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Abstract. In image-to-image translation, each patch in the output
should reflect the content of the corresponding patch in the input, inde-
pendent of domain. We propose a straightforward method for doing so
– maximizing mutual information between the two, using a framework
based on contrastive learning. The method encourages two elements (cor-
responding patches) to map to a similar point in a learned feature space,
relative to other elements (other patches) in the dataset, referred to
as negatives. We explore several critical design choices for making con-
trastive learning effective in the image synthesis setting. Notably, we
use a multilayer, patch-based approach, rather than operate on entire
images. Furthermore, we draw negatives from within the input image
itself, rather than from the rest of the dataset. We demonstrate that our
framework enables one-sided translation in the unpaired image-to-image
translation setting, while improving quality and reducing training time.
In addition, our method can even be extended to the training setting
where each “domain” is only a single image.

Keywords: Contrastive learning · Noise contrastive estimation ·
Mutual information · Image generation

1 Introduction

Consider the image-to-image translation problem in Fig. 1. We wish for the out-
put to take on the appearance of the target domain (a zebra), while retaining
the structure, or content, of the specific input horse. This is, fundamentally, a
disentanglement problem: separating the content, which needs to be preserved
across domains, from appearance, which must change. Typically, target appear-
ance is enforced using an adversarial loss [21,31], while content is preserved using
cycle-consistency [37,81,89]. However, cycle-consistency assumes that the rela-
tionship between the two domains is a bijection, which is often too restrictive. In
this paper, we propose an alternative, rather straightforward way of maintain-
ing correspondence in content but not appearance – by maximizing the mutual
information between corresponding input and output patches.
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Fig. 1. Patchwise Contrastive Learning for one-sided translation. A generated
outputpatch should appear closer to its correspondinginputpatch, in compari-
son to other randompatches. We use a multilayer, patchwise contrastive loss, which
maximizes mutual information between corresponding input and output patches. This
enables one-sided translation in the unpaired setting.

In a successful result, given a specific patch on the output, for example,
the generated zebra forehead highlighted in blue, one should have a good idea
that it came from the horse forehead, and not the other parts of the horse or
the background vegetation. We achieve this by using a type of contrastive loss
function, InfoNCE loss [57], which aims to learn an embedding or an encoder
that associates corresponding patches to each other, while disassociating them
from others. To do so, the encoder learns to pay attention to the commonalities
between the two domains, such as object parts and shapes, while being invariant
to the differences, such as the textures of the animals. The two networks, the
generator and encoder, conspire together to generate an image such that patches
can be easily traceable to the input.

Contrastive learning has been an effective tool in unsupervised visual repre-
sentation learning [9,24,57,80]. In this work, we demonstrate its effectiveness in
a conditional image synthesis setting and systematically study several key factors
to make it successful. We find it pertinent to use it on a multilayer, patchwise
fashion. In addition, we find that drawing negatives internally from within the
input image, rather than externally from other images in the dataset, forces the
patches to better preserve the content of the input. Our method requires neither
memory bank [24,80] nor specialized architectures [3,25].

Extensive experiments show that our faster, lighter model outperforms both
prior one-sided translation methods [4,18] and state-of-the-art models that rely
on several auxiliary networks and multiple loss functions. Furthermore, since our
contrastive representation is formulated within the same image, our method can
even be trained on single images. Our code and models are available at GitHub.

https://github.com/taesungp/contrastive-unpaired-translation
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2 Related Work

Image translation and cycle-consistency. Paired image-to-image transla-
tion [31] maps an image from input to output domain using an adversarial loss
[21], in conjunction with a reconstruction loss between the result and target.
In unpaired translation settings, corresponding examples from domains are not
available. In such cases, cycle-consistency has become the de facto method for
enforcing correspondence [37,81,89], which learns an inverse mapping from the
output domain back to the input and checks if the input can be reconstructed.
Alternatively, UNIT [44] and MUNIT [30] propose to learn a shared interme-
diate “content” latent space. Recent works further enable multiple domains
and multi-modal synthesis [1,10,41,45,90] and improve the quality of results
[20,43,72,79,88]. In all of the above examples, cycle-consistency is used, often in
multiple aspects, between (a) two image domains [37,81,89] (b) image to latent
[10,30,41,44,90], or (c) latent to image [30,90]. While effective, the underly-
ing bijective assumption behind cycle-consistency is sometimes too restrictive.
Perfect reconstruction is difficult to achieve, especially when images from one
domain have additional information compared to the other domain.

Relationship preservation. An interesting alternative approach is to encour-
age relationships present in the input be analogously reflected in the output. For
example, perceptually similar patches within an input image should be similar in
the output [88], output and input images share similar content regarding a pre-
defined distance [5,68,71], vector arithmetic between input images is preserved
using a margin-based triplet loss [3], distances between input images should be
consistent in output images [4], the network should be equivariant to geomet-
ric transformations [18]. Among them, TraVeLGAN [3], DistanceGAN [4] and
GcGAN [18] enable one-way translation and bypass cycle-consistency. However,
they rely on relationship between entire images, or often with predefined dis-
tance functions. Here we seek to replace cycle-consistency by instead learning
a cross-domain similarity function between input and output patches through
information maximization, without relying on a pre-specified distance.

Emergent perceptual similarity in deep network embeddings. Defining
a “perceptual” distance function between high-dimensional signals, e.g., images,
has been a longstanding problem in computer vision and image processing. The
majority of image translation work mentioned uses a per-pixel reconstruction
metric, such as �1. Such metrics do not reflect human perceptual preferences
and can lead to blurry results. Recently, the deep learning community has found
that the VGG classification network [69] trained on ImageNet dataset [14] can
be re-purposed as a “perceptual loss” [16,19,34,52,75,87], which can be used in
paired image translation tasks [8,59,77], and was known to outperform tradi-
tional metrics such as SSIM [78] and FSIM [84] on human perceptual tests [87]. In
particular, the Contextual Loss [52] boosts the perceptual quality of pretrained
VGG features, validated by human perceptual judgments [51]. In these cases,
the frozen network weights cannot adapt to the data on hand. Furthermore, the
frozen similarity function may not be appropriate when comparing data across
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two domains, depending on the pairing. By posing our constraint via mutual
information, our method makes use of negative samples from the data, allowing
the cross-domain similarity function to adapt to the particular input and output
domains, and bypass using a pre-defined similarity function.

Contrastive representation learning. Traditional unsupervised learning has
sought to learn a compressed code which can effectively reconstruct the input
[27]. Data imputation – holding one subset of raw data to predict from another
– has emerged as a more effective family of pretext tasks, including denoisin
[76], context prediction [15,60], colorization [40,85], cross-channel encoding [86],
frame prediction [46,55], and multi-sensory prediction [56,58]. However, such
methods suffer from the same issue as before—the need for a pre-specified, hand-
designed loss function to measure predictive performance.

Recently, a family of methods based on maximizing mutual information has
emerged to bypass the above issue [9,24,25,28,47,54,57,73,80]. These methods
make use of noise contrastive estimation [23], learning an embedding where asso-
ciated signals are brought together, in contrast to other samples in the dataset
(note that similar ideas go back to classic work on metric learning with Siamese
nets [12]). Associated signals can be an image with itself [17,24,49,67,80], an
image with its downstream representation [28,47], neighboring patches within
an image [25,33,57], or multiple views of the input image [73], and most suc-
cessfully, an image with a set of transformed versions of itself [9,54]. The design
choices of the InfoNCE loss, such as the number of negatives and how to sample
them, hyperparameter settings, and data augmentations all play a critical role
and need to be carefully studied. We are the first to use InfoNCE loss for the
conditional image synthesis tasks. As such, we draw on these important insights,
and find additional pertinent factors, unique to image synthesis.

3 Methods

We wish to translate images from input domain X ⊂ RH×W×C to appear like
an image from the output domain Y ⊂ RH×W×3. We are given a dataset of
unpaired instances X = {x ∈ X}, Y = {y ∈ Y}. Our method can operate even
when X and Y only contain a single image each.

Our method only requires learning the mapping in one direction and avoids
using inverse auxiliary generators and discriminators. This can largely simplify
the training procedure and reduce training time. We break up our generator func-
tion G into two components, an encoder Genc followed by a decoder Gdec, which
are applied sequentially to produce output image ŷ = G(z) = Gdec(Genc(x)).

Adversarial loss. We use an adversarial loss [21], to encourage the output to
be visually similar to images from the target domain, as follows:

LGAN(G,D,X, Y ) = Ey∼Y log D(y) + Ex∼X log(1 − D(G(x))). (1)

Mutual information maximization. We use a noise contrastive estimation
framework [57] to maximize mutual information between input and output.
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Fig. 2. Patchwise Contrastive Loss. Both images, x and ŷ, are encoded into feature
tensor. We sample a query patch from the output ŷ and compare it to the input patch
at the same location. We set up an (N+1)-way classification problem, where N negative
patches are sampled from the same input image at different locations. We reuse the
encoder part Genc of our generator and add a two-layer MLP network. This network
learns to project both the input and output patch to a shared embedding space.

The idea of contrastive learning is to associate two signals, a “query” and its
“positive” example, in contrast to other points within the dataset, referred to as
“negatives”. The query, positive, and N negatives are mapped to K-dimensional
vectors v,v+ ∈ RK and v− ∈ RN×K , respectively. v−

n ∈ RK denotes the n-th
negative. We normalize vectors onto a unit sphere to prevent the space from
collapsing or expanding. An (N + 1)–way classification problem is set up, where
the distances between the query and other examples are scaled by a temperature
τ = 0.07 and passed as logits [24,80]. The cross-entropy loss is calculated, rep-
resenting the probability of the positive example being selected over negatives.

�(v,v+,v−) = − log

[
exp(v · v+/τ)

exp(v · v+/τ) +
∑N

n=1 exp(v · v−
n/τ)

]
. (2)

Our goal is to associate the input and output data. In our context, query refers
to an output. positive and negatives are corresponding and noncorresponding
input. Below, we explore several important design choices, including how to
map the images into vectors and how to sample the negatives.

Multilayer, patchwise contrastive learning. In the unsupervised learning
setting, contrastive learning has been used both on an image and patch level
[3,25]. For our application, we note that not only should the whole images share
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content, but also corresponding patches between the input and output images.
For example, given a patch showing the legs of an output zebra, one should be
able to more strongly associate it to the corresponding legs of the input horse,
more so than the other patches of the horse image. Even at the pixel level, the
colors of a zebra body (black and white) can be more strongly associated to the
color of a horse body than to the background shades of grass. Thus, we employ
a multilayer, patch-based learning objective.

Since the encoder Genc is computed to produce the image translation, its
feature stack is readily available, and we take advantage. Each layer and spatial
location within this feature stack represents a patch of the input image, with
deeper layers corresponding to bigger patches. We select L layers of interest and
pass the feature maps through a small two-layer MLP network Hl, as used in
SimCLR [9], producing a stack of features {zl}L = {Hl(Gl

enc(x))}L, where Gl
enc

represents the output of the l-th chosen layer. We index into layers l ∈ {1, 2, ..., L}
and denote s ∈ {1, ..., Sl}, where Sl is the number of spatial locations in each
layer. We refer to the corresponding feature as zs

l ∈ RCl and the other features as
z
S\s
l ∈ R(Sl−1)×Cl , where Cl is the number of channels at each layer. Similarly,

we encode the output image ŷ into {ẑl}L = {Hl(Gl
enc(G(x)))}L.

We aim to match corresponding input-output patches at a specific location.
We can leverage the other patches within the input as negatives. For example,
a zebra leg should be more closely associated with an input horse leg than the
other patches of the same input, such as other horse parts or the background
sky and vegetation. We name it as the PatchNCE loss, as illustrated in Fig. 2.
Appendix C.3 provides pseudocode.

LPatchNCE(G,H,X) = Ex∼X

L∑
l=1

Sl∑
s=1

�(ẑs
l ,z

s
l ,z

S\s
l ). (3)

Alternatively, we can also leverage image patches from the rest of the dataset.
We encode a random negative image from the dataset x̃ into {z̃l}L, and use
the following external NCE loss. In this variant, we maintain a large, consistent
dictionary of negatives using an auxiliary moving-averaged encoder, following
MoCo [24]. MoCo enables negatives to be sampled from a longer history, and
performs more effective than end-to-end updates [25,57] and memory bank [80].

Lexternal(G,H,X) = Ex∼X,z̃∼Z−

L∑
l=1

Sl∑
s=1

�(ẑs
l ,z

s
l , z̃l), (4)

where dataset negatives z̃l are sampled from an external dictionary Z− from
the source domain, whose data are computed using a moving-averaged encoder
Ĥl and moving-averaged MLP Ĥ. We refer our readers to the original work for
more details [24].

In Sect. 4.1, we show that our encoder Genc learns to capture domain-invariant
concepts, such as animal body, grass, and sky for horse → zebra, while our
decoder Gdec learns to synthesize domain-specific features such as zebra stripes.
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Interestingly, through systematic evaluations, we find that using internal patches
only outperforms using external patches. We hypothesize that by using internal
statistics, our encoder does not need to model large intra-class variation such as
white horse vs. brown horse, which is not necessary for generating output zebras.
Single image internal statistics has been proven effective in many vision tasks such
as segmentation [32], super-resolution, and denoising [66,91].

Final objective. Our final objective is as follows. The generated image should
be realistic, while patches in the input and output images should share cor-
respondence. Figure 1 illustrates our minimax learning objective. Additionally,
we may utilize PatchNCE loss LPatchNCE(G,H, Y ) on images from domain Y
to prevent the generator from making unnecessary changes. This loss is essen-
tially a learnable, domain-specific version of the identity loss, commonly used by
previous unpaired translation methods [71,89].

LGAN(G,D,X, Y ) + λXLPatchNCE(G,H,X) + λY LPatchNCE(G,H, Y ). (5)

We choose λX = 1 when we jointly train with the identity loss λY = 1, and
choose a larger value λX = 10 without the identity loss (λY = 0) to compensate
for the absence of the regularizer. We find that the former configuration, named
Contrastive Unpaired Translation (CUT) hereafter, achieves superior perfor-
mance to existing methods, whereas the latter, named FastCUT, can be thought
as a faster and lighter version of CycleGAN. Our model is relatively simple
compared to recent methods that often use 5–10 losses and hyper-parameters.

Discussion. Li et al. [42] has shown that cycle-consistency loss is the upper
bound of conditional entropy H(X|Y ) (and H(Y |X)). Therefore, minimizing
cycle-consistency loss encourages the output ŷ to be more dependent on input x.
This is related to our objective of maximizing the mutual information I(X,Y ),
as I(X,Y ) = H(X)−H(X|Y ). As entropy H(X) is a constant and independent of
the generator G, maximizing mutual information is equivalent to minimizing the
conditional entropy. Notably, using contrastive learning, we can achieve a similar
goal without introducing inverse mapping networks and additional discrimina-
tors. In the unconditional modeling scenario, InfoGAN [7] shows that simple
losses (e.g., L2 or cross-entropy) can serve as a lower bound for maximizing
mutual information between an image and a low-dimensional code. In our set-
ting, we maximize the mutual information between two high-dimensional image
spaces, where simple losses are no longer effective. Liang et al. [43] proposes an
adversarial loss based on Siamese networks that encourages the output to be
closer to the target domain than to its source domain. The above method still
builds on cycle-consistency and two-way translations. Different from the above
work, we use contrastive learning to enforce content consistency, rather than to
improve the adversarial loss itself. To measure the similarity between two distri-
butions, the Contextual Loss [52] used softmax over cosine disntances of features
extracted from pre-trained networks. In contrast, we learn the encoder with the
NCE loss to associate the input and output patches at the same location.
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Fig. 3. Results. We compare our methods (CUT and FastCUT) with existing meth-
ods on the horse→zebra, cat→dog, and Cityscapes datasets. CycleGAN [89], MUNIT
[44], and DRIT [41], are two-sided methods, while SelfDistance, DistanceGAN [4], and
GcGAN [18] are one-sided. We show successful cases above the dotted lines. Our full
version CUT is able to add the zebra texture to the horse bodies. Our fast variant Fast-
CUT can also generate competitive results at the least computational cost of training.
The final rows show failure cases. In the first, we are unable to identify the unfamiliar
pose of the horse and instead add texture to the background. In the second, the method
hallucinates a tongue.

4 Experiments

We test across several datasets. We first show that our method improves upon
baselines in unpaired image translation. We then show that our method can
extend to single-image training. Full results are available at our website.

Training details. We follow the setting of CycleGAN [89], except that the
�1 cycle-consistency loss is replaced with our contrastive loss. In detail, we used
LSGAN [50] and Resnet-based generator [34] with PatchGAN [31]. We define our
encoder as the first half of the generator, and accordingly extract our multilayer
features from five evenly distributed points of the encoder. For single image
translation, we use a StyelGAN2-based generator [36]. To embed the encoder’s

https://taesungp.github.io/ContrastiveUnpairedTranslation
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Table 1. Comparison with baselines We compare our methods across datasets on
common evaluation metrics. CUT denotes our model trained with the identity loss
(λX = λY = 1), and FastCUT without it (λX = 10, λY = 0). We show FID, a
measure of image quality [26] (lower is better). For Cityscapes, we show the semantic
segmentation scores (mAP, pixAcc, classAcc) to assess the discovered correspondence
(higher is better for all metrics). Based on quantitative measures, CUT produces higher
quality and more accurate generations with light footprint in terms of training speed
(seconds per sample) and GPU memory usage. Our variant FastCUT also produces
competitive results with even lighter computation cost of training.

Method Cityscapes Cat→Dog Horse→Zebra

mAP↑ pixAcc↑ classAcc↑ FID↓ FID↓ FID↓ sec/iter↓ Mem(GB)↓
CycleGAN [89] 20.4 55.9 25.4 76.3 85.9 77.2 0.40 4.81

MUNIT [44] 16.9 56.5 22.5 91.4 104.4 133.8 0.39 3.84

DRIT [41] 17.0 58.7 22.2 155.3 123.4 140.0 0.70 4.85

Distance [4] 8.4 42.2 12.6 81.8 155.3 72.0 0.15 2.72

SelfDistance [4] 15.3 56.9 20.6 78.8 144.4 80.8 0.16 2.72

GCGAN [18] 21.2 63.2 26.6 105.2 96.6 86.7 0.26 2.67

CUT 24.7 68.8 30.7 56.4 76.2 45.5 0.24 3.33

FastCUT 19.1 59.9 24.3 68.8 94.0 73.4 0.15 2.25

features, we apply a two-layer MLP with 256 units at each layer. We normalize
the vector by its L2 norm. See Appendix C.1 for more training details.

4.1 Unpaired Image Translation

Datasets We conduct experiments on the following datasets.

• Cat→Dog contains 5,000 training and 500 val images from AFHQ Dataset [11].
• Horse→Zebra contains 2,403 training and 260 zebra images from ImageNet

[14] and was introduced in CycleGAN [89].
• Cityscapes [13] contains street scenes from German cities, with 2,975 training

and 500 validation images. We train models at 256 × 256 resolution. Unlike
previous datasets listed, this does have corresponding labels. We can leverage
this to measure how well our unpaired algorithm discovers correspondences.

Evaluation protocol. We adopt the evaluation protocols from [26,89], aimed
at assessing visual quality and discovered correspondence. For the first, we uti-
lize the widely-used Fréchet Inception Distance (FID) metric, which empirically
estimates the distribution of real and generated images in a deep network space
and computes the divergence between them. Intuitively, if the generated images
are realistic, they should have similar summary statistics as real images, in any
feature space. For Cityscapes specifically, we have ground truth of paired label
maps. If accurate correspondences are discovered, the algorithm should generate
images that are recognizable as the correct class. Using an off-the-shelf net-
work to test “semantic interpretability” of image translation results has been
commonly used [31,85]. We use the pretrained semantic segmentation network
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Fig. 4. Ablations. The PatchNCE loss is trained with negatives from each layer output
of the same (internal) image, with the identity preservation regularization. (Left) We try
removing the identity loss [Id], using less negatives [Negs], using only the last layer of
the encoder [Layers], and varying where patches are sampled, internal [Int] vs external
[Ext]. (Right) We plot the FIDs on horse→zebra and Cityscapes dataset. Removing the
identity loss (no id) and reducing negatives (no id, 15 neg) still perform strongly. In
fact, our variant FastCUT does not use the identity loss. However, reducing number of
layers (last) or using external patches (ext) hurts performance.

DRN [83]. We train the DRN at 256 × 128 resolution, and compute mean aver-
age precision (mAP), pixel-wise accuracy (pixAcc), and average class accuracy
(classAcc). See Appendix C.2 for more evaluation details.

Comparison to baselines. In Table 1, we show quantitative measures of our
and Fig. 3, we compare our method to baselines. We present two settings of our
method in Eqn. 5: CUT with the identity loss (λX = λY = 1), and FastCUT
without it (λX = 10, λY = 0). On image quality metrics across datasets, our
methods outperform baselines. We show qualitative results in Fig. 3 and addi-
tional results in Appendix A. In addition, our Cityscapes semantic segmentation
scores are higher, suggesting that our method is able to find correspondences
between output and input.

Speed and memory. Since our model is one-sided, our method is memory-
efficient and fast. For example, our method with the identity loss was 40% faster
and 31% more memory-efficient than CycleGAN at training time, using the same
architectures as CycleGAN (Table 1). Furthermore, our faster variant FastCUT
is 63% faster and 53% lighter, while achieving superior metrics to CycleGAN.
Table 1 contains the speed and memory usage of each method measured on
NVIDIA GTX 1080Ti, and shows that FastCUT achieves competitive FIDs and
segmentation scores with a lower time and memory requirement. Therefore, our
method can serves as a practical, lighter alternative in scenarios, when an image
translation model is jointly trained with other components [29,62].

4.2 Ablation Study and Analysis

We find that in the image synthesis setting, similarly to the unsupervised learn-
ing setting [9,24,25], implementation choices for contrastive loss are important.
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Input CUT no id last layer only external only

Fig. 5. Qualitative ablation results of our full method (CUT) are shown: without
the identity loss LPatchNCE(G, H, Y ) on domain Y (no id), using only one layer of the
encoder (last layer only), and using external instead of internal negatives (external
only). The ablations cause noticeable drop in quality, including repeated building or
vegetation textures when using only external negatives or the last layer output.

Fig. 6. Identity loss LPatchNCE(G,H, Y ) on domain Y adds stability. This regu-
larizer encourages an image from the output domain y to be unchanged by the genera-
tor. Using it (shown in bold, black curves), we observe better stability in comparison
to other variants. On the left, our variant without the regularizer, no id, achieves bet-
ter FID. However, we see higher variance in the training curve. On the right, training
without the regularizer can lead to collapse.

Here, try various settings and ablations of our method, summarized in Fig. 4. By
default, we use the ResNet-based generator used in CycleGAN [89], with patch-
NCE using (a) negatives sampled from the input image, (b) multiple layers of
the encoder, and (c) a PatchNCE loss LPatchNCE(G,H, Y ) on domain Y . In Fig.
4, we show results using several variants and ablations, taken after training for
400 epochs. We show qualitative examples in Fig. 5.

Internal negatives are more effective than external. By default, we sample
negatives from within the same image (internal negatives). We also try adding
negatives from other images, using a momentum encoder [24]. However, the
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external negatives, either as addition (int and ext) or replacement of internal
negatives (ext only), hurts performance. In Fig. 5, we see a loss of quality, such
as repeated texture in the Cityscapes dataset, indicating that sampling negatives
from the same image serves as a stronger signal for preserving content.

Importance of using multiple layers of encoder. Our method uses mul-
tiple layers of the encoder, every four layers from pixels to the 16th layer. This
is consistent with the standard use of �1+VGG loss, which uses layers from the
pixel level up to a deep convolutional layer. On the other hand, many contrastive
learning-based unsupervised learning papers map the whole image into a single
representation. To emulate this, we try only using the last layer of the encoder
(last), and try a variant using external negatives only (ext only, last). Per-
formance is drastically reduced in both cases. In unsupervised representation
learning, the input images are fixed. For our application, the loss is being used
as a signal for synthesizing an image. As such, this indicates that the dense
supervision provided by using multiple layers of the encoder is important when
performing image synthesis.
LPatchNCE(G,H, Y ) regularizer stabilizes training. Given an image from
the output domain y ∈ Y, this regularizer encourages the generator to leave
the image unchanged with our patch-based contrastive loss. We also experiment
with a variant without this regularizer, no id. As shown in Fig. 4, removing the
regularizer improves results for the horse→zebra task, but decreases performance
on Cityscapes. We further investigate by showing the training curves in Fig. 6,
across 400 epochs. In the Cityscapes results, the training can collapse without
the regularizer (although it can recover). We observe that although the final FID
is sometimes better without, the training is more stable with the regularizer.

Visualizing learned similarity by encoder Genc To further understand why
our encoder network Genc has learned to perform horse→ zebra task, we study
the output space of the 1st residual block for both horse and zebra features. As
shown in Fig. 7. Given an input and output image, we compute the distance
between a query patch’s feature vector v (highlighted as red or blue dot) to
feature vectors v− of all the patches in the input using exp(v · v−/τ) (Eqn. 2).
Additionally, we perform a PCA dimension reduction on feature vectors from
both horse and zebra patches. In (d) and (e), we show the top three principal
components, which looks similar before and after translation. This indicates that
our encoder is able to bring the corresponding patches from two domains into a
similar location in the feature embedding space.

Additional applications. Figure 8 shows additional results: Parisian street →
Burano’s brightly painted houses and Russian Blue cat → Grumpy cat.

4.3 High-Resolution Single Image Translation

Finally, we conduct experiments in the single image setting, where both the
source and target domain only have one image each. Here, we transfer a Claude
Monet’s painting to a natural photograph. Recent methods [64,65] have explored
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Fig. 7. Visualizing the learned similarity by Genc. Given query points (blue or
red) on an output image (a) and input (b), we visualize the learned similarity to patches
on the input image by computing exp(v ·v−/τ) in (c). Here v is the query patch in the
output and v− denotes patches from the input. This suggests that our encoder may
learn cross-domain correspondences implicitly. In (d) and (e), we visualize the top 3
PCA components of the shared embedding.

Fig. 8. Additional applications on Parisian street → Burano’s colored houses and
Russian Blue cat → Grumpy cat.

training unconditional models on a single image. Bearing the additional challenge
of respecting the structure of the input image, conditional image synthesis using
only one image has not been explored by previous image-to-image translation
methods. Our painting → photo task is also different from neural style transfer
[19,34] (photo → painting) and photo style transfer [48,82] (photo → photo).

Since the whole image (at HD resolution) cannot fit on a commercial GPU, at
each iteration we train on 16 random crops of size 128 × 128. We also randomly
scale the image to prevent overfitting. Furthermore, we observe that limiting the
receptive field of the discriminator is important for preserving the structure of
the input image, as otherwise the GAN loss will force the output image to be
identical to the target image. Therefore, the crops are further split into 64 × 64
patches before passed to the discriminator. Lastly, we find that using gradient
penalty [35,53] stabilizes optimization. We call this variant SinCUT.



332 T. Park et al.

Fig. 9. High-res painting to photo translation. We transfer Claude Monet’s
paintings to reference natural photographs. The training only requires a single image
from each domain. We compare our results (SinCUT) to recent style and photo trans-
fer methods including Gatys et al. [19], WCT2 [82], STROTSS [39], and patch-based
CycleGAN [89]. Our method generates can reproduce the texture of the reference photo
while retaining structure of input painting. Our generation is at 1k ∼ 1.5k resolution.

Figure 9 shows a qualitative comparison between our results and baseline
methods including two neural style transfer methods (Gatys et al. [19] and
STROTSS [39]), one leading photo style transfer method WCT2 [82], and a
CycleGAN baseline [89] that uses the �1 cycle-consistency loss instead of our
contrastive loss at the patch level. The input paintings are high-res, ranging
from 1k to 1.5k. Appendix B includes additional examples. We observe that
Gatys et al. [19] fails to synthesize realistic textures. Existing photo style trans-
fer methods such as WCT2 can only modify the color of the input image. Our
method SinCUT outperforms CycleGAN and is comparable to a leading style
transfer method [39], which is based on optimal transport and self-similarity.
Interestingly, our method is not originally designed for this application. This
result suggests the intriguing connection between image-to-image translation
and neural style transfer.

5 Conclusion

We propose a straightforward method for encouraging content preservation in
unpaired image translation problems – by maximizing the mutual information
between input and output with contrastive learning. The objective learns an
embedding to bringing together corresponding patches in input and output, while
pushing away noncorresponding “negative” patches. We study several important
design choices. Interestingly, drawing negatives from within the image itself,
rather than other images, provides a stronger signal. Our method learns a cross-
domain similarity function and is the first image translation algorithm, to our
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knowledge, to not use any pre-defined similarity function (such as �1 or per-
ceptual loss). As our method does not rely on cycle-consistency, it can enable
one-sided image translation, with better quality than established baselines. In
addition, our method can be used for single-image unpaired translation.

Acknowledgments. We thank Allan Jabri and Phillip Isola for helpful discussion
and feedback. Taesung Park is supported by a Samsung Scholarship and an Adobe
Research Fellowship, and some of this work was done as an Adobe Research intern.
This work was partially supported by NSF grant IIS-1633310, grant from SAP, and
gifts from Berkeley DeepDrive and Adobe.

Appendix A Additional Image-to-Image Results

We first show additional, randomly selected results on datasets used in our main
paper. We then show results on additional datasets.

A.1 Additional Comparisons

In Fig. 10, we show additional, randomly selected results for Horse→Zebra and
Cat→Dog. This is an extension of Fig. 3 in the main paper. We compare to
baseline methods CycleGAN [89], MUNIT [30], DRIT [41], Self-Distance and
DistanceGAN [4], and GcGAN [18].

B.2 Additional Datasets

In Fig. 11 and 12, we show additional datasets, compared against baseline
method CycleGAN [89]. Our method provides better or comparable results,
demonstrating its flexibility across a variety of datasets.

• Apple→Orange contains 996 apple and 1,020 orange images from ImageNet
and was introduced in CycleGAN [89].

• Yosemite Summer→Winter contains 1,273 summer and 854 winter images of
Yosemite scraped using the FlickAPI was introduced in CycleGAN [89].

• GTA→Cityscapes GTA contains 24,966 images [63] and Cityscapes [13] con-
tains 19,998 images of street scenes from German cities. The task was origi-
nally used in CyCADA [29].

Appendix B Additional Single Image Translation Results

We show additional results in Fig. 13 and Fig. 14, and describe training details
below.

Training details. At each iteration, the input image is randomly scaled to a
width between 384 to 1024, and we randomly sample 16 crops of size 128 × 128.
To avoid overfitting, we divide crops into 64 × 64 tiles before passing them to the
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Fig. 10. Randomly selected Horse→Zebra and Cat→Dog results. This is an
extension of Fig. 3 in the main paper.
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Fig. 11. Apple→Orange and Summer→Winter Yosemite. CycleGAN models
were downloaded from the authors’ public code repository. Apple→Orange shows that
CycleGAN may suffer from color flipping issue.

Fig. 12. GTA→Cityscapes results at 1024 × 512 resolution. The model was trained
on 512 × 512 crops.
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discriminator. At test time, since the generator network is fully convolutional, it
takes the input image at full size.

We found that adopting the architecture of StyleGAN2 [36] instead of Cycle-
GAN slightly improves the output quality, although the difference is marginal.
Our StyleGAN2-based generator consists of one downsampling block of Style-
GAN2 discriminator, 6 StyleGAN2 residual blocks, and one StyleGAN2 upsam-
pling block. Our discriminator has the same architecture as StyleGAN2. Follow-
ing StyleGAN2, we use non-saturating GAN loss [61] with R1 gradient penalty
[53]. Since we do not use style code, the style modulation layer of StyleGAN2
was removed.

Single image results.
In Fig. 13 and 14, we show additional comparison results for our method,

Gatys et al. [19], STROTSS [39], WCT2 [82], and CycleGAN baseline [89]. Note
that the CycleGAN baseline adopts the same augmentation techniques as well
as the same generator/discriminator architectures as our method. The image
resolution is at 1–2 Megapixels. Please zoom in to see more visual details.

Both figures demonstrate that our results look more photorealistic compared
to CycleGAN baseline, Gatys et al. [19], and WCT2. The quality of our results
is on par with results from STROTSS [39]. Note that STROTSS [39] compares
to and outperforms recent style transfer methods (e.g., [22,52]).

Appendix C Unpaired Translation Details and Analysis

C.1 Training Details

To show the effect of the proposed patch-based contrastive loss, we intentionally
match the architecture and hyperparameter settings of CycleGAN, except the
loss function. This includes the ResNet-based generator [34] with 9 residual
blocks, PatchGAN discriminator [31], Least Square GAN loss [50], batch size of
1, and Adam optimizer [38] with learning rate 0.002.

Our full model CUT is trained up to 400 epochs, while the fast variant
FastCUT is trained up to 200 epochs, following CycleGAN. Moreover, inspired
by GcGAN [18], FastCUT is trained with flip-equivariance augmentation, where
the input image to the generator is horizontally flipped, and the output features
are flipped back before computing the PatchNCE loss. Our encoder Genc is the
first half of the CycleGAN generator [89]. In order to calculate our multi-layer,
patch-based contrastive loss, we extract features from 5 layers, which are RGB
pixels, the first and second downsampling convolution, and the first and the fifth
residual block. The layers we use correspond to receptive fields of sizes 1 × 1,
9 × 9, 15 × 15, 35 × 35, and 99 × 99. For each layer’s features, we sample
256 random locations, and apply 2-layer MLP to acquire 256-dim final features.
For our baseline model that uses MoCo-style memory bank [24], we follow the
setting of MoCo, and used momentum value 0.999 with temperature 0.07. The
size of the memory bank is 16384 per layer, and we enqueue 256 patches per
image per iteration.
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Fig. 13. High-res painting to photo translation (I). We transfer Monet’s paint-
ings to reference natural photos shown as insets at top-left corners. The training only
requires a single image from each domain. We compare our results to recent style and
photo transfer methods including Gatys et al. [19], WCT2 [82], STROTSS [39], and
our modified patch-based CycleGAN [89]. Our method can reproduce the texture of
the reference photos while retaining structure of the input paintings. Our results are
at 1k ∼ 1.5k resolution.

C.2 Evaluation Details

We list the details of our evaluation protocol.
Fréchet Inception Distance (FID [26]) throughout this paper is computed by
resizing the images to 299-by-299 using bilinear sampling of PyTorch framework,
and then taking the activations of the last average pooling layer of a pretrained
Inception V3 [70] using the weights provided by the TensorFlow framework. We
use the default setting of https://github.com/mseitzer/pytorch-fid. All test set
images are used for evaluation, unless noted otherwise.

https://github.com/mseitzer/pytorch-fid
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Fig. 14. High-res painting to photo translation (II). We transfer Monet’s paint-
ings to reference natural photos shown as insets at top-left corners. The training only
requires a single image from each domain. We compare our results to recent style and
photo transfer methods including Gatys et al. [19], WCT2 [82], STROTSS [39], and
our modified patch-based CycleGAN [89]. Our method can reproduce the texture of
the reference photos while retaining structure of the input paintings. Our results are
at 1k ∼ 1.5k resolution.
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Semantic segmentation metrics on the Cityscapes dataset are computed
as follows. First, we trained a semantic segmentation network using the DRN-
D-22 [83] architecture. We used the recommended setting from https://github.
com/fyu/drn, with batch size 32 and learning rate 0.01, for 250 epochs at 256 ×
128 resolution. The output images of the 500 validation labels are resized to 256
× 128 using bicubic downsampling, passed to the trained DRN network, and
compared against the ground truth labels downsampled to the same size using
nearest-neighbor sampling.

C.3 Pseudocode

Here we provide the pseudo-code of PatchNCE loss in the PyTorch style. Our
code and models are available at our GitHub repo.

Fig. 15. Distribution matching. We measure the percentage of pixels belonging
to the horse/zebra bodies, using a pre-trained semantic segmentation model. We find
a distribution mismatch between sizes of horses and zebras images – zebras usually
appear larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge
the horses, as a means of better matching of the training statistics than CycleGAN
[89]. Our faster variant FastCUT, trained with a higher PatchNCE loss (λX = 10) and
flip-equivariance augmentation, behaves more conservatively like CycleGAN.

C.4 Distribution Matching

In Fig. 15, we show an interesting phenomenon of our method, caused by the
training set imbalance of the horse→zebra set. We use an off-the-shelf DeepLab
model [7] trained on COCO-Stuff [6], to measure the percentage of pixels that
belong to horses and zebras1. The training set exhibits dataset bias [74]. On
average, zebras appear in more close-up pictures than horses and take up about
twice the number of pixels (37% vs 18%). To perfectly satisfy the discriminator,
a translation model should attempt to match the statistics of the training set.

1 Pretrained model from https://github.com/kazuto1011/deeplab-pytorch.

https://github.com/fyu/drn
https://github.com/fyu/drn
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/kazuto1011/deeplab-pytorch
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Our method allows the flexibility for the horses to change the size, and the
percentage of output zebra pixels (31%) better matches the training distribution
(37%) than the CycleGAN baseline (19%). On the other hand, our fast variant
FastCUT uses a larger weight (λX = 10) on the Patch NCE loss and flip-
equivariance augmentation, and hence behaves more conservatively and more
similar to CycleGAN. The strong distribution matching capacity has pros and
cons. For certain applications, it can create introduce undesired changes (e.g.,
zebra patterns on the background for horse→zebra). On the other hand, it can
enable dramatic geometric changes for applications such as Cat→Dog.

C.5 Additional Ablation Studies

In the paper, we mainly discussed the impact of loss functions and the number of
patches on the final performance. Here we present additional ablation studies on
more subtle design choices. We run all the variants on horse2zebra datasets [89].
The FID of our original model is 46.6. We compare it to the following two
variants of our model:

• Ours without weight sharing for the encoder Genc and MLP projection net-
work H: for this variant, when computing features {zl}L = {Hl(Gl

enc(x))}L,
we use two separate encoders and MLP networks for embedding input images
(e.g., horse) and the generated images (e.g., zebras) to feature space. They
do not share any weights. The FID of this variant is 50.5, worse than our
method. This shows that weight sharing helps stabilize training while reduc-
ing the number of parameters in our model.

• Ours without updating the decoder Gdec using PatchNCE loss: in this variant,
we exclude the gradient propagation of the decoder Gdec regarding PatchNCE
loss LPatchNCE. In other words, the decoder Gdec only gets updated through
the adversarial loss LGAN. The FID of this variant is 444.2, and the results
contain severe artifacts. This shows that our LPatchNCE not only helps learn
the encoder Genc, as done in previous unsupervised feature learning methods
[24], but also learns a better decoder Gdec together with the GAN loss. Intu-
itively, if the generated result has many artifacts and is far from realistic, it
would be difficult for the encoder to find correspondences between the input
and output, producing a large PatchNCE loss.
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