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Abstract
This manuscript describes neuromechanical modeling of the fruit fly Drosophila melanogaster in
the form of a hexapod robot, Drosophibot, and an accompanying dynamic simulation.
Drosophibot is a testbed for real-time dynamical neural controllers modeled after the anatomy and
function of the insect nervous system. As such, Drosophibot has been designed to capture features
of the animal’s biomechanics in order to better test the neural controllers. These features include:
dynamically scaling the robot to match the fruit fly by designing its joint elasticity and movement
speed; a biomimetic actuator control scheme that converts neural activity into motion in the same
way as observed in insects; biomimetic sensing, including proprioception from all leg joints and
strain sensing from all leg segments; and passively compliant tarsi that mimic the animal’s passive
compliance to the walking substrate. We incorporated these features into a dynamical simulation of
Drosophibot, and demonstrate that its actuators and sensors perform in an animal-like way. We
used this simulation to test a neural walking controller based on anatomical and behavioral data
from insects. Finally, we describe Drosophibot’s hardware and show that the animal-like features of
the simulation transfer to the physical robot.

1. Introduction

Biology is a natural place to look for inspiration
when building legged robots. Animals provide exam-
ples of how machines could be built to traverse dif-
ficult terrain with speed and agility. Despite how
much is known about animal neuromechanics, there
are still many open questions regarding how ani-
mals move. Computational neuromechanics [80] and
biomimetic robots [35, 51] provide opportunities to
organize what is known about animal locomotion,
consolidate many different results into one model,
observe how complete the current body of knowl-
edge is, test hypotheses, and propose future experi-
mental work. In this manuscript, we conceptualize,
simulate, and build a hexapod robot as a compu-
tational neuromechanical model of the fruit fly. We
use a simulation to verify that our modeling methods
capture key animal-like responses and behaviors, and
then we show that the robot can capture these same
features.

Many robots developed over the past few decades
exploit varying degrees of biological inspiration to
control their locomotion [11, 36]. Early systems like

Raibert’s Quadruped and CWRU’s Robot II utilized
simplified biological gaits and joint constraints to
successfully emulate biological motion [22, 48]. Con-
temporary robots have built upon the concept of bio-
logical gaits with additional success [5, 7, 53]. Some
robotic platforms have expanded upon gait gener-
ation further and use biologically observed mecha-
nisms such as central pattern generators (CPGs) in
their controllers [19, 21, 23, 37, 41, 56, 63, 74].

Additional robots also mimic the mechanics of
walking animals. One way to mimic animal mechan-
ics is to incorporate compliant elements into the limbs
and actuators. Compliant structures mimic the natu-
ral elasticity of muscle and tendon, enabling the robot
to passively adapt to external forces or imprecise foot
placement [26, 28, 34, 47, 60, 74]. Compliant struc-
tures of a known stiffness in series with actuators
may enable the robot to measure output forces as in
a series elastic actuator (SEA) [20, 52]. Elastic ele-
ments in parallel with the actuators can reduce the
load on actuators by offloading torque as the element
is deflected, aiding in control and potentially extend-
ing the actuators’ lifespan [42, 74]. Some actuators are
themselves highly compliant, such as braided pneu-
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matic actuators, which must be used in antagonistic
pairs like muscle–tendon complexes [2, 40, 54, 59].
Despite their added mechanical complexity, elastic
components may increase the biomimicry, capability,
and durability of legged robots.

Many of these robots represent a functional
approach to biomimicry; their designs are focused on
replicating end behaviors of the animal rather than
beginning with the basic organization of the systems
that produce them [11]. This strategy successfully
improves robotic locomotion; however, it abstracts
the morphology of the animal so that the robotic
and biological structures are only trivially compara-
ble. As our current understanding of animal locomo-
tion is incomplete, this approach misses out on the
potential for greater discovery; biologically inspired
robots with higher levels of animal fidelity serve as
testing platforms for biological hypotheses, advancing
both fields. This is called the morphological approach
[11].

An inexpensive and rapid starting point for the
morphological approach is to simulate the mechanics
of a robot and its controller [17, 20, 74]. The simu-
lation provides an idealized environment for concep-
tual testing, which can be used to refine the robot’s
design for construction. Building and testing on the
robot then provides further insight into these con-
cepts by introducing internal (friction, noise, timing
delay) and external (uneven terrain, ground slippage)
variability that more closely resembles what the ani-
mal contends with, but are complicated and computa-
tionally expensive to accurately model in simulation.
Consequently, some features prove significantly eas-
ier to model with a robot than in a simulation. For
example, modeling limb strain in simulation necessi-
tates adding additional degrees of freedom (DOF) and
performing computationally expensive finite element
analysis, while such data can be directly measured on
the physical robot. As such, developing a physical plat-
form is a crucial step in the morphological modeling
of animals.

Over the last decade, the morphological approach
has been applied to an increasing number of robots
[20, 26, 42, 63, 74]. Many such robots, including
HECTOR, Octavio, MantisBot, AMOS II, and BILL-
Stick emulate insects. Insects are good candidates for
morphological robots due to their robust locomotion
capability with nervous systems that are smaller than
those of other animals, such as mammals. This relative
smallness might allow neurobiologists to understand
the full insect nervous system before the much larger
systems in vertebrates. Additionally, many of the
mechanisms observed in the nervous systems of vari-
ous historically studied insects such as cockroaches,
locusts, and stick insects are both consistent across
insects and can also be observed in phylogenetically
distant animals [3, 50]. These findings imply that
insect related discoveries could be applied to answer
broader questions regarding animal neuromechanics.

Lately, fruit flies have become a much-studied
model organism due to the abundance of genetic
tools available to manipulate their nervous systems;
for example, breeding strains that fail to express
particular neuromodulators [81] or optogenetically
suppressing sensory feedback during walking [45].
These and similar experiments have great potential
to explain the neural control of walking in fruit
flies. What has been discovered also appears to have
strong parallels to what is known in other insects; for
example, chordotonal organ (CO) afferents appear
to encode the same quantities in stick insects and
fruit flies [43, 57]. While much of the fruit fly ner-
vous system is currently still unexplored, we believe
the insects have unique potential to improve under-
standing of insect locomotion and broader locomo-
tion control, making them valuable to additionally
consider in robotic design.

Our goal is to apply the morphological approach
to robotic design in the creation of an insect robot,
modeling the mechanical and control features shared
by a variety of insects to better leverage experimental
findings for biological and robotic discovery. In par-
ticular, we aim to model the animal’s morphology in
four ways:

(a) Dynamic, morphological control to test detailed
hypotheses about neural control in animals and
exploit neurobiology to build more adaptive and
robust robot controllers

(b) Passively compliant joints to dynamically scale
the robot to match the model organism

(c) Biomimetic force and strain sensing to model
sensory processing in the animal and improve the
robustness of our robot’s sensory system

(d) Passively compliant, tarsus-like foot segments to
model insect foot-ground interactions.

By combining all of these features into a single
robot, we aim to provide a comprehensive platform
for experimentation regarding the neural mecha-
nisms of the insect.

As such, we present Drosophibot, a morpholog-
ical, hexapod robot inspired by the common fruit
fly, Drosophila melanogaster, and designed to lever-
age broadly applicable discoveries from a variety of
insects. We use what data we have from other insects
when the data is not available in the fruit fly. This
leads us to generate hypothetical models that can be
tested in the fruit fly. In this manuscript, we begin by
describing the conceptual design of the robot, such
as its anticipated scale, actuation, and sensing. We
then present a neuromechanical simulation of the
robot and show that the conceptual design features
replicate the biomimetic functions described above.
Next, we describe a dynamical neural controller that
controls the simulation’s walking. We then describe
Drosophibot’s hardware and validate that the robot
can replicate many key biomimetic features of the
neuromechanical simulation. Finally, we discuss how
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to increase the similarity between the simulation and
the robot and how we plan to use Drosophibot in the
future.

2. Conceptual robot design

Developing a morphological robotic platform
capable of fulfilling our stated goals involves careful
consideration of biological fidelity and mechanical
functionality. To be useful for biological science, the
robot needs to include a high degree of bio-mimicry
in its components. However, too much fidelity might
head to complexity that hinders the function of
the robot as a mechanical platform. To maintain
a reasonable balance between these two consider-
ations, we made a series of conceptual decisions
regarding Drosophibot’s design. This section details
these choices, as well as the justification for their
inclusion.

2.1. Mechanical overview
For ease of manufacturing, assembly, and
maintenance, we decided to make the robot 100
times bigger than Drosophila, resulting in a leg
segment length of 10 cm. From there, Drosophibot
needed to possess six legs. We elected to include three
actuated joints within each leg. The thorax-coxa
(ThC) joint protracts (+) and retracts (−) the leg,
the coxa-trochanter (CTr) joint elevates (+) and
depresses (−) the leg, and the femur-tibia (FTi) joint
extends and flexes the tibia segment. Figure 1 shows
each of these DOF on a leg of the robot. Each leg also
has several tarsal segments passively actuated by a
single elastic tendon. One additional actuated degree
of freedom rotates the head in the yaw direction,
totaling 19 actuated and 6 passive DOF throughout
the robot.

The three active DOF per limb represent a
simplification of insect leg anatomy. In reality, the
ThC joint possesses multiple axes of rotation. How-
ever, multiple actuators would increase the robot’s
weight, jeopardizing its ability to walk. Therefore,
robots are commonly designed such that the ThC
axes are combined into one effective axis [20, 26,
42, 74]. Additionally, the precise DOF in Drosophila’s
legs have not been identified in detail. When they
are, we will revisit the robot’s leg design. Currently,
the simplified DOF chosen for Drosophibot’s limbs
provide the necessary movement to support a high
biological fidelity controller while minimizing over-
all robot weight, compromising sufficiently between
functionality and bio-mimicry.

2.2. Actuation strategy
To minimize the mechanical and control complexity
for the robot, we elected to actuate Drosophibot’s
limbs with DC servomotors. Servomotors require
less specialized infrastructure (i.e. no compressor)
to operate compared to pneumatic or hydraulic

Figure 1. A view of one of the legs of Drosophibot with the
anatomical components and DOF labeled. Each degree of
freedom also includes arrows showing the directions of
movement and their corresponding terms.

actuation, simplifying the mechanical and control
design. However, these considerations are inconse-
quential if the servomotors can not accurately mimic
the actuation present in the insect. Previous biologi-
cal experiments suggest that insect joints have some
functional similarities to servomotors, for example,
in the firing frequency of the motor neurons (MNs)
that innervate antagonistic muscles determines the
steady state rotation of the joint [1, 33]. The stiff-
ness of the muscles and membranes that span the
exterior of the joints also provide a restoring force
akin to the proportional negative feedback of a servo-
motor. When dynamically scaled, the damping ratio
and natural frequency of a servomotor system with
the selected parallel elasticity described in the next
section is similar to those of a leg joint in Drosophila
[65]. Section 5.1 has performance data of the robot’s
joints when combined with aspects of the robot’s con-
troller. With this idea established, we were able to
utilize the mechanical and control simplicity of ser-
vomotors in Drosophibot’s design while maintaining
biological mimicry.

2.3. Passively compliant joints and dynamic
scaling
A primary goal in the design of Drosophibot was
the inclusion of animal-like passive compliance in the
robot’s joints. Joint compliance can be categorized as
either in series or in parallel with the actuator. For
example, a tendon or apodeme would be a source
of series elasticity for a muscle, while skin or joint-
crossing cuticular membranes would be a source of
parallel elasticity. Robots such as HECTOR, AMOS II,
and Octavio have previously incorporated series elas-
ticity. HECTOR’s elasticity is provided by integrated
SEAs with the elastic component embedded in a
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custom design [20]. Octavio and AMOS II also
include series elastic elements in the form of cou-
plings and spring clutches external to the actuator [26,
74]. Series elasticity has the primary benefit of reduc-
ing the rate at which force can act on the actuator.
Additionally, measuring the deflection of the elastic
element can serve as a proxy for actuator force.

In addition to series elasticity, parallel elasticity
in animals works to provide a restoring force to the
joint upon movement. For insects, such force serves a
crucial role in joint behavior. Insects have a gravity-
independent resting posture, even when their mus-
cles are relaxed or deafferented [33]. Insect joints even
exhibit a restoring torque when the muscles have been
removed from the skeleton [33]. Stimulating muscle
fibers causes only transient joint rotations; once mus-
cle fibers relax, the limb returns to its original configu-
ration [1]. Simulation studies show that for EMG data
from muscles to correctly drive a simulated limb, both
elastic and viscous forces that resist muscle contrac-
tions must be included [82]. These behaviors may be
explained by how material properties should change
with scale: Mass is proportional to length-scale cubed,
but spring stiffness is proportional to length [38].
Therefore, small animals’ body mechanics are dom-
inated by elastic rather than inertial forces. However,
we desire the robot to behave like an insect rather than
an animal of the robot’s size.

To align with our primary goal of facilitating the
development of dynamic, morphological control net-
works, we designed our robot’s joints to have an
insect-like balance between elastic and inertial forces.
The first design choice we made to achieve this joint
elasticity was placing torsion springs in parallel with
every leg joint. The springs are positioned such that
their equilibrium positions are biologically plausible.
The desired stiffness of these springs are such that
the limbs can exhibit insect-like lower level behaviors
(gravity independent posture, passive return reflex,
etc) while still allowing the actuators to move against
the springs without sustaining long-term damage.
Such a stiffness greatly differs from the base values
present in the animal because the robot is so much
larger, so we additionally wanted to tune these ele-
ments such that the dynamic scaling of the robot is
the same order of magnitude of the insect. By dynam-
ically scaling a robot to match its model organism,
we ensure that the timing of its motions are scaled
to its mechanics. Many studies have used the Froude
number (the ratio between kinetic and gravitational
potential energy) as a way to enforce dynamic similar-
ity between animals and models [8]. However, since a
fruit fly’s body posture is dominated by elastic forces
rather than gravitational forces, we used the Strouhal
number (the ratio between kinetic and elastic poten-
tial energy) to enforce dynamic similarity between the
animal and our model. This approach has been used
in related studies of locomotion [39]. A robot that
models this behavior can have limbs of any size or

mass and joints of any elasticity, as long as it steps at
the same frequency, relative to its natural frequency,
as the animal.

To dynamically scale the motions of Drosophi-
bot to that of Drosophila, we computed the Strouhal
number st squared,

(st)2 ≡
T2

cycle

T2
n

=
1

4π2
· kjoint

Jlimb
· T2

cycle, (1)

where Tn is the natural period of the limb segment,
which has units of time and is a function of the
joint’s torsional stiffness kjoint and the limb segment’s
moment of inertia about the joint Jlimb. Additionally,
Tcycle is the duration of one stepping cycle with units
of time, meaning that (st)2 is dimensionless. The value
of (st)2 must be the same for both Drosophibot and
Drosophila to ensure that both operate in the same
dynamic regime. If (st)2 > 1, then Tcycle > Tn and the
robot and animal operate in an elasticity-dominated
regime, sometimes called quasi-static [58]. If
(st)2 < 1, then Tcycle < Tn and the animal and robot
operate in an inertia-dominated regime. Direct
measurements of kjoint and Jlimb are not available for
the fly, but we used scaling laws [38] and mass mea-
surements [61, 81] to approximate these values and
obtain an order-of-magnitude approximation of how
quickly or slowly Drosophibot must step to capture
the dynamic scale of the fruit fly. These calculations
are presented in appendix A. We calculated that with
its present joint stiffness Drosophibot must walk with
a stepping period of 1.6 s to be dynamically similar to
Drosophila running at its highest speed. We designed
Drosophibot’s controller to walk with a period of 2 s.
Thus, the robot has a similar dynamic scaling to the
insect while walking, ensuring the passive compliance
in the joints mimics that in the animal while still
maintaining mechanical feasibility.

2.4. Force and strain sensing
Insect campaniform sensilla have long been known
to measure the strain of the animal’s limbs, work-
ing in conjunction with force sensors built into the
muscle–apodeme complex to sense a leg’s overall load
state. The animal’s nervous system uses this sensory
feedback to determine when legs are in stance or
swing phase, communicate the state of the legs, and
counteract unexpected perturbations while walking
[85]. HECTOR and MantisBot are, to our knowledge,
the only two robots that directly measure the strain in
their limbs at these biological locations [20, 63]. Many
robots that do not measure strain in this way instead
sense torque by using motor current draw as a proxy
for torque or to measure the deflection of an elastic
component in the drive train, as in SEAs [26, 74].
For a system without parallel joint elasticity, motor
current draw may be a suitable analog for biological
leg loading data. However, we had chosen to include
parallel elasticity in Drosophibot’s joints, meaning
that the motor torque would not reflect the full
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loading state; the deflection of parallel components
alters the torque that acts on the actuator. Therefore,
we chose to include strain gauges as analogs to cam-
paniform sensilla on Drosophibot. With these sen-
sors, we can measure overall leg strain as an analog
for joint torque, providing biologically similar strain
data to support the desired morphological control
network.

2.5. Passively compliant, tarsus-like feet
In addition to compliance in their leg joints, insects
have compliant feet. Compliant feet increase the over-
all ground contact area and lower the impact loading
when a leg enters stance phase, making them valu-
able to include on robots to prolong actuator life and
the load-bearing components. AMOS II and Octavio
include some manner of passive compliance in their
feet, through springs in the tip of the final leg seg-
ment or a dedicated foot segment with a passive ankle
joint, respectively [26, 74]. Additionally, most insects
have fairly long tarsi, with Drosophila’s tarsus mea-
suring almost the same length as the tibia. With-
out such feet segments, insect-inspired robots’ torsos
sit much closer to the ground than those of insects,
potentially causing unintended collisions of the torso
with the ground and making it more difficult to
compare the kinematics of the robot to the model
organism. Longer, tarsus-like feet help rectify this
mismatch, facilitating better tests of biological fidelity
in controllers. Implementing compliance in these feet
segments further increases bio mimicry while also
providing beneficial impact force reduction. To help
maintain similar leg proportions to the insect and pre-
vent slip, we elected to design Drosophibot with com-
pliant, segmented tarsi like those of Drosophila and
other insects. Such feet will allow us to study biolog-
ical foot-ground interactions, while also improving
the ground grip of the mechanical system.

3. Simulation as a computational
neuromechanical model of a fly-like
robot

To test the basic mechanical constraints described in
the previous section and to further design the robot,
we used AnimatLab [12] to build a rigid-body simu-
lation with a closed-loop neural controller. The sim-
ulation lets us test whether our actuator choice is rea-
sonable, whether our specifications are practical, and
whether the neural controller can produce walking
behavior. In the following, we describe the simulation
and what it tells us about the robot.

3.1. Mechanical simulation
Drosophibot’s mechanics were simulated via a rigid-
body simulation. Each segment was modeled as a
rigid (i.e. unbending) rectangular prism of uniform
mass (as measured from the robot), and each joint
was modeled as a hinge with one rotational degree

of freedom. Each leg possessed four DOF: the three
actuated joints listed in section 2.1 and a passive tibia-
tarsus (TiTar) joint. For simplicity, the tarsomere
segments of each tarsus were modeled as one rigid
segment. However, a spring and dashpot were added
to each leg joint in order to mimic the passive dynam-
ics of the robot. This includes the passive elasticity
of the compliant tendon in the robot’s tarsus. In this
study, we did not thoroughly test the impact of the
compliant tarsi on the robot’s or simulation’s perfor-
mance. However, the tarsi’s compliance anecdotally
improved the simulated robot’s ability to make even
contact with the substrate versus when the tarsi were
locked in place.

3.2. Neural controller assembly and tuning
Drosophibot’s controller is constructed entirely of
leaky integrator nonspiking neurons, using a system
of models and design tools we call a ‘synthetic nervous
system’ (SNS) [66, 67]. This technique is used to build
dynamical, structurally-transparent, bio-constrained
models of animal nervous systems that model and
explain results from neurobiology while simultane-
ously applying neurobiological results directly to the
field of robotics. SNS have been successfully applied to
replicate both the function [64, 69] and neural activ-
ity [68] of the nervous system in robotic models of
insects. SNS models may directly model the dynamics
of nonspiking neurons that communicate via graded-
potential nonspiking chemical synapses or approxi-
mate the average firing rate of a population of spiking
neurons [78]. The model dynamics are explained in
appendix B.

A portion of Drosophibot’s leg controller is shown
in figure 2. Its architecture is strongly based on our
group’s previous neural stepping controllers [55, 64,
68–70]. The network is hierarchically organized, with
lower levels possessing as much autonomy as pos-
sible while still generating coordinated body-wide
motion. We will explain the hierarchy from the top,
down.

3.2.1. Descending influences
The highest part of the control hierarchy sets the
forward progress and rotation of the body achieved
by each step (figure 2(a)). These two parameters spec-
ify the motions that the feet, and therefore the leg
joints, must execute throughout each step [64, 70].
These values are set by ‘volitional commands,’ which
are applied tonic currents to these neurons. In insects,
such inputs are expected to be the result of activity in
the central complex (CX) of the brain [44].

The ‘body translation’ and ‘body rotation’ neu-
rons synapse onto interneurons in each joint’s local
control network (figures 2(d) and (e)) to alter the
sign of reflexes within each leg. Such alterations are
thought to underlie walking in different directions
[44]. These connections are tuned by computing
inverse kinematics for walking in different directions,
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Figure 2. Diagram of the network architecture used to control the walking of Drosophibot in simulation. The network is
hierarchical. (a) Sparse descending commands project throughout the leg control networks to encode the intended walking
direction. (b) Sensory information from the contralateral leg and the posterior ipsilateral leg influence the timing of leg depression
and levation. (c) Both proprioceptive and force feedback are integrated to create signals that entrain all of the joints in the leg. (d)
The FTi and ThC joints have identically structured networks. (e) The CTr has a reduced network, because its function is simply to
depress or levate the leg. Note that the network diagram has been simplified by removing inhibitory interneurons. Instead, some
neurons are drawn as forming both excitatory and inhibitory connections. Acronyms: AEP, anterior extreme position; PEP,
posterior extreme position; CPG, central pattern generator; HC, half-center; NSI, nonspiking interneuron; MN, motor neuron.

and then encoding correlations between body motion
and joint rotation into the synaptic connections [70].
Each joint’s network possesses an ‘intended PEP’ and
‘intended AEP’ neuron (light blue, figure 2(d)). These
neurons feed into a bistable decision network that
inhibits connections within the joint controller to
ensure that it either flexes or extends during stance
phase (dark green, figure 2(d)). The bistable network

inhibits: Timing signals to one half of the pattern
generating network, to control which motion takes
place during stance phase (light green, figure 2(d));
nonspiking interneurons (NSIs) that control swing
phase motion (red, figure 2(d)); and AEP and PEP sig-
naling neurons (navy, figure 2(d)). More details about
this process and tuning this network can be found in
[64, 70].
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Figure 3. Figure illustrating the tuning and effect of intraleg reflexes that modulate leg depression. (a) To understand how CTr
depression should be modulated to keep stepping height level, the inverse kinematics of stepping were solved for many different
directions and stride lengths, three examples of which are illustrated. (b) It was found that CTr angle correlates very strongly with
the other two leg angles throughout the stance phase for each leg (border color corresponds to leg color in (a)). This correlation
was used to tune neural reflex pathways in the leg controller. (c) When the simulation simply depresses its CTr joints to a constant
angle throughout the stance phase (top row), the foot penetrates the ground, which would lead to unsteady posture. However,
including reflexes to adjust CTr depression as a function of the other joint angles (bottom row) produces much more level
stepping.

3.2.2. Interleg coordination
Interleg timing is coordinated by simple connections
between the legs based on the so-called Cruse rules
[13] (figure 2(b)). We adapted connections from our
previous work [55] to enforce the following coordina-
tion rules: (1) a leg may not enter swing phase when its
posterior ipsilateral or contralateral leg is unloaded;
and (2) a leg is temporarily encouraged to enter swing
phase when its posterior ipsilateral leg enters stance
phase.

3.2.3. Intraleg coordination
The timing of joint motions is coordinated into a
stepping pattern by proprioceptive and strain feed-
back: a combination of load and velocity feedback
excite the ‘moving in stance’ neuron (figure 2(c)),
which reinforces the stance phase portions of the
pattern generators (yellow, figures 2(d) and (e)).
When this signal decays or the ‘PEP reached’ neuron

fires, then the swing phase portions of the pattern
generators are disinhibited. Swing phase ends once
the pattern generators flip back into stance phase or
when the ‘AEP reached’ neuron fires. In this way, the
multiple pattern generators in the leg are coordinated
into a stepping pattern only when sensory feedback is
present [10].

The magnitude of CTr depression is regulated by
proprioceptive reflexes from the ThC and FTi joints.
In cockroaches [18] and stick insects [31], rotating
the FTi joint is known to alter the firing rate of the
depressor and levator MNs. Such reflex action is pre-
sumed to help the animal maintain a constant step-
ping height throughout the stance phase [18].

We applied our functional subnetwork approach
[66] to tune the strength of intraleg reflexes that
depress or levate the leg to maintain constant step-
ping height. First, for a given leg, we solved the inverse
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Figure 4. (a) Network diagram illustrating that each MN commands both an angle and movement speed to the servomotor. The
servomotor interprets the sum of the commanded angles as its commanded angle, and the sum of the commanded speeds as its
commanded speed. (b) Plots illustrating how the MN voltage maps to both a commanded angle and movement speed between
zero and the MN pre-synaptic saturation voltage (R). (c) The servo control scheme mimics the net effect of a pair of antagonistic
muscles. In both scenarios, equally activating the MNs results in no joint rotation, and activating one MN without the other
causes the joint to rotate to its limit.

kinematics problem as that leg stepped in a spectrum
of directions and amplitudes [64, 70] (figure 3(a)).
Then, we plotted the CTr angle as a function of the
ThC and FTi angles, from multiple trials (15 step
directions and 7 step amplitudes) (figure 3(b)). No
matter the stepping direction or amplitude, the CTr
angle could be described as a planar function of the
other two angles. Therefore, we could use the propri-
oceptive mappings from section 3.2.5 and the motor
output mappings from section 4 to find the effective
coupling k between one joint angle and the CTr joint
angle.

θCTr(t) = θCTr,rest +ΔθCTr(t), (2)

where

ΔθCTr(t) = kThC ·
(
θThC(t) − θThC,rest

)

+ kFTi ·
(
θFTi(t) − θFTi,rest

)
. (3)

To test that this intraleg reflex can produce level step-
ping, we computed the forward kinematics for each
tarsus while the body was held at a constant height.
This enabled us to compare the positions relative to
where the ground would be, i.e. the ground plane.
Figure 3(c) shows the effect of this reflex on the
foot depression. If θCTr(t) = θCTr,rest, then the foot
may substantially penetrate the ground plane (up to
20% of the length of the femur). This was a chal-
lenge identified in our previous work [70]. However, if
θCTr(t) = θCTr,rest +ΔθCTr(t), then these problems are
greatly ameliorated. Therefore, the sensory neurons
that encode angle directly synapse onto the depressor

MN of each leg to maintain level stepping (navy,
figures 2(d) and (e)).

3.2.4. Actuation and motor output

The lowest part of the hierarchy controls both the
timing and amplitude of motion of the joint [11].
The network interfaces with servomotors via an
antagonistic pair of slow, excitatory MNs (violet,
figures 2(d), (e) and 4(a)). To explain how the net-
work and actuators interface, let us first explain how
the actuators are controlled. Each joint is actuated
by a Dynamixel smart servo (Robotis, Seoul, South
Korea). The servos are ‘smart’ because each possesses
its own ARM-based microcontroller, which performs
low-level feedback control of the servo’s position. As
such, the user controls the rotation of a servo by
commanding an angle to the network address associ-
ated with that servo. Additionally, the user can limit
(but not directly control) the speed at which the
servo rotates. This speed command is not direction-
specific, and is therefore truly a speed (not velocity)
command.

To exploit this control scheme, each MN’s
activation is mapped to both a commanded angle
and a commanded maximum speed for the servo-
motor. How should these values be mapped? Assume
that during walking, a servo must sweep its range of
motion θROM regardless of walking speed. When the
robot walks at its maximum speed, the joint sweeps
θROM over some period of time Tmin. When the robot
walks at its minimum speed, the joint sweeps θROM
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Figure 5. The simulated robot’s joint response to MN stimulus mimics that of the locust. Data from the locust (left column) is
adapted from the mean joint response depicted in figure 1 of [1]. (a) The model’s joint’s response to a brief command to flex
mimics the animal’s joints’ response to a single MN action potential, i.e. brief, rapid flexion followed by a longer, passive
extension to equilibrium. (b) The model’s joint’s response to sparsely administered, brief commands to flex mimics the animal’s
joint’s response to sparse MN action potentials, i.e. an accumulation of flexion followed by passive extension to equilibrium. (c)
The model’s joint’s response to a persistently administered command to flex mimics the animal’s joint’s response to dense MN
action potentials, i.e. smooth, rapid flexion followed by passive extension to equilibrium.

over some period of time Tmax = n · Tmin. Thus, the
minimum and maximum servo angular speeds are

θ̇max =
θROM

Tmin
(4)

θ̇min =
θROM

Tmax
=

θROM

n · Tmin
, (5)

where n is the ratio between the maximum and min-
imum speeds.

We wish to encode the joint speed in the voltage
of the MN above its resting potential, U (figure 4(a),
see also appendix B), because the angular speed of
leg joints in the cockroach correlate to MN activ-
ity [75–77]. When U = R, the maximum value for
U, θ̇ = θ̇max. It follows from equation (5) that when
U = n · R, θ̇ = θ̇min. Thus, we can establish a linear
encoding of the joint’s commanded angular speed θ̇

in the MN activity U (figure 4(b), red line).
We also wish to encode the joint angle in the

voltage of the MN, because the tension of antago-
nistic muscles establishes the equilibrium angle of an
animal’s joint [65]. As established above, the joint
angle must sweep the angle θROM no matter the angu-
lar speed. Therefore, we require that θ � θROM for
all U � Umin = n · R. In the cases where θ > θROM,
we assume that intraleg coordinating influences will
cause the joint’s CPG to ‘flip’ and reverse the joint’s
direction once θ ≈ θROM. Thus, the joint’s com-
manded equilibrium angle is a linear function of the

MN activity U that includes the point θ(U = Umin)
= θROM (figure 4(b), blue dashed line). Note that
antagonistic MNs encode the position with opposite
signs. The command sent to the servo is the sum of
these two values.

Figure 4(c) shows that the servo’s equilibrium
joint angle depends on the activation of antagonistic
MNs. The resulting relationship is qualitatively simi-
lar to that of an antagonistic pair of muscles. Specif-
ically, activating either antagonist too strongly causes
the joint to rotate to one extreme, but activating them
to similar levels causes the joint to stay in the middle
of its range of motion.

This actuation scheme of using MN voltage to
command a servomotor’s position and speed pro-
duces a dynamic response similar to that observed
in locusts [1]. Figure 5 plots the mean joint angle
time course for experiments from [1] alongside data
from similar experiments performed with the sim-
ulated robot joints. Briefly commanding the simu-
lated joint to flex causes the joint to flex rapidly and
then slowly extend back to its equilibrium position.
This response is similar to the locust’s joint rotation
after the slow flexor MN fires a single action poten-
tial (figure 5(a)). Repeatedly administering brief com-
mands for the simulated joint to flex results in an
accumulation of joint flexion over time, as observed
in the locust leg joint (figure 5(b)). Administering a
persistent command for the simulated joint to flex
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Figure 6. (a) Each servomotor returns proprioceptive feedback to four neurons that encode distinct quantities: the amplitude of
angle extension past the neutral angle (blue); the extension speed (purple); the flexion speed (orange); and the amplitude of angle
flexion past the neutral angle (red). (b) Data adapted from figure 5 of [43] showing the average GCaMP6f fluorescence of the
groups of sensory neurons in response to stimuli. Separate populations encode the extension and flexion angle of the joint.
Additionally, one population encodes the flexion velocity of the joint. (c) The analogous simulated neurons encode the same
quantities. We inferred the existence of a population to encode extension velocity based on other data presented in [43].

results in smooth flexion followed by slow extension
back to equilibrium. This response is similar to when
the locust’s flexor MN fires many action potentials
in quick succession (figure 5(c)). The similarity in
joint responses between the robot simulation and an
insect justifies our choice of actuators and supports
the biomimicry of the model.

In the full walking network, the MNs receive a
tonic drive when the robot is in walking mode (gray,
figure 2(d)), and are rhythmically inhibited by pattern
generating neurons to produce alternating motion
required for walking (yellow, figure 2(d)) [9]. In the
network, the amplitude of this tonic drive encodes the
intended angular excursion of the joint during a single
step. These components form the basis of the single
joint controller.

To more precisely control the motion of the
joint throughout the swing phase, the network also
includes a number of NSIs that are arranged in paral-
lel antagonistic pathways [79]. These NSIs integrate
sensory feedback from both extension and flexion
sensors to calculate both excitatory and inhibitory
adjustments to MN activity during the swing phase.
The upper layer of NSIs (orange, figure 2(d)) com-
pare the measured joint angle to the intended angle,
and are rhythmically inhibited by the CPG. The lower
layer (red, figure 2(d)) combine the sensory-driven

responses of the upper layer across the two ‘halves’
of the network (e.g. flexion and extension) to com-
pute corrections to MN activity [57]. The NSIs that
would excite or inhibit the stance phase MN are inhib-
ited depending on how that joint moves (e.g. whether
if flexes or extends during stance phase). This assem-
bly of NSIs does not represent the full diversity of
NSI types or all of the functions they may perform.
However, these aid in controlling the amplitude of the
swing phase motion.

3.2.5. Sensory feedback

The network receives sensory feedback from propri-
oceptors and strain sensors. Proprioceptive informa-
tion is encoded by four classes of sensory neurons,
which respond separately to joint flexion, joint exten-
sion, flexion speed, and extension speed (figure 6(a)).
These reflect four of the identified afferent neuron
types of the CO in Drosophila [43]. Figure 6(b)
plots the mean sensory neuron response (i.e. instan-
taneous firing frequency normalized to the maxi-
mum firing frequency) of proprioceptive populations
in Drosophila as the tibia is rotated [43]. Each pro-
prioceptive population responds to a different fea-
ture of the motion. Figure 6(c) plots the response
of analogous neurons in the simulation. The animal
afferent responses are more complicated than those
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Figure 7. Comparison between the response of group 6B mid tibial campaniform sensilla in cockroaches (a) to the simulation
(b). The response of both the animal’s afferents (c) and the simulation (d) monotonically encode the rate of loading on the sensor.

of the neurons we included, namely in that they are
highly dynamic and exhibit hysteresis [43]. It is not
presently clear what role these dynamic responses play
in the animal, so our model does not include them.
We instead use the servo’s internal potentiometer to
directly measure its angle, meaning that there is no
hysteresis or adaptation in its response. If the dynamic
behaviors of these afferents are shown to play a critical
role in the control of walking behavior in the future,
we will attempt to model these dynamics and better
understand how they contribute to control. Presently,
limiting the network to these forms of proprioception
constrains the resulting hypotheses regarding motor
control.

The walking control network uses proprioception
for several purposes. The flexion and extension signals
are compared to the network’s intended flexion and
extension (orange, figure 2(d)) to guide swing phase
via NSIs [79] and compute if the leg has reached the
anterior extreme position (AEP) to trigger leg depres-
sion or the posterior extreme position (PEP) to trig-
ger leg levation (navy, figure 2(d)). The speed signals
feed back onto the CPGs within the leg to reinforce
ongoing motions (e.g. the ‘active reaction’ observed
in stick insects [4]; see the ‘moving in stance’ neuron,
figure 2(c), black [67, 69]).

The network also receives strain feedback from
sensors on the leg to detect when the leg is supporting
the body during stance phase. Feedback from strain
sensors are known to critically affect the coordina-
tion of locomotion patterns in insects [85]. In the

simulation,this strain was simulated as the passive
deflection of the tarsal segment, which was spring-
loaded and pretensioned like Drosophibot’s foot.
This bending signal is processed to transduce strain
into neural activity as seen in campaniform sensilla.
Specifically, afferent responses to bending the cuti-
cle may reflect the amplitude of bending, the rate
of bending, or both [83, 84]. We simulate this phe-
nomenon as a filter in which the sensory response y is
the instantaneous measurement u minus a low-pass
filtered history of the measurement x. Such an oper-
ation causes the sensor to adapt to bending measure-
ments over long time periods and leads to a rate-based
encoding of bending. The filter uses the time constant
τ and the time-step duration Δt to update the filter,

xi = xi−1 +
Δt

τ
· (−xi−1 + ui)

yi = ui − xi.

(6)

To test how well this model captures the
processing of campaniform sensilla afferents, we ran
a series of trapezoidal force time courses through the
filter. Each subsequent trapezoid has a higher rate of
increase and decrease. Figure 7(a) shows data adapted
from [83] in which this experiment was performed
on cockroach tibial campaniform sensilla. As seen
in the animal, the model afferents are active during
the force increase phase (figure 7(b)). In addition,
the peak afferent activity monotonically encodes
the rate of force application (figures 7(c) and (d)).

11



Bioinspir. Biomim. 15 (2020) 065003 C A Goldsmith et al

Figure 8. Data from a dynamic simulation of Drosophibot walking. (a) A screen capture of the rigid body simulation. (b) The
simulation walks forward at the intended speed (dashed red line), despite lacking higher-level feedback to control the course. (c)
Each joint in each leg performs a functionally-unique motion. (d) The instantaneous leg load u (blue) and corresponding sensory
response y (red, see also equation (6)) varies in a leg-specific manner. (e) Interleg swing timing is coordinated, but shows
variability consistent with the animal model.

This encoding scheme has the additional benefit
of removing any constant bias in the force signal,
enabling the sensor to self-calibrate.

3.3. Walking in simulation
To demonstrate that the presented subsystems and
the neural controller can produce walking behavior,
we collected data from a rigid-body simulation of
Drosophibot while it walked (figure 8(a), video avail-
able here: https://youtu.be/lsiT8fcWf7o). The simula-
tion was commanded via the ‘volitional commands’
in figure 2 to walk in a straight path at maximum

speed. Recall that the network does not include any
exteroception with which to measure heading or
speed; the data in figure 8(b) is open-loop dead-
reckoning. In spite of this, the simulated robot walks
forward at the intended speed. Recall that this speed
was chosen to make the motion dynamically simi-
lar to a fruit fly walking at its highest speeds (about
30 mm s−1 [81]).

As the simulated robot walks, each leg performs
unique motions specific to that leg (figure 8(c)). This
is the result of the network tuning, which encodes
the strength and direction of the sensory reflexes that

12

https://youtu.be/lsiT8fcWf7o


Bioinspir. Biomim. 15 (2020) 065003 C A Goldsmith et al

Figure 9. (a) A full body view of Drosophibot, a hexapod robot based on Drosophila melanogaster (b) views of the ThC joint
(left) and CTr joint (right) torsion springs, which mimic the parallel elasticity in the insect (c) Drosophibot’s abdominal segment,
which houses electronics and can be adjusted to shift x-coordinate of the robot’s COM (d) the robot’s compliant tarsi. The
rubbery, cleated feet passively deform for maximum ground contact (e) an example of one of the strain gauges on the FTi joint
(left), as well as the locations of all of the strain gauges on the limb (right).

coordinate walking [70]. The robot’s front legs reach
in front of the body, extending the FTi joint during
swing phase, and flexing during stance phase. This is
in contrast to the middle and hind legs, which flex
the FTi during swing phase and extend during stance
phase [62, 71]. All of the legs retract the ThC joint
during stance phase. All of the legs depress the CTr
joint to begin stance phase, but the CTr may either
levate or depress during stance phase to maintain a
level step height. In spite of level stepping height,
figure 8(d) shows that the legs’ loading profiles are
not identical. In particular, the front leg’s load peaks
at the end of stance phase, while the middle and hind
leg’s load peaks near the beginning of stance phase,
as observed in walking stick insects [15]. Such func-
tional differentiation was not explicitly designed into
the system.

The variability of the relative timing of leg
stepping in the simulation aligns with what is
observed in fruit flies. The ‘tripod coordination
strength’ (TCS) metric from [81] measures the degree
to which the swing phases of one alternating tripod
align. The higher the TCS, the tighter the interleg
stepping timing. Even when walking at their highest
speeds (i.e. with the tightest coordination), fruit flies
rarely exhibit a TCS above 0.8 [81]. Figure 8(e) shows
that the simulated Drosophibot walks with an aver-
age TCS of 0.783. This variability was not explicitly
designed into the system.

4. Robot hardware description

After verifying the performance of the robot design
in simulation, we constructed the hardware robot
Drosophibot, shown in figure 9. In this section we
describe unique mechanical and electronics features.
In the subsequent section, we present results describ-
ing how well Drosophibot captures the animal-like
responses modeled in the previous section.

4.1. Strain gauges
To mimic insects’ load sensing abilities, each leg has
three strain gauges to detect the strain of each leg dur-
ing locomotion. Figure 9(e) shows an example of one
of the strain gauges on the tibia, as well as the loca-
tions for all of the gauges on the limb. The magenta
and cyan sections represent the anterior group 2 and
dorsal groups 3 and 4 sensors on the trochantofe-
mur, respectively [86]. The green section represents
the dorsal group 6 on the tibia [83]. Load signals from
the strain gauges are amplified by custom Wheatstone
bridges, which then interface with the robot’s con-
trol board. Section 4.5 provides more details on the
electronic layout of the robot.

4.2. Joint compliance
Drosophibot’s joints include torsional springs
that produce insect-like passive elastic forces [33].
Figures 9(b) and (e) show examples of the springs on
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Figure 10. Diagram illustrating the power and control systems of Drosophibot. A desktop computer runs the neural simulation.
The computer converts neural states into robot states and transmits these over a serial connection to the robot. The robot
distributes actuator commands to the servomotors, and collects sensory data from both the servomotors and 18 strain gauges
mounted on the legs. The robot returns this data to the desktop computer to complete the feedback loop, which runs at 50 Hz.
The robot has its own 1 kW power supply.

each joint of the robot. The springs are positioned
such that their intended rotational direction helps
support the weight of the robot during stance while
still maintaining biologically plausible equilibrium
positions. In the ThC and FTi joints, the springs are
completely secured to provide joint stiffness in both
directions.

4.3. Tarsus-like feet
Figure 9(d) shows detailed views of Drosophibot’s
compliant, segmented tarsi. Each tarsus is comprised
of an angled extension of the tibia with a distal series
of three tarsomere segments interconnected with lim-
ited ball-and-socket joints that permit motion in the
dorsoventral direction. Each segment is homologous
save for the final, which is longer and wider for
greater ground contact. The underside of each seg-
ment includes cleated rubber pads to reduce slip on
a variety of surfaces. Cables route through the under-
side of each tarsus and attach to an extension spring
mounted on the tibia, which provides a restoring force
throughout stance phase of the limb. The stiffness of
this spring was tuned to begin foot deflection under a
third of the weight of the robot.

4.4. Center of mass
To mimic Drosophila’s distribution of mass,
Drosophibot has an adjustable abdominal seg-
ment that houses its electronics. The center of mass
(COM) of D. melanogaster is approximately 1/10 of
the length of the thorax behind the middle set of
legs [61]. However, Drosophibot’s actuators heavily

bias its COM to directly between the middle legs.
Therefore, ballast can be inserted into the abdomen
and its length can be adjusted to match the fore-aft
component of the insect’s COM (figure 9(c)). 200 g
of additional mass adjusts the COM to a biologically
plausible position.

4.5. Electronic hardware
Figure 10 summarizes the power and control systems
on board Drosophibot. Drosophibot’s 19 actuated
DOF are actuated by Dynamixel AX-12 smart ser-
vos (Robotis, Seoul, South Korea), which have a stall
torque of 1.5 N m at 11.1 V. Each leg servo includes
additional gearing to double the output torque for
needed strength. Drosophibot’s 19 Dynamixel smart
servos are powered by an off-board 12 V, 1000 W
switching-mode power supply. Each leg is provided
power in parallel to the others. To reduce voltage fluc-
tuations on the main power rail, each leg possesses
a 35 V, 3300 μF capacitor in parallel with the smart
servos.

An OpenCM 9.04 microcontroller (Robotis,
Seoul, South Korea) manages data transfer between
the robot and the control computer. The control
computer is an offboard laptop that runs the neural
controller in the neural simulator AnimatLab [12].
We used the AnimatLab Robotics Tookit [63] to
write a protocol for serial communication between
AnimatLab and Drosophibot, named Szerial. Szerial
uses user-defined maps to convert floating-point
neural states into integer robot commands (i.e.
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Figure 11. By adding in parallel elastic elements and rewriting the low level control of the servomotors, we are able to achieve
similar passive elastic return as in the insect. The actual and commanded joint position of an FTi joint on Drosophibot in
simulation and on the robot for a variety of flexion MN stimuli, including (a) a single spike stimulus, (b) multiple low frequency
stimuli, and (c) a tonic current analogous to multiple high frequency stimuli. The chosen stimuli replicate those used for
biological data collection in figure 1 of [1].

servo commanded angles and commanded speeds),
and then send data sentences to the OpenCM. If a
robot command has changed since the last sentence
was sent to the robot, then a three-byte packet is
added to the next sentence, specifying the ID of the
target servo and a two-byte representation of the
command. Checking for changes in the commanded
values increases the efficiency of communication
by reducing how many commands are actually
sent to the robot. Converting the commands to the
servos’ integer-based representation before sending
them further reduces the chances of the command
changing and needing to be sent. The OpenCM runs
an embedded version of Szerial in order to receive
and decode messages from AnimatLab, and package
and send sensory information back to the neural
controller in the same format.

During runtime, both AnimatLab and the
OpenCM have a fixed time-step at which to send
updates. For the experiments in this manuscript,
that duration was 20 ms. If the OpenCM receives a
new sentence from AnimatLab, it is parsed into com-
manded angles and moving speeds for the Dynamixel
smart servos, and the commands are broadcasted
to the servos using the dynamixelSDK library. If
the OpenCM does not receive a new sentence from
AnimatLab within the specified period, it proceeds
to read sensor values (i.e. servo angles and speeds

and strain gauge voltages) and report them back to
AnimatLab.

Each strain gauge has its own custom Wheatstone
bridge. The OpenCM converts the analog voltage sig-
nals into 12-bit digital values. A custom multiplexer
enables the OpenCM to read the voltage of 18 separate
strain gauges in each control loop. Sensory informa-
tion from the strain gauges is pre-processed before
being transmitted to AnimatLab. Depending on the
tuning of the Wheatstone bridge, there will be a con-
stant offset voltage. Since the main purpose of the
strain gauges is to determine when a leg is in stance
phase, such an offset must be eliminated. To con-
tinuously cancel this offset, we implemented the fil-
ter described in section 3.2.5 onboard the OpenCM
microcontroller. This filter ensures that constant off-
sets are eliminated over time.

5. Robot similarities to the simulation
and animals

5.1. Joint control and response
After the construction of Drosophibot, we performed
several tests to ensure that the neural and mechan-
ical systems interface as intended and would pro-
duce the biomimetic features listed in the Introduc-
tion. First, we verified that Drosophibot’s MN activ-
ity produces motion in an insect-like way. Specifically,
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Figure 12. The adapters we have developed between the actuator and the sensory neurons for each joint allow for biomimetic
sensory feedback encoding for position and velocity. (a) The layout of the portion of the network which we tested with the
neurons of interest color coded. (b) The response of the position and velocity encoding neurons in simulation when given two
different incrementally ramping position signal (black). (c) The same responses from the neurons when the network is
controlling the robot. In both cases, the input signals were modeled off of those used in biological data collection in [43], which
are represented in figure 6.

we expected MN activity to establish the equilibrium
angle of the joint [65], and a lack of MN activity to
cause the joint to rotate back to an equilibrium angle
[1]. To test this, we removed the synapses connect-
ing the CPG of the left front FTi joint to the exten-
sion and flexion MNs, isolating the single joint from
full network stimulus (figure 4(a)). We then stimu-
lated the joint’s flexion MN with repetitive currents
of different frequencies and durations, as inspired by
[1]. These stimuli were of three types: A short current
stimulus (single spike), multiple short current stim-
uli delivered at a low frequency (slow spiking), and a
tonic current (fast spiking). The resulting joint rota-
tion from the various stimuli are shown in figure 11,
both in simulation (repeated from figure 5) and on
Drosophibot.

In each stimulus case, the robot’s limb attempts to
passively return to the equilibrium position defined
by the elastic elements when the stimulus ends. In the
case of a single spike (figure 11(a)), this return results
in a quick kick of the limb with a much smaller mag-
nitude than the commanded motion. Multiple pulses
actively flex the limb closer to the commanded point,
but if the delay between spikes is too great the limb
passively extends back to equilibrium in between
pulses, resulting in disjointed motion (figure 11(b)).

Smooth, sustained limb motion requires dense
current pulses or a tonic current (figure 11(c)),
during which the joint smoothly flexes, and after
which the joint slowly extends back to equilibrium.
The robot and simulation responses vary in that
the range of motion of the robot is limited to 0.75
radian, and in that the robot’s motion lags behind
commands by about 100 ms. This delay may be due
to real-world physics limiting the rate at which the
servomotor can draw current and apply torque to
overcome the passive spring torque.

This passive return behavior closely mimics the
similar response observed in a variety of insects. Ache
and Matheson (2013) in particular used similar MN
stimuli on a locust leg joint and reported the same
movements in their figure 1 [1]. Thus, the inclusion
of parallel elasticity in the robot’s joints and manner
of converting MN activation into servomotor com-
mands result in similar passive joint behaviors as in
insects, supporting Drosophibot’s role as a plausible
mechanical analog to an insect.

5.2. Proprioception
In addition to tuning the connections from the MNs
to the actuator, we also ensured that the adapters
between the actuator and the sensory neurons
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Figure 13. Our method for filtering strain data resembles that found in the sensilla of insects, and allows us to more robustly
measure the force on each limb. (a) The oscillating commanded rotation of the FTi joint on Drosophibot, in which the speed of
each oscillation incrementally increases (b) the raw strain data associated with the oscillation (c) the results of filtering the strain
data with our selected method (d) the relationship between the commanded speed of the attempted motion (referred to as the
loading rate) and the corresponding maximum filtered strain value. Note the similarity with the insect data in figure 7.

correctly and biomimetically encode position and
velocity feedback. The results of this validation are
shown in figure 12. To begin, we isolated single joint
control from the rest of the network in the same
manner as the test in figure 11. We then stimulated
the extensor and flexor MNs with incremental step
inputs, causing the joint to incrementally oscillate
between rotational extremes. We recorded how the
velocity and position sensory neurons encoded these
motions in simulation (b) and on the robot (c).

The data from these tests show that the extension
position neuron (blue) only activates when the joint
is at a positive angle from equilibrium, correspond-
ing to extension of the limb. The level of activation
directly correlates to the magnitude of the rotation.
The flexion position neuron (red) behaves similarly,
only activating when the joint is at a negative angle.
Together, these angle encoding neurons record the
full motion of the limb. The velocity neurons, mean-
while, activate only while the joint is in motion, and
then deactivate once the motion ceases. Which neu-
ron activates corresponds to the direction of motion;
the flexion velocity neuron only responds to clockwise
motion, and the extension velocity neuron to counter-
clockwise motion. Such a manner of sensory encod-
ing aligns closely with that of Drosophila, as shown in
figure 5(a) and (c) of Mamiya et al (2018) [43]. With
the sensory feedback adapters tuned to encode data
biomimetically, we are able to correctly interface the
neural and mechanical systems in regards to output
and input.

5.3. Strain filtering
In addition to position and velocity data, we also
validated the form of feedback from the strain gauges
such that the processing adapts to constant loads.
Such filtering allows the robot to detect sudden

increases in load on the limb, such as at the beginning
of stance phase, with more sensitivity. To test this fil-
tering strategy, we recorded the strain of a constrained
FTi joint on the robot as we commanded it to oscil-
late between flexed and relaxed postures at incremen-
tally increasing speeds. Figure 13 shows the raw (b)
and filtered (c) strain data as a result of these oscil-
lations (a). The data shows that this method of fil-
tering successfully records the onset of the force on
the limb, then begins to decay back to zero as the
raw strain data plateaus. As the speed of the motion
generating the force increases, the magnitude of the
filtered strain spike does as well. Figure 13(d) explic-
itly shows this relationship. These characteristics of
the strain gauge output also closely match the corre-
sponding neural encoding of the campaniform sen-
silla in the stick insect Carausius morosus and the
cockroach Periplaneta americana, as shown in figure 6
of [83] and figures 5 and 6 of [49], respectively. Ensur-
ing this manner of insect-like force sensing on the
robot improves the fidelity of the robot as a model
of the insect, as well as the robustness of its sensing
capabilities.

6. Discussion

We present neuromechanics models of the fruit fly D.
melanogaster in the form of a hardware robot and an
accompanying simulation. Our goal is to construct
a ‘morphological’ model of insect neuromechnanics
[11]: we seek to model what is known about the ani-
mal, and then build further hypotheses on top of these
features. We intend to use Drosophibot to test dynam-
ical SNS models of neural control [64, 66, 67, 69, 70],
as presented in section 3. To ensure that the robot is
a meaningful model of the animal’s body, we showed
that Drosophibot’s dynamic scale is consistent with
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that of an insect by increasing the ratio of elastic to
inertial forces in the body and forcing the robot to
move slowly. To ensure that the SNS controller inter-
faces with the body in a biologically plausible way, we
showed that our actuation scheme converts MN activ-
ity into joint rotation in the same was as observed
in insects, and we showed that our proprioceptive
and strain-sensing feedback systems process informa-
tion as insect sensory afferents do. We showed that
these features can be incorporated into a simulation
of walking behavior, from which several key features
of insect locomotion emerge. Finally, we described
the hardware robot Drosophibot and showed that its
motor output and sensory feedback function in the
same way as the computational model. We believe that
Drosophibot’s morphological design makes it valu-
able for testing hypotheses about neural control in
hardware.

The morphological approach to bioinspired
robotics is challenging because morphological mod-
els and robots may sacrifice overall function in the
name of biological accuracy [11]. Indeed, abstracting
key concepts from biological systems is one way to
improve the performance of engineered devices or
shed light onto fundamental principles in neurome-
chanics [24]. However, we believe there is much to
be gained by the morphological approach because
increased scrutiny of biological details oftentimes
yields unexpected solutions. For example, the strain
processing system described in section 4.5 not only
filters sensory feedback as seen in the insect nervous
system; it also solved the persistent problem of cali-
brating the amplifier’s offset such that the sensor is
responsive to small forces without a constant bias. By
enabling the system to continuously adapt, we made
Drosophibot’s operation more reliable and simpler
for the operator. We believe that more solutions like
this one will be discovered as we continue to refine
our morphological biorobot.

6.1. Importance of dynamic scaling
If a robot is to serve as a morphological neurome-
chanical model of an animal, it must be dynamically
scaled [32]. Such scaling is necessary to successfully
apply an animal’s control strategy to a robot. For
example, large animals such as humans and horses
use a momentum-based strategy to control some
motions, wherein they propel their limbs with brief
bursts of muscle contraction and rely on inertia to
bring the limb to its intended position. In contrast,
small animals such as insects need to persistently acti-
vate their muscles in order to overcome the elastic
forces trying to return their legs to an equilibrium
orientation [33]. Clearly, these strategies are not inter-
changeable. Therefore, biomimetic robots must be
constrained to operate in the same dynamic regime
as the model organism. However, dynamic scaling
also liberates engineers by enabling them to build a
robot of any size, provided they take steps to match

the dynamic scale. We ensured that Drosophibot is
properly scaled by incorporating additional elastic
elements to bias it toward an insect-like, elasticity-
dominated regime and by slowing its motions such
that they are slower than the natural frequency of
its joints. Such an approach enables researchers to
build practical models of a diverse range of animals
and uncover fundamental similarities and differences
between them.

Remarkably, the walking speed of Drosophibot
is consistent with the walking speed of the fruit fly,
once scaled. At first glance, one might expect the
walking speed normalized to body length (BL), v̄,
to be the same between the robot and the fly. How-
ever, the Strouhal number implies that time scales
with length, because mass scales with length cubed
and stiffness scales with length [38]. Therefore, the
distance traveled divided by BL does not scale with
length, but the time required for the motion does.
Given that a fruit fly can walk at 15 BL per second
[61], and Drosophibot is 100 times the length scale
of a fruit fly, one would expect Drosophibot to walk
at 0.15 BL per second. Given Drosophibot’s BL of
35 cm, its walking speed of 5 cm s−1 in simulation
is precisely what one would expect (v̄ = 5 cm s−1 ·
1 BL/35 cm = 0.143 BL/s). Dynamic scaling is a
powerful tool that enables scientists and engineers to
compare the dynamics of animals and robots across
different time- and length-scales.

6.2. Using Drosophibot to test further networks
The results in this manuscript are meant to show that
Drosophibot is a plausible neuromechanical model of
an insect, upon which detailed models of the neural
control of locomotion can be built. Thus, the results
are broad and in some cases preliminary. However,
these results will serve as the basis for several future
studies.

Our immediate future work is to better under-
stand how the insect’s proprioceptive and load-
sensing systems process sensory information, and
how the nervous system may alter these systems
to produce context-dependent sensorimotor control
loops. We anticipate that adaptive walking behavior
will emerge once we implement more detailed mod-
els of sensorimotor processing onboard Drosophibot.
Once Drosophibot can produce nominal walking, we
will further expand the functionality of the walking
control networks. We are particularly interested in
how the network can be modified by descending com-
mands to cause locomotion at different speeds and
in different directions. Many insect studies show that
changes in walking direction [30, 44] and speed [6,
25] arise due to changes in how sensory feedback
is processed. Drosophibot’s ability to measure joint
angles, joint velocities, and strain from three locations
on each leg will be critical as we expand this controller
to produce more diverse locomotion behaviors.
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Furthermore, we wish to understand how brain
networks formulate and encode descending com-
mands. The central complex (CX) is an increas-
ingly well-understood brain network whose activity
precedes and strongly correlates with locomotion
direction [29, 44, 73]. Our recent dynamical model
of substructures within the CX demonstrated how
it may balance the influence of multiple exterocep-
tive inputs to ‘decide’ on one resulting heading [46].
We will continue to expand this model and inte-
grate its outputs with the local leg networks we
implemented here to build a plausible model of
how the nervous system gathers information from
its environment, processes it in a context-dependent
way, and directs ongoing behaviors via a distributed
control system. Such a model would serve as a sub-
strate on which to model additional animal behav-
iors and neural pathways as they become better
understood.

Another question to address is how flexible
interleg coordination rules must be to coordinate
walking at different speeds and in different directions.
Behavioral studies [13] and computational models
[14] suggest that these rules do not need to change,
even as an insect or robot changes its locomotion.
Indeed, the whole ‘continuum of gaits’ can be pre-
dicted by assuming an interleg coordination scheme
that seeks to keep the projection of the COM near the
center of the support polygon created by the legs [61,
72]. As we test our computational neuromechanical
model in new contexts, we will pay special attention
to how the larger context of locomotion may affect
what interleg processing is necessary for successful
walking.

Despite what can be learned from the simulation,
we expect to learn more when it is applied in hard-
ware. For example, the rules that coordinate ideal-
ized models may not be necessary or sufficient when
tested on board a noisy hardware robot. Recent work
in stick insects have shown that mechanical coupling
can play a critical role in interleg coordination [16],
an effect that we observed in our dynamical sim-
ulation of walking as well. However, we may find
that this mechanism is enhanced or diminished with
a hardware robot. Therefore, we will use Drosophi-
bot to test the sufficiency of established interleg
coordination rules, and explore if additional influ-
ences are necessary to keep the body upright and
moving.

In addition to control, we wish to better under-
stand how the robot’s mechanics will affect both
its performance and its durability. Drosophibot cur-
rently has passively compliant tarsi, which we expect
will reduce impact loading on the actuators and
help the legs conform to uneven terrain. However,
we wish to more thoroughly characterize how tar-
sus geometry and compliance affect the torques that
the actuators must produce. Additionally, insects
can actuate their tarsi to actively grip the walking

substrate, albeit via scale-dependent mechanisms
such as van der Waals forces and capillary action
[27]. Can these same mechanisms be exploited for
much large (i.e. centimeter-scale) foot pads? Should
macroscopic techniques such as spines that embed
into a soft substrate be used instead? We plan to use
Drosophibot as a testbed with which to test how foot
designs affect the performance and lifespan of actu-
ators, in addition to how they affect the control of
walking.

Appendix A. Dynamic scaling
calculations

To compute (st)2 from equation (1) for the fly, we
know that Tcycle is 60 ms at its fastest running speed
[81]. To approximate kjoint for the fly, we can use
the calculated value of 38 × 10−6 N m rad−1 for the
stick insect [33] and use length-based scaling laws
[38] to approximate kjoint = 38 × 10−9 N m rad−1.
Given that the mass of a fruit fly is about 1.2 mg [81]
and that each leg contains about 2% of the body’s
mass [61], the mass of a leg is about 2.4μg. Using
the formula for the moment of inertia about a fixed
point (i.e. the thorax), we obtain an approximate
Jlimb = 8 × 10−15 for the fly. With these values, we can
calculate

(st)2
fly ≈

1

4π2
· 38 × 10−9 Nm rad−1

8 × 10−15 kgm2
· (60 × 10−3 s)2

= 43. (A.1)

Such a large value for (st)2
fly suggests that the fly’s

locomotion is dominated by elastic forces.
Next, we can use measurements of kjoint and Jlimb

to calculate the stepping period at which the robot
and the fruit fly have the same dynamic scale. Each
joint on the robot possesses a servo that acts like a
spring, applying a torque proportional to the devi-
ation from the commanded position. We measured
this stiffness to be kjoint = 34.2 N m rad−1. Because
of the servo’s high gear ratio (508:1), the inertia
of the rotor dominates the moment of inertia. We
measured the moment of inertia of the rotor to be
400 × 10−3 kg m2. Including the effect of the FTi
servo with a mass of 125 g positioned 10 cm away
from the thorax increases the moment of inertia to
525 × 10−3 kg m2 for the whole leg. To ensure that
(st)2

fly = (st)2
robot, Tcycle = 1.61 s for the robot. Of

course, this value is only approximate, meaning that
the robot should step with a cycle time on the order of
1 s. Drosophibot was designed to walk with a cycle of
2 s.

Appendix B. Neural and synaptic model

The entirety of Drosophibot’s control system is con-
structed from nonspiking leaky compartments. The
model we use and associated design tools are detailed
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elsewhere [66, 67]. However, a brief summary will be
provided here.

Most neurons in the network have only one
dynamical variable U, the voltage above the rest volt-
age. Assuming a membrane conductance of 1, U
evolves according to

Cmem · dU

dt
= −U +

n∑
i=1

Gsyn,i · (ΔEsyn,i − U)

+ GNaP · m · h · (ΔENaP − U) + Iapp.

(B.1)

All G terms are conductances, all ΔE terms are the
reversal potential of a synapse or ion channel rela-
tive to the neuron’s rest potential, and Cmem is the
capacitance of the cell membrane. The subscript syn,i
refers to the ith incoming synapse, the subscript NaP
refers to a persistent sodium channel, Iapp is a con-
stant applied current (usually 0). If GNaP �= 0, then
the channel activation m and channel deactivation h
evolve according to

τm(U) · dm

dt
= m∞(U) − m (B.2)

τh(U) · dh

dt
= h∞(U) − h, (B.3)

where m∞(U) and h∞(U) are sigmoids with positive
and negative slope, respectively. In addition, τm �
τ h. Therefore, m and h deliver rapid positive feedback
followed by slow negative feedback.

Synapses are conductance based, as shown in
equation (B.1). The conductance is a piecewise-linear
function of the presynaptic neuron’s voltage above
rest,

Gsyn,i = gmax,i ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if Upre,i > R
1

R
if 0 � Upre,i � R

0 if Upre,i < 0

(B.4)

where gmax,i is the maximum conductance of the ith
synapse, and R is a parameter that represents the
expected voltage range of the neurons in a partic-
ular network. Establishing the parameter R aids in
the direct assembly and tuning of small functional
networks whose encoded quantities are clear, and
can therefore be directly interfaced with one another
[66].
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