A Combinatorial View of the Service Rates of Codes Problem, its
Equivalence to Fractional Matching and its Connection with Batch Codes

*Fatemeh Kazemi, *Esmaeil Karimi, "Emina Soljanin, and *Alex Sprintson
“ECE Dept., Texas A&M University, USA {fatemeh.kazemi, esmaeil karimi, spalex } @tamu.edu

TECE Dept., Rutgers University, USA {emina.soljanin} @rutgers.edu

Abstract— We propose a novel technique for constructing a
graph representation of a code through which we establish
a significant connection between the service rate problem
and the well-known fractional matching problem. Using this
connection, we show that the service capacity of a coded storage
system equals the fractional matching number in the graph
representation of the code, and thus is lower bounded and upper
bounded by the matching number and the vertex cover number,
respectively. This is of great interest because if the graph
representation of a code is bipartite, then the derived upper and
lower bounds are equal, and we obtain the capacity. Leveraging
this result, we characterize the service capacity of the binary
simplex code whose graph representation is bipartite. Moreover,
we show that the service rate problem can be viewed as a
generalization of the multiset primitive batch codes problem.

I. INTRODUCTION

Serving a large number of users simultaneously is a major
concern in cloud/edge storage systems. The service capacity
has been recently recognized as an important performance
metric of coded storage systems. It has a wide relevance [1],
and can be interpreted as a measure of the maximum number
of users that can be simultaneously served by a coded storage
system [2]-[7]. Thus, maximizing the service capacity is of
great significance for the emerging applications such as dis-
tributed learning and fog computing. Moreover, maximizing
the service capacity reduces the users’ experienced latency,
particularly in a high traffic regime, which is important for
the delay-sensitive applications such as live streaming, where
many users wish to get the same content at the same time.

The service rate problem is concerned with a distributed
storage system in which k files f1,..., fi are stored across
n servers using a linear [n, k], code such that the requests to
download file f; arrive at rate \;, and the server [operates
at rate £;. A goal of the service rate problem is to determine
the service rate region of this storage system which is the
set of all request arrival rates A = (A1, ..., A;) that can be
served by this system given the finite service rate of servers.
The service rate problem is generally a complex optimization
problem that has been studied only in some limited cases
[3]-[5]. We show that the service rate problem is equivalent
to the fractional matching problem which were extensively
studied in the context of graph theory. This equivalence result
allows one to leverage the techniques in the rich literature
of the graph theory for solving the service rate problem.

This material is based upon work supported by the National Science
Foundation under Grant No. CIF-1717314.

978-1-7281-6432-8/20/$31.00 ©2020 IEEE

646

Existing studies on data access pursue various directions.
Many are focused on providing efficient storage maintenance
under possible failures of a subset of nodes accessed (see
e.g., [8]-[12]). These studies typically assume infinite service
rate for each storage node. Hence, they do not address the
problem of serving a large number of users simultaneously.
Another important line of work is concerned with caching
(see e.g., [13]-[16]), in which generally the limited capacity
of the backhaul link is considered as the main bottleneck of
the system, and the goal is usually to minimize the backhaul
traffic by prefetching the popular contents at storage nodes of
limited size. Thus, these works do not address the scenarios
where many users want to get the same content concurrently
given the limited capacity of the access part of the network.
The other related body of work is concerned with minimizing
the download latency (see e.g., [17]-[28]). These papers
assume that the storage nodes can serve the customers at
some finite rate, and aim to compute download latency for
intractable queueing systems that appear in coded storage.
We note now and explain in detail later that because of the
constraints on the service rate of servers, maximizing the
service capacity provides load balancing (see [7]). In that
sense, the most relevant work to this paper includes batch
codes, switch codes and PIR codes (see e.g., [29]-[34]). The
problems considered in these papers, as we will show, can
be often seen as special cases of the service rate problem.

Main Contributions: We first construct a special graph rep-
resentation of a linear code in Sec. III-A. We then show the
following results in Sec. III-D: 1) equivalence between the
service rate problem and the well-known fractional matching
problem and 2) equivalence between the integral service
rate problem and the matching problem. These equivalence
results allow us to show that the service capacity of a
code equals the fractional matching number in the graph
representation of a code, and thus is lower bounded and
upper bounded by the matching number and the vertex cover
number, respectively. This is beneficial because if the graph
representation of a code is bipartite, then the upper and
lower bounds are equal, which allows us to establish the
service capacity of the system. Leveraging this result, we
determine the service capacity of the binary simplex codes
whose graph representation, as we will show, is bipartite.
Furthermore, we show that the service rate problem can be
viewed as a generalization of batch codes problem in Sec. IV.

ISIT 2020

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

In particular, we show that the multiset primitive batch codes
problem is a special case of the service rate problem when
the solution (the portion of requests assigned to the recovery
sets) is restricted to be integral. Due to the space constraints
all proofs are omitted and can be found in [35].

II. CODED SYSTEM AND ITS SERVICE RATE REGION

Throughout this work, we use bold-face lower-case letters
for vectors and bold-face capital letters for matrices. Let N
denote the set of positive integers. We denote the finite field
with ¢ elements by F,. For i € N, [i] £ {1,...,i}. For
n € N, 1,, denotes the all-one vector of length n.

Consider a storage system where k files fq,..., fi are
stored across n servers labeled 1, . .., n, using an [n, k], code
with generator matrix G € IF’;X”. A set of stored symbols
that can be used to recover file f; is referred to as a recovery
set for file f;. Let g; be the jth column of G. The set R C [n]
is a recovery set for file f; if there exists non-zero a;’s€ I,
such that ; ajg; = e;, where e; denotes the ith unit
vector. In other words, a set R is a recovery set for file f; if
the unit vector e; can be recovered by a linear combination
of the columns of G indexed by the set R.

Let ¢; € N denote the number of recovery sets of file f;,
and R; = {R;1,..., R} denote the set of recovery sets
of file f;. We assume w.l.o.g. that the time to download a
file from server [€ [n] is exponential with rate 1; € R>q,
i.e., p; is the average rate at which server [executes file
requests. We denote the service rates of servers 1,...,n
by the vector p = (p1,...,u,). We further assume that
the arrival of requests for file f; is Poisson with rate \;,
i € [k]. We denote the request rates for files 1,. ..,k by the
vector X = (Aq, ..., \;). We consider the class of scheduling
strategies that assign a fraction of requests for a file to each
of its recovering sets. Let \; ; be the portion of requests
for file f; that are assigned to the recovery set R, j, j € [t;].
The service rate problem seeks to determine the set of arrival
rates A = (A1,..., Ag) that can be served by a coded storage
system with generator matrix G and service rate u, referred
to as service rate region S(G, u) C RE .

Definition 1. An (G, u) system is a coded storage system in
which k files are stored redundantly across n servers using
a linear [n, k|, code with generator matrix G €]F’; X" such
that file f; for i € [k] has t; € N recovery sets denoted by
Ri; = {Ri1,...,Riy,}, and the service rate of servers in
the system is g = (b1, - -, fin)-

Definition 2. The service rate region of an (G, p) system,
denoted by S(G,), is the set of vectors A = (A1,..., \g)

for which there exist \; j satisfying the following constraints:

t;
> g =\, for all i€ [k] (1a)
j=1
k
S>> Ni<m, forall L€ n] (1b)
=1 je[t:]
IER;
/\i,j € Rzo, fOF all 1€ [ki], j e [tb] (1c)

Note that constraints (1a) ensure that the demands for all
files are served, and constraints (1b) guarantee that no node
is sent requests in excess of its service rate.

Proposition 1. [5, Lemma 1] The service rate region of an
(G, n) system S(G,) is a non-empty, convex, closed, and
bounded subset of the Rgo.

The service capacity of an (G,) system, A*(G,), is de-
fined as the maximum sum of arrival rates that can be served
simultaneously by the storage system. We define a maximum
demand vector, denoted by A* = (\},...,\}), as a vector
in the service rate region for which Ele A= 2(G,).
An instance of the maximum demand vector is obtained by
solving the following linear programming (LP):

k
max Y A st (la),(Ib),(lc) hold. (2)
=1

Definition 3. The integral service rate region of an (G,)
system, denoted by S;(G,p), is the set of all vectors
A= (A1,..., Ag) for which there exist Aij € Li>q satisfying
the sets of constraints (1a) and (1b).

Note that each demand vector A = (Aq,..., ;) in
the integral service rate region has integral coordinates,
ie., Si(G,u) C Z’éo. However, because of the fractional
relaxation of \; ;, it is not guaranteed that the vectors with
integral coordinates in the service rate region S(G,) are
also in the integral service rate region S;(G,).

Remark 1. In the integral setting of the service rate problem
where \; j are non-negative integers, if each server can serve
up to one request at a time, i.e., i = 1 for all servers | € [n),
then one can easily conclude that \; j are binary and the
recovery sets used for each file f;, i € [k], are disjoint.

IIT1. EQUIVALENCE TO FRACTIONAL MATCHING

We first introduce a graph representation of a code which
is useful for characterizing the service capacity of a coded
storage system through relating this problem with the well-
known problem of finding the maximum fractional matching
in a graph. In particular, we show that the service capacity
of a code is exactly equal to the fractional matching number
in our graph representation of a code. Another way of
determining the service capacity of a coded storage system is
providing tight bounds on the maximum sum of the arrival
rates that can be served by the coded storage system. We
show that the matching number and the vertex cover number
in the graph representation of a code, respectively are a
lower bound and an upper bound on the service capacity
of a code. Thus, if the graph representation of a code is a
bipartite graph, according to the Duality Theorem [36], the
matching number and vertex cover number are identical, and
we are able to determine the capacity. As an application of
this result, we determine the service capacity of the binary
simplex codes whose graph representation, as we will show,
is a bipartite graph. We next describe how to construct the
graph representation of a code, and then we present the
interesting connections.

647

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

A. Graph Representation of Codes

We focus on the settings with recovery sets of size 1 and
2 where the recovery sets for each file is either a systematic
symbol or a group of two symbols. Extensions to the general
case are mostly straightforward and involve hypergraphs in
which each edge can be incident to an arbitrary number of
vertices. The graph representation of a code with generator
matrix G is denoted by G(V, E) where the vertices in V'
correspond to the n encoded symbols (the servers of the
storage system), and the edges in E correspond to recovery
sets of files. In G(V, E), each self-loop represents a recovery
set of size 1 for the vertex (file) that it is connected to,
and each edge between two vertices represents a recovery
set of size 2 for the file that can be recovered from these
two vertices. Each edge is assigned a color such that the
edges that correspond to the recovery sets of the same file
are assigned the same color. In that sense, we have an edge-
colored graph. It should be noted that a graph with self-loops
can be simply converted to a graph without any self-loops
by adding sufficient number of dummy vertices (servers). We
assume that the label of all dummy servers is zero and thus
we denote a systematic recovery set for file f; by {0,r}
where 7 is the label of the systematic server storing file
fi- Section III-C provides an example that shows the graph
representation of [7, 3]z simplex code.

B. Matching and Vertex Cover Problems [36]

Definition 4. A matching in a graph is a set of all pairwise
non-adjacent edges.

Alternatively, a matching in a graph G(V, E) is an assign-
ment of the values Z. € {0,1} to the edges e € E in such a
way that for each vertex v € V, the sum of the values on the
incident edges is at most 1. All the edges e € E with value
T = 1 are in the matching. Thus, a matching vector in a
graph G(V, E) can be defined as a vector & = (Z. : e € E)
satisfying the following conditions:

> E <1, forall veV (3a)
e incident to v
Z. € {0, 1}, forall e€ FE (3b)

Definition 5. A maximum matching in a graph is a matching
that contains the largest number of edges. The maximum
matching vector is denoted by T*.

The size of a maximum matching in a graph G(V, E) is
called matching number, denoted by m(G). There may be
several instances of maximum matchings in a graph. The
problem of finding an instance of maximum matching can
be formulated as the following integer LP:

max E Te S.t.

eclk

(3a), (3b) hold. 4)

Definition 6. A fractional matching in a graph G(V, E) is
an assignment of the values x. € [0,1] to the edges e € E
in such a way that for each vertex v € V, the sum of the
values on the incident edges is at most 1.

A fractional matching vector in a graph G(V, E) can be
defined as a vector = (z, : e € F) satisfying the below:

doom <1, forall veV (5a)
e incident to v
Te > 0, forall e€ F (5b)

Definition 7. A maximum fractional matching, denoted by
x*, is a fractional matching vector in the graph that has
the maximum value), . x. over all fractional matching
vectors in the graph.

The value of a maximum fractional matching in a graph
G(V,E) is called the fractional matching number, denoted
by my(G). Finding an instance of maximum fractional
matching in a graph can be formulated as the following LP:

max E Te S.t.

ecE

(5a), (5b) hold. (6)

Definition 8. A vertex cover of a graph is a set of vertices
such that each edge of the graph is incident to at least one
vertex in the set.

Alternatively, a vertex cover of a graph G(V, E) is an
assignment of the values y, € {0,1} to the vertices v € V
in such a way that for each edge e € E, the sum of the
values on the endpoint vertices is at least 1. All the vertices
v € V with value y, = 1 are in the vertex cover. Thus, a
vertex cover vector of a graph G(V, E) can be defined as a
vector y = (y, : v € V) satisfying the following conditions:

Z Yo > 1, forall ee F (7a)
v incident to e
yp € {0,1}, forall veV (7b)

Definition 9. A minimum vertex cover in a graph is a vertex
cover that contains the minimum number of vertices.

The cardinality of a minimum vertex cover in a graph
G(V, E) is called vertex cover number, denoted by v(G).
There may be several instances of a minimum vertex cover
in a graph. Finding an instance of minimum vertex cover in
a graph can be formulated as the following integer LP:

min Z Yo s.t.

veV

(7a), (7b) hold. (8)

Proposition 2. For an arbitrary graph G, it is known that
m(G) < m;(G) < v(G). For a bipartite graph G, it holds
that m(G) = my(G) = v(G).

In what follows, we assume that each server in the coded
distributed storage system can serve up to one request at
each moment, ie., p = (u1,...,4n) = (1,...,1). Thus,
S(G, p) and *(G,) only depend on the generator matrix
G and are respectively denoted by S(G) and A*(G). Next,
we present an example to show how the service rate of a code
is connected to the matching and the vertex cover problems.

648

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

f1 f2 f1+ f2 f3 fi+fs fat+fz fr+fatf3

TP TP TP TP TP TP T

Fig. 1. A distributed storage system consists of 7 servers storing files f1,
f2, and f3 using a binary [7, 3]z simplex code.

C. Example of Equivalence

Here, we present an example to give more intuition about
the subsequent results and to provide a sketch of the proofs.
Consider a distributed storage system in which files fi, fo,
and f3 are stored across 7 servers, labeled 1,...,7, using
a binary [7, 3]s simplex code with the service rate u; = 1,
I € [7]. The generator matrix of this code is given as follows:

1 2 3 4 5 6 7
101 0101
01 10011
0001111

where the number above each column shows the label of the
corresponding column (server). Fig. 1 depicts this distributed
storage system. The recovery sets for each file are given by

G =

)

Ri={R1i1,...,R14} ={{0,1},{2,3},{4,5},{6,7}}
Re = {R2717 cee 7R2,4} = {{0a2}a {173}7 {476}7 {577}'}
Rz = {R3,17 .- '7R3.,4} = {{074}7 {175}7 {276}7 {377}}

The graph representation of [7, 3]o simplex code is drawn in
Fig. 2. The vertices ()7, 0y, and (7, are the dummy vertices
added to the graph for the purpose of removing the self-loops
of systematic vertices f1, f2, and f3, respectively. The edges
with color magenta, green, and blue represent recovery sets
for files f1, f2, and f3, respectively. Moreover, the label A; ;
above an edge indicates the portion of requests for file f;
that is assigned to the recovery set Rt; ;.

/\l.l

2

0
4

3
7

5

6

Fig. 2. Graph representation of [7, 3]2 simplex code.

The service rate region S(G) of this system is the set of
vectors A = (A1, Az, Ag) for which there exist A; ;’s, i € [3]
and j € [4], satisfying the constraints (1a)-(1c) as follows:

AM=A1+ A2+ A3+ g

A2 =Xx21+ A2+ a3+ Aoy &)
A3 =A31+A32+ X33+ A3
M1+ A2+ A32<1

A21+ A2+ A33<1

A3+ A3+ A3 <1
Asa+doa+Aa<1

Ao+ A2+ A34<1
Az2+Az+Aa<1

Az3+ A3+ Aa<1

(1c) = {Am- €Rsg, forall i3], je 4]

(la) =

(1b) = (10)

(1)

Fig. 3 shows the service rate region S(G) of this system.

A3

4

Fig. 3. Service rate region of [7, 3]z simplex code.

Based on (5), a fractional matching of the graph depicted
in Flg 2, r = ()\171, ceey)\1,4,)\2)17 ey)\214:7)\3)1, ey)\374),
satisfies the constraints (10) and (11). Thus, from Defini-
tion 2, a vector A = (A1, A2, A3) obtained from « using (9) is
in the service rate region of [7, 3]z simplex code. Conversely,
for a vector A in the service rate region of [7, 3]z simplex
code, there exist \; ;’s, i € [3] and j € [4], satisfying the
constraints (10) and (11), that define a fractional matching
vector ¢ = (\;; : ¢ € [3] and j € [4]) in the graph of Fig. 2.

Based on (6), a maximum fractional matching vector *
is obtained by solving the following LP:

3 4
max ZZ)\M s.t.

i=1j=1

(10), (11) hold. (12)

We want to indicate that the vector A = (A1, A2, A3) obtained
from z* using (9) is in fact a maximum demand vector
A* in the service rate region of [7, 3]s simplex code. From
9), E?:l Zj:l Aij = M1 + A2 + Ag. Thus, it can be easily
verified that * provides a solution for the following LP:

max A +Xa+As st (9),(10),(11) hold. (13)

Moreover, according to (2), an instance of maximum demand
vector is obtained by solving the LP in (13). Thus, the vector
A = (A1, A2, A\3) obtained from x* using (9) is a maximum
demand vector A*. On the other hand, for an instance of *
in the service rate region of [7,3]y simplex code obtained
from (13), there exists a fractional matching vector which

649

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

according to the same reasoning, provides a solution for (12).
Thus, the vector « is a maximum fractional matching vector
x* in the graph representation of [7,3]2 simplex code in
Fig. 2. Since a maximum demand vector A* = (A}, A5, A%)
is obtained from a maximum fractional matching vector x*
by (9), it follows that AT + A5 + A5 = > A}, where A} ,’s
are the elements of x*. Hence, we have *(G) = m¢(G),
and based on Proposition 2, m(G) < M*(G) < v(G) holds.

We show that the service capacity of [7, 3]z simplex code
is 4. The proof consists of two parts. First, we need to prove
the converse by showing that the service capacity cannot
be bigger than 4. It is easy to see that the set of vertices
{f1, f2, f3, f1 + f2 + f3} is @ minimum vertex cover for the
graph in Fig. 2. Thus, the vertex cover number of this graph
is v(G) = 4 which indicates that A*(G) < 4. Next, we show
the achievability proof by showing that there exists a demand
vector A = (A1, A2, A3) in the service rate region such that
A1+ A2 + A3 = 4. For this purpose, one can consider the set
of edges labeled by A1 1, A1,2, A1,3, and Ay 4 as a matching in
the graph. Corresponding to this matching, a demand vector
A = (4,0,0) is obtained by applying (9).

D. Equivalence Results

Theorem 1. Consider an (G, p) system with the service rate
w = 1,. There exists a demand vector X = (\1,...,\) in
the service rate region of this system if and only if there exists
a fractional matching vector & = (\; j : i € [k] and j € [t;])
in the graph representation of [n, klq code such that X and
x are related based on (1a).

Corollary 1. Consider an (G, p) system with p = 1,,.
There exists a maximum demand vector X* = (A\},..., \})
in the service rate region S(G) of this storage system if and
only if there exists a maximum fractional matching vector
x* = (A} ; i € [k] and j € [t;]) in the graph representation
of [n, k]q code such that X* and x* are related based on (1a).

Theorem 2. Consider an (G, p) system with the service rate
p = 1,,. The service capacity *(G) of this system is lower
bounded by the matching number and upper bounded by the
vertex cover number of the graph representation of [n, k|,
code. i.e., m(G) < M (G) < v(G).

Note that if the graph representation of a code is bipartite,
based on Proposition 2, we have m(G) = A*(G) = v(G).

Theorem 3. The graph representation of [2 —1,k,2F"1],
simplex code is a bipartite graph.

Corollary 2. For an (G,) system with [2% —1,k, 21,
simplex code and service rate p = 1, the service capacity
is given by m(G) = *(G) = v(G) = 2+F~L.

Corollary 3. Consider an (G, p) system with p = 1,,. There
exists a demand vector X = (\1,...,\;) in the integral
service rate region S1(G) of this system if and only if there
exists a matching vector & = (X\; j : 1 € [k] and j € [t;]) in
the graph representation of [n, k], code such that X and &
are related based on (1a).

Corollary 4. Consider an (G, p) system with p = 1,,. There
exists a maximum demand vector X* = (\],...,\}) in the
integral service rate region S;(G) of this storage system
if and only if there exists a maximum matching vector
x* = (A} ; i € [k] and j € [t;]) in the graph representation
of [n, k|4 code such that X* and &* are related based on (1a).

IV. GENERALIZATION OF BATCH CODES

In this section, we show how the service rate problem can
be viewed as a generalization of the batch codes problem.
That further illustrates connections with PIR codes, switch
codes and locally repairable codes (see [30]).

Definition 10. [29] An (n,k,t,m,T) batch code C over
a finite alphabet _, encodes any string * = (x1,...,T)
into m strings (buckets) ;3’1’ .oy Ym Of total length n by an
encoding mapping C : >." — >_", such that for each t-tuple
(batch) of indices i1, . .. ,i: € [k], the entries z;,, ..., x;, can
be decoded by reading at most T symbols from each bucket.

Definition 11. [30] An (n, k,t) primitive batch code is an
(n, k,t, m,) batch code, where each bucket contains exactly
one symbol, i.e., n = m. Note that in this setting T =1, i.e.,
at most one symbol can be recovered from each bucket.

Definition 12. An (n, k, t) multiset primitive batch code is an
(n, k,t) primitive batch code where the information symbols
Tiy, ..., Ti, are requested by t distinct users such that the
indices i1, . .. ,% are not necessarily distinct and in general
they form a multiset. Moreover, the requested symbols can
be reconstructed from the data read by t different users
independently (i.e., x;; can be recovered by the user j) so
that the sets of the symbols read by these users are disjoint.

For simplicity, we refer to a linear (n,k,t) multiset
primitive batch code over F, as [n, k, t], batch code.

Proposition 3. [31, Theorem 1] A linear [n, k], code C with
generator matrix G is an [n,k,t), batch code if and only
if there exist t non-intersecting sets Ty, ..., T; of indices of
columns in the generator matrix G such that for each j € [t],
there exists a linear combination of columns of G indexed
by T; which equals to the vector e;;, for all j € [t] and
ij S [k]

Theorem 4. Given the integral service rate region S;(Q)
of code G € F’;X" with service rate p = 1, if all vectors
in the set Sy = {x = (A1,..., A A = 6, A € Zso}
are in the S;(G), the code G is a linear [n, k, t], batch code.

Theorem 4 shows that the integral setting of the service
rate problem where the solution (the portion of requests that
are assigned to the recovery sets) is restricted to be integral,
is the same as the setting of the multiset primitive batch code
problem. Thus, the general setting of the service rate problem
where a fractional solution is allowed, can be viewed as a
generalization of the multiset primitive batch code problem.

An example regarding the application of Theorem 4 that
shows a binary [7, 3]z simplex code is a [7, 3, 4]2 batch code,
is provided in [35]. Note that a binary [2¥ — 1, k5 simplex
code is a [2F — 1, k, 2%~ 1], batch code (see [33]).

650

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3

=

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

M. Aktas, G. Joshi, S. Kadhe, and E. Soljanin, “Service rate region: A
new aspect of coded distributed system design.” [Online]. Available:
https://emina.flywheelsites.com

M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for
maximum service rate in distributed storage systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2016,
pp. 240-244.

M. Aktas, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L.
Matthews, C. Mayer, and E. Soljanin, “On the service capacity region
of accessing erasure coded content,” in 2017 55th Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2017, pp. 17-24.

S. E. Anderson, A. Johnston, G. Joshi, G. L. Matthews, C. Mayer, and
E. Soljanin, “Service rate region of content access from erasure coded
storage,” in 2018 IEEE Information Theory Workshop (ITW). 1EEE,
2018, pp. 1-5.

F. Kazemi, S. Kurz, and E. Soljanin, “A geometric view of the
service rates of codes problem and its application to the service rate
of the first order Reed-Muller codes,” Jan 2020. [Online]. Available:
arXiv:2001.09121

P. Peng and E. Soljanin, “On distributed storage allocations of large
files for maximum service rate,” in 2018 56th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton). IEEE,
2018, pp. 784-791.

M. F. Aktas, A. Behrouzi-Far, E. Soljanin, and P. Whiting, “Load
balancing performance in distributed storage with regular balanced
redundancy,” Dec 2019. [Online]. Available: arXiv:1910.05791

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4539—
4551, 2010.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey
on network codes for distributed storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476-489, 2011.

C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes
to trade space for access efficiency in reliable data storage systems,”
ACM Transactions on Storage (TOS), vol. 9, no. 1, p. 3, 2013.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Transactions on Information Theory,
vol. 58, no. 11, pp. 6925-6934, 2012.

M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation
in distributed storage networks,” in 2010 IEEE International Sympo-
sium on Information Theory. IEEE, June 2010, pp. 1958-1962.

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402-8413, 2013.

M. A. Maddah-Ali and U. Niesen, “Coding for caching: fundamental
limits and practical challenges,” IEEE Communications Magazine,
vol. 54, no. 8, pp. 23-29, 2016.

K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,”
in 2014 12th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt). 1EEE, 2014, pp.
569-574.

T. X. Tran, F. Kazemi, E. Karimi, and D. Pompili, “Mobee: Mobility-
aware energy-efficient coded caching in cloud radio access networks,”
in 2017 IEEE 14th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). IEEE, 2017, pp. 461-465.

651

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in 2012 50th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 1EEE, 2012, pp. 326-333.

, “On the delay-storage trade-off in content download from coded
distributed storage systems,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 5, pp. 989-997, 2014.

N. B. Shah, K. Lee, and K. Ramchandran, “The mds queue: Analysing
the latency performance of erasure codes,” in 2014 IEEE International
Symposium on Information Theory. 1EEE, 2014, pp. 861-865.

G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” IEEE/ACM Transactions
on Networking (TON), vol. 22, no. 6, pp. 2012-2025, 2014.

S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download
time of availability codes,” in 2015 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2015, pp. 1467-1471.

——, “When do the availability codes make the stored data more avail-
able?” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton). 1EEE, 2015, pp. 956-963.

K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM
SIGMETRICS Performance Evaluation Review, vol. 43, no. 1, pp. 347—
360, 2015.

G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient replication of
queued tasks for latency reduction in cloud systems,” in 53rd Annual
Allerton Conference on Communication, Control, and Computing,
2015, pp. 107-114.

——, “Efficient redundancy techniques for latency reduction in cloud
systems,” TOMPECS, vol. 2, no. 2, pp. 12:1-12:30, 2017.

M. F. Aktag, E. Najm, and E. Soljanin, “Simplex queues for hot-
data download,” in Proceedings of the SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems.
ACM, 2017, pp. 35-36.

M. F. Aktas and E. Soljanin, “Heuristics for analyzing download
time in MDS coded storage systems,” in 2018 IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2018.

M. F. Aktas, S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the
download time of availability codes,” Dec 2019. [Online]. Available:
arXiv:1912.09765

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes
and their applications,” in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing. ACM, 2004, pp. 262-271.

V. Skachek, “Batch and pir codes and their connections to locally re-
pairable codes,” in Network Coding and Subspace Designs. Springer,
2018, pp. 427-442.

H. Lipmaa and V. Skachek, “Linear batch codes,” in Coding Theory
and Applications. Springer, 2015, pp. 245-253.

A. Fazeli, A. Vardy, and E. Yaakobi, “Pir with low storage overhead:
coding instead of replication,” May 2015. [Online]. Available:
arXiv:1505.06241

Z. Wang, H. M. Kiah, and Y. Cassuto, “Optimal binary switch codes
with small query size,” in 2015 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2015, pp. 636-640.

Z. Wang, H. M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes
for fully parallel reconstruction,” IEEE Transactions on Information
Theory, vol. 63, no. 4, pp. 2061-2075, 2017.

F. Kazemi, E. Karimi, E. Soljanin, and A. Sprintson, “A combinatorial
view of the service rates of codes problem, its equivalence to fractional
matching and its connection with batch codes,” Jan 2020. [Online].
Available: arXiv:2001.09146

E. R. Scheinerman and D. H. Ullman, Fractional graph theory: a
rational approach to the theory of graphs. Courier Corporation, 2011.

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:56:29 UTC from IEEE Xplore. Restrictions apply.

