuron multi-
plication subnetwork. Modelling the P-ENs as an addi-
tion subnetwork, the P-ENs act to positively feedback 
the incoming activity of the connecting E-PGs, in the 
excitatory recursive loop. With the functional subnet-
work calculations, we know that each P-EN’s steady 
state voltage is approximately

VP-EN,n = Erest + Vsensory ·
VE-PG,n − Erest
Ehigh − Elo

.� (6)

Figure 1.  Antennae chordotonal sensors. The antennae were modeled as mass spring-damper systems (one for each antenna) 
to serve as the rotational velocity detectors. The deflection of the antennae (mass bar) generates a proportional current in the 
simulation setting. This is injected into the CX via the disinhibitory mechanism through the PB. Side view (A) and top view (B) of 
platform setup in simulation setting. (C) A zoomed in view of the antennal mass spring-damper system for a single antenna. (D) 
Neuron-to-neuron connection showing where parameters apply.

Bioinspir. Biomim. 15 (2020) 026003
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In our model, the E-PG cells are memory units (i.e. 
non-leaky integrators) that maintain persistent bump 
activity (even when no external stimulus is present) 
and are modelled as an integrator subnetwork. Within 
the modeled EB, there is an interconnected multiplica-
tion network of the E-PG tiles that when a single tile is 
active, it can modulate the sensitivity of all other E-PG 
populations (except for immediate neighbors). This 
inhibition network between tiles ensures that after the 
bump is passed to a new tile, the previous tile is inhib-
ited and becomes silent. If the body is experiencing 
left-hand rotation, for instance, the EB will experience 
a right-hand ‘pass bump’ from E-PG cell n to n  +  1 
with the approximate voltage response over time of

VE-PG,n+1 =

∫
ki ·

VP-EN,n − Erest
Ehigh − Elo

· dt,� (7)

the constant ki depends on the capacitance of the E-PG 
neurons [43].

Most parameters seen in table  1 were calculated 
using equations (6) and (7), which are applications of 
the functional subnetwork approach [43]. However, to 
get accurate EB localization, the integration constant 
ki needed to be designed to map the disk’s rotational 
velocity with the EB bump’s angular velocity. We used 
Newton’s method [44] for constrained optimization 
to tune the neuronal time constants of both the E-PG 
and memory cell populations such that the resultant 
body direction vector can be calculated accurately 
from the bump activity within the EB. Newton’s 
method is an iterative approach that attempts to conv
erge to an optimum solution, i.e. a set of values for the 
E-PG and memory cell time constants. Note that this 

Figure 2.  Connectivity. (A) The loci of dendrites and termini of P-EN and E-PG cells within the EB and PB. The lateral interneuron 
runs through the PB, where it receives inputs from chordotonal sensors (not shown) and outputs inhibitory control of same-side 
P-ENs. (B) The memory cells form an inhibitory recursive connection with the E-PG cells. The internal inhibitory network is 
formed when the terminus of an E-PG articulates with the dendrites of E-PGs in the EB except the immediate bilateral neighbors 
(example connectivity where only one E-PG inhibitory network is shown). (C) Diagram showing the functional connectivity 
networks of our CX model. E-PGn projects to the PB via the right and left P-ENn. These neurons then project down to E-PGn+1 and 
E-PGn−1, respectively, and act as an excitatory transmission (addition network). The excitability of the P-ENs, and thus the gain of 
the recurrent excitation, is controlled by the sensory neurons, each of which disinhibit all P-ENs on one side of the PB through their 
respective lateral interneurons (multiplier network). This changes the gain with which the bump is passed to the right or left in the 
EB, and therefore the speed and direction of the bump. The memory functionality of the E-PGs allows for sustained tile activity, even 
while body rotation has stopped (integration network).

Bioinspir. Biomim. 15 (2020) 026003
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method can converge to a solution and not necessarily 
the best solution. The constraint functions mentioned 
are those functions that direct the optimization tech-
nique towards the goal of interest. In this case, our goal 
was to find the E-PG and memory cell time constant 
values that minimized the mean squared error of the 
disk rotation to the bump rotation within the EB, 
thereby giving a one-to-one matching in rotation of 
the turntable platform to the rotation of the bump in 
the EB. In other words, when the turntable (on which 
our simulated insect is fixed) induces one physical turn 
of the body, the EB bump will also make a single full 
rotation within the EB. We found the time constants 
of the E-PG and memory cells greatly affected the tim-
ing in which the bump moved about the EB, so in lieu 
of attempting to optimize the entire EB/PB model 
parameters (which would be several dozen parameters 
assuming symmetry), we decided to just tune these 
neuron types. The calculated values for these neuron 
time constants that allowed this one-to-one turn ratio 

are reported in table 1.

3.  Results

3.1.  In silico model emulates in vivo behavior
3.1.1.  Direction of body rotation dictates direction of 
EB bump activity
The PB/EB network was designed to follow observed 
CX behavior such that when the simulated body 
experiences counterclockwise motion in the yaw 
plane, the PB and EB activity bumps move clockwise 
(figures 3(A)–(C)); the opposite is true for clockwise 
body motion causing counterclockwise bump activity 
in the PB and EB. (figures 3(D)–(F)) [2, 4]. Within 
the simulation, side biasing occurs when sensory 
neurons from the COs at the base of the antennae have 
asymmetrical responses to the rotational acceleration. 

These CO inputs directly modulate the lateral 
interneurons and cause side-selective disinhibition of 
the PB. The connectivity is such that when the P-ENs 
of the preferred side of the PB are disinhibited relative 
to the non-preferred side, the sustained neuronal 
activity in the EB is able to transmit from the E-PGs to 
the P-ENs residing in the preferred side of the PB. Once 
the preferred side P-ENs depolarize, it is the recursive 
excitatory loop that transmits the activity from these 
P-ENs back to the E-PGs that are shifted either one tile 
in the clockwise direction (for P-ENs from the left PB) 
or counterclockwise (for P-ENs from the right PB). 
When the body accelerates in the other direction, the 
chordotonal sensors quickly detect this directional 
change, resulting in a reversal of lateral interneuron 
inhibition proportionality and side biasing. When the 
bilateral antennae sensors experience symmetrical 
deflection, it is interpreted as no body rotation. 
This would result in a stationary peak within the EB 
corresponding to the real-time translational heading, 
and would be maintained indefinitely until body 
rotation recommences.

3.1.2.  Body rotation speed dictates EB bump activity 
speed
When the body rotates at a faster speed, the chordotonal 
sensor stretches to a greater extent (while the other 
relaxes), causing a larger hyperpolarizing current 
directed to the corresponding lateral interneuron. 
The preferred side P-ENs are more disinhibited 
and with that, comes the ability to depolarize faster 
and to a greater magnitude. For a distinct unilateral 
chordotonal input as seen in figure 3, there is a clear 
preferred side (right P-ENs; figure  3(H)) that has 
a larger depolarization magnitude and decreased 
rise-time (steeper slope) with increasing speed, 
while the non-preferred side shows minimal activity  
(figure 3(I); note the voltage value differences 
as compared to the other y-axes). The resulting 
asymmetric activity of the P-ENs of the preferred 
versus non-preferred side keep the signal side biased 
and correlated to the body’s speed and direction.

The EB bump profiles (figure 3(I)) show that the 
E-PGs depolarize to roughly the same degree with an all-
or-nothing activity during body motion; however, faster 
depolarization is seen with faster body rotational speed.

3.1.3.  Artificial stimulation in neuropils can cause 
bump jumps
To quantify the necessary artificial stimulation 
necessary to instigate a bump jump within our 
simulation environment, the artificial stimulation 
was modeled as a tonic applied current injected into 
cell populations at the level of the PB (P-ENs only) 
or E-PGs of the EB. By setting the current amplitude, 
duration, and locus of injected populations, we 
quantified what necessary stimuli are needed to 
instigate a bump jump for a stationary body or for a 
body undergoing rotational motion.

Table 1.  Parameter value summary: most values were calculated 
using the subnetwork approach introduced in [43], however, to get 
accurate EB position determinations, the neuronal time constants, 
τE-PG and τMemory were tuned using a nonlinear optimization solver. 
A constraint we imposed on the network was that these two neuron 
types were to have the same time constant. LI: lateral interneuron; 
Esyn  =  reversal potential of the synapse, gsyn  =  maximum 
conductance of the synapse.

Parameter

Calculation 

source Value

LI τ [43] 0.05 s

P-EN τ [43] 0.05 s

E-PG τ Optimization 0.012 178 s

Memory τ Optimization 0.012 178 s

LI:P-EN Esyn, gsyn [43] −0.061 115 V, 

20 µs

P-EN:E-PG Esyn, gsyn [43] 0.134 V, 115 ns

E-PG:P-EN Esyn, gsyn [43] 0.134 V, 115 ns

E-PG:Memory Esyn, gsyn [43] −0.1 V, 0.5 µs

Memory:E-PG Esyn, gsyn [43] −0.1 V, 0.5 µs

E-PG:E-PG Esyn, gsyn [43] −0.06 V, 0.5 µs

Bioinspir. Biomim. 15 (2020) 026003
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Artificial stimulation in a stationary body
The stationary body simulation is initialized by 
allowing the body to rotate at constant angular 
velocity for 4 s and then brought to a standstill. This 
initialization step establishes the t0 body heading 
(denoted as the ‘original bump’ in the figures) prior 
to applying the artificial stimulations. At this time, a 
depolarizing current was either applied to the E-PGs 
at the offset locus within the EB or to the appropriate 
P-EN to cause the same shift within the EB. Immediate 
E-PG neighbors to a tile are located at this 45° offset 
location and because immediate neighbors do 
not inhibit one another, the artificial stimulations 
implemented at this close proximity causes a greater 
spread in activity and not a bump jump (figures 4(B) 
and 5(B)). Artificial stimulation applied directly to 
the EB at a 90° or a 180° offset requires a large current 
amplitude of at least 50 nA to successfully cause a bump 

jump for a short stimulus duration of 0.01 s (figures 
4(C) and (D)). Smaller amplitudes were able to cause 
direct EB stimulated bump jumps when the duration 
was increased, sometimes requiring 3 s to successfully 
alter the locus of activity (figure 4(D)). Stimulation 
through the PB, in general, required a greater stimulus 
magnitude and longer duration to elicit a bump jump, 
with even the greatest magnitude tested (100 nA) 
requiring 0.1 s (figures 5(C) and (D)).

Artificial stimulation in a rotating body
When the body is rotating, maintaining rotational 
accuracy also becomes a factor during the artificial 
stimulations. With a body rotation of 2π rad s−1, we 
calculated a peak-to-peak time (the time it takes for 
maximal bump activity to move from one tile to the 
next) of t  =  0.1260 s. To test the feasibility of bump 
jumps in an EB that has moving activity, this peak-

Figure 3.  Body direction and rotational speed dictates direction and speed of bump activity in P-ENs and EB. TOP: the glomeruli 
of the PB and the tiles of the EB are color coded to the time varying voltage bumps seen in the graphs. Graphs (A)–(C) correspond 
to left-hand body rotation where (A) shows the preferred side P-ENs have larger depolarization magnitudes than seen in (B), the 
non-preferred, right P-ENs. (C) The E-PGs, like the P-ENs in both (A) and (B), has right-hand bump activity. Graphs (D)–(F) 
correspond to right-hand body rotation, where now all graphs show left-hand bump movement. However, with the directional 
change in body rotation, the PB non-preferred side is now (D) the left while the preferred is (E) the right. BOTTOM: right hand body 
rotation at varying speeds produces variation in the bump profiles of the PB and EB. (G) The non-preferred side P-ENs show a slight 
depolarization saturation level and a rise-time (slope) that does not appear to correlate strongly to speed. The preferred side P-ENs 
(H) shows a strong correlation of depolarization magnitude and rise-time to that of body speed. (I) The E-PGs of the EB have an all-
or-nothing activity during body motion, where depolarization always reaches the saturation level of  −0.04 V.
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to-peak time was used for all artificial stimulation 
durations but varied in locus and amplitude. Again, 
a locus of 45° did not cause a bump jump for either 
stimulation directly to the EB or to the PB (figures 
6(A) and (D)). Both 90° and 180° shifts caused bump 
jumps for larger stimulation amplitudes only when 
directly induced through the EB. In our simulation, 
we were unable to get bump jumps with stimulations 
100 nA or below when applied to the PB (figures 6(E) 
and (F)). With a moving body and thus transient tile 
activity, it became more difficult to have even high 
amplitude stimulation override the motion-induced 
EB activity. As an example, 100 nA at a 180° offset only 
instigated a reduction in bump activity magnitude 

and not a complete change in locus (figure 6(F)). 
Higher stimulation amplitudes with the constant time 
duration of t  =  0.1260 s were successful but required 
magnitudes of around 200 nA to induce bump jumps 
(not shown). Longer time duration with 100 nA or 
below was successful, however, timing became an issue 
when the duration exceeded the peak-to-peak time.

3.2.  CX behavior that emerges from simulation
3.2.1.  Loss of EB coherence with direct network stimu-
lation
Although our simulation was able to reproduce EB 
bump jumps seen in Kim et al, we found a scenario 
in which an artificial stimulation deployed directly 

Figure 4.  Artificial stimulations applied directly to the EB cause bump jumps while the body is stationary. Prior to the application 
of the artificial stimulation, the original bump location is shown on the octagonal plots (A). Additionally, this plot shows where the 
artificial stimulation is applied at  −45°, −90°, and then 180° offsets from the original bump location. Octagonal plots for (B)–(D) 
show examples of resulting activity in the EB following the implementation of the artificial stimulation. (B) No 45° stimulations 
were able to cause a bump jump. Successful 90° and 180° bump jumps required a stimulation with an amplitude of at least 50 nA for 
fast (0.01 s) jumps (C) and (D). Note that 100 and 75 nA is superimposed with 50 nA curves. Smaller amplitudes of 10, 5, and 0.5 nA 
were successful but required longer stimulus durations.

Bioinspir. Biomim. 15 (2020) 026003



9

S C Pickard et al

to an E-PG population resulted in the loss of EB 
coherence (figure 7). A 0.08 s, 10 nA tonic stimulation 
applied to the 180° offset E-PG population caused 
a partial increase in depolarization at that shifted 
locus but a failure to maintain the increased activity, 
with complete bump activity collapse after  ∼0.20 s 
following the applied stimulus (figures 7(A), (B) and 
(E)). This results in the model totally losing track of the 
believed orientation of the body.

3.2.2.  Effects of EB internal inhibition tuning
The internal inhibition network of the EB is the result of 
each E-PG making inhibitory connections to all other 
tiles. When a single E-PG is active, it is able to silence 
other tiles so as to maintain a single activity bump 
within the EB. However, the activity bump needs to be 
passed from this active tile to its immediate neighbor, 

and so to avoid simultaneous tile depolarization/
hyperpolarization, immediate neighbors are not 
inhibited in our simulated network. The aim of this 
experiment was to explore how the synaptic reversal 
potential, Esyn, and the synapse conductance, gsyn of all 
internal inhibitory connections, affected the overall 
bump activity behavior of the EB.

The parameter values of the inhibition network 
greatly impacted the bump speed within the EB (given 
a particular body rotation speed) as well as the polar 
variance [45] of tile activity. The speed of the EB bump 
activity was seen to increase with increasing synapse 
conductance while the effect of the reversal potential 
was at its minimum of  −0.06 V (figure 8(A)). The 
activity polar variance (i.e. the number tiles that par-
ticipate in the activity bump at any given time) shows 
the inverse trend, where a decreasing polar variance 

Figure 5.  Artificial stimulations applied through the PB cause bump jumps in EB while the body is stationary. (A) EB activity prior 
to stimulus. (B) No 45° stimulations were able to cause a bump jump. Successful 90° and 180° bump jumps required a stimulation 
with an amplitude of at least 50 nA. Even with longer durations, stimuli below 50 nA did not elicit a bump jump.

Bioinspir. Biomim. 15 (2020) 026003



10

S C Pickard et al

is seen with increasing synapse conductance (figures 
8(B) and (C)). The Esyn parameter produces very simi-
lar profiles for Esyn  =−0.07 V or less (more negative).

Both the speed and polar variance profile for 
Esyn  =−0.06 V are strikingly different: first, the speed 
gradually increases with increasing conductance, 
while more negative Esyn profiles show rapid increases  
(figure 8(A)). Secondly, Esyn  =−0.06 V produces a sim-
ilar polar variance profile, but like its corresponding 
speed profile, it functions within a larger range of con-
ductance values gsyn (figure 8(B)).

3.2.3.  Effects of memory synapse tuning
The memory cells form a recursive inhibitory 
connection with the E-PGs and serve as the memory 
mechanism to this network. The design of this 
recursive inhibitory connection generates a resultant 
excitatory effect necessary to counteract the leak 
current that the E-PGs would otherwise experience 
(see [43] for a more thorough discussion of memory 
cells). The counteracting excitatory current is designed 
to permit persistent activity in the network even when 
applied current is removed, thus serving as a memory 
mechanism. We explored various design approaches 
to this memory network (figure 9) to show different 
types of memory that can be created simply by tuning 
the parameters. By keeping Esyn  =−0.1 V constant, the 
controlling parameter becomes the conductance of 
the synapse, where three functional regimes emerged 
(figures 9(A)–(C)). In this simulated experiment, 
the body experiences rotational motion and then is 

brought to a standstill (i.e. CO sensory neuron current 
input ceases). Depending on the Esyn/ gsyn values of 
the memory synapses, the residual EB activity shows 
a specific type of memory trace following the stop 
in body motion. The first regime can be described as 
memory decay (figure 9(A)) where the memory trace 
loses amplitude with time. The rate of the decay can 
be modulated very finely by changing the conductance 
value (figure 9(A) top versus bottom).

Sustained memory is a persistent tile activity with 
constant amplitude that will only change when the 
body recommences rotation. Because the amplitude of 
the active tiles remains constant indefinitely, the per-
ceived body position remains constant until a change 
in body position alters the change in tile activity. In our 
simulation, this sustained memory regime occurs at a 
conductance value of gsyn  =0.50 µs (figure 9(B)).

Saturated activity occurs at values slightly above 
the sustained activity conductance value and can be 
described as a saturation to the upper bound of per-
mitted tile activity. For tiles with activity above a 
threshold at the time of stop, a complete saturation to 
maximal activity of  −0.04 V is seen. For tiles below this 
threshold at the time of stop, the tile activity goes to the 
rest potential of  −0.06 V (figure 9(C)).

4.  Discussion

In this paper, we presented a simulation of the CX that 
aims to explore potential mechanisms for multimodal 
integration of sensory inputs. We approximated 

Figure 6.  Artificial stimulations have less success in causing bump jumps in EB of a moving body. (A) and (D) A  −45° offset was 
unable to cause a bump jump regardless if the artificial stimulation was applied to the EB or PB. (B) and (C) A  −90° and 180° offset 
applied in the EB was able to cause a shift in believed position for larger amplitudes. (E) and (F) A  −90° and 180° offset applied 
through the PB was unable to cause a bump jump up to 100 nA.
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a chordotonal antennae sensor that provided 
continuous neuronal signaling to the EB/PB axis 
of the CX for self-motion tracking. To establish the 
simulation’s merit, we first showed that our in silico 
model was able to emulate the four key experimental 
observations:

	1.	�The direction of body rotation dictates direction 
of activity bump in the EB layer.

	2.	�The body’s rotational speed correlates to bump 
activity speed in the EB.

	3.	�The heading, determined by peak bump activity, 
can be updated with artificial stimulation 
applied to an EB neuron population, thereby 
causing a ‘bump jump’.

	4.	�A ‘bump jump’ can be induced through 
artificial stimulation applied to the PB neuronal 
populations as well.

Beyond these four experimental behaviors that our 
model can reproduce, we presented synaptic parameter 
exploration of the memory and EB internal inhibition 
synapses as a means to control the dynamics of the EB 
bump activity. That is, for two or more sensory inputs 

providing body position, we address here how the CX 
may compromise between multiple systems during 
the integration step and determine a single output. 
Although sensors exhibit adaptive sensitivity [46] 
and that modality weight determination may be done 
upstream of the CX [29] (possibly at the sensor level 
itself), we hypothesize that this weight determination 
happens in the CX, which is consistent with several 
studies that have found that many different sensor 
types converge at the CX, including the halteres [47], 
antennae [10, 48], and eyes [2, 4, 49].

4.1.  Issue with multimodal inputs to same cell 
populations
Both Green and Kim presented work on artificial 
stimulations localized in either the EB or PB and 
showed that these stimulations could update the 
EB on believed body position while the body was 
stationary [2, 24]. Our simulation was also able 
to update believed body position in a stationary 
body in a similar fashion, so we asked how this 
direct integration would perform in a rotating body 
(results section  3.1.3). While the direct integration 
mechanism did permit orientation updates in a 

Figure 7.  Artificial stimulation applied to the EB was able to disrupt EB bump activity. Just prior to the applied stimulus, the peak 
bump activity can be seen in tile 5 (C). A stimulation of 10 nA for 0.08 s targeting a 180° offset from the original maximum tile 
activity caused a loss of EB coherence. At the end of 0.08 s stimulus (D) the bump did jump to the targeted 180° offset but was short 
lived. 0.02 s following the start of the stimulus, the bump activity is lost, where all tiles of the EB are close to the resting potential (E). 
The line graphs show the time of stimulation application (t  =  4.10 s; indicated with dashed, red line) which is deployed at the peak 
of the tile 5 activity. If the bump jump were to have been successful, maximal activity would quickly move to tile 1. Instead, there is a 
partial depolarization of tile 1 which causes a partial inhibition of tile 2, both of which are short acting before the EB loses complete 
coherence.
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moving body, we identified instances of activity 
loss when the motion-tracking bump activity 
and the artificial stimulation (i.e. the secondary 
system input) had destructive interference. These 
instances tended to occur when the EB was receiving 
contradictory information from multiple modality 
inputs. This resulted when the maximal inhibition 
and the artificial stimulation would coincide in 
the same tile, causing complete loss of EB electrical 
activity. With the existing EB inhibition network and 
with direct integration from a secondary system, 
this mechanism seems susceptible to problems. The 
simulated CX experiments performed by Fiore et al 
also showed ‘depleted’ activity as well, resulting in 
confused mappings to motor control outputs [29]. 
Therefore it is unlikely that multiple forms of sensory 
input converge onto the same layer of the CX in this 
way—without upstream processing.

4.1.1.  Parallel EB ring architecture used to mitigate  
direct integration
To avoid the potential interferences shown in results 
section 3.2.1, we propose to use a layered EB approach 
in our future modeling studies (figure 10). In this 
layered architecture, a single sensory system will have 
a dedicated layer in the EB that will independently have 
a determined body orientation based on that single 
system’s input. This is based on the observation that 
the EB contains multiple concentric layers, whose 
exact functions are not known [50]. Once each sensory 
system has its input represented by bump activity in 
its corresponding EB layer, the question becomes how 
to form a single believed heading from these multiple 
layers. We propose a two step approach that uses (1) an 
inter-system modulation mechanism followed by (2) a 
weighted average of bump activity across these parallel 
rings.

Figure 8.  Internal EB inhibition network tuning. (A) Speed of bump activity increases as the synaptic conductance increases. (B) 
Activity distribution of the EB tiles has an inverse relationship with the synapse conductance, gsyn. The reversal potential, Esyn, does 
not appear to alter the variance profiles, however, its value does effect the allowable synaptic conductance values. (c) The upper and 
lower bounds of gsyn permitted for each Esyn is shown with the corresponding tile activity map. For an Esyn  =−0.06 V, the functional 
values of gsyn is large, spanning from 0.2 µs–100 µs. Note that in all cases, low gsyn causes high variance as seen by multiple tile 
recruitment during activity (top row), while higher gsyn values correspond to lower variance and fewer simultaneous tile activities 
(bottom row). But in the case of Esyn  =−0.06 V, both high and low variance profiles have a sharper variance profile with a single tile 
representing maximal activity when compared to higher values of Esyn.
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4.1.2.  How these parallel EB rings might interact
As presented in section 3.2.2, the conductance of the 
internal inhibitory synapses, gsyn, was able to greatly 
control the variance of the tile activity, where a larger 
variance signifies less trust in the sensor input. The 
memory network is another potential mechanism of 
inter-system control. We found that the presence of 
the memory cells were absolutely necessary for the 
oscillatory bump activity seen in the EB and appears 
to function much like autaptic connections (i.e. self 
disinhibiting connections) that have been found to 
be vital to maintain oscillatory network activity in 
vertebrate models [51–54] and perhaps in Drosophila 
[30]. The memory regimes presented in section 3.2.3 
show a range of memory synapse conductances, 
gsyn, that cause memory decay. By controlling the 
time duration via this plasticity mechanism, a 
single system’s input can be rendered short-lived by 

modulating the gsyn of the corresponding system’s 
memory synapses and reducing the time in which this 
specific system influence the vote on the final body 
position determination.

Thus far, we have discussed how a system input 
may affect the gain of another, but what our paper does 
not address, however, is how the CX determines which 
input system is most trusted given the current external 
and internal states. It is at this point that freely behav-
ing animal studies may lend insight into this question. 
Insulin experiments done by Bertsch and Ritzmann 
showed that by altering the insulin levels (i.e. the inter-
nal state) of a starved, hunting mantid, the animal will 
exhibit a behavior shift away from hunting [55]. Cur
rently they are exploring where and how in the brain 
(or ascending commands) the insulin may be acting 
to cause these shifts in motivation (which may include 
the CX). This idea of hormonally driven motiv

Figure 9.  Manipulating memory synapse parameters can alter memory trace profiles. (A)–(C) show changes in the memory traces 
in a narrow range around the value gsyn  =0.50 µs which was found to be the stable point to provide sustained memory. (A) and (C) 
show small deviations from this stable point where (A) shows that a decrease in gsyn results in a memory decay and (C) shows that an 
increase gsyn results in memory saturation.

Figure 10.  Parallel EB rings. Each layer is dedicated to a single sensory input. The magnitude and variance of the system’s input will 
effect weight of the vote in determining the final body determined from the weighted average step.
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ations ties well together with the work by Green et al 
[56], where they suggested internal goals are used as a  
guiding reference to determine moment-to-moment 
navigational behavior. And like Wystrach et  al, we 
hypothesize that system weights are evolutionary 
determined [32] but fall into contextual regimes. In 
other words, for a given hormonally dictated motiv
ational state of the animal, sensory inputs will be 
weighted accordingly.

4.1.3.  Tying it all together
In summary, our results support that a simple neuronal 
architecture can effectively maintain real-time heading 
updates. This model presents potential mechanisms 
for adaptive capabilities of the insect nervous system 
and with it, a better understanding of these situational 
neuronal behaviors seen in animals [48, 57].

The importance of exploring biological mech
anisms of sensory integration is not that biology can 
perform tasks at speeds outside the capabilities of 
engineering, but rather we are looking to biology to 
help us define contextual integration. Although the 
same external stimuli may be detected by the eyes or 
the antenna, inter-system modulation and integration 
may differ depending on changes to internal states of 
the animal. It is this pivotal role of internal states and 
the resulting changes in CX integration that we are 
striving to capture. We hope that our model, in con-

junction with future work, can be used as a framework 
for truly adaptive robotic control that can accommo-
date contextually relevant, complex behavior.
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Appendix.  Calculations

A.1.  Chordotonal sensor design calculations
This appendix summarizes the parameter calculations 
for the design of the antennae mass-spring-damper 
system. These calculations are derived from the 
equation  of motion when no external forces are 
applied:

Iθ̈ + ctθ̇ + ktθ = 0.� (A.1)

This equation is specific to a rotational mass-spring-
damper system where θ is the angle of the mass  
(i.e. the antenna) relative to the rest angle, I is the 
moment of inertia of the antenna about the pivot 
point, Ct is the torsional damping constant, and kt is 
the torsional spring stiffness. To relate these torsional 
elements to the linear elements of the muscles and 
tendons that support the antennae, we must find 

Figure A1.  Calculating the variance of time activity across the EB. (A) and (D) Example of high variance tile activity and low 
variance tile activity, respectively. (B) and (E) Vectorized activity with high and low variance, respectively. (C) and (F) Distribution 
for high and low variance, respectively.
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the linear damping constant c, and spring stiffness k. 
We wish the damping ratio of the system ζ = 1, (i.e. 
critically damped). With user-defined values of the 
above variables, the rotational damping of the system, 
ct, can be transformed to the linear damping constant, 
c, by using equations (A.2)–(A.4). First, the moment 
of inertia, I, of the antennal flagellum is directly 
proportional to the length squared and mass,

I =
1

3
mL2.� (A.2)

With the moment of inertia defined, the torsional 
dampening can be calculated.

ct = 2ζ
√
(ktI).� (A.3)

Then finally, the linear damping constant can be 
deduced.

c =
ct

( L2 )
2
.� (A.4)

A.2.  Polar variance calculations
Voltage data was collected from the E-PG neurons of 
the EB across a time horizon, t.

V =




v1
v2
v3
v4
v5
v6
v7
v8




Feature scaling was done on voltage data matrix, V , 
to scale the voltage of each E-PG between 0 and 1:

Ṽ =
Vi − Vi, min

Vi, max − Vi, min
=




ṽ1
ṽ2
ṽ3
ṽ4
ṽ5
ṽ6
ṽ7
ṽ8




.� (A.5)

The scaled voltages were then multiplied by the 
unit vectors, ê, in an element-wise fashion such that 
each tile’s normalized voltage vector is directed along 

Figure A2.  Calculating resultant heading from E-PG voltage values. (A) The unit vectors for each radial position from 0°–360° 
binned every 45°. (B) E-PG voltages normalized using equation (A.5). (C) Example instance of E-PG normalized activity. Tile five 
is at maximal activity and is given a weight of one, while tiles four has a fraction of the activity with 0.2119; tile two has a very small 
weighted activity of 0.0002. (D) The normalized voltage activities presented in (C) are plotted for visual purposes. (E) From vector 
summation, the resultant vector shows the finalized believed heading.
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its corresponding heading (example polar variance 
steps shown in figures A1(B) and (E)).

ê =




sin(0) cos(0)

sin(π4 ) cos(π4 )

sin(π2 ) cos(π2 )

sin(π4 ) − cos(π4 )

sin(0) − cos(0)

− sin(π4 ) − cos(π4 )

− sin(π2 ) cos(π2 )

− sin(π4 ) cos(π4 )




.

The normalized tile vectors are then summed to 
produce the resultant vector (figures A1(C) and (F)). 
The resultant vector magnitude is divided by the 
summed normalized tile magnitudes and subtracted 
from one to produce the polar variance,

σ2
polar = 1− ‖Ṽi‖∑8

n=1 ṽi
.� (A.6)

A.3.  Believed position calculations
Voltage data was collected from the E-PG neurons of 
the EB across a time horizon, t. Feature scaling was 
done as shown in equation (A.5) to scale the voltage of 
each E-PG between 0 and 1. The scaled voltages were 
then multiplied by the unit vectors, ̂e,

ê =




sin(0) cos(0)

sin(π4 ) cos(π4 )

sin(π2 ) cos(π2 )

sin(π4 ) − cos(π4 )

sin(0) − cos(0)

− sin(π4 ) − cos(π4 )

− sin(π2 ) cos(π2 )

− sin(π4 ) cos(π4 )




which are radially positioned at each 45° bin (figure 
A2(A)). The scaled voltages were then multiplied 
element-wise by the unit direction matrix, which 
results a voltage representation for each tile pointing in 
its corresponding heading. Figures A2(C)–(E) shows 
an example of this concept, with figure A2(C) showing 
the instantaneous activity in the EB, figure  A2(D) 
showing the weighted values of each tile’s activity 
pointed along the tile’s heading, and figure  A2(E) 
showing the resultant heading determined by vector 
addition of figure A2(D).
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