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Mehmet Fatih Aktaş and Emina Soljanin

Department of Electrical and Computer Engineering, Rutgers University

Email: {mehmet.aktas, emina.soljanin}@rutgers.edu

Abstract—Anonymity platforms route the traffic over a net-
work of special routers that are known as mixes and implement
various traffic disruption techniques to hide the communicating
users’ identities. Batch mixes in particular anonymize commu-
nicating peers by allowing message exchange to take place only
after a sufficient number of messages (a batch) accumulate, thus
introducing delay. We introduce a queueing model for batch mix
and study its delay properties. Our analysis shows that delay of a
batch mix grows quickly as the batch size gets close to the number
of senders connected to the mix. We then propose a randomized
batch mixing strategy and show that it achieves much better
delay scaling in terms of the batch size. However, randomization
is shown to reduce the anonymity preserving capabilities of the
mix. We also observe that queueing models are particularly useful
to study anonymity metrics that are more practically relevant
such as the time-to-deanonymize metric.

Index Terms—Chaum mixes, Delay analysis, Queueing Theory,
Order statistics.

I. INTRODUCTION

In numerous circumstances, more than just the content

of a message has to be hidden from the adversary. Unlike

covertness which aims to deny that any communication is

taking place [1]–[3], we consider the case where it is known

that a group of peers communicate but it is desired to hide

who is communicating with whom [4]. It is well known that

identities of peers communicating over a network can be

identified via rather simple network traffic analysis techniques

[5]. Anonymity mixes were introduced by David Chaum in

1980’s as a general framework for implementing anonymous

message exchange [6]. They are sophisticated network routers

that pass messages such that no one (except the mix itself) can

link an ingoing message to an outgoing message. Today, some

form of a mix is often a part of anonymity preserving solu-

tions (e.g., PetMail, Mixminion, Panoramix) or data transfer

services (e.g., Onion routing, Freenet).

A mix typically collects messages and forwards them in

batches according to a fixed deterministic rule or a randomized

strategy (see e.g., [7]–[9]). This allows hiding the origin of

the outgoing messages, but also introduces delay in message

transfer. The incurred delay of the mixes is the most concern-

ing cost of anonymity they provide. For instance anonymous

web browsing platform ToR, which currently has more than

2 million users, does not implement sophisticated mixing to

keep a low latency platform, even though it is shown to be

vulnerable to deanonymization attacks based on network traffic

analysis [10]–[12].

Appropriate modeling of the mixes is crucial to study

their delay vs. anonymity tradeoff. Stability conditions and

delay characteristics of a mix naturally depend on its system

parameters which also determine its anonymity preserving

capabilities. In this paper, we propose and study two queueing

models for batch mixes that are designed and used against

passive adversarial attacks. Note that, we do not consider

active attacks that involve traffic injection into the network,

which have also been shown to successfully deanonymize

users on popular anonymity platforms [12], [13].

We propose a mix model that implements the well known

deterministic batch mixing algorithm [7]. We observe the close

connection of the model to assembly queues, which was used

to model and study the operational process of assembling

multiple items into a product [14]. Using the proposed model,

we find that batch mix provides a well defined anonymity

guarantee that gets better with the batch size, on the other

hand, its incurred delay grows quickly as the batch size gets

close to the number of senders connected to the mix.

Our study of the batch mix led us to consider a new

randomized mixing algorithm. We show that the randomized

model achieves better delay scaling in terms of the batch

size compared to its deterministic counterpart. However, it

can provably preserve anonymity only if the adversary can

not infer the state of the mix, and is in general vulnerable to

anonymity attacks under low traffic.

There are many measures of anonymity and privacy (see

[15], [16]). We are here concerned with preserving unlinkabil-

ity, which is ensuring that no sender/receiver pair is exposed.

Our study shows that delay of the mix can be reduced by

sacrificing some anonymity, which would eventually lead to

complete deanonymization of all the sender-receiver pairs.

However, message transfer sessions are of finite duration in

practice, and minimum amount of time required for an attack

to destroy anonymity is a concern regardless of the anonymity

measure. Previous papers that are concerned with the delay of

anonymity schemes ignore the queueing dynamics within the

mix (see e.g., [17], [18] and references therein). We believe

that queueing models are necessary for studying the time-to-

deanonymize metric, and this paper is a first step towards

understanding this metric.

This paper is organized as follows. Sec. II-A describes the

batch mix model. Sec. II-B presents the anonymity guarantee

implemented by a batch mix. Sec. III shows a stability criterion

for the batch mix and presents an approximate method for
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Blocking queue 2, 4 Forwarding queue 1, 2, 4

Fig. 1: Illustration of a (4, 3) batch mix. As long as there are

less than three non-empty queues, messages are blocked (Left).

As soon as a message arrival forms a group of three non-empty

queues, one message from each is dispatched (Right).

analyzing its incurred delay. Sec. IV introduces a randomized

batch mixing strategy, and discusses its anonymity and delay

properties. Sec. V gives a summary and conclusions.

II. A BATCH MIX AND ITS ANONYMITY

A. Mix Model

A batch mix has n senders connected, and buffers the

messages incoming from each sender in a separate first-in

first-out queue with an infinite buffer space. As soon as any

k ≥ 2 queues become non-empty, one message from each is

dispatched (see Fig. 1). The recipient sets of each sender are

assumed to be disjoint and of at most size m.

Each sender is assumed to generate an independent Poisson

message traffic at rate λ. Delay added by the mix is assumed

to come only from the message queueing time. We ignore any

message reception or transmission delay.

Definition 1. An (n, k) batch mix is a system of n first-in

first-out queues, each receiving messages from an independent

Poisson process of rate λ. Messages are blocked as long as the

mix has less than k non-empty queues. As soon as k queues

become non-empty, one message from each is dispatched.

B. Attack Model and Anonymity

We assume that the adversary monitoring the traffic going

in and out of the mix can observe 1) who the sender of each

incoming message is and 2) who the recipient of each outgoing

message is. Thus, if a message arrival triggers a message

departure, the adversary can identify the sender-receiver pair.

His goal is to identify the receivers of a particular sender,

which we refer to as the target sender.

Forwarding messages in batches of size k prevents the

adversary from immediately finding out the exact destination

of an incoming message, as it can be any of the k message

recipients. However, the adversary can, over time, collect mul-

tiple size-k receiver sets, each containing a potential recipient

of the target sender. Intersecting such sets would eventually

reveal the receivers linked to the target sender. We refer to

such attacks as intersection attacks [19].

We say that the mix preserves anonymity, when it ensures

that no sender/receiver pair is exposed, that is, no sender and

receiver can be linked.

Theorem 1 (Anonymity under intersection attack). Consider

a target sender connected to an (n, k) batch mix that is under

intersection attacks. When k < n, all m receivers of the target

can be identified if m ≤ bn/kc. All m receivers cannot be

identified surely otherwise.

Proof. This theorem is a reformulation of [7, Claim 1]. Let ad-

versary wait and observe m mutually disjoint sets R1, . . . , Rm

of size k that include the possible receivers of Alice. These m
sets can be disjoint only if km ≤ n. Adversary is thus sure that

there is exactly one receiver of Alice in each observed recipient

set Ri. Afterwards, adversary refines each of these sets by

observing new recipient sets that intersect with only one of

the prior sets. This means, a new recipient set R is useful if

R∩Ri 6= ∅ and R∩Rj = ∅ for all j 6= i, then Ri can be refined

to R∩Ri. Note that if R intersects with multiple prior recipient

sets, then refining all intersecting sets may remove the actual

receivers of Alice. The correct refinement process can be

continued until each of the sets R1, . . . , Rm contains only

one receiver. Remaining m receivers in the refined recipient

sets are clearly the communication partners of Alice.

As described above, intersection attacks will surely identify

all receivers of a target only if adversary can observe m
disjoint sets of size k. This is the only way for adversary

to isolate each receiver of the target in a separate set so that a

newly observed set can be intersected with one of these sets

correctly, that is, intersection will not surely end up removing

the true receiver from the set. When km > n, adversary can

never observe m disjoint sets of size k, hence can never surely

identify all m receivers of the target.

III. STABILITY AND DELAY

A batch mix consists of n FIFO queues, each buffering

messages arriving from an i.i.d. Poisson process. A message

arrival triggers a batch departure if it finds k − 1 other non-

empty queues in the mix, and the arriving message departs

immediately with the batch. Therefore, there can be at most

k − 1 non-empty queues in the mix at any time. Since all

the queues and the associated arrival processes are identical,

system state can be represented as the Markov process L(t) =
(l1(t), . . . , lk−1(t)) where li(t) denotes the length of the ith
longest queue in the system at time t.

An (n, n) batch mix behaves as an assembly queue, found

to be unstable in [14]. Stability here refers to the existence of

an invariant probability measure for the system state process.

Theorem 2. An (n, k) batch mix is stable if k < n.

Proof. A Markov process is stable if and only if it is positive

recurrent. Given that transition rates of L(t) are neither too

“slow” nor too “fast”, its positive recurrence is implied by

the positive recurrence of its embedded discrete chain St. We

here use the Foster-Lyapunov criterion to show the positive

recurrence of St as interpreted from [20, Thm. 2].
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For system state s = (s1, . . . , sk−1), let

W (s) := s
log

2
(n/n−1)

k−1 .

Recall that sk−1 = min{si, i = 1, . . . , k − 1}.

Note that sups W (s) = ∞ as required. One step drift for

any state s ∈ {s, W (s) > 0} is

E [W (S1)−W (S0) | S0 = s] < 0.

and we have

sup
{s,W (s)≤0}

E[S1 | S0 = s] < 1 < ∞.

Thus St, hence L(t) is positive recurrent.

There are three scenarios that a message can experience upon

arrival to the mix: 1) If a message arrives to an empty queue

and finds k−1 other non-empty queues in the mix, then it will

immediately depart with no queueing. 2) If a message arrives

to an empty queue and finds fewer than k−1 other non-empty

queues in the mix, then it has to wait for a formation of k
non-empty queues (i.e., a batch). 3) If a message arrives to a

non-empty queue, it has to first wait to the HoL (head of the

line) in its queue, and then wait for the next batch formation.

In a tagged queue, batch formation delay experienced by a

message is completely characterized by the number of non-

empty queues R (excluding the tagged queue) seen by the

message once it moves to HoL. If R < k − 1, message will

be blocked until any k − 1 − R of the n − 1 − R empty

queues receive at least a message. Using the memoryless

property of message inter-arrival times, batch formation delay

is distributed as the (k− 1−R)th order statistic of n− 1−R
i.i.d. exponentials, which we denote as Xn−1−R:k−1−R

1.

Overall, a message moving to HoL may find from 0 up to

k − 1 other non-empty queues, hence there are k possible

different distributions for the batch formation delay.

When k = 2, system state is just the longest queue length

and defines a birth-death process. Exact analysis is formidable

when k > 2 because of the infamous state space explosion

problem. We first present the exact analysis for k = 2, then

present an approximate method for k > 2, which is similar to

an approximation presented for assembly queues in [21].

A. Exact analysis of (n, 2)-mix

In (n, 2)-mix for n > 2, there can be at most one non-

empty queue at any time, hence the system state is captured

by the length of the longest queue L(t). It defines a single

dimensional birth-death Markov process as shown in Fig. 3.

Exact analysis in this case is straightforward. Let pl be

the stationary probability for state l. From global balance

equations we find

p0 =
n− 2

2(n− 1)
pl =

n(n− 2)

2(n− 1)i+1
; l = 1, 2, . . .

Ergodicity implies that fraction of the time an arbitrary queue

is non-empty (i.e., average load on the queue) is ρ = (1 −

1Xi:j := 0 if i < j or j = 0.

p0)/n = 1/2(n − 2). Larger n gives higher frequency of

emptiness at the servers, which is natural since queues empty

out faster when the mix receives messages at a higher rate.

Using the stationary state probabilities, first two moments

of the length of an arbitrary queue are given as

E[L] =
1

n

∞∑

l=1

l pl =
1

2(n− 2)

E[L2] =
1

n

∞∑

l=1

l2 pl =
n

2(n− 2)2

We next derive some simple conclusions for the steady state

delay experienced by an arriving message. Using PASTA [22],

an arbitrary message finds the system empty with probability

p0 and will have to wait for the first arrival to one of

the other n − 1 queues. Since arrivals are Poisson, waiting

time distribution for the message is minimum of n − 1
Exp(λ)’s, that is Exp ((n− 1)λ). An arriving message may

find its corresponding queue with l messages with probability

pl/n. In this case, waiting time distribution for the message

is sum of l + 1 independent Exp ((n− 1)λ)’s, which is

Erlang (l + 1, (n− 1)λ). Finally, it may also find its corre-

sponding queue empty with probability pl(n − 1)/n if there

is another queue with l messages. Then the message will not

be queued and will depart immediately upon arrival together

with the first message in the busy queue. Using the law of

total probability, distribution of waiting time D for an arbitrary

message is then given as

Pr{D > w} = p0 Pr {Exp ((n− 1)λ) > w}

+
1

n

∞∑

l=1

pl Pr {Erlang (l + 1, (n− 1)λ) > w} .

B. Approximate analysis of (n, k > 2)-mix

We here adopt the following approximating assumption;

a message upon moving to head of the line (HoL) in its

queue finds each other queue independently non-empty with

probability p. Given that, and the fact that there can be at

most k−1 non-empty queues at any time, the number of non-

empty queues seen by a message moving to HoL is distributed

as R ∼ B|{B ≤ k − 1} where B ∼ Binom(n− 1, p). Given

R = r, message will have to wait before getting dispatched for

the first k−1−r among all the n−1−r empty queues to receive

at least one arrival, that is, the message will experience a batch

formation delay of V |{R = r} ∼ Xn−1−r:k−1−r. Then V for

an arbitrary message, which arrives to a non-empty queue in

the first place, is approximately distributed as

Pr{V ≤ v} = ER [Pr{Xn−1−R:k−1−R ≤ v}] , (1)

where ER denotes expectation with respect to R.

Batch formation delay for messages that arrive to an empty

queue is differently distributed (than V above) because they

find each other queue non-empty with a different probability

than messages that arrive to a non-empty queue. Let a tagged

queue be left empty by a departing message m. If the queue

was left non-empty, the next message in line would have
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Proof. Queues in the mix will empty out infinite number of

times under stability. Suppose that the adversary can detect

whenever the mix becomes empty. Firstly, assume p 6= 0.

Given that a message from a target finds the mix empty,

the arriving message will be forwarded with probability p
or no message will depart. If the message is immediately

forwarded, a receiver of the target will revealed. Number of

times repeating this attack required to identify a receiver is

geometric with p, hence attack will be almost surely successful

in finite time.

Secondly, assume p 6= 0. Given that a message from a target

finds more than one non-empty queue in the mix, the following

departure may include messages going only to the receivers of

the non-target senders. This reveals which receiver does not

belong to the recipient set of the target. Eventually adversary

will be left with the correct set of receivers.

Sampling mix will empty out more frequently and cannot

often build a state complex enough to hide the origin of

the outgoing messages when k is larger and/or arrival rate

λ is lower, hence intersection attacks with state knowledge

will resolve faster. Moreover, even simple intersection attacks

that do not require state knowledge can deanonymize a target

connected to a sampling mix if pa is not chosen carefully.

Theorem 5. All receivers of a target sender connected to an

(n, k) sampling mix with pa 6= 1/n can be identified with

intersection attacks that do not require state knowledge.

Proof. Once a message arrives to a queue in steady state,

probability of a departure from any other queue is q = poρ =
(1 − pa)/(n − 1). Suppose m = 1 and pa > q (pa < q).

Adversary can record the message departures per arrival from

a target sender. By the law of large numbers, the greatest

(smallest) number of departures will almost surely be observed

on the correct receiver in the limit. Same idea applies when

each sender communicates with multiple receivers. Finally,

pa = q if and only if pa = 1/n.

In other words, in order to preserve anonymity, it is nec-

essary to maximize the uncertainty within the steady state

probabilities of message departures from the queues. Rényi

entropy is commonly used for measuring uncertainty and uni-

form distribution is known to maximize it, which is achieved

by setting pa = 1/n.

V. CONCLUSION

We proposed a queueing model for batch anonymity mixes

and showed that batch a mix with a deterministic message dis-

patching policy ensures that no sender-receiver pair is exposed

(referred to as anonymity in this paper) under intersection

attacks. On the other hand, its incurred delay on message

transfer grows quickly as the batch size gets close to the

number of connected senders. We introduced a sampling mix

model that implements a randomized message dispatching

policy. Sampling mix permits an exact delay analysis, which

allowed us to show that randomization allows cutting the

tail of delay immensely, however, at the cost of giving up

on the anonymity guarantee implemented by its deterministic

counterpart. We hope to next use our proposed queueing model

to understand the performance of mixes in terms of the time-

to-deanonymize metric vs. the incurred message transfer delay.
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