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Abstract

Itis imperative that an animal has the ability to contextually integrate received sensory information

to formulate appropriate behavioral responses. Determining a body heading based on a multitude of
ego-motion cues and visual landmarks is an example of such a task that requires this context dependent
integration. The work presented here simulates a sensory integrator in the insect brain called the central
complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two
structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal
dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation
direction and speed to activity bumps within the EB as well as updating the believed heading with quick

secondary system updates. With this model, we performed sensitivity analysis of certain neuronal
parameters as a possible means to control multi-system gains during sensory integration. We found
that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in
which a sensory system could affect the memory stability and gain of another input, respectively. This
model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic
cues in the task of body tracking and determining contextually dependent behavioral outputs.

1. Introduction

As roboticists, we hope to one day construct robots
that can complete tasks autonomously, adaptively,
and in a truly intelligent fashion. To design such a
control system, our work looks to the abilities of
animals as inspiration—specifically insects, whose
nervous systems may be more tractable than those
of vertebrates—and to understand the neurological
underpinnings of these abilities. Of particular interest
to us is how animals are able to employ many sensor
types and integrate their inputs seamlessly within the
brain. One such task that requires multimodal inputs
(and will serve as a proof-of-concept task within this
paper) is the ability to track body position within the
environment. The work presented here simulates the
experimental setup of Varga and Ritzmann where
a rotating platform is able to induce rotational cues
in an animal that is fixed to the turntable [1]. In the
simulation, when the table rotates, idiothetic updates
are detected by approximated chordotonal stretch
sensors at the base of the antennae and relayed to a

biologically-inspired sensory integrator responsible
for tracking body heading. Although the connectivity
and dynamical behavior of this integrator are not fully
mapped or understood, neurobiology has offered
insight into the brain substructures that appear to play
a pivotal role in this task [ 1-6].

A region of great interest to neurobiologists is a
structure known as the central complex (CX). The CX
is a midline brain structure found in all arthropods
[7] and in most species, it is comprised of four neu-
ropils: the protocerebral bridge (PB), the fan shaped
body (FB), the ellipsoid body (EB), and the noduli
[7-9]. Wolft et al contributed an excellent survey of
CX connectivity that showed a richly complex net-
work between the PB, FB and EB, and although Wolff’s
paper does not address functional roles of the cell
types, it provides a detailed framework for the ‘wiring
rules’ of these neuropils [9].

CX mutant and lesion studies found this brain
region to be pivotal in sensory integration [6, 10—13]
and neuromodulation for adaptive output behaviors
such as flight [14, 15], walking [12, 16, 17], turning
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[18, 19], and navigation [20, 21]. Recent optogenetic
studies have shown the participation of the CX in navi-
gational tasks, where a two photon calcium imaging
technique enables researchers to monitor population
activity of genetically manipulated neurons within the
CX while the animal is walking and visually engaged
with virtual landmark inputs [22]. From these stud-
ies, populations of neurons within the EB showed
correlative activity to body rotational position and
landmark cues. Building on these experiments, studies
into the neuronal architecture of the CX determined
a well structured connectivity and coordinated activ-
ity between the PB and EB [2, 4]. Specifically, a recur-
sive excitatory connectivity between the eight P-EN
cell populations of the PB (PBgy-9.s-EBt.b-NOy.b
[9]) and the eight E-PG tile cell populations of the
EB (PBgi-s.b-EBw.s-D/Vgall.b [9]) maintain activity
correlated to body heading and speed. In brief, activ-
ity is initiated in the EB ring by input currents from
rotational sensors and due to the internal inhibition
networks of the EB, a unimodal distribution of electri-
cal activity emerges, dubbed the ‘bump’ activity. This
bump activity is able to oscillate about the EB ring and
corresponds to the animal’s heading [2,4,23].

If this bump activity seen in the EB is the brain’s
representation of the body’s heading, how might mul-
tiple sensory systems that give analogous information
about the true heading be integrated by the brain to
produce this believed position? For instance, if chor-
dotonal antennal inputs as well as visual inputs can
both provide ego-motion cues, how might the brain
combine these input signals to finalize the perceived
body position? Experimentation from Kim et al and
Green et al both give insight to this question of posi-
tion updates through the use of artificial stimulations
deployed in the EB and the PB, respectively [2,24]. Kim
et al explored how direct photon stimulation to vari-
ous EB tiles can cause quick updates to believed body
position, or ‘bump jumps’, within the EB. This causes
the locus of activity to quickly jump without continu-
ous flow through sequential tiles [24]. Related to this,
Green et al induced bump jumps within the E-PG
populations from targeted P-EN ATP injections [2].
These studies provided inspiration for several simu-
lated experiments in our work, wherein sensory infor-
mation from a more reliable sensory input could cause
a ‘bump jump’ to the correct orientation and offset
accumulated error from different sensory inputs.

Several recent models have sought to reproduce
and explain the dynamics of the CX, to explore how
this brain region may give rise to navigational abilities
[3,25-31]. Like the work presented here, these models
presentasimilar biologically-constrained connectivity
and use dynamical neural components to reproduce
key features of the CX. Although there is similarity
across the connectivities of the models, the questions
being asked by the respective groups are unique. In this
paper, we pose a question about the relevance of the
bump width. Specifically, does the width of the bump
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change and if so, is it a proxy for certitude in the deter-
mined heading? We ask this question because in the
field of robotics, probabilistic algorithms are used to
combine noisy readings from multiple sensor types
(such as the antennal and visual inputs mentioned
above), compare said sensory inputs with approxi-
mate kinematic models, and output a single predicted
heading. The similarities to this Bayesian algorithmic
approach to sensory integration and neural integra-
tion have been suggested in mammals as well as arthro-
pods [32, 33]. If such similarities prove true, does the
CX contextually integrate inputs and give more weight
to trusted modalities?

In this paper, we first show that the biologically-
inspired connectivity [2, 4, 9] in combination with
neuronal dynamics, is sufficient in reproducing in vivo
CX behavior for a rotating body in the yaw plane. By
reproducing these behaviors [2, 4], we hope to estab-
lish a credible simulation framework for the basic
mechanisms of the PB-EB communications. In sum-
mary, four behaviors of the CX that we are able to
reproduce in simulation include:

1. The direction of body rotation dictates the
activity bump’s direction of motion in the EB
layer.

2. The body’s rotational speed correlates to bump
activity speed in the EB.

3. The heading, determined by peak bump activity,
can be updated with artificial stimulation
applied to an EB neuron population, thereby
causinga ‘bump jump’.

4. A ‘bump jump’ can be induced through
artificial stimulation applied to the PB neuronal
populations as well.

Subsequently, we present several potential
mechanisms by which real time gain modulation
of competing sensory inputs can be integrated
asymmetrically at the level of the CX. We aim to show
that through plasticity in EB memory connections
and internal inhibitory connections, the width of the
activity bump can be controlled, thereby encoding the
variance of the EB’s believed body orientation. When
mapping output motor commands to the efferent
pathways, this modulated EB projection can relay both
the determined body heading and the level of certainty
in which this heading is believed to be true.

2. Methods

2.1. Self-motion detection with chordotonal
sensors

We constructed a model in Animatlab, a 3D graphics
environment for neuromechanical simulations [34],
to simulate an agent on a rotating platform. Our
simulation setup is a reproduction of a Varga and
Ritzmann experiment aimed at assessing the interplay
of visual and chordotonal inputs within the CX of a
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fixed animal on a turntable [1]. During the experiment
performed by Varga, the animal’s head was covered in
foil, eliminating visual input and presumably reducing
windinput [1]. Weassumed that the primaryidiothetic
sensory modality available to detect motion would be
the stretch of chordotonal organs (COs), specifically
Johnston’s organs, in the base of the antennae. The
CO stretch would signify rotational acceleration and
steady-state rotational velocity, much like an inertial
measurement unit [35-41].

In the simulation environment, we reproduced this
rotational platform with a fixed body and antennae
setup which served as a dynamically responsive sensor
to rotational cues (figures 1(A) and (B)).The anten-
nae were modeled as critically damped mass-spring-
damper systems (figure 1(C)) and serve as a means to
detect rotational velocity. Each antenna converted the
positive elongation of the spring (i.e. the CO) to cur-
rent input to a sensory neuron [42]. Thus, as the circu-
lar platform experienced rotational acceleration, one
CO would stretch and induce current into its sensory
neuron while the other compressed and did notinduce
current into its sensory neuron, yielding an asymmet-
rical response. These two sensory neurons mutually
inhibit one another to form a bistable network. This
bistable network is necessary because once the disk is
spinning at a constant, steady-state angular velocity,
both antennae will be deflected symmetrically toward
the midline of the body due to centrifugal force, with
no net neural activation. However, the bistable net-
work ensures that whichever CO relaxed during accel-
eration is silenced by the CO that stretched, enabling
an asymmetrical neural response from the symmetri-
cal mechanical response.

The mechanical stimulus is then linearly mapped
to an electrical current value, I,,p, that is injected into
the CX as will be discussed in section 2.3. The transfer
function that maps the chordotonal stretch to a cur-
rent [43] is given by

0 — emin

Gmax - emin

Iapp =R- > (1)
where 6 is the sensory input and R is the user-defined
functional range of the sensory neuron (defined here
tobe —0.06V to —0.04V). This mapping function has
great utility when considering that any sensor with a
characteristic operational range could be mapped to
the sensory neurons. Parameters for the sensor can
be calculated from the fundamental equations of
rotational motion provided in appendix A.1.

2.2. Neuronsare modeled asleaky integrators

1 The neurons were modeled with linear conductance
dynamics [43] to represent time dependent electrical
properties. The voltage of the postsynpatic neuron
above rest has the dynamics

av
CmemE = Iteak + Isyn + Iapp- (2)
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Equation (2) states that the change of the mem-
brane voltage V times the capacitance of the mem-
brane Cyen, (left hand side) is equal to the total current
across the cell membrane (right hand side). The total
current is made up of the incoming, applied current
ILpp> plus the current due to ion flux through mem-
brane gates, I ., plus the current across the synapse
(transmitter induced), Iy,. Substituting current equa-
tions (3) and (4) into (2), gives the form seen in equa-
tion (5)

Leak = Gmem : (Erest - V) (3)
ISyn = Zsyn * (Es - V) (4)
dv
CmemE = Guem * (Erest = V) + &yn * (Eoyn — V) + Lipp»
(5)

where Gpen is the constant membrane conductance,
Eiest is the equilibrium potential constant (voltage
where inward and outward currents are equal), Esyy, is
thereversal potential of the synapse (sets the minimum
postsynaptic neuron voltage activity), and gy, is the
varying conductance of the synapse dependent on the
activity of the presynaptic neuron as follows:

0 if Vipre < Erest
Vire —Eres .

gsyn = GSYnmax . ﬁ—bﬂ:‘ if Eregt < Vpre < Ehigh-
1 if Vpre > Ehigh

Here, Eygp represents the upper bound of activity. The
synaptic conductance saturates for any voltage activity
exceeding this value. Taken together, Eres; and Epigy
define the functional range of the postsynaptic neuron
[43].

2.3. Insilico neuron connectivity
The dynamical neural model of the CX was
constructed in Animatlab to work in conjunction with
the mechanical stimulus of the turning disk and the
antennal chordotonal sensor discussed in section 2.1.
We constructed a neuron-to-neuron connectiv-
ity representative of the observed recursive excita-
tory connectivity between the PB and EB (figure 2),
where each neuron is modeled with the leaky integra-
tor dynamics discussed in section 2.2. This schematic
represents the assembly of the processing layers of our
simulation while remaining representative of in vivo
neuronal connectivity. As seen in figure 2(A), the P-EN
cell type have their dendritic inputs located in the PB
[9], where they receive inhibition signaling from the
lateral interneurons, while their axonal outputs extend
to the EB to articulate bilaterally with E-PG networks
[2]. After receiving inputs from the P-ENs, the E-PGs
have their axonal projections terminate in the PB and
communicate with the adjacent column of P-ENs—
thereby moving the activity to the adjacent column
[2, 4, 9]. Extrapolating the connectivity seen in lit-
erature, two cell types and an internal EB inhibition
network were required for proper activity. While
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Figure 1. Antennae chordotonal sensors. The antennae were modeled as mass spring-damper systems (one for each antenna)

to serve as the rotational velocity detectors. The deflection of the antennae (mass bar) generates a proportional current in the
simulation setting. This is injected into the CX via the disinhibitory mechanism through the PB. Side view (A) and top view (B) of
platform setup in simulation setting. (C) A zoomed in view of the antennal mass spring-damper system for a single antenna. (D)
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constructing the simulation, certain assumptions were
employed in order to produce the dynamics seen in
animals.

First, thelateral interneurons (figure 2(A)) are situ-
ated such that while active, these cells are able to inhibit
their respective side of the PB-EB axis proportionally
to the degree of their activity. These lateral interneu-
rons function in a tonic mode until they are hyperpo-
larized by chordotonal sensor currents thus permitting
the P-ENs to be depolarized and participate in the EB/
PB communication loop. Second, autaptic disinhibi-
tory connections of the E-PGs form memory networks
(figure 2(B)) that are required for long term memory
(i.e. persistent bump activity) when the body is at
standstill [43], as well as coordinating network oscil-
latory activity while the body is in motion. Third, the
internal inhibition of the EB comes into play when the
activity of a single E-PG causes hyperpolarization of
all other E-PGs except those immediately adjacent
(figure 2(B)). This mechanism permits the localized
maximal activity—the bump—and prevents ambigu-
ity of multiple peaks within the EB.

2.4. Tuning network parameters

These equations contain many parameter values that
must be tuned. Using developed methods for selecting
parameter values based on the function of network

components [43], we were able to assemble a network
whose overall behavior satisfied our goals in section 1.
Thus, we created a dynamical neural model of the
‘bump handoff’ using known neuroanatomy and our
functional subnetwork approach. Using this approach,
we can assign functional roles to the neuron populations
of EB/PB axis to have them perform specific signal
modulation operations. Figure 2(C) shows a simplified
functional representation of our CX model.

Lateral interneurons in the PB modulate the con-
ductance and therefore, the sensitivity of all P-EN
cells in one half of the PB. The parameter values of
these lateral interneurons allow them to act as a mul-
tiplication network that controls the level of disinhi-
bition of the P-EN cell populations [43]. That is, the
current received from the stretching of the antennal
CO is able to modulate the gain of the E-PG-to-E-PG
signal transmission through this interneuron multi-
plication subnetwork. Modelling the P-ENs as an addi-
tion subnetwork, the P-ENs act to positively feedback
the incoming activity of the connecting E-PGs, in the
excitatory recursive loop. With the functional subnet-
work calculations, we know that each P-EN’s steady
state voltage is approximately

Ve-pgn — E
VP—EN,n = Erest + Vsensory e (6)

Ehigh — Ejo
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Figure 2. Connectivity. (A) Theloci of dendrites and termini of P-EN and E-PG cells within the EB and PB. The lateral interneuron
runs through the PB, where it receives inputs from chordotonal sensors (not shown) and outputs inhibitory control of same-side
P-ENs. (B) The memory cells form an inhibitory recursive connection with the E-PG cells. The internal inhibitory network is
formed when the terminus of an E-PG articulates with the dendrites of E-PGs in the EB except the immediate bilateral neighbors
(example connectivity where only one E-PG inhibitory network is shown). (C) Diagram showing the functional connectivity
networks of our CX model. E-PG,, projects to the PB via the right and left P-EN,,. These neurons then project down to E-PG,,;; and
E-PG,,_y, respectively,and act as an excitatory transmission (addition network). The excitability of the P-ENs, and thus the gain of
the recurrent excitation, is controlled by the sensory neurons, each of which disinhibit all P-ENs on one side of the PB through their
respective lateral interneurons (multiplier network). This changes the gain with which the bump is passed to the right or left in the
EB, and therefore the speed and direction of the bump. The memory functionality of the E-PGs allows for sustained tile activity, even

while body rotation has stopped (integration network).

In our model, the E-PG cells are memory units (i.e.
non-leaky integrators) that maintain persistent bump
activity (even when no external stimulus is present)
and are modelled as an integrator subnetwork. Within
the modeled EB, there is an interconnected multiplica-
tion network of the E-PG tiles that when a single tile is
active, it can modulate the sensitivity of all other E-PG
populations (except for immediate neighbors). This
inhibition network between tiles ensures that after the
bump is passed to a new tile, the previous tile is inhib-
ited and becomes silent. If the body is experiencing
left-hand rotation, for instance, the EB will experience
a right-hand ‘pass bump’ from E-PG cell n to n + 1
with the approximate voltage response over time of

VP—EN n Erest
VE—PG, 1= /k s - dt, 7
" " Enigh — Ep @)

the constant k; depends on the capacitance of the E-PG
neurons [43].

Most parameters seen in table 1 were calculated
using equations (6) and (7), which are applications of
the functional subnetwork approach [43]. However, to
get accurate EB localization, the integration constant
k; needed to be designed to map the disk’s rotational
velocity with the EB bump’s angular velocity. We used
Newton’s method [44] for constrained optimization
to tune the neuronal time constants of both the E-PG
and memory cell populations such that the resultant
body direction vector can be calculated accurately
from the bump activity within the EB. Newton’s
method is an iterative approach that attempts to conv-
erge to an optimum solution, i.e. a set of values for the
E-PG and memory cell time constants. Note that this
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Table 1. Parameter value summary: most values were calculated
using the subnetwork approach introduced in [43], however, to get
accurate EB position determinations, the neuronal time constants,
Tg-pG and Tyfemory Were tuned using a nonlinear optimization solver.
A constraint we imposed on the network was that these two neuron
types were to have the same time constant. LI: lateral interneuron;
E,y, = reversal potential of the synapse, g, = maximum
conductance of the synapse.

Calculation

Parameter source Value
LIT [43] 0.05s
P-EN 7 [43] 0.05s
E-PGT Optimization 0.012178 s
Memory 7 Optimization 0.012178 s
LL:P-EN E,, gy [43] —0.061115V,

20 ps
P-EN:E-PG E;, gyn [43] 0.134V, 115 ns
E-PG:P-EN E,y,,, ¢4 [43] 0.134V, 115 ns
E-PG:Memory Egy, goyn [43] —0.1V,0.5 us
Memory:E-PG Eiy, goyn [43] —0.1V,0.5 ps
E-PG:E-PG Eyy,p, gy [43] —0.06V; 0.5 yis

method can converge to a solution and not necessarily
the best solution. The constraint functions mentioned
are those functions that direct the optimization tech-
nique towards the goal of interest. In this case, our goal
was to find the E-PG and memory cell time constant
values that minimized the mean squared error of the
disk rotation to the bump rotation within the EB,
thereby giving a one-to-one matching in rotation of
the turntable platform to the rotation of the bump in
the EB. In other words, when the turntable (on which
our simulated insect is fixed) induces one physical turn
of the body, the EB bump will also make a single full
rotation within the EB. We found the time constants
of the E-PG and memory cells greatly affected the tim-
ing in which the bump moved about the EB, so in lieu
of attempting to optimize the entire EB/PB model
parameters (which would be several dozen parameters
assuming symmetry), we decided to just tune these
neuron types. The calculated values for these neuron
time constants that allowed this one-to-one turn ratio

arereported in table 1.
3. Results

3.1. Insilicomodel emulates in vivo behavior

3.1.1. Direction of body rotation dictates direction of
EB bump activity

The PB/EB network was designed to follow observed
CX behavior such that when the simulated body
experiences counterclockwise motion in the yaw
plane, the PB and EB activity bumps move clockwise
(figures 3(A)—(C)); the opposite is true for clockwise
body motion causing counterclockwise bump activity
in the PB and EB. (figures 3(D)—(F)) [2, 4]. Within
the simulation, side biasing occurs when sensory
neurons from the COs at the base of the antennae have
asymmetrical responses to the rotational acceleration.

SCPickardetal

These CO inputs directly modulate the lateral
interneurons and cause side-selective disinhibition of
the PB. The connectivity is such that when the P-ENs
of the preferred side of the PB are disinhibited relative
to the non-preferred side, the sustained neuronal
activity in the EB is able to transmit from the E-PGs to
the P-ENs residing in the preferred side of the PB. Once
the preferred side P-EN's depolarize, it is the recursive
excitatory loop that transmits the activity from these
P-ENs back to the E-PGs that are shifted either one tile
in the clockwise direction (for P-ENs from the left PB)
or counterclockwise (for P-ENs from the right PB).
When the body accelerates in the other direction, the
chordotonal sensors quickly detect this directional
change, resulting in a reversal of lateral interneuron
inhibition proportionality and side biasing. When the
bilateral antennae sensors experience symmetrical
deflection, it is interpreted as no body rotation.
This would result in a stationary peak within the EB
corresponding to the real-time translational heading,
and would be maintained indefinitely until body
rotation recommences.

3.1.2. Body rotation speed dictates EB bump activity
speed

Whenthebodyrotatesatafaster speed, the chordotonal
sensor stretches to a greater extent (while the other
relaxes), causing a larger hyperpolarizing current
directed to the corresponding lateral interneuron.
The preferred side P-ENs are more disinhibited
and with that, comes the ability to depolarize faster
and to a greater magnitude. For a distinct unilateral
chordotonal input as seen in figure 3, there is a clear
preferred side (right P-ENs; figure 3(H)) that has
a larger depolarization magnitude and decreased
rise-time (steeper slope) with increasing speed,
while the non-preferred side shows minimal activity
(figure 3(I); note the voltage value differences
as compared to the other y-axes). The resulting
asymmetric activity of the P-ENs of the preferred
versus non-preferred side keep the signal side biased
and correlated to the body’s speed and direction.

The EB bump profiles (figure 3(I)) show that the
E-PGs depolarize to roughly the same degree with an all-
or-nothing activity during body motion; however, faster
depolarization is seen with faster body rotational speed.

3.1.3. Artificial stimulation in neuropils can cause
bump jumps

To quantify the necessary artificial stimulation
necessary to instigate a bump jump within our
simulation environment, the artificial stimulation
was modeled as a tonic applied current injected into
cell populations at the level of the PB (P-ENs only)
or E-PGs of the EB. By setting the current amplitude,
duration, and locus of injected populations, we
quantified what necessary stimuli are needed to
instigate a bump jump for a stationary body or for a
body undergoing rotational motion.
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Figure 3. Body direction and rotational speed dictates direction and speed of bump activity in P-ENs and EB. TOP: the glomeruli

of the PB and the tiles of the EB are color coded to the time varying voltage bumps seen in the graphs. Graphs (A)—(C) correspond

to left-hand body rotation where (A) shows the preferred side P-ENs have larger depolarization magnitudes than seen in (B), the
non-preferred, right P-ENs. (C) The E-PGs, like the P-ENs in both (A) and (B), has right-hand bump activity. Graphs (D)—(F)
correspond to right-hand body rotation, where now all graphs show left-hand bump movement. However, with the directional
change in body rotation, the PB non-preferred side is now (D) the left while the preferred is (E) the right. BOTTOM: right hand body
rotation at varying speeds produces variation in the bump profiles of the PB and EB. (G) The non-preferred side P-ENs show a slight
depolarization saturation level and a rise-time (slope) that does not appear to correlate strongly to speed. The preferred side P-ENs
(H) shows a strong correlation of depolarization magnitude and rise-time to that of body speed. (I) The E-PGs of the EB have an all-
or-nothing activity during body motion, where depolarization always reaches the saturation level of —0.04 V.

Artificial stimulation in a stationary body

The stationary body simulation is initialized by
allowing the body to rotate at constant angular
velocity for 4 s and then brought to a standstill. This
initialization step establishes the fy body heading
(denoted as the ‘original bump’ in the figures) prior
to applying the artificial stimulations. At this time, a
depolarizing current was either applied to the E-PGs
at the offset locus within the EB or to the appropriate
P-EN to cause the same shift within the EB. Immediate
E-PG neighbors to a tile are located at this 45° offset
location and because immediate neighbors do
not inhibit one another, the artificial stimulations
implemented at this close proximity causes a greater
spread in activity and not a bump jump (figures 4(B)
and 5(B)). Artificial stimulation applied directly to
the EB ata 90° or a 180° offset requires a large current
amplitude of atleast 50 nA to successfully cause abump

jump for a short stimulus duration of 0.01 s (figures
4(C) and (D)). Smaller amplitudes were able to cause
direct EB stimulated bump jumps when the duration
was increased, sometimes requiring 3 s to successfully
alter the locus of activity (figure 4(D)). Stimulation
through the PB, in general, required a greater stimulus
magnitude and longer duration to elicit a bump jump,
with even the greatest magnitude tested (100 nA)
requiring 0.1 s (figures 5(C) and (D)).

Artificial stimulation in a rotating body

When the body is rotating, maintaining rotational
accuracy also becomes a factor during the artificial
stimulations. With a body rotation of 27 rad s!, we
calculated a peak-to-peak time (the time it takes for
maximal bump activity to move from one tile to the
next) of t = 0.1260 s. To test the feasibility of bump

jumps in an EB that has moving activity, this peak-
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were successful but required longer stimulus durations.

Figure4. Artificial stimulations applied directly to the EB cause bump jumps while the body is stationary. Prior to the application
of the artificial stimulation, the original bump location is shown on the octagonal plots (A). Additionally, this plot shows where the
artificial stimulation is applied at —45°, —90°, and then 180° offsets from the original bump location. Octagonal plots for (B)—(D)
show examples of resulting activity in the EB following the implementation of the artificial stimulation. (B) No 45° stimulations
were able to cause a bump jump. Successful 90° and 180° bump jumps required a stimulation with an amplitude of at least 50 nA for
fast (0.01 s) jumps (C) and (D). Note that 100 and 75 nA is superimposed with 50 nA curves. Smaller amplitudes of 10, 5,and 0.5 nA

to-peak time was used for all artificial stimulation
durations but varied in locus and amplitude. Again,
a locus of 45° did not cause a bump jump for either
stimulation directly to the EB or to the PB (figures
6(A) and (D)). Both 90° and 180° shifts caused bump
jumps for larger stimulation amplitudes only when
directly induced through the EB. In our simulation,
we were unable to get bump jumps with stimulations
100 nA or below when applied to the PB (figures 6(E)
and (F)). With a moving body and thus transient tile
activity, it became more difficult to have even high
amplitude stimulation override the motion-induced
EB activity. As an example, 100 nA at a 180° offset only
instigated a reduction in bump activity magnitude

and not a complete change in locus (figure 6(F)).
Higher stimulation amplitudes with the constant time
duration of t = 0.1260 s were successful but required
magnitudes of around 200 nA to induce bump jumps
(not shown). Longer time duration with 100 nA or
below was successful, however, timing became an issue
when the duration exceeded the peak-to-peak time.

3.2. CXbehavior that emerges from simulation
3.2.1. Loss of EB coherence with direct network stimu-
lation

Although our simulation was able to reproduce EB
bump jumps seen in Kim et al, we found a scenario
in which an artificial stimulation deployed directly

8
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Figure 5. Artificial stimulations applied through the PB cause bump jumps in EB while the body is stationary. (A) EB activity prior
to stimulus. (B) No 45° stimulations were able to cause a bump jump. Successful 90° and 180° bump jumps required a stimulation
with an amplitude of at least 50 nA. Even with longer durations, stimuli below 50 nA did not elicit a bump jump.

to an E-PG population resulted in the loss of EB
coherence (figure 7). A 0.08 s, 10 nA tonic stimulation
applied to the 180° offset E-PG population caused
a partial increase in depolarization at that shifted
locus but a failure to maintain the increased activity,
with complete bump activity collapse after ~0.20 s
following the applied stimulus (figures 7(A), (B) and
(E)). This results in the model totally losing track of the
believed orientation of the body.

3.2.2. Effects of EB internal inhibition tuning

Theinternal inhibition network of the EB is the result of
each E-PG making inhibitory connections to all other
tiles. When a single E-PG is active, it is able to silence
other tiles so as to maintain a single activity bump
within the EB. However, the activity bump needs to be
passed from this active tile to its immediate neighbor,

and so to avoid simultaneous tile depolarization/
hyperpolarization, immediate neighbors are not
inhibited in our simulated network. The aim of this
experiment was to explore how the synaptic reversal
potential, E,, and the synapse conductance, g, of all
internal inhibitory connections, affected the overall
bump activity behavior of the EB.

The parameter values of the inhibition network
greatly impacted the bump speed within the EB (given
a particular body rotation speed) as well as the polar
variance [45] of tile activity. The speed of the EB bump
activity was seen to increase with increasing synapse
conductance while the effect of the reversal potential
was at its minimum of —0.06V (figure 8(A)). The
activity polar variance (i.e. the number tiles that par-
ticipate in the activity bump at any given time) shows
the inverse trend, where a decreasing polar variance

9
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through the PB was unable to cause a bump jump up to 100 nA.

Figure 6. Artificial stimulations have less success in causing bump jumps in EB of a moving body. (A) and (D) A —45° offset was
unable to cause a bump jump regardless if the artificial stimulation was applied to the EB or PB. (B) and (C) A —90° and 180° offset
applied in the EB was able to cause a shift in believed position for larger amplitudes. (E) and (F) A —90° and 180° offset applied

is seen with increasing synapse conductance (figures
8(B) and (C)). The E,;,, parameter produces very simi-
lar profiles for Ejy,, =—0.07V or less (more negative).

Both the speed and polar variance profile for
Ey,, =—0.06V are strikingly different: first, the speed
gradually increases with increasing conductance,
while more negative Ey, profiles show rapid increases
(figure 8(A)). Secondly, Eg,,, =—0.06 V produces a sim-
ilar polar variance profile, but like its corresponding
speed profile, it functions within a larger range of con-
ductance values g, (figure 8(B)).

3.2.3. Effects of memory synapse tuning

The memory cells form a recursive inhibitory
connection with the E-PGs and serve as the memory
mechanism to this network. The design of this
recursive inhibitory connection generates a resultant
excitatory effect necessary to counteract the leak
current that the E-PGs would otherwise experience
(see [43] for a more thorough discussion of memory
cells). The counteracting excitatory current is designed
to permit persistent activity in the network even when
applied current is removed, thus serving as a memory
mechanism. We explored various design approaches
to this memory network (figure 9) to show different
types of memory that can be created simply by tuning
the parameters. By keeping Ey,,, =—0.1V constant, the
controlling parameter becomes the conductance of
the synapse, where three functional regimes emerged
(figures 9(A)—(C)). In this simulated experiment,
the body experiences rotational motion and then is

brought to a standstill (i.e. CO sensory neuron current
input ceases). Depending on the E,,/ g, values of
the memory synapses, the residual EB activity shows
a specific type of memory trace following the stop
in body motion. The first regime can be described as
memory decay (figure 9(A)) where the memory trace
loses amplitude with time. The rate of the decay can
be modulated very finely by changing the conductance
value (figure 9(A) top versus bottom).

Sustained memory is a persistent tile activity with
constant amplitude that will only change when the
body recommences rotation. Because the amplitude of
the active tiles remains constant indefinitely, the per-
ceived body position remains constant until a change
in body position alters the change in tile activity. In our
simulation, this sustained memory regime occurs at a
conductance value of g, =0.50 s (figure 9(B)).

Saturated activity occurs at values slightly above
the sustained activity conductance value and can be
described as a saturation to the upper bound of per-
mitted tile activity. For tiles with activity above a
threshold at the time of stop, a complete saturation to
maximal activity of —0.04V is seen. For tiles below this
threshold at the time of stop, the tile activity goes to the
rest potential of —0.06V (figure 9(C)).

4. Discussion
In this paper, we presented a simulation of the CX that

aims to explore potential mechanisms for multimodal
integration of sensory inputs. We approximated

10



10P Publishing

Bioinspir. Biomim. 15 (2020) 026003 S CPickard et al
EB Loses Activity Coherence
A
/
-0.035
-0.040 Before Stimulus
=
¢-0.045
S
.0.050
s 10nA -0.04
-0.055 0.08s Duration
-0.060
‘ ‘ < | {-0.045
B 6 8 10 <
| ‘ ‘ 0.08s &
I Zoomed After Stimulus S
I
-0.040 | £ |-0.05
0.045 |
=
g -0.055
=-0.050 f
o
>
2
=-0.055 0.2s -0.06
After Stimulus ’
-0.060
Time (s)
Figure7. Artificial stimulation applied to the EB was able to disrupt EB bump activity. Just prior to the applied stimulus, the peak
bump activity can be seen in tile 5 (C). A stimulation of 10 nA for 0.08 s targeting a 180° offset from the original maximum tile
activity caused aloss of EB coherence. At the end of 0.08 s stimulus (D) the bump did jump to the targeted 180° offset but was short
lived. 0.02 s following the start of the stimulus, the bump activity is lost, where all tiles of the EB are close to the resting potential (E).
The line graphs show the time of stimulation application (¢ = 4.10 s; indicated with dashed, red line) which is deployed at the peak
of the tile 5 activity. If the bump jump were to have been successful, maximal activity would quickly move to tile 1. Instead, thereisa
partial depolarization of tile 1 which causes a partial inhibition of tile 2, both of which are short acting before the EB loses complete
coherence.

a chordotonal antennae sensor that provided
continuous neuronal signaling to the EB/PB axis
of the CX for self-motion tracking. To establish the
simulation’s merit, we first showed that our in silico
model was able to emulate the four key experimental
observations:

1. The direction of body rotation dictates direction
of activity bump in the EB layer.

2. The body’s rotational speed correlates to bump
activity speed in the EB.

3. The heading, determined by peak bump activity,
can be updated with artificial stimulation
applied to an EB neuron population, thereby
causinga ‘bump jump’.

4. A ‘bump jump’ can be induced through
artificial stimulation applied to the PB neuronal
populations as well.

Beyond these four experimental behaviors that our
model can reproduce, we presented synaptic parameter
exploration of the memory and EB internal inhibition
synapses as a means to control the dynamics of the EB
bump activity. That is, for two or more sensory inputs

providing body position, we address here how the CX
may compromise between multiple systems during
the integration step and determine a single output.
Although sensors exhibit adaptive sensitivity [46]
and that modality weight determination may be done
upstream of the CX [29] (possibly at the sensor level
itself), we hypothesize that this weight determination
happens in the CX, which is consistent with several
studies that have found that many different sensor
types converge at the CX, including the halteres [47],
antennae [10,48],and eyes [2,4,49].

4.1. Issuewith multimodal inputs to same cell
populations

Both Green and Kim presented work on artificial
stimulations localized in either the EB or PB and
showed that these stimulations could update the
EB on believed body position while the body was
stationary [2, 24]. Our simulation was also able
to update believed body position in a stationary
body in a similar fashion, so we asked how this
direct integration would perform in a rotating body
(results section 3.1.3). While the direct integration
mechanism did permit orientation updates in a
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Figure 8. Internal EB inhibition network tuning. (A) Speed of bump activity increases as the synaptic conductance increases. (B)
Activity distribution of the EB tiles has an inverse relationship with the synapse conductance, g;,,. The reversal potential, E,,, does
notappear to alter the variance profiles, however, its value does effect the allowable synaptic conductance values. (c) The upper and
lower bounds of g, permitted for each E, is shown with the corresponding tile activity map. For an E;y,, =—0.06 V, the functional
values of g, is large, spanning from 0.2 y1s-100 ps. Note that in all cases, low g, causes high variance as seen by multiple tile
recruitment during activity (top row), while higher g;,,, values correspond to lower variance and fewer simultaneous tile activities
(bottom row). But in the case of Ey;,, =—0.06V, both high and low variance profiles have a sharper variance profile with a single tile
representing maximal activity when compared to higher values of E,,.

moving body, we identified instances of activity
loss when the motion-tracking bump activity
and the artificial stimulation (i.e. the secondary
system input) had destructive interference. These
instances tended to occur when the EB was receiving
contradictory information from multiple modality
inputs. This resulted when the maximal inhibition
and the artificial stimulation would coincide in
the same tile, causing complete loss of EB electrical
activity. With the existing EB inhibition network and
with direct integration from a secondary system,
this mechanism seems susceptible to problems. The
simulated CX experiments performed by Fiore et al
also showed ‘depleted’ activity as well, resulting in
confused mappings to motor control outputs [29].
Therefore it is unlikely that multiple forms of sensory
input converge onto the same layer of the CX in this
way—without upstream processing.

4.1.1. Parallel EB ring architecture used to mitigate
direct integration

To avoid the potential interferences shown in results
section 3.2.1, we propose to use a layered EB approach
in our future modeling studies (figure 10). In this
layered architecture, a single sensory system will have
adedicated layer in the EB that will independently have
a determined body orientation based on that single
system’s input. This is based on the observation that
the EB contains multiple concentric layers, whose
exact functions are not known [50]. Once each sensory
system has its input represented by bump activity in
its corresponding EB layer, the question becomes how
to form a single believed heading from these multiple
layers. We propose a two step approach that uses (1) an
inter-system modulation mechanism followed by (2) a
weighted average of bump activity across these parallel
rings.

12



10P Publishing

Bioinspir. Biomim. 15 (2020) 026003

S CPickard et al

Activity Decay

Sustained Activity

Saturated Activity

A B C
-0.035 -0.035 8eyn=0.50 uS -0.035 8qyn=0.51pS
S -0.040 Ban = 04313 -0.040 Zoom In -0.040
g" -0.045 -0.045 -0.045
% -0.050 -0.050 -0.050
= -0.055 -0.055 -0.055
-0.060 -0.060 -0.060
4.8 5 52 54 56 4.8 5 52 54 56 4.8 5 52 54 56
-0.035 g,0=0.499 1S -0.035 Boyn = 0.-50 uS -0.035 goyn=0.52115
-0.040 -0.040 Full View -0.040
%m -0.045 -0.045 -0.045
g -0.050 -0.050 -0.050
-.% -0.055 -0.055 -0.055
-0.060 -0.060 -0.060
48 5 52 54 56 5 6 7 8 9 10 4.8 5 52 54 56
Time (s) Time (s) Time (s)

increase gy, results in memory saturation.

Figure9. Manipulating memory synapse parameters can alter memory trace profiles. (A)—(C) show changes in the memory traces
ina narrow range around the value g;,,, =0.50 ps which was found to be the stable point to provide sustained memory. (A) and (C)
show small deviations from this stable point where (A) shows thata decrease in g, results in a memory decay and (C) shows that an

Figure 10. Parallel EB rings. Each layer is dedicated to a single sensory input. The magnitude and variance of the system’s input will
effect weight of the vote in determining the final body determined from the weighted average step.
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4.1.2. How these parallel EB rings might interact

As presented in section 3.2.2, the conductance of the
internal inhibitory synapses, gi,,, was able to greatly
control the variance of the tile activity, where a larger
variance signifies less trust in the sensor input. The
memory network is another potential mechanism of
inter-system control. We found that the presence of
the memory cells were absolutely necessary for the
oscillatory bump activity seen in the EB and appears
to function much like autaptic connections (i.e. self
disinhibiting connections) that have been found to
be vital to maintain oscillatory network activity in
vertebrate models [51-54] and perhaps in Drosophila
[30]. The memory regimes presented in section 3.2.3
show a range of memory synapse conductances,
Zyn> that cause memory decay. By controlling the
time duration via this plasticity mechanism, a
single system’s input can be rendered short-lived by

modulating the g, of the corresponding system’s
memory synapses and reducing the time in which this
specific system influence the vote on the final body
position determination.

Thus far, we have discussed how a system input
may affect the gain of another, but what our paper does
not address, however, is how the CX determines which
input system is most trusted given the current external
and internal states. It is at this point that freely behav-
ing animal studies may lend insight into this question.
Insulin experiments done by Bertsch and Ritzmann
showed that by altering the insulin levels (i.e. the inter-
nal state) of a starved, hunting mantid, the animal will
exhibit a behavior shift away from hunting [55]. Cur-
rently they are exploring where and how in the brain
(or ascending commands) the insulin may be acting
to cause these shifts in motivation (which may include
the CX). This idea of hormonally driven motiv-
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Figure Al. Calculating the variance of time activity across the EB. (A) and (D) Example of high variance tile activity and low
variance tile activity, respectively. (B) and (E) Vectorized activity with high and low variance, respectively. (C) and (F) Distribution

for high and low variance, respectively.

ations ties well together with the work by Green et al
[56], where they suggested internal goals are used as a
guiding reference to determine moment-to-moment
navigational behavior. And like Wystrach et al, we
hypothesize that system weights are evolutionary
determined [32] but fall into contextual regimes. In
other words, for a given hormonally dictated motiv-
ational state of the animal, sensory inputs will be
weighted accordingly.

4.1.3. Tying it all together

In summary, our results support thatasimple neuronal
architecture can effectively maintain real-time heading
updates. This model presents potential mechanisms
for adaptive capabilities of the insect nervous system
and with it, a better understanding of these situational
neuronal behaviors seen in animals [48,57].

The importance of exploring biological mech-
anisms of sensory integration is not that biology can
perform tasks at speeds outside the capabilities of
engineering, but rather we are looking to biology to
help us define contextual integration. Although the
same external stimuli may be detected by the eyes or
the antenna, inter-system modulation and integration
may differ depending on changes to internal states of
the animal. It is this pivotal role of internal states and
the resulting changes in CX integration that we are
striving to capture. We hope that our model, in con-

junction with future work, can be used as a framework
for truly adaptive robotic control that can accommo-
date contextually relevant, complex behavior.
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Appendix. Calculations

A.1. Chordotonal sensor design calculations

This appendix summarizes the parameter calculations
for the design of the antennae mass-spring-damper
system. These calculations are derived from the
equation of motion when no external forces are

applied:

16 + ¢ + kb = 0. (A.1)

This equation is specific to a rotational mass-spring-
damper system where 6 is the angle of the mass
(i.e. the antenna) relative to the rest angle, I is the
moment of inertia of the antenna about the pivot
point, C; is the torsional damping constant, and k; is
the torsional spring stiffness. To relate these torsional
elements to the linear elements of the muscles and
tendons that support the antennae, we must find
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Figure A2. Calculating resultant heading from E-PG voltage values. (A) The unit vectors for each radial position from 0°-360°
binned every 45°. (B) E-PG voltages normalized using equation (A.5). (C) Example instance of E-PG normalized activity. Tile five
is at maximal activity and is given a weight of one, while tiles four has a fraction of the activity with 0.2119; tile two has a very small
weighted activity of 0.0002. (D) The normalized voltage activities presented in (C) are plotted for visual purposes. (E) From vector
summation, the resultant vector shows the finalized believed heading.

the linear damping constant c, and spring stiffness k.
We wish the damping ratio of the system ¢ = 1, (i.e.
critically damped). With user-defined values of the
above variables, the rotational damping of the system,
¢, can be transformed to the linear damping constant,
¢, by using equations (A.2)—(A.4). First, the moment
of inertia, I, of the antennal flagellum is directly
proportional to the length squared and mass,

1
Izgmﬁ. (A.2)

With the moment of inertia defined, the torsional
dampening can be calculated.

c = 20/ (kd). (A3)

Then finally, the linear damping constant can be
deduced.

B (A4)

A.2. Polar variance calculations
Voltage data was collected from the E-PG neurons of
the EB across a time horizon, t.

V1
V2
V3
Va
Vs
Ve
v7

Vg

Feature scaling was done on voltage data matrix, V/,
to scale the voltage of each E-PG between 0 and 1:

-171-
1)
Vs

\/i - ‘/i, min _ VZI

Vi, min V~5

Ve

<t
I

(A.5)

Vi, max

vy
Vg

The scaled voltages were then multiplied by the
unit vectors, é, in an element-wise fashion such that
each tile’s normalized voltage vector is directed along
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its corresponding heading (example polar variance
steps shown in figures A1(B) and (E)).
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The normalized tile vectors are then summed to
produce the resultant vector (figures A1(C) and (F)).
The resultant vector magnitude is divided by the
summed normalized tile magnitudes and subtracted
from one to produce the polar variance,
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A.3. Believed position calculations
Voltage data was collected from the E-PG neurons of
the EB across a time horizon, t. Feature scaling was
done as shown in equation (A.5) to scale the voltage of
each E-PG between 0 and 1. The scaled voltages were
then multiplied by the unit vectors, é,

[ sin(0) cos(0)
sin(7) cos(%)
sin(%) cos(%)

s sin(f)  —cos(%)
sin(0)  — cos(0)
—sin(§) —cos(%)
—sin(%)  cos(3)

- sin(f)  cos(§) |

which are radially positioned at each 45° bin (figure
A2(A)). The scaled voltages were then multiplied
element-wise by the unit direction matrix, which
results a voltage representation for each tile pointing in
its corresponding heading. Figures A2(C)—(E) shows
an example of this concept, with figure A2(C) showing
the instantaneous activity in the EB, figure A2(D)
showing the weighted values of each tile’s activity
pointed along the tile’s heading, and figure A2(E)
showing the resultant heading determined by vector
addition of figure A2(D).
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