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Abstract— Service rate is an important, recently introduced,
performance metric associated with distributed coded storage
systems. Among other interpretations, it measures the number
of users that can be simultaneously served by the system. We
introduce a geometric approach to address this problem. One
of the most significant advantages of this approach over the
existing ones is that it allows one to derive bounds on the
service rate of a code without explicitly knowing the list of all
possible recovery sets. To illustrate the power of our geometric
approach, we derive upper bounds on the service rates of the
first order Reed-Muller codes and the simplex codes. Then, we
show how these upper bounds can be achieved. Furthermore,
utilizing the proposed geometric technique, we show that given
the service rate region of a code, a lower bound on the minimum
distance of the code can be obtained.

I. INTRODUCTION

The service rate has been very recently recognized as an
important performance metric that measures the number of
users that can be simultaneously served by an erasure coded
storage system [1]–[6]. Maximizing the service rate reduces
the latency experienced by users, particularly in a high traffic
regime. See [1] for an easy introduction to the subject.

The service rate problem considers a distributed storage
system where k files are encoded into n, and stored across
n servers. File i can be recovered by reading data from a
single or a set of storage nodes, referred to as a recovery
set for file i. Requests to download file i arrive at rate
λi, and can be split across its recovery sets. Server l can
simultaneously serve the requests whose cumulative arrival
rate does not exceed µl. The service rate problem seeks to
determine the service rate region of the coded storage system
which is defined as the set of all request arrival rate vectors
λ = (λ1, . . . , λk) that can be served by this system.

The service rate problem has been studied only in some
special cases: 1) for MDS codes when n ≥ 2k and binary
simplex codes in [3] and 2) for systems with arbitrary n
when k = 2 in [3] and k = 3 in [4]. The existing techniques
for solving the problem require enumeration of all possible
recovery sets, which becomes increasingly complex when the
number of files k increases. Thus, introducing a technique
not depending on the enumeration of recovery sets is of great
significance. In this paper, we introduce a novel geometric
approach with this goal in mind.

Part of this research is based upon work supported by the National
Science Foundation under Grant No. CIF-1717314.

A. Related Work

The past two decades have seen an ever increasing interest
in coding for storage and caching. Special codes that support
efficient maintenance of storage under node failures have
been proposed in e.g., [7]–[11]. The locality and availability
of codes matter in such scenarios. This line of work mostly
assumes infinite service rate for servers, and is primarily
concerned with reliability of storage rather than with serving
a large number of simultaneous users.

Another line of work is focused on caching (see e.g., [12]–
[15]). In these work, the limited capacity of the backhaul link
is considered as the main bottleneck, and the goal is usually
to minimize its traffic by prefetching the popular contents
at storage nodes with limited size. Thus, these work do not
address the scenarios such as live streaming, where many
users wish to get the same content concurrently given the
limited capacity of the access part of the network.

The most related to this work are papers concerned with
fast content download from coded storage (see e.g., [16],
[17], and references therein). These papers strive to compute
download latency for increasingly complex queueing systems
that appear in coded storage [18]–[20]. The service rate
problem is related to the stability region of such queues.

B. Main Contributions

We study the service rates of codes problem by introducing
a novel geometric approach. This approach overcomes the
main drawback of the previous work which are trying to
solve this problem by formulating it as a sequence of linear
programs (LP). There, one must exactly know all possible
recovery sets to enumerate the constraints in each LP, and
must also solve all the LPs.

Leveraging our novel geometric technique, we take initial
steps towards deriving bounds on the service rates of some
parametric classes of linear codes without explicitly listing
the set of all possible recovery sets. In particular, we derive
upper bounds on the service rates of first order Reed-Muller
codes and simplex codes. Subsequently, we show how the
derived upper bounds can be achieved. Moreover, utilizing
the proposed geometric technique, we show that given the
service rate region of a code, a lower bound on the minimum
distance of the code can be derived.
Due to the space constraints, most of the proofs are omitted
and can be found in [21].
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II. PROBLEM STATEMENT

A. Notation

Throughout this paper, we denote vectors by bold-face
small letters and matrices by bold-face capital letters. Let
N denote the set of the non-negative integer numbers. Let
Fq be a finite field for some prime power q, and Fn

q be
the n-dimensional vector space over Fq . Let us denote a q-
ary linear code C of length n, dimension k and minimum
distance d by [n, k, d]q . We denote the Hamming weight of
x by w(x). For a positive integer k, let 0 and 1 denote the
all-zero and all-one column vectors of length k, respectively.
Let ei denote a unit vector of length k, having a one at
position i and zeros elsewhere. For a positive integer i, define
[i] , {1, . . . , i}. Let us denote the cardinality of a set or
multiset S by #S.

B. Service Rate of Codes

Consider a storage system in which k files f1, . . . , fk are
stored over n servers, labeled 1, . . . , n, using a linear [n, k]q
code with generator matrix G ∈ Fk×n

q . Let gj denote the jth
column of G. A recovery set for the file fi is a set of stored
symbols which can be used to recover file fi. With respect
to G, a set R ⊆ [n] is a recovery set for file fi if there exist
αj’s ∈ Fq such that

∑
j∈R αjgj = ei, i.e., the unit vector ei

can be recovered by a linear combination of the columns of
G indexed by the set R. W.l.o.g., we restrict our attention to
the reduced recovery sets obtained by considering non-zero
coefficients αj’s and linearly independent columns gj’s.

Let Ri = {Ri,1, . . . , Ri,ti} be the ti ∈ N recovery sets for
file fi. Let µl ∈ R≥0 be the average rate at which the server
l ∈ [n] resolves received file requests. We denote the service
rates of servers 1, . . . , n by a vector µ = (µ1, . . . , µn). We
further assume that the requests to download file fi arrive at
rate λi, i ∈ [k]. We denote the request rates for files 1, . . . , k
by the vector λ = (λ1, . . . , λk). We consider the class of
scheduling strategies that assign a fraction of requests for a
file to each of its recovery sets. Let λi,j be the portion of
requests for file fi that are assigned to the recovery set Ri,j ,
j ∈ [ti]. The service rate region S(G,µ) ⊆ Rk

≥0 is defined
as the set of all request vectors λ that can be served by a
coded storage system with generator matrix G and service
rate µ. Alternatively, S(G,µ) can be defined as the set of
all vectors λ for which there exist λi,j ∈ R≥0, i ∈ [k] and
j ∈ [ti], satisfying the following constraints:

ti∑
j=1

λi,j = λi, for all i ∈ [k], (1a)

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤ µl, for all l ∈ [n], (1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti]. (1c)

The constraints (1a) guarantee that the demands for all files
are served, and constraints (1b) ensure that no node receives
requests at a rate in excess of its service rate.

Lemma 1. The service rate region S(G,µ) is a non-empty,
convex, closed, and bounded subset of Rk

≥0.

Proposition 1. [22] For any set A = {v1, . . . ,vp} ⊆ Rk,
the convex hull of the set A, denoted by conv(A), consists of
all convex combinations of the elements of A, i.e., all vectors
of the form

∑p
i=1 γivi, with γi ≥ 0,

∑p
i=1 γi = 1.

Corollary 1. The service rate region S(G,µ) ⊆ Rk
≥0 forms

a polytope which can be expressed in two forms: as the
intersection of a finite number of half spaces or as the convex
hull of a finite set of vectors (vertices of the polytope).

The service rate problem seeks to determine the service
rate region S(G,µ) of a coded storage system with generator
matrix G and service rate µ. Based on Corollary 1, the first
algorithm for computing the service rate region that comes
to mind is enumerating all vertices of the polytope S(G,µ)
and then computing the convex hull of the resulting vertices.
As we indicate shortly, this problem can be formulated as an
optimization problem consisting of a sequence of LPs.

Given that any k − 1 request arrival rates, λi1 , . . . , λik−1
,

are zeros, there exists a maximum value of λik , denoted by
λ?ik , where 0 ≤ λ?ik ≤

∑n
l=1 µl such that λ?ik .eik ∈ S(G,µ)

and all vectors λik .eik with λik > λ?ik are not in S(G,µ).
Thus, these constrained optimization problems of finding the
maximum value λ?ik are all LPs. For i ∈ [k], let vi = λ?i ei.
Since J = {0,v1,v2, . . . ,vk} ⊆ S(G,µ), as an immediate
consequence of Lemma 1 and Proposition 1, the set conv(J )
is contained in S(G,µ). Starting with J , we can iteratively
enlarge J until the subsequent procedure stops. We choose
a facet H of conv(J ) described by a vector h ∈ Rk

≥0
and

η ∈ R≥0, as follows:

H =
{
x ∈ Rk

≥0 : h>x = η
}
∩ conv(J )

With this, we solve maxh>λ, where λ ∈ Rk
≥0 satisfies the

demand constraints (1a) and the capacity constraints (1b). If
the optimal target value is strictly larger than η, then we add
the solution vector λ? to J and continue. Note that for any
h = (h1, . . . , hk), the primal LP is given by

max

k∑
i=1

hiλi s.t. (1a), (1b), (1c) hold. (2)

The corresponding dual LP is given by

min

n∑
l=1

γlµl (3)

s.t. hi ≤ βi ∀i ∈ [k]

βi ≤
∑

l∈Ri,j

γl ∀i ∈ [k],∀j ∈ [ti]

βi ∈ R, γl ∈ R≥0 ∀i ∈ [k],∀l ∈ [n]

According to the Duality Theorem, if both the primal LP
and the corresponding dual LP have feasible solutions, then
their optimal target values coincide. A feasible solution for
the primal LP (2) can be given by λi,j = 0 and λi = 0, and a
feasible solution for the dual LP (3) can be given by βi = hi
and γl =

∑k
i=1 hi.

67

Authorized licensed use limited to: Texas A M University. Downloaded on November 25,2020 at 04:59:32 UTC from IEEE Xplore.  Restrictions apply. 



Given a generator matrix G of a linear code and a service
rate µ, the LP (2) can be utilized to compute the maximum
value of η =

∑k
i=1 hiλi, denoted by η?, for every h ∈ Rk

≥0.
Having η? at hand, we know that all λ ∈ S(G,µ) satisfy∑k

i=1 hiλi ≤ η?, which is a valid inequality for S(G,µ).
The downside of this approach is that we have to exactly
know the set of all possible recovery sets for each file and
also have to be able to optimally solve all the LP (2). Using
the dual LP (3), we run into a similar problem since in order
to formulate all the inequalities in (3), again we require to
know the elements of all the recovery sets for each file.

Therefore, determining the service rate region of a code is
a challenging problem, and in general we have to be pleased
with lower and upper bounds. Thus, characterizing the exact
service rate region of some parametric classes of linear codes
or deriving some bounds on the service rate of a code without
knowing explicitly all recovery sets is of great significance,
which we aim to address in this paper. Towards this goal,
we introduce a novel geometric approach. Leveraging our
geometric approach, we derive upper bounds on the service
rates of the first order Reed-Muller codes and simplex codes.
Note that our approach can be applied to any linear code.

C. Geometric View on Linear Codes [23]–[25]

Definition 1. For a vector space V of dimension v over Fq ,
ordered by inclusion, the set of all Fq-subspaces of V forms a
finite modular geometric lattice with meet X ∧ Y = X ∩ Y ,
join X∨Y = X+Y , and rank function X 7→ dim(X). This
subspace lattice of V is known as the projective geometry of
V , denoted by PG(V).

Note that for a vector space V of dimension v over Fq , the
1-dimensional subspaces of V are the points of PG(V), the 2-
dimensional subspaces of V are the lines of PG(V), and the
v − 1 dimensional subspaces of V are called the hyperplanes
of PG(V). The projective geometry PG(V) is also denoted
by PG(v−1, q), which is referred to as the v − 1 dimensional
projective space over Fq . This notion makes sense because
of the fact that, up to isomorphism, the projective geometry
PG(V) only depends on the order q of the base field and the
(algebraic) dimension v, justifying the notion PG(v − 1, q)
of (geometric) dimension v − 1 over Fq .

Let V be a vector space of dimension v over Fq . The set of
all k-dimensional subspaces of V , referred to as k-subspaces,
will be denoted by

[V
k

]
q
. The cardinality of this set is given

by the Gaussian binomial coefficient as[
v

k

]
q

=

{
(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1) if 0 ≤ k ≤ v;

0 otherwise.

A multiset is a modification of the concept of a set that,
unlike a set, allows for multiple instances for each of its
elements. The positive integer number of instances, given
for each element is called the multiplicity of this element in
the multiset. More formally, a multiset S on a base set X can
be identified with its characteristic function χS : X → N,
mapping x ∈ X to the multiplicity of x in S. The cardinality
of S is #S =

∑
x∈X χS(x). S is also called #S-multiset.

Definition 2. Let V be a vector space of dimension v over
Fq , P be a multiset of points p in PG(V) with characteristic
function χP : PG(V) → N, and H denotes a hyperplane
in PG(V). The restricted multiset P ∩ H is defined via its
characteristic function as

χP∩H(p) =

{
χP(p) if p ∈

[H
1

]
q
;

0 otherwise.

Then #(P ∩H) =
∑

p∈[H1 ]q
χP(p).

Let G ∈ Fk×n
q be the generator matrix of a linear [n, k]q

code C, a k-subspace of the n-dimensional vector space Fn
q .

Let gi ∈ Fk
q , i ∈ [n] denote the ith column of G. Suppose

that none of the gi’s is 0. (The code C is said to be of full
length.) Then each gi determines a point in the projective
space PG(k − 1, q), and G := {g1,g2, . . . ,gn} is a set of
n points in PG(k − 1, q) if the gi happen to be pair-wise
independent. When dependence occurs, G is interpreted as
a multiset and each point is counted with the appropriate
multiplicity. In general, G is called n-multiset induced by C.

Proposition 2. Different generator matrices of a code yield
projectively equivalent codes. In other words, there exist a
bijective correspondence between the equivalence classes of
full-length q-ary linear codes and the projective equivalence
classes of multisets in finite projective spaces.

Note that the importance of this correspondence lies in the
fact that it relates the coding-theoretic properties of C to the
geometric or the combinatorial properties of G.

Proposition 3. Let G ∈ Fk×n
q be the generator matrix of a

linear [n, k, d]q code C, and G be the n-multiset induced by
code C. Then, the minimum distance d = n−max#(G∩H)
where H runs through all the hyperplanes of PG(k − 1, q).

D. First Order Reed-Muller Codes [26]–[29]
In this paper, we consider binary first order Reed-Muller

codes RM2(1, k− 1) with the integer parameter k ≥ 2. It is
known that RM2(1, k − 1) is a linear [2k−1, k, 2k−2]2 code.
For a given k, one way of obtaining this code is to evaluate all
multilinear polynomials with the binary coefficients, k − 1
variables and the total degree of one on the elements of Fk−1

2 .
The encoding polynomial for RM2(1, k−1) can be written as
c1+c2 ·Z1+c3 ·Z2+ · · ·+ck ·Zk−1 where Z1, . . . , Zk−1 are
the k−1 variables, and c1, . . . , ck are the binary coefficients
of this polynomial. Indeed, the data symbols f1, . . . , fk are
used as the coefficients of the encoding polynomial, and the
codeword symbols are obtained by evaluating the encoding
polynomial on all vectors (Z1, . . . , Zk−1) ∈ Fk−1

2 .
Another way of describing a Reed-Muller RM2(1, k − 1)

is based on the generator matrix which can be constructed as
follows. Let us write the set of all (k−1)-dimensional binary
vectors as X = Fk−1

2 = {x1, . . . ,xn} where n = 2k−1 and
for i ∈ [n], xi = (xik−1

, . . . , xi1) with xij ∈ F2, j ∈ [k−1].
For any A ⊆ X , define the indicator vector IA ∈ Fk−1

2 as,

(IA)i =

{
1 if xi ∈ A;
0 otherwise.
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For the k rows of the generator matrix of RM2(1, k− 1),
define k row vectors of length 2k−1 as r0 = (1, . . . , 1) and
rj = IHj , j ∈ [k − 1], where Hj = {xi ∈ X | xij = 0}. It
should be noted that the set {rk−1, . . . , r1, r0} gives the rows
of a non-systematic generator matrix of the RM2(1, k − 1).
For a systematic generator matrix of the RM2(1, k − 1), the
set of rows {rk−1, . . . , r1,

∑k−1
i=0 ri} can be considered.

Example 1. Consider RM2(1, 3) which is a linear [8, 4, 4]2
code. Define X = F3

2 = {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}.
According to the definition,H3 = {x1,x2,x3,x4} that gives
r3 = (1, 1, 1, 1, 0, 0, 0, 0), and H2 = {x1,x2,x5,x6} which
gives r2 = (1, 1, 0, 0, 1, 1, 0, 0), and H1 = {x1,x3,x5,x7}
which results r1 = (1, 0, 1, 0, 1, 0, 1, 0). Let r0 be all-one row
vector of dimension eight. The set {r3, r2, r1, r0} defines the
rows of a non-systematic generator matrix of the RM2(1, 3).

G =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Also,

∑3
i=0 ri = (0, 1, 1, 0, 1, 0, 0, 1). Hence, a systematic

generator matrix of the RM2(1, 3) is given by:

G =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1


III. GEOMETRIC VIEW ON SERVICE RATE OF CODES

In this section, we use the geometric description of linear
codes. For a linear code C with generator matrix G ∈ Fk×n

q ,
we consider the n-multiset G induced by C in PG(k − 1, q)
with the characteristic function χG as defined in section II-C.
Thus, each point p ∈ PG(k− 1, q) has a certain multiplicity
χG(p) ∈ N. In this language, the reduced recovery sets are
subsets of G, where each point can be taken once in a reduced
recovery set. Also, the service rate of each point p, denoted
by µ(p), can be defined as the sum of the service rates of the
nodes (columns of G) corresponding to the point p. Based
on this definition, µ(p) =

∑
l∈Lp

µl where Lp is the set of
nodes that correspond to the same point p ∈ PG(k − 1, q).
Since #Lp = χG(p), if all nodes in the set Lp have the same
service rate, say µp, then we have µ(p) = χG(p) · µp.

Lemma 2. Let G ∈ Fk×n
q be the generator matrix of a linear

[n, k]q code C, and G be the n-multiset induced by code C
with service rate µ(p) of each point p ∈ PG(k − 1, q). If
for some i ∈ [k], s · ei ∈ S(G,µ) and a hyperplane H of
PG(k − 1, q) is not containing ei, then we have

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

Corollary 2. Let G ∈ Fk×n
q be the generator matrix of a

linear [n, k, d]q code C with service rate µl = 1 of all nodes
l ∈ [n], and G be the n-multiset induced by code C. If for
all i ∈ [k], s · ei ∈ S(G,µ), then the minimum distance d
of code C is at least dse.

Corollary 3. Let G ∈ Fk×n
q be the generator matrix of a lin-

ear [n, k]q code C, and G be the n-multiset induced by code
C with service rate µ(p) of each point p ∈ PG(k − 1, q).
Let I ⊆ [k]. If for all i ∈ I, there exist si ∈ R≥0 such that∑

i∈I si ·ei ∈ S(G,µ) and a hyperplane H of PG(k−1, q)
is not containing ei for all i ∈ I, then

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

where s =
∑

i∈I si.

Note that Corollary 3 enables us to derive upper bounds
on the service rate of the first order Reed-Muller and simplex
codes. In what follows, without loss of generality, we assume
that the service rate of all servers in the coded storage system
is 1, i.e., µl = 1 for all l ∈ [n]. Thus, by this assumption, the
service rate region of a code only depends on the generator
matrix G of the code and can be denoted by S(G).

IV. SERVICE RATE REGION OF SIMPLEX CODES

In this section, by leveraging a novel geometric approach,
we characterize the service rate region of the binary simplex
codes which are special rate-optimal subclass of availability
codes that are known as an important family of distributed
storage codes. As we will show, the determined service rate
region coincides with the region derived in [3, Theorem 1].

Theorem 1. For each integer k ≥ 1, the service rate region
of the k-dimensional binary simplex code C, which is a linear
[2k − 1, k, 2k−1]2 code with generator matrix G is given by

S(G) =

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−1

}
.

Proof: Note that the simplex code is projective. Since the
projective space PG(k−1, 2) contains exactly 2k−1 points,
the generator matrix G consists of all non-zero vectors of Fk

2 .
(Up to column permutations the generator matrix is unique.)
Given an arbitrary i ∈ [k], we partition the columns of G
into ei and {x,x+ ei} for all 2k−1 − 1 non-zero vectors
x ∈ Fk

2 with ith coordinate being equal to zero. Thus, for
all i ∈ [k], 2k−1 · ei ∈ S(G). Let vi = 2k−1 · ei for i ∈ [k].
Since J = {0,v1,v2, . . . ,vk} ⊆ S(G), based on Lemma 1
and Proposition 1, the conv(J ) is contained in S(G), i.e.,

S(G) ⊇

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−1

}
For the other direction, we consider the hyperplane H given
by
∑k

i=1 xi = 0, which does not contain any unit vector ei.
Thus, for any demand vector λ = (λ1, . . . , λk) in the service
rate region, the Corollary 3 results in

∑k
i=1 λi ≤ 2k−1. The

reason is that half of the vectors in Fk
2 which are the columns

of G and so the elements of G, are not contained in H.

V. SERVICE RATE REGION OF REED-MULLER CODES

This section seeks to characterize the service rate region of
the RM2(1, k−1) code with a non-systematic and systematic
generator matrix G constructed as described in section II-D.
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A. Non-Systematic First Order Reed-Muller Codes

Theorem 2. For each integer k ≥ 2, the service rate region
of the first order Reed-Muller code RM2(1, k−1) (or binary
affine k-dimensional simplex code) with a non-systematic
generator matrix G constructed as described in section II-D,
if k ∈ {2, 3} is given by

S(G) =

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−2

}
= conv ({0,v1, . . . ,vk})

and if k ≥ 4, S(G) is given by{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−2,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2

}
= conv ({0,v1, . . . ,vk−1,uk,w1, . . . ,wk−1}) ,

where vi = 2k−2 · ei and wj = (2k−2 − 2) · ej + 2 · ek for
i ∈ [k] and j ∈ [k−1], respectively. Also, uk = 2k−1+2

3 ·ek.

Proof: The proof consists of a converse and an achievability.
Converse: The unit vector ei for all i ∈ [k − 1] is not a
column of G which means that file fi does not have any
systematic recovery set. Therefore, for file fi, i ∈ [k − 1], all
recovery sets have cardinality at least two, and the minimum
system capacity utilized by λi, i ∈ [k − 1], is 2λi. For file
fk, the cardinality of every reduced recovery set is odd since
all columns of generator matrix G has one in the last row.
Hence, for file fk, the unit vector ek that is a column of G,
forms a systematic recovery set of cardinality one, while all
other recovery sets have cardinality at least three. Hence, the
minimum capacity used by λk ≥ 1 is 1 + 3(λk − 1). Since
the system has 2k−1 servers, each of service rate (capacity) 1,
based on the capacity constraints, the total capacity utilized
by the requests for download must be less than or equal to
2k−1. Thus, any vector λ = (λ1, . . . , λk) in the service rate
region must satisfy the following valid constraint,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2 (4)

Consider the hyperplane H given by
∑k

i=1 xi = 0, which
does not contain any unit vector ei. The columns of generator
matrix G and so the elements of G which are not contained
inH, are the vectors in Fk

2 with one in the last coordinate that
satisfy

∑k−1
i=1 xi = 0. It is easy to see that there are 2k−2 such

vectors. Thus, applying Corollary 3 for hyperplaneH impose
another valid constraint as follows that any demand vector
λ = (λ1, . . . , λk) in the service rate region must satisfy,

k∑
i=1

λi ≤ 2k−2 (5)

It should be noted that for λk < 2, the Inequality (5) is tighter
than (4), while for λk > 2 Inequality (4) is tighter than (5).
This means that for k ∈ {2, 3} Inequality (4) is redundant.
Achievability: For the other direction, we provide solutions
(constructions) for the vertices of the corresponding polytope

as follows. Let R′ ⊆ Fk
2 , |R′| = 2k−1 be the set of columns

of G with one in the last coordinate. For all i ∈ [k − 1],
consider all the 2k−2 vectors x ∈ R′ with zero in the ith
coordinate, then x+ ei ∈ R′, and so {x,x+ ei} constitutes
a recovery set of cardinality two for file fi. Thus, for each
file fi, i ∈ [k − 1], the columns of G can be partitioned
into 2k−2 pairs {x,x+ ei} which determines 2k−2 disjoint
recovery sets for file fi, i ∈ [k − 1]. Therefore, the demand
vectors 2k−2 · ei for all i ∈ [k − 1] can be satisfied,
i.e., 2k−2 · ei ∈ S(G). For file fk, there are exactly one
systematic recovery set of cardinality one which is the
column ek of G, and (2k−1 − 1).(2k−1 − 2)/6 recovery sets
of cardinality three which are the sets {x,x′,x+ x′ + ek}
for all pairs x,x′ ∈ R′ \ ek. Note that for k = 2, according
to Inequality (5), one can readily confirm that λk ≤ 1. Thus,
for k = 2 the systematic recovery set of file fk can be utilized
for satisfying the demand vector 1 · ek. For k ≥ 3, it should
be noted that that each column x ∈ R′ \ ek is contained in
exactly (2k−1 − 2)/2 recovery sets of file fk of cardinality
three. Since the capacity of each node is one, from each
recovery set the request rate of 1/(2k−2 − 1) can be satisfied
without violating the capacity constraints. Thus, the demand
vector 2k−1+2

3 · ek can be satisfied. For the remaining part,
we consider k ≥ 4. Let i, j ∈ [k − 1] with i 6= j be arbitrary.
With this {ek, ei + ek} and {ej + ek, ei + ej + ek} are two
of 2k−2 recovery sets of cardinality two for file fi. Thus, the
elements in R′\ {ek, ei + ek, ej + ek, ei + ej + ek} can be
partitioned into 2k−2 − 2 recovery sets for file fi, i ∈ [k − 1].
Also, the sets {ek} and {ei + ek, ej + ek, ei + ej + ek} can
be utilized as two disjoint recovery sets for file fk. Thus, the
demand vector

(
2k−2 − 2

)
· ei + 2 · ek can be satisfied.

B. Systematic First Order Reed-Muller Codes

Theorem 3. For each integer k ≥ 2, the service rate region
S(G) of the first order Reed-Muller code RM2(1, k − 1) (or
binary affine k-dimensional simplex code) with a systematic
generator matrix G constructed as described in section II-D,
if k = 2 is given by

S(G) =
{
λ ∈ Rk

≥0 : λ1 ≤ 1, λ2 ≤ 1
}
= conv (0, e1 + e2)

if k = 3, is given by

S(G) =
{
λ ∈ Rk

≥0 : −λi +
3∑

j=1

λj ≤ 2,∀i ∈ [k]
}

= conv (0, 2 · e1, 2 · e2, 2 · e3, e1 + e2 + e3)

if k = 4, S(G) is given by{
λ ∈ Rk

≥0 :−λi +
k∑

j=1

λj ≤ 4, 2λi +

k∑
j=1

λj ≤ 10∀i ∈ [k]
}

= conv
(
0,pi ∀i ∈ [k],qi,j ∀i, j ∈ [k] with i 6= j, 43 · 1

)
and if k ≥ 5, S(G) lies inside the region given by{
λ ∈ Rk

≥0 :
∑

i∈[k]\S

λi +
∑
j∈S

(3λj − 2) ≤ 2k−1 ∀S ⊆ [k]
}
.

where pi =
10
3 · ei and qi,j = 3 · ei + 1 · ej for i, j ∈ [k].
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