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Abstract— Service rate is an important, recently introduced,
performance metric associated with distributed coded storage
systems. Among other interpretations, it measures the number
of users that can be simultaneously served by the system. We
introduce a geometric approach to address this problem. One
of the most significant advantages of this approach over the
existing ones is that it allows one to derive bounds on the
service rate of a code without explicitly knowing the list of all
possible recovery sets. To illustrate the power of our geometric
approach, we derive upper bounds on the service rates of the
first order Reed-Muller codes and the simplex codes. Then, we
show how these upper bounds can be achieved. Furthermore,
utilizing the proposed geometric technique, we show that given
the service rate region of a code, a lower bound on the minimum
distance of the code can be obtained.

I. INTRODUCTION

The service rate has been very recently recognized as an
important performance metric that measures the number of
users that can be simultaneously served by an erasure coded
storage system [1]-[6]. Maximizing the service rate reduces
the latency experienced by users, particularly in a high traffic
regime. See [1] for an easy introduction to the subject.

The service rate problem considers a distributed storage
system where k files are encoded into n, and stored across
n servers. File ¢ can be recovered by reading data from a
single or a set of storage nodes, referred to as a recovery
set for file ¢. Requests to download file ¢ arrive at rate
i, and can be split across its recovery sets. Server [ can
simultaneously serve the requests whose cumulative arrival
rate does not exceed p;. The service rate problem seeks to
determine the service rate region of the coded storage system
which is defined as the set of all request arrival rate vectors
A= (A1,...,Ag) that can be served by this system.

The service rate problem has been studied only in some
special cases: 1) for MDS codes when n > 2k and binary
simplex codes in [3] and 2) for systems with arbitrary n
when k£ = 2 in [3] and k = 3 in [4]. The existing techniques
for solving the problem require enumeration of all possible
recovery sets, which becomes increasingly complex when the
number of files k increases. Thus, introducing a technique
not depending on the enumeration of recovery sets is of great
significance. In this paper, we introduce a novel geometric
approach with this goal in mind.
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A. Related Work

The past two decades have seen an ever increasing interest
in coding for storage and caching. Special codes that support
efficient maintenance of storage under node failures have
been proposed in e.g., [7]-[11]. The locality and availability
of codes matter in such scenarios. This line of work mostly
assumes infinite service rate for servers, and is primarily
concerned with reliability of storage rather than with serving
a large number of simultaneous users.

Another line of work is focused on caching (see e.g., [12]-
[15]). In these work, the limited capacity of the backhaul link
is considered as the main bottleneck, and the goal is usually
to minimize its traffic by prefetching the popular contents
at storage nodes with limited size. Thus, these work do not
address the scenarios such as live streaming, where many
users wish to get the same content concurrently given the
limited capacity of the access part of the network.

The most related to this work are papers concerned with
fast content download from coded storage (see e.g., [16],
[17], and references therein). These papers strive to compute
download latency for increasingly complex queueing systems
that appear in coded storage [18]-[20]. The service rate
problem is related to the stability region of such queues.

B. Main Contributions

We study the service rates of codes problem by introducing
a novel geometric approach. This approach overcomes the
main drawback of the previous work which are trying to
solve this problem by formulating it as a sequence of linear
programs (LP). There, one must exactly know all possible
recovery sets to enumerate the constraints in each LP, and
must also solve all the LPs.

Leveraging our novel geometric technique, we take initial
steps towards deriving bounds on the service rates of some
parametric classes of linear codes without explicitly listing
the set of all possible recovery sets. In particular, we derive
upper bounds on the service rates of first order Reed-Muller
codes and simplex codes. Subsequently, we show how the
derived upper bounds can be achieved. Moreover, utilizing
the proposed geometric technique, we show that given the
service rate region of a code, a lower bound on the minimum
distance of the code can be derived.

Due to the space constraints, most of the proofs are omitted
and can be found in [21].
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II. PROBLEM STATEMENT
A. Notation

Throughout this paper, we denote vectors by bold-face
small letters and matrices by bold-face capital letters. Let
N denote the set of the non-negative integer numbers. Let
F, be a finite field for some prime power ¢, and Fy be
the n-dimensional vector space over [F,. Let us denote a g-
ary linear code C of length n, dimension k£ and minimum
distance d by [n, k,d],. We denote the Hamming weight of
x by w(x). For a positive integer k, let 0 and 1 denote the
all-zero and all-one column vectors of length k, respectively.
Let e; denote a unit vector of length %, having a one at
position ¢ and zeros elsewhere. For a positive integer ¢, define
[{] £ {1,...,i}. Let us denote the cardinality of a set or
multiset S by #S.

B. Service Rate of Codes

Consider a storage system in which k files fi,..., fx are
stored over n servers, labeled 1,. .., n, using a linear [n, k],
code with generator matrix G € ]F’;X”. Let g; denote the jth
column of G. A recovery set for the file f; is a set of stored
symbols which can be used to recover file f;. With respect
to G, a set R C [n] is a recovery set for file f; if there exist
a;’s € Fy such that EjeR a;g; = ey, i.e., the unit vector e;
can be recovered by a linear combination of the columns of
G indexed by the set R. W.l.o.g., we restrict our attention to
the reduced recovery sets obtained by considering non-zero
coefficients «;’s and linearly independent columns g;’s.

Let R; ={R;1,...,Ri.} be the t; € N recovery sets for
file f;. Let y; € R>( be the average rate at which the server
[ € [n] resolves received file requests. We denote the service
rates of servers 1,...,n by a vector gt = (p1,. .., fin). We
further assume that the requests to download file f; arrive at
rate \;, @ € [k]. We denote the request rates for files 1,...,k
by the vector A = (A1,...,\x). We consider the class of
scheduling strategies that assign a fraction of requests for a
file to each of its recovery sets. Let \; ; be the portion of
requests for file f; that are assigned to the recovery set R; ;,
j € [t:]. The service rate region S(G, u) C R% is defined
as the set of all request vectors A that can be served by a
coded storage system with generator matrix G and service
rate p. Alternatively, S(G, p) can be defined as the set of
all vectors A for which there exist \; ; € R>, ¢ € [k] and
J € [ti], satisfying the following constraints:

t;
D> Xig =N, for all i € [k], (1a)
j=1
k
S X<, forall I€[n], (1b)
=1 jelti]
lER; ;
)\i,j S RZO7 for all 7€ UC], j € [tl] (1c)

The constraints (1a) guarantee that the demands for all files
are served, and constraints (1b) ensure that no node receives
requests at a rate in excess of its service rate.
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Lemma 1. The service rate region S(G, p) is a non-empty,
convex, closed, and bounded subset of R’;O.

Proposition 1. [22] For any set A= {vy,...,v,} CRF,
the convex hull of the set A, denoted by conv(A), consists of
all convex combinations of the elements of A, i.e., all vectors
of the form Y % _ | v;vi, with v >0, >0~ = 1.

Corollary 1. The service rate region S(G, u) C RY | forms
a polytope which can be expressed in two forms: as the
intersection of a finite number of half spaces or as the convex
hull of a finite set of vectors (vertices of the polytope).

The service rate problem seeks to determine the service
rate region S(G, p) of a coded storage system with generator
matrix G and service rate p. Based on Corollary 1, the first
algorithm for computing the service rate region that comes
to mind is enumerating all vertices of the polytope S(G, p)
and then computing the convex hull of the resulting vertices.
As we indicate shortly, this problem can be formulated as an
optimization problem consisting of a sequence of LPs.

Given that any k — 1 request arrival rates, A;,, ..., A\i,_,,
are zeros, there exists a maximum value of );, , denoted by
Ar. where 0 < A7 < 3" gy such that A} .e;, € S(G, )
and all vectors \;, .e;, with \; > A7 are not in S(G, p).
Thus, these constrained optimization problems of finding the
maximum value A are all LPs. For i € [k], let v; = Aje;.
Since J = {0,v1,Vva,...,vi} C S(G, ), as an immediate
consequence of Lemma 1 and Proposition 1, the set conv(7)
is contained in S(G, p). Starting with 7, we can iteratively
enlarge J until the subsequent procedure stops. We choose
a facet H of conv(7) described by a vector h € R¥ and
1 € R, as follows: B

H= {XER;O : h'x =7} Nconv(J)

With this, we solve maxh'T\, where \ € R’;O satisfies the
demand constraints (1a) and the capacity constraints (1b). If
the optimal target value is strictly larger than 7, then we add
the solution vector A* to J and continue. Note that for any
h = (hy,...,hg), the primal LP is given by

k
max » hid; st (la),(1b),(Ic) hold. )
=1

The corresponding dual LP is given by

min Zw,ul (3)
=1
st. h; < B Vi € [k‘]
Bi< > w Vi € [k],Vj € [t]
lER; ;

B; € R, v € RZO Vi € [k],Vl € [n]

According to the Duality Theorem, if both the primal LP
and the corresponding dual LP have feasible solutions, then
their optimal target values coincide. A feasible solution for
the primal LP (2) can be given by \; ; =0 and A; =0, and a
feasible solution for the dual LP (3) can be given by 3; = h;
and v, = Zle h;.
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Given a generator matrix G of a linear code and a service
rate u, the LP (2) can be utilized to compute the maximum
value of 7 = S2F_| h;\;, denoted by 7*, for every h € RE,.
Having n* at hand, we know that all A € S(G, u) satisfy
Zle h;A; <mn*, which is a valid inequality for S(G, u).
The downside of this approach is that we have to exactly
know the set of all possible recovery sets for each file and
also have to be able to optimally solve all the LP (2). Using
the dual LP (3), we run into a similar problem since in order
to formulate all the inequalities in (3), again we require to
know the elements of all the recovery sets for each file.

Therefore, determining the service rate region of a code is
a challenging problem, and in general we have to be pleased
with lower and upper bounds. Thus, characterizing the exact
service rate region of some parametric classes of linear codes
or deriving some bounds on the service rate of a code without
knowing explicitly all recovery sets is of great significance,
which we aim to address in this paper. Towards this goal,
we introduce a novel geometric approach. Leveraging our
geometric approach, we derive upper bounds on the service
rates of the first order Reed-Muller codes and simplex codes.
Note that our approach can be applied to any linear code.

C. Geometric View on Linear Codes [23]-[25]

Definition 1. For a vector space V of dimension v over I,
ordered by inclusion, the set of all F ;-subspaces of V forms a
finite modular geometric lattice with meet X NY = X NY,
join XVY = X +Y, and rank function X — dim(X). This
subspace lattice of V is known as the projective geometry of
V, denoted by PG(V).

Note that for a vector space V of dimension v over F,, the
1-dimensional subspaces of V are the points of PG(V), the 2-
dimensional subspaces of ) are the lines of PG(V), and the
v — 1 dimensional subspaces of V are called the hyperplanes
of PG(V). The projective geometry PG(V) is also denoted
by PG(v—1, ¢), which is referred to as the v — 1 dimensional
projective space over IF,. This notion makes sense because
of the fact that, up to isomorphism, the projective geometry
PG(V) only depends on the order g of the base field and the
(algebraic) dimension v, justifying the notion PG(v — 1, q)
of (geometric) dimension v — 1 over FF,.

Let V be a vector space of dimension v over [F;. The set of
all k-dimensional subspaces of V, referred to as k-subspaces,
will be denoted by [}] . The cardinality of this set is given
by the Gaussian binomial coefficient as

i -

A multiset is a modification of the concept of a set that,
unlike a set, allows for multiple instances for each of its
elements. The positive integer number of instances, given
for each element is called the multiplicity of this element in
the multiset. More formally, a multiset S on a base set X' can
be identified with its characteristic function ys : X — N,
mapping x € X to the multiplicity of = in S. The cardinality
of Siis #8 =) cx xs(x). S is also called #S-multiset.

(" =1)(¢" ' =1)-(g"~* ' —1)
(¢F-1)(¢*~1-1)(¢—-D)
0

if 0 <k < v

otherwise.
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Definition 2. Let V be a vector space of dimension v over
F,, P be a multiset of points p in PG(V) with characteristic
Sunction xp : PG(V) — N, and H denotes a hyperplane
in PG(V). The restricted multiset P NH is defined via its
characteristic function as

xp(p) ifpeli];
0

otherwise.

XPNH (p) = {

Then #(PNH) =Y

H
1

vel®], xP(p).

Let G € F}*™ be the generator matrix of a linear [n, k],
code C, a k-subspace of the n-dimensional vector space Fy.
Let g; € FV, i € [n] denote the ith column of G. Suppose
that none of the g;’s is 0. (The code C is said to be of full
length.) Then each g; determines a point in the projective
space PG(k —1,q), and G := {g1,82,...,8x} is a set of
n points in PG(k — 1, ¢q) if the g; happen to be pair-wise
independent. When dependence occurs, G is interpreted as
a multiset and each point is counted with the appropriate
multiplicity. In general, G is called n-multiset induced by C.

Proposition 2. Different generator matrices of a code yield
projectively equivalent codes. In other words, there exist a
bijective correspondence between the equivalence classes of
full-length g-ary linear codes and the projective equivalence
classes of multisets in finite projective spaces.

Note that the importance of this correspondence lies in the
fact that it relates the coding-theoretic properties of C to the
geometric or the combinatorial properties of G.

Proposition 3. Let G € F’;X" be the generator matrix of a
linear [n, k,d], code C, and G be the n-multiset induced by
code C. Then, the minimum distance d = n—max #(GNH)
where H runs through all the hyperplanes of PG(k — 1, q).

D. First Order Reed-Muller Codes [26]-[29]

In this paper, we consider binary first order Reed-Muller
codes RMs(1, k — 1) with the integer parameter k > 2. It is
known that RMy(1,k — 1) is a linear [2571 &, 2572]5 code.
For a given k, one way of obtaining this code is to evaluate all
multilinear polynomials with the binary coefficients, £ — 1
variables and the total degree of one on the elements of Fg_l.
The encoding polynomial for RM5 (1, k—1) can be written as
c14co-Zr1+cs-Zo+---+cp- L1 where Zq,..., 21 are
the k — 1 variables, and ¢y, ..., c; are the binary coefficients
of this polynomial. Indeed, the data symbols fi,..., fi are
used as the coefficients of the encoding polynomial, and the
codeword symbols are obtained by evaluating the encoding
polynomial on all vectors (Z1,...,Zk_1) € ]Fgfl.

Another way of describing a Reed-Muller RMa(1, & — 1)
is based on the generator matrix which can be constructed as
follows. Let us write the set of all (k—1)-dimensional binary
vectors as X = F5~ = {x,,...,x,} where n = 2¥~1 and
fori € [n], x; = (w4,_,,...,x;,) withz;, € Fp, j € [k—1].
For any A C X, define the indicator vector [ 4 € IFIQc 1 ag,

1 if iE.A;
(]I.A)i_{ x

0 otherwise.
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For the k rows of the generator matrix of RMa(1,k — 1),
define k row vectors of length 28~! as ry = (1,...,1) and
r; :]Iva j e [k‘ - 1], where Hj = {X,’ eX | Ti; = 0} It
should be noted that the set {ry_1,...,r1,ro} gives the rows
of a non-systematic generator matrix of the RMy(1,k — 1).
For a systematic generator matrix of the RMa(1, k — 1), the
set of rows {rg_1,...,r1, Zf:_ol r;} can be considered.

Example 1. Consider RM3(1,3) which is a linear [8, 4, 4],
code. Define X =TF3 = {(0,0,0),(0,0,1),...,(1,1,1)}.
According to the definition, H3 = {x1, X2, X3, x4} that gives
r3 = (1, 1, 1, 1,0,0, 0, 0), and HQ = {Xl,X27X5,X6} which
gives ro = (1, 1, 0, 0, 1, 1, 0, 0), and Hl = {Xl, X3,X5, X7}
which results r; = (1,0,1,0, 1,0, 1,0). Let ry be all-one row
vector of dimension eight. The set {r3,rs,r1,ro} defines the
rows of a non-systematic generator matrix of the RMz(1, 3).

11110000
G:

— =
—_ O =
_ -0 o

00 11 0
1 01 0 0
1 1 11 1

Also, Z?:o r; =(0,1,1,0,1,0,0,1). Hence, a systematic
generator matrix of the RMs(1, 3) is given by:

1111000 0
g_|t oo 1100
10101010
01101001

III. GEOMETRIC VIEW ON SERVICE RATE OF CODES

In this section, we use the geometric description of linear
codes. For a linear code C with generator matrix G € IE";X",
we consider the n-multiset G induced by C in PG(k —1,q)
with the characteristic function y¢ as defined in section II-C.
Thus, each point p € PG(k — 1, ¢) has a certain multiplicity
Xg(p) € N. In this language, the reduced recovery sets are
subsets of G, where each point can be taken once in a reduced
recovery set. Also, the service rate of each point p, denoted
by u(p), can be defined as the sum of the service rates of the
nodes (columns of G) corresponding to the point p. Based
on this definition, pu(p) = >, ¢, i where L, is the set of
nodes that correspond to the same point p € PG(k — 1, ¢).
Since #L,, = x¢(p), if all nodes in the set £, have the same
service rate, say p,, then we have u(p) = xg(p) - fp-

Lemma 2. Let G € IB‘I(;X” be the generator matrix of a linear
[n, klq code C, and G be the n-multiset induced by code C
with service rate u(p) of each point p € PG(k — 1,q). If
for some i € [k], s-e; € S(G,u) and a hyperplane H of
PG(k — 1,q) is not containing e;, then we have

D

pEPG(k—1,9)\H

5 < w(p).

Corollary 2. Let G € F’;X” be the generator matrix of a
linear [n, k,d), code C with service rate jy; = 1 of all nodes
I € [n], and G be the n-multiset induced by code C. If for
all i € [k], s-e; € S(G, ), then the minimum distance d
of code C is at least [s].
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Corollary 3. Let G € IFZX” be the generator matrix of a lin-
ear [n, k], code C, and G be the n-multiset induced by code
C with service rate p(p) of each point p € PG(k — 1, q).
Let T C [k]. If for all i € I, there exist s; € R>q such that
> icz Si-€i € S(G, u) and a hyperplane H of PG(k—1,q)
is not containing e; for all i € Z, then

>

pePG(k—1,9)\'H

s < 1(p)-

where s =) .7 si.

Note that Corollary 3 enables us to derive upper bounds
on the service rate of the first order Reed-Muller and simplex
codes. In what follows, without loss of generality, we assume
that the service rate of all servers in the coded storage system
is 1, i.e., uy = 1 for all I € [n]. Thus, by this assumption, the
service rate region of a code only depends on the generator
matrix G of the code and can be denoted by S(G).

IV. SERVICE RATE REGION OF SIMPLEX CODES

In this section, by leveraging a novel geometric approach,
we characterize the service rate region of the binary simplex
codes which are special rate-optimal subclass of availability
codes that are known as an important family of distributed
storage codes. As we will show, the determined service rate
region coincides with the region derived in [3, Theorem 1].

Theorem 1. For each integer k > 1, the service rate region
of the k-dimensional binary simplex code C, which is a linear
[2F — 1,k, 2%, code with generator matrix G. is given by

5<G>:{ }

Proof: Note that the simplex code is projective. Since the
projective space PG(k —1,2) contains exactly 2% — 1 points,
the generator matrix G consists of all non-zero vectors of F.
(Up to column permutations the generator matrix is unique.)
Given an arbitrary ¢ € [k], we partition the columns of G
into e; and {x,x + e;} for all 2~1 — 1 non-zero vectors
x € F& with ith coordinate being equal to zero. Thus, for
all i € [k], 271 .e; € S(G). Let v; = 2F~1 . e; for i € [k].
Since J = {0,v1,Vva,...,vip} € S(G), based on Lemma 1
and Proposition 1, the conv(7) is contained in S(G), i.e.,

k
S(G) 2 {,\ ERE, Y N < zk—l}
=1

For the other direction, we consider the hyperplane H given
by Zle x; = 0, which does not contain any unit vector e;.
Thus, for any demand vector A = (Aq, ..., \x) in the service
rate region, the Corollary 3 results in Zle i < 2F~1 The
reason is that half of the vectors in F5 which are the columns
of G and so the elements of G, are not contained in H. O

k
AeRE, ) N <2b!
i=1

V. SERVICE RATE REGION OF REED-MULLER CODES

This section seeks to characterize the service rate region of
the RM5(1, k—1) code with a non-systematic and systematic
generator matrix G constructed as described in section II-D.
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A. Non-Systematic First Order Reed-Muller Codes

Theorem 2. For each integer k > 2, the service rate region
of the first order Reed-Muller code RM>(1,k —1) (or binary
affine k-dimensional simplex code) with a non-systematic

generator matrix G constructed as described in section 11-D,
if k € {2,3} is given by

k
5(G) = {/\ eRE, Y N < 2k—2}
_.,Vk})

= conv ({0, vy, ..

and if k > 4, S(G) is given by

k k—1
3
AeRE, ST <252 ST 4 2 —1<2k—2}
{ € R3g Z < 7; +2 k <

i=1

= conv ({0, vy,...,Vg_1, U, W1,...,Wg_1}),

where v; = 2572 . e; and w; = (2F=2 - 2) -e;+2-ey for

2k—14o
3

i € [k] and j € [k — 1], respectively. Also, uj, = €.

Proof: The proof consists of a converse and an achievability.
Converse: The unit vector e; for all i € [k — 1] is not a
column of G which means that file f; does not have any
systematic recovery set. Therefore, for file f;, i € [k — 1], all
recovery sets have cardinality at least two, and the minimum
system capacity utilized by A;, i € [k — 1], is 2);. For file
fx, the cardinality of every reduced recovery set is odd since
all columns of generator matrix G has one in the last row.
Hence, for file fj, the unit vector e; that is a column of G,
forms a systematic recovery set of cardinality one, while all
other recovery sets have cardinality at least three. Hence, the
minimum capacity used by A\ > 1is 1+ 3(\; — 1). Since
the system has 2~ servers, each of service rate (capacity) 1,
based on the capacity constraints, the total capacity utilized
by the requests for download must be less than or equal to
2F=1 Thus, any vector A = (\1,...,\;) in the service rate
region must satisfy the following valid constraint,

k—1

St a1 <2k @
=1

Consider the hyperplane H given by Zle z; = 0, which
does not contain any unit vector e;. The columns of generator
matrix G and so the elements of G which are not contained
in H, are the vectors in F5 with one in the last coordinate that
satisfy Zf;ll x; = 0. Itis easy to see that there are 2°~2 such
vectors. Thus, applying Corollary 3 for hyperplane H impose
another valid constraint as follows that any demand vector

A= (\1,..., ;) in the service rate region must satisfy,

k
S
i=1

It should be noted that for A, < 2, the Inequality (5) is tighter
than (4), while for \; > 2 Inequality (4) is tighter than (5).
This means that for k € {2, 3} Inequality (4) is redundant.

Achievability: For the other direction, we provide solutions
(constructions) for the vertices of the corresponding polytope

&)
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as follows. Let R’ C F%, |R’| = 2¥~! be the set of columns
of G with one in the last coordinate. For all i € [k — 1],
consider all the 2¥=2 vectors x € R’ with zero in the ith
coordinate, then x + e; € R’, and so {x,x + e;} constitutes
a recovery set of cardinality two for file f;. Thus, for each
file f;, ¢ € [k — 1], the columns of G can be partitioned
into 252 pairs {x,x + e;} which determines 2*~2 disjoint
recovery sets for file f;, i € [k — 1]. Therefore, the demand
vectors 282 .e; for all i € [k — 1] can be satisfied,
ie, 2¢72.e; € S(G). For file f;, there are exactly one
systematic recovery set of cardinality one which is the
column ey, of G, and (28=1 — 1).(25~1 — 2)/6 recovery sets
of cardinality three which are the sets {x,x’,x + x' + ey}
for all pairs x,x’ € R’ \ e;. Note that for k = 2, according
to Inequality (5), one can readily confirm that A\ < 1. Thus,
for k = 2 the systematic recovery set of file fj, can be utilized
for satisfying the demand vector 1 - ej. For k > 3, it should
be noted that that each column x € R’ \ e, is contained in
exactly (28=1 —2)/2 recovery sets of file f; of cardinality
three. Since the capacity of each node is one, from each
recovery set the request rate of 1/(2~2 — 1) can be satisfied
without violating the capacity constraints. Thus, the demand
vector 2k731 +2 . e, can be satisfied. For the remaining part,
we consider k > 4. Let i, € [k — 1] with ¢ # j be arbitrary.
With this {ej, e; + e} and {e; + ey, e; + e; + e} are two
of 2=2 recovery sets of cardinality two for file f;. Thus, the
elements in R'\ {ej,e; + ey, e; + ey, e; +e; + e} can be
partitioned into 2¥~2 — 2 recovery sets for file f;,i € [k — 1].
Also, the sets {e;, } and {e; + ex,e; + e, e; + e + e, } can
be utilized as two disjoint recovery sets for file fi. Thus, the
demand vector (2872 — 2) - e; + 2 - e, can be satisfied. [

B. Systematic First Order Reed-Muller Codes

Theorem 3. For each integer k > 2, the service rate region
S(G) of the first order Reed-Muller code RM»(1,k — 1) (or
binary affine k-dimensional simplex code) with a systematic
generator matrix G constructed as described in section 11-D,
if k=2 is given by

S(G)={\re R;O t A < 1,0 <1} = conv (0,e; +e)
if k=3, is given by

3
S(G) = {AeR’go DAY N <2Vie [k]}
j=1
=conv (0,2-e1,2-e2,2-e3,e1 + e + e3)
if k=4, S(G) is given by
k

YN <10vie [k:]}

j=1

k

{A ERYy A+ > N <420+
Jj=1

= conv (0,p; Vi € [k],q;; Vi, j € [k] with i # j,5 - 1)

and if k > 5, S(G) lies inside the region given by
{/\ eRE, - > N+ BN —2) <2 lvs C [k:]}.

i€[k]\S JES

where p; 3

e and q;; =3-€;,+1-e; fori,j € [k
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