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Abstract. We propose a learning-based framework for disentangling
outdoor scenes into temporally-varying illumination and permanent
scene factors. Inspired by the classic intrinsic image decomposition, our
learning signal builds upon two insights: 1) combining the disentangled
factors should reconstruct the original image, and 2) the permanent
factors should stay constant across multiple temporal samples of the
same scene. To facilitate training, we assemble a city-scale dataset of
outdoor timelapse imagery from Google Street View, where the same
locations are captured repeatedly through time. This data represents an
unprecedented scale of spatio-temporal outdoor imagery. We show that
our learned disentangled factors can be used to manipulate novel images
in realistic ways, such as changing lighting effects and scene geometry.
Please visit http://factorize-a-city.github.io/ for animated results.

1 Introduction

“The city of Sophronia is made up of two half-cities... One
of the half-cities is permanent, the other is temporary.”

—Italo Calvino, Invisible Cities

Imagine taking an image from every possible location on Earth at every possible
time instant throughout history. Adelson and Bergen called this hypothetical
construct the plenoptic function [2]. In practice, of course, it would be impossible
to capture or store such a massive dataset. Yet, the data must also be highly
redundant and compressible. There will be many images of the same view with
slightly different illumination, many images capturing different places under the
same conditions, etc. In other words, each image within this hypothetical dataset
should have a low intrinsic dimensionality. Rather than store all pixels, we could
instead store a small number of intrinsic, disentangled factors representing scene
geometry, illumination conditions, etc.—if only we knew what those parameters
were and how to reconstruct an image from them.
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Input Image Changing Sun Position Changing Sky Illumination

Fig. 1. We learn to disentangle temporally-varying scene factors from permanent ones.
We can manipulate the learned factors to relight scenes, e.g., by editing sun position and
sky conditions. While we train our model on panoramas of NYC (top), it generalizes
at test time to images of other cities such as Paris (bottom).

In this paper, we ask whether we can learn such a lower-dimensional repre-
sentation from a sparse sampling of the plenoptic function on the scale of an
entire city. Until recently, large-scale visual data that varies both in space and,
separately, in time was difficult to obtain. Fortunately, there have been system-
atic efforts to capture the world through projects like Google Street View (GSV).
While GSV is known for its worldwide coverage, it has also accumulated many
samples of the world over time, powering features like Street View Time Machine
(GSV-TM). However, GSV-TM still represents an extremely sparse sampling of
the plenoptic function.

We use GSV to learn to factor a city’s worth of outdoor panoramas into a
single low-dimensional representation. In particular, we organize a large set of
historical GSV panoramas of New York City into assembled timelapses at 100,000
fixed locations captured over time. These enable us to train an unsupervised
model to disentangle two latent factors: illumination factors that vary over time,
and geometric scene properties that are more permanent.

Once we learn a disentangled set of latent factors, we can synthesize missing
data in our incomplete sampling of the plenoptic function by simply swapping
or modifying the underlying factors. As illustrated in Fig. 1, our learned factor-
ization can generate synthetic images of the same scene with completely novel
illumination. Our disentangled factors are flexible enough to relight test scenes
from a single panorama and can even be applied to entirely new cities like Paris.

2 Related Work

Intrinsic Images. Decomposing images into their underlying components is
a well-studied problem [5]. For instance, the classic intrinsic images problem
describes images as a combination of reflectance (i.e., scene albedo), and shading
(effects induced by lighting) [1]. This problem is underconstrained as there are an
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infinite number of possible solutions for a single image. However, the regularities
in natural scenes and lighting conditions allow for priors on the decomposition.
While such priors can be manually crafted [4], many recent methods attempt
to learn priors from data, using full supervision from synthetic data [23], sparse
supervision from human annotations [6,39], or self-supervision from synthetic
models [16]. Yet another kind of supervision comes from timelapse videos [24],
which feature image sequences with constant reflectance but varying illumination.
Such work hearkens back to classic work on deriving intrinsic images from image
stacks [37], and is an inspiration for our work. However, while intrinsic image
methods allow for editing reflectance or shading for a specific image, they use
high-dimensional pixel-level descriptions of lighting that are not transferable
across scenes. In our case, our model learns an illumination descriptor that can
be meaningfully transferred from one image to another, e.g., to relight an image
with an illumination from a completely different scene. Such “mix-and-match”
capabilities are beyond the power of standard intrinsic images.

Inverse Graphics. An alternative way to factor visual appearance is via 3D
reconstruction of the scene into underlying physical components like 3D shape,
materials, and lighting. Such methods have been successful in several specific
domains, including faces [33], single objects [18,41], or indoor scenes trained
from synthetic data [25,32]. 3D reconstruction has also been used explicitly as a
preprocess to aid in modeling visual appearance [19,26,27,30]. Most relevant to
us are Martin-Brualla et al. [26], who organized millions of internet photos into
a dense 3D and temporal reconstructions, and Meshry et al. [27], who employed
a dense 3D reconstruction with a neural rendering pipeline to synthesize scene
appearances. However, explicit 3D reconstruction methods require hundreds of
images to create a 3D model and cannot generalize to novel test-time scenes. In
contrast, we choose to handle geometry implicitly—allowing us to holistically
learn to disentangle factors across many scenes composed of a few images each,
and then generalize to novel settings, even single images.

Some recent inverse graphics methods learn to infer shape, appearance, and
materials for new outdoor scenes, not just scenes observed during training. Yu
and Smith train on multi-view stereo data using a physics-based inverse graphics
model, and can infer explicit scene properties for novel test images, enabling
relighting tasks [38]. Our work achieves a similar capability, but relies on a more
implicit representation of geometry and illumination that can be learned solely
from timelapse data, without requiring depth or surface normals during training.

Timelapse and Webcam Data. Timelapses are a popular source of data
for capturing time-related effects. Applications include intrinsic images [24,37],
scene-specific factorizations via physical shading models [34], illuminant trans-
fer [21], analysis of worldwide temporal variations [15], motion denoising [31],
learning temporal object transformations [40], and weather attribute manipula-
tion [20]. However, prior work is limited by the variety and size of available data.
The largest existing set of standard webcam data is the AMOS dataset of Jacobs
et al. [15], which archived 29,445 webcams and 95 million images. BigTime [24]
uses a much smaller set of 6,500 images from 195 timelapse sequences. Both
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Fig. 2. Left: A Manhattan intersection. Center: Multiple Google Street View
panoramic captures of this intersection forms an assembled timelapse stack. Right:
The train and test split over the greater NYC area. Training stacks are drawn from
the blue region, and test stacks from the yellow region. (Color figure online)

datasets sample time much more densely than space. In contrast, we leverage
the vast amounts of data from Google Street View to create assembled timelapses
of the same location captured at different times, across a large number of loca-
tions. This allows us to collect an order of magnitude more data than previously
published [15]. We additionally note that data collection from Street View scales
more easily than [15] which requires crawling the internet for webcam streams.

Learning from Street View. Google Street View (GSV), a large dataset of
images sampling much of the world’s streets, represents a compelling source of
data for computer vision research. Researchers have utilized Google Street View
images to learn about visual elements [9] or historical architectural styles [22]
specific to certain cities like Paris, to predict non-visual city attributes [3,10,28],
for localization [11], or to understand the relationship between satellite imagery
and street-level views [35]. In our work we use historical GSV Time Machine
imagery to observe how the world changes over time by assembling timelapses
for a large number of locations. Such a large, comprehensive dataset is key to our
unsupervised approach for learning to factor illumination from scene geometry.

3 Google Street View Time Machine Data

Google Street View (GSV) hosts an amazing quantity of panoramas capturing
street scenes worldwide. Because GSV repeatedly captures many places over
time, it can be treated as a sparse, imperfectly aligned, and irregularly-sampled
collection of timelapse videos. These historical images are saved as part of the
GSV-Time Machine (GSV-TM), which we mine to collect our dataset.

We focus on New York City, due to the richness of NYC scenes and the
relative wealth of data. To assemble timelapses, we collect panoramas within
NYC along with their timestamps and camera poses in a geographic coordinate
system [8]. We greedily cluster nearby panoramas into sets of eight, which we
refer to as stacks. The region we use and an example stack are shown in Fig. 2.

From the area shown in Fig. 2 (right) we collect ∼100K assembled timelapse
stacks for training (comprised of 800K individual panoramas stitched from 10
million captures) and 16K test stacks. We crop the sky and ground regions such
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Fig. 3. Disentangling a single image. At test time, we encode a single image into
disentangled time-varying and permanent factors. We train with the constraint that
shading and reflectance images can be decoded from this learned factored representation.

that our final panoramas are 960 × 320. These sRGB panoramas can optionally
be gamma-corrected before further processing.

4 Method

Our goal is to discover a low-dimensional representation of the world where tem-
porally varying effects, such as different illumination conditions, are disentangled
from permanent objects, such as buildings and roads.

One form of disentanglement is intrinsic images, a per-pixel decomposition
into reflectance and shading images. However, such a disentangled representa-
tion is very low-level—a particular shading image cannot be used to relight a
different scene. Instead, we seek to encode an image into higher-level latent fac-
tors capturing scene and illumination properties described above, as illustrated
in Fig. 3. How can we find such a factorization? Our insight is that we should still
be able to decode intrinsic images from our factored representation, as illustrated
on the right side of Fig. 3. The decoded reflectance and shading images should
recombine to form the original image, providing us with an autoencoder-style
method for learning our high-level factorization [16]. However, such an image
reconstruction framework alone would provide a very weak supervision signal.
Our second insight is to learn from huge numbers of timelapse stacks mined
from GSV-TM. Within such stacks, we assume the scene factors to be constant.
This insight is inspired by the work of Li and Snavely, who learn intrinsic images
from timelapse videos [24]. In our case we learn a high-level factorization that
enables more powerful capabilities.

4.1 Encoder-Decoder Architecture

Figure 3 shows our encoder-decoder architecture with its learnt factored represen-
tation. Given an image, our encoders produce latent factors, capturing various
temporal and permanent effects, that can be decoded to a log-shading intrinsic
image. We use the intrinsic images equation (log(Reflectance) = log(Image) −
log(Shading)) to compute a reflectance image by subtracting the temporally
varying effects, represented by the shading image, from the original image.
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Fig. 4. Training with timelapses. We train encoders to disentangle an assembled
timelapse stack into two factors: illumination descriptors that capture the time-varying
aspects of each image, and a single scene descriptor that captures the permanent
elements of the entire timelapse stack, such as the scene geometry. We train a generator
to transform the disentangled factors into shading and reflectance images from which
we can reconstruct the original images. As indicated by the dotted pathways, we also
simultaneously solve for the alignment of the individual frames in the input timelapse.

Our model’s latent factors are organized into two sets of descriptors, as shown
in Fig. 4: an illumination descriptor represents temporally varying aspects of the
scene and a scene descriptor represents the permanent aspects.

Illumination Descriptor: Our illumination descriptor captures the factors of
the world that encode temporal variation like lighting. This descriptor is com-
prised of two disentangled sub-factors:

The lighting context L ∈ R
32 is a global latent feature that captures the over-

all ambient illumination properties, such as atmospheric conditions and cloud
cover. Our lighting context encoder ΦL encodes an image to this embedding.

The sun azimuth angle, ϕ is an explicit factor representing the horizontal posi-
tion of the sun in a given panorama. We model sun azimuth explicitly because,
unlike illumination patterns, variations in sun azimuth have a simple geometric
meaning, with a value in the range [−π, π]. Despite this simple parameteriza-
tion, the effect of sun azimuth on a rendered scene is highly complex. Therefore
an explicit azimuth factor allows our model to combine the factor’s underlying
mathematical simplicity with a network’s ability to model complex behaviors.

Rather than regress to a scalar angle, we instead represent ϕ internally as
a discretized distribution over sun angle (with k = 40 bins). Inspired by prior
work on illumination estimation [12], our azimuth encoder Φϕ is a horizontally
fully-convolutional network that takes as input a panorama, and produces a
40-way softmax distribution ϕ, where each bin corresponds to the probability
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that the sun azimuth is located in the bin’s corresponding angular range. Note
that given this discrete distribution over angles, we can differentiably compute
a single scalar angle as the (circular) expectation of the distribution, ϕ̄. This
predicted scalar sun angle is used by our decoder for normalizing sun position.

Scene Descriptor: Our scene descriptor captures the permanent structure of
the world that is invariant to the temporally varying effects described above. We
also divide this descriptor into two disentangled sub-factors:

The geometry representation is a spatial map of learned features that captures
scene properties (e.g. surface normals and material properties) that are indepen-
dent of illumination, but nonetheless are important to determining the rendering
of a shading images. The fully convolutional encoder ΦE outputs E ∈ R

H
8 × W

8 ×16

where H and W are the resolution of a panorama.
The reflectance image is an RGB estimate of the underlying scene albedo.

In contrast to the shading image, we chose to not use an encoder-decoder to
compute reflectance for two reasons: (1) neural networks can have difficulties
preserving high-frequency textures that are important for visual quality and (2)
it suffices to predict only one intrinsic image component because its complement
component has a closed form solution based on the intrinsic images equation.

Decoder: Given a set of learned factors (sun azimuth angle ϕ̄, lighting context
L, and geometry factor E), our decoder G is trained to generate an outdoor
shading image. To facilitate training of G, one insight is that it is easier to learn to
synthesize shading images with a fixed sun azimuth angle than with all possible
angles. Further, we can normalize a panorama by its predicted sun azimuth
angle by simply rotating it by the negative of that angle (i.e., circular horizontal
translation). Hence, our decoder operates as follows: (1) use the predicted sun
azimuth angle ϕ̄ to rotate the geometry factor image E to a fixed sun angle, (2)
decode the sun-normalized geometry image with lighting context L to a shading
image, and (3) rotate the result back to the original coordinate frame.

We use the Spatial Adaptive Instance Normalization (SPADE) generator
of Park et al. [29] to model the complex interactions between geometry and
illumination in our decoder G. The SPADE generator takes the lighting context
L as the network’s noise input. We apply the insights from above and rotate the
geometry representation E by −ϕ̄ before using it as the SPADE conditioning.

While some prior works model shading with a grayscale image, such a model
cannot capture real-world, colored illumination. Inspired by Sunkavalli et al. [34],
we augment our decoder’s gray-scale shading predictions with a bi-color assump-
tion by additionally predicting two global color illuminants c1 and c2, corre-
sponding to sunlight and skylight, and a per-pixel mixing weight M that models
how much each pixel is illuminated by the sun or sky. For further details about
the decoder architecture, please refer to the supplemental material.

4.2 Training

Learning to factor single images without any supervision is challenging—there
is simply not enough information in a single image to disentangle scene factors
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Fig. 5. Alignment results. We show stack averages, cropped for emphasis, before
and after our alignment process. Aligning the estimated permanent reflectances rather
than the input images results in good alignment and therefore crisp stack averages.

from illumination factors. However, a GSV-TM stack depicts the same underly-
ing permanent scene under diverse temporally varying illuminations, providing
a useful training signal. Our training procedure, shown in Fig. 4, learns to disen-
tangle factors within a stack by separating the permanent geometry of the scene
shared by all images in the stack from the varying lighting. The trained model
can be applied to a single image at test time.

Given a timelapse stack, we run our encoder on individual frames to get a
stack of encoded geometry representations and illumination descriptors. Because
we assume the stack’s geometry to be constant across time, we average the
encoded geometry maps over the stack, resulting in a single shared geometry
map, Ē. From this shared geometry map, and the per-image illumination factors,
our decoder produces a stack of shading and reflectance image pairs. As with
geometry, we wish the scene’s albedo to be constant across time. Accordingly,
we impose a reflectance consistency loss LRC that computes the L1 distance
between pairs of reflectance images from different frames. This loss encourages
the encoder-decoder network to remove temporal variation from the encoded
permanent factors such that the reflectances are constant across a stack.

As demonstrated in the right half of Fig. 4, we average the stack’s reflectance
images across frames to get the stack’s shared reflectance. The shared reflectance
is recomposited with the shading image of each frame in the stack to reconstruct
the original pixels of each input frame. These reconstructions are used to drive
the learning process via image synthesis losses.

4.3 Stack Alignment

Unlike traditional webcam data, our assembled GSV-TM timelapses do not come
from stationary cameras. While each stack consists of nearby panoramas, they
are not perfectly co-located and aligned. As shown in Fig. 5, the average of the
stack reveals visible misalignment artifacts resulting from this parallax.

We could use 3D reconstruction methods as the basis for image alignment,
but opted for a simpler 2D approach inspired by image congealing [13], and



552 A. Liu et al.

compute 2D warps that best align the images in each stack. Given a raw stack
of imperfectly aligned images, we define Θ, an 8 × 32 grid of per-image control
points initialized as the identity warp. The control points define a 2D spline used
to differentiably warp each image within a stack to align with the rest.

To find the control points that best align images within a stack, we run
gradient descent to minimize pixel alignment error. While one could use orig-
inal image pixels to measure misalignment, we found that photometric differ-
ences across the stack due to varying lighting conditions led to poor alignments.
Instead, we compute error on estimated reflectance images by reusing our previ-
ously defined reflectance consistency loss, LRC, to update alignment parameters.
This approach is indicated by the dotted pathway in Fig. 4. By jointly minimiz-
ing alignment and intrinsic image decomposition, we create a positive feedback
loop—as timelapse alignment improves, factorization becomes easier and vice
versa.

4.4 Losses

Our losses are optimized over alignment parameters Θ, factorization encoders ΦL

Φϕ, and ΦE , and decoder G. We train a multi-scale patch discriminator [14,36]
D to ensure that the stack reconstructions with shared reflectances look realistic.

Our primary loss for learning the disentanglement is the reflectance consis-
tency loss LRC described in Sect. 4.2. We include standard image generation
losses on the reconstructed stack to ensure high quality synthesis results: a per-
ceptual loss LVGG [17], an adversarial loss LGAN [7], and a feature matching loss
LFM [36]. Finally, because intrinsic images have a fundamental color ambigu-
ity, we also include a white light penalty, LWL that biases our encoder-decoder
towards white-balanced reflectance outputs. Our overall objective function is:

min
Θ

max
D

min
G,ΦL,Φϕ,ΦE

LRC + LGen + LGAN (1)

where LGen is a weighted sum of LFM,LWL,LVGG that measures the generative
quality of the reconstructed images. We include additional descriptions, align-
ment results, insights, and analysis for reproducibility in the supplemental mate-
rial.

5 Experiments

We evaluate our factorization method in two ways: 1) we compare to intrin-
sic image decomposition baselines in the single-scene setting, and 2) we apply
our method to the task of transferring illumination descriptors across different
scenes, a new capability enabled by our disentanglement. In both cases, we mea-
sure success by the quality of reconstructed images derived from swapping their
disentangled factors with ones borrowed from other images as in [39].

Data. At test time, our network can take as input either an assembled timelapse
stack or a single panorama. In order to align test-time stacks like those shown
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in Fig. 5, we estimate spline parameters by computing a gradient for alignment
only, while keeping the weights of the factorization part of the network frozen.
Below, we present results for stack as well as single-image inputs.

In particular, we show single-image test-time results on GSV imagery from
cities never seen during training, such as Paris, as well as images from the Out-
door Laval HDR dataset [12]. This dataset contains HDR panoramas of outdoor
scenes that are tonemapped to sRGB to match GSV. We use this data to com-
pare to existing sRGB intrinsic image methods and to test generalization from
GSV to a different domain of panoramas.

Baselines. Given the novelty of our problem, we perform model ablations to
measure the individual benefits of various components. All ablated models are
trained with the same losses and number of iterations as our full method. We
report results on the following ablations:

– Mono-color shading: We ablate the bi-color shading by training our model
with a mono-color assumption similar to that of Li and Snavely [24].

– w/o alignment training: Trained without the alignment feedback loop.
– w/ unaligned test stacks: Uses unaligned test stacks to measure the effect

of ablating alignment at training (above) vs. at both training and test time.
– w/o azimuth encoder: Our model trained without an azimuth encoder nor

normalizing for sun position.

Additionally, we consider the following baselines:

– Pixel nearest neighbor: Given a target image, we find the pixel-wise near-
est neighbor in its aligned stack and report the error resulting from using that
image as our synthesized result.

– Weiss’s MLE Intrinsics [37]: use handcrafted priors on gradients extracted
from image sequences.

– Zhou et al. [39]: learn to mimic human judgments of relative reflectance.
– Li and Snavely’s BigTime [24] learn shading priors from image sequences.

5.1 Within-Scene Decomposition

Intrinsic image methods aim to decompose an image into shading and reflectance.
The quality of a decomposition is measured by its ability to separate illumina-
tion effects, like cast shadows, from permanent properties such as albedo. In
Fig. 6, we show reflectance and shading computed from a single image using our
method and the two deep learning baselines. Both BigTime and Zhou et al. fail to
remove cast shadows, as seen by residual shadows encoded in their reflectance.
Unlike Zhou et al., our method produces shading images that are piecewise
smooth, as expected for planar surfaces like building facades. BigTime struggles
in outdoor settings because their single global illuminant cannot predict multi-
ple illumination colors. Finally, both baselines incorrectly encode blue sky pixels
as reflectance despite the fact that sky color is a temporal property. To further
illustrate the advantages of our method over these baselines, Fig. 7 shows the
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Fig. 6. Qualitative results on an intrinsic image decomposition task. We com-
pare single-image decompositions of our method with Li and Snavely [24] and Zhou
et al. [39]. Compared to the baselines, our reflectance images do not have residual
shadows. Our method, trained on NYC, generalizes at test-time to Laval Outdoor
HDR Panoramas [12] as well as to GSV imagery from Paris.

results of relighting pairs of images of the same scene by swapping reflectances
within the pair. Unlike the baselines, our clean reflectance image allows us to
relight the scene successfully.

Scene Consistency Verification. Since MLE Intrinsics [37] only works on
timelapse stacks of single scenes, we devise a way to quantitatively compare
to their method. We split our aligned test stacks to two smaller substacks of
4 images each. For each substack, each method predicts a single reflectance
image and four shading images. Since both substacks capture the same underly-
ing scene, the predicted reflectances should be consistent across the two. As in
the case of single images (Fig. 6), we can test the consistency of the predicted
reflectance for the depicted scene by swapping the predicted reflectance images
between the two substacks and reconstructing the four input images in each
substack from their shading and swapped reflectance images. We refer to this
experiment as scene consistency verification because the reconstruction error is
minimized when the predicted reflectances are identical for the two substacks.

We report the mean squared reconstruction error (MSE) between the input
stack and the swap reconstructions in Table 1. Our method outperforms the
three baselines at image reconstruction in this setting. We speculate that prior
methods are hindered by their reliance on hand-defined shading priors and lim-
ited training data. In contrast, our massive dataset provides enough supervision
for learning a good decomposition without shading priors. Interestingly, ablating
the azimuth encoder does not degrade performance on this task, suggesting that
a simpler setup is sufficient for within-scene illumination transfer.
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Fig. 7. Transferring illumination within a scene. Given a pair of images of the
same scene under different illuminations (left), we disentangle the permanent and vary-
ing factors and decode their reflectance and shading (middle). To test the permanency
of the estimated reflectance for the depicted scene, we swap reflectances within the pair
and combine them with the estimated shading to reconstruct the original images (right).
Red and blue paths connect the components used to reconstruct each image. Our
method produces a reflectance, clean of any lighting, which can be safely swapped
between captures of the same scene and still result in good reconstructions. (Color
figure online)

5.2 Cross-Scene Factorization

Unlike intrinsic images methods, our factorization allows us to transfer illumina-
tion descriptors across scenes. Using our disentangled factors, we can synthesize
a given scene under completely new lighting conditions, borrowed from a different
location. For the purpose of evaluating the success of this cross-scene relighting
process, we devise a way to compare the novel synthesis to ground truth. Namely,
because illumination changes relatively slowly, we assume that images captured
within 5 min across the city have the same illumination descriptor. Hence, we
can relight a given scene, A, captured at time T1 using illumination descriptors
transferred from a different location, B, captured at time T2. We then compare
the resulting synthetic image of scene A at time T2 to ground truth captures of
scene A captured at a time close to T2.
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Table 1. Relighting results. We define two image reconstruction tasks for evaluation.
Scene consistency verification evaluates whether the estimated reflectance is consistent
across multiple captures of a single scene. Space-time completion evaluates the ability
to transfer illumination across different scenes. We report MSE reconstruction error.
Lower is better.

Model Consistency Completion

Full model (ours) 0.071 0.196
Mono-color shading 0.077 0.215
w/o alignment training 0.082 0.201
w/ unaligned test stacks 0.090 0.210
w/o azimuth encoder 0.072 0.240
Pixel nearest neighbors 0.274 0.278
MLE Intrinsic [37] 0.114 —
BigTime [24] 0.180 —
Zhou et al. [39] 0.217 —

We name this task space-time matrix-completion. A row in the matrix rep-
resents a unique point in “space” and a column represents a unique point in
“time”. A single panorama represents an entry in this matrix at the row corre-
sponding to its depicted scene and column corresponding to its capture time.
We can withhold entries in the matrix and reconstruct them by combining a
scene descriptor derived from images in the same row, with an illumination
descriptor extracted from a different scene from the same column. Table 1 shows
the reconstruction MSE for each ablation between held-out and reconstructed
views. Our full model and the w/o alignment training ablation show significant
improvements over other ablations.

While alignment training does not significantly affect the performance of our
model on this task (w/o alignment training), its performance degrades signifi-
cantly on unaligned stacks (w/ unaligned test stacks). This indicates that align-
ment may be optional during training but is crucial for reconstruction. Addition-
ally, unlike with the substack swap task, explicitly representating sun azimuth
improves transferability of lighting descriptors across scenes.

6 Applications

We now present applications where we synthetically modify a panorama. These
applications are uniquely enabled by our intrinsic factorization that disentangles
time-varying effects from the permanent scene properties.

Changing Sun Position. Our model disentangles sun azimuth angle from scene
and lighting context factors. Once a scene is factorized, we can visualize what a
scene looks like when the sun angle is changed. Figure 8 shows examples of test
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scenes synthesized with new sun azimuth angles. Note that cast shadows and
illumination on building faces change realistically with the rotation.

Fig. 8. Manipulating sun position. We can specify the sun position for an input
scene and relight it realistically. Please see the supplemental video for full animations.

Fig. 9. Changing sky illumination. We can relight novel scenes by transferring
the disentangled time-varying factors from one scene to another. Here we swap the
illumination descriptors of a pair of input scenes to visualize what each scene might
look like under a new illumination. The red and blue paths indicate the components
used to reconstruct each relit scene. (Color figure online)

Relighting a Novel Scene. Our lighting context encodes the stylistic qual-
ity of illumination. As shown in Fig. 9, we can transfer the whole illumination
descriptor, including sun azimuth, from one panorama to another with a new
scene geometry. Results for transferring only lighting context can be found in the
supplemental material. The supplemental material also demonstrates relighting
a spatial sequence of panoramas from different times to a fixed illumination, thus
producing a virtual drive through Manhattan.
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Editing Scene Geometry. While shading and azimuth capture the essence
of time, the scene descriptor encodes structures. By copy-pasting regions of
the scene descriptors, we can transplant the buildings into new panoramas and
relight them to match the scene. Please see the supplementary for results.

7 Discussion

We proposed a novel source of large-scale timelapse data from historical Street
View data, and a learning-based method for factorizing temporal and permanent
variations across imagery covering an entire city. Our learned factorization out-
performs state-of-the-art intrinsic images methods, and enables cross-scene style
transfer via manipulating our learned factors.

Our method has a few limitations. First, the scene descriptor learns to encode
transient objects like cars. While moving objects are temporal effects, the net-
work chooses to encode them in the scene descriptor, resulting in wispy cars
appearing in the generator output. Second, high-frequency details such as cast
shadows from tree branches are difficult to synthesize. Third, when the align-
ment module fails, the shared reflectance of a stack will appear blurry. Please
see the supplemental material for examples of failure cases. Finally, when our
permanence assumptions fail to hold—for instance when buildings are repainted
or rebuilt—our assumption that the scene descriptor is constant across time is
violated.

Despite these limitations, our work points towards a new approach to mod-
eling and synthesizing the space of outdoor scenes, wherein we can learn to
separate factors that persist at different time scales. An intriguing direction for
future work is to expand to a richer range of timescales, for instance model-
ing transient effects (moving people, cars, etc.), effects with annual cycles (e.g.,
seasons), long-term changes like weathering, etc.
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