978-1-7281-1944-1/19/$31.00 ©2019 IEEE

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

Load Balancing Performance in Distributed Storage
with Regular Balanced Redundancy

Mehmet Fatih Aktas, Amir Behrouzi-Far and Emina Soljanin

Department of Electrical and Computer Engineering, Rutgers University
Email: {mehmet.aktas, amir.behrouzifar, emina.soljanin} @rutgers.edu

Abstract—Contention at the storage nodes is the main cause
of long and variable data access times in distributed storage
systems. Offered load on the system must be balanced across the
storage nodes in order to minimize contention, and load balancing
should be robust against the skews and fluctuations in content
popularities. Data objects are replicated across multiple nodes
in practice to allow for load balancing. However redundancy
increases the storage requirement and should be used efficiently.
We evaluate load balancing performance of natural storage
schemes in which each data object is stored at d different nodes
and each node stores the same number of objects. We find that
load balance in a system of n nodes improves multiplicatively
with d as long as d = o (log(n)), and improves exponentially as
soon as d = © (log(n)). We show that load balance improves the
same way with d when the service choices are created with XORs
of r objects rather than object replicas, which also reduces the
storage overhead multiplicatively by . However, unlike accessing
an object replica, access through a recovery set composed by an
XOR’ed copy requires downloading content from r nodes, which
increases load imbalance additively by r.

I. INTRODUCTION

Every distributed computing system is built on a storage
layer that provides data write/read service for the executing
workloads. Thus the overall system performance is strongly tied
to the data access (I/O) performance of its underlying storage
system [1]. Data access times in modern large scale systems
greatly suffer from the performance variability at the storage
nodes [2], which is caused by many factors, but primarily by
multiple-workload resource sharing and the resulting resource
contention [3]. Performance variability exists at any level of
load, but it is aggravated by the most overloaded storage nodes
[4]. It is therefore paramount that the system be able to well
balance the offered data access load across the storage nodes.

Data replication is used in modern storage systems (e.g.,
HDFS [5], Cassandra [6], Redis [7]) to offer multiple nodes
(choices) for splitting the offered load for each stored object.
The best support for load balancing is provided when each
object is stored at each node, but that is mostly not feasible
at large scale, where only limited redundancy can be used.
If the offered load for each object is known and fixed, each
object could be stored with the adequate level of redundancy.
However, in practice, object popularities, and in turn the load
offered on them, are not only unknown but also fluctuate. Thus
the ability of load balancing should be robust against the skews
and changes in object popularities [1], [8]. On the other hand,
the cumulative offered load for all objects stored in a system

is known to vary at a much slower pace and is naturally easier
to estimate (see, e.g., Fig. 7 in [9]).

We here evaluate certain load balancing metrics for several
storage schemes in which each object is replicated d times and
each node stores the same number of objects. We assume that
all object offered loads are possible and equally likely as long
as the cumulative offered load for all objects remains constant.
Each node can serve at most a load of 1, and the offered load
for each object can be split across its choices (nodes hosting
the object) as long as the cumulative load at each node remains
below 1. We address the following questions:

Q1 What fraction of the object offered load vectors satisfying
the constant cumulative condition can the system support?
If an offered load vector can be served, what is the best
achievable load balance in the system? How does it change
with the design parameters: number of objects stored per
node, number of choices d provided for each object and
the layout of the stored objects across the nodes?

Can we store XORs of multiple objects instead of object
replicas (cf. code) to improve the load balance in the
system with less storage overhead?

Q2

Q3

The storage schemes we consider are common. Optimizing
storage schemes for various purposes are studied elsewhere
(e.g. for improving data access in [10]).

Prior and Related Work: Load balancing in storage systems
has been studied in two main settings which we refer to
as the dynamic and static. In dynamic settings, requests for
data objects arrive sequentially. Each request gets dynamically
assigned to one of nodes storing the requested object according
to some strategy based on the nodes’ load information, with
the objective to minimizes the maximum load on any node (see
e.g., [11], [12]). In static settings, the goal is to either 1) design
storage-efficient schemes (e.g., batch codes) that allows good
load balance across the nodes [13] for some set of expected
offered loads, or 2) understand which object offered loads a
given storage scheme (based on, e.g., some known erasure
code) can support [14].

We are here concerned with a static setting, and the questions
we ask are related to those asked in the “service rates of
codes” problem [14], [15]. Unlike the previous work, 1) we
consider schemes that store more than a single object per node,
2) we find which fraction of a targeted offered load region
can the considered schemes achieve without explicitly finding

75

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

the complete achievable region. We were able to do that by
establishing a connection of our problem with uniform spacings
(described in Sec. 1I-B), 3) we address the question of load
imbalance which is (as mentioned above) important in practice.

This paper is organized as follows: Sec. II presents the
storage model, offered load model and its connection with
uniform spacings, and finally introduces the metrics we use to
evaluate a system’s load balancing performance. In Sec. III and
IV we discuss storage schemes in which each object is stored
in single or multiple nodes, and evaluate their load balancing
performance. In Sec. V we discuss creating multiple service
choices for objects as recovery sets using XORs rather than
object replicas, and evaluate the impact of this change on the
storage overhead and load balancing performance.

Note on the proofs, plots, and notation: We omit the proofs
here because of the space constraint. For the proofs, we refer
the reader to the long version of this paper [16]. Each point
in Fig. 1 and 2 are computed by taking the average of 10°
simulation runs. Within each simulation run, offered loads
for the objects are sampled as described in Sec. II-B and the
load imbalance factor Z is computed as described in Sec. II-C.
Throughout, log refers to the natural logarithm, and log, refers
to 4 times iterated logarithm, e.g., log, () stands for log log(z).

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. Storage and Access Model

We consider a system of n storage nodes si,...,S, (re-
dundantly) hosting k data objects o1, . .., 0 where n|k. Each
node provides the same capacity for content access, which is
defined as the maximum number of Bytes that can be streamed
from a node per unit time. An object denotes the smallest unit
of content, and mathematically, it is a fixed-length string of
bits. XOR’ing multiple objects is carried out bitwise.

Offered load for object o; is denoted by p; and refers to
the number of bytes streamed from the system per unit time
to access o;, divided by the capacity of a single node. We
use choice for an object to refer to a node that hosts the
object. Multiple choices for an object can be created either by
replicating it over several nodes (see Sec. IV), or by XOR’ing
it together with other objects and storing the result on a
node that did not previously host any of the XOR’ed objects
(Sec. V). When XOR’ing is used, a choice for an object refers
to a recovery set, i.e., a set of nodes that can jointly recover
the object. Accessing an object through one choice shall not
interfere with accessing the same object through another choice,
thus, different choices for the same object are disjoint.

Offered load for an object can be arbitrarily split across its
choices. When a load of p is exerted by an object on a recovery
set, each node within the set that composes the choice will be
exerted a load of p. Load on a node is given by sum of the
offered load portions exerted on it by the objects for which the
node can serve as a choice. A node is said to be stable if its
load is less than 1. A system is said to be stable if each node
within the system is stable. We assume that offered load p;’s

on the objects are split across their choices so that the load on
the maximally loaded node is minimized.

A storage allocation defines how each object is assigned,
possibly with redundancy, to storage nodes. This paper focuses
on regular balanced d-choice storage allocations.

Definition 1. A regular balanced d-choice allocation stores
each object with d choices and distributes object copies across
the nodes so that each node stores the same number of different
objects (either as an exact or XOR’ed copy).

There are many different ways to design a d-choice allocation.
We detail some of them in Sec. IV and V. For the rest of the
paper, unless otherwise noted, allocation itself will mean a
regular balanced allocation. The reader familiar with batch
codes should be able to see that any regular balanced d-
choice allocation represents a (k, kd,n,n, 1) batch code and a
(k, kd,d,n,1) multiset batch code [13].

B. Offered Load and Uniform Spacing Model

We assume that the system is expected to operate under any
object offered load vector (p1,...,px) in the set

Ss={(or o) | ijpi =% pz0))
i=1

That is, cumulative offered load remains constant at > but the
object popularities can change arbitrarily.

We further assume that (p1, ..., px) is sampled uniformly
at random from Sy;, and establish a connection with uniform
spacings; a mathematical object connected with the uniform
sampling of points from a simplex geometry (as explained
below). The results available in the literature on the properties
of uniform spacings (see e.g. [17]) and those derived here by
us have been instrumental in obtaining our main results.

Let Ugyy, ..., Ug—1) be k—11i.i.d. uniform samples in [0, 1],
given in non-decreasing order. Then S; = U(;y — U;_1y’s for
i=1,...,k, where Ugy = 0 and U, = 1, are known as k
uniform spacings on the unit line.

Lemma 1 (see e.g. [17]). Uniform spacings (Si,...,Sk) is

uniformly distributed over the simplex
k
{(ml,...,xk) ‘ le =1, z; >0fori= 1,...,/<:}.
i=1

Lemma 1 implies that object offered loads p;’s for a
cumulative load of X can be seen as the k£ uniform spacings in
[0, X]. This connection allows us to use the results on uniform
spacings in order to evaluate the metrics we define next to
evaluate load balancing performance in storage systems.

C. Performance Metrics
We use two metrics to answer the questions posed in Sec. I.

Definition 2. Px. for a system denotes the fraction of points
in Sy (1) at which the system can operate under stability. In
other words, since offered load vector (p1,. .., pr) is sampled
uniformly at random from Sy, Ps; denotes the probability that
the system defined by Sy, will operate under stability.

76

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

Definition 3 (Z). In a system of n storage nodes operating
under a cumulative load of ¥, load imbalance factor Z for the
system is defined as the load on the maximally loaded node
divided by its minimum possible value, i.e., 3 /n.

‘Ps, is obviously 0 when X > n, hence we assume ¥ < n
implicitly throughout. Notice also that [is always > 1.

IITI. LOAD BALANCING WITH NO REDUNDANCY

Here, each of the k objects is stored on a single node and
each of the n nodes stores m = k/n different objects. Offered
load for an object in this case has to be completely served by
the only node hosting the object, and each node has to serve
the total load for all objects stored on it.

As discussed in Sec. II-B, object offered load vector
(,017 .
Given that uniform spacings are exchangeable RV’s, we can
say that node s; StOres O(;_1)m+1,- - -, O0im. Then the load I;
exerted on s; is given by I; = 37"), p;. For the system to
be stable, all [;’s must be < 1, and thus max{ly,...,l,} <1is
necessary and sufficient for stability. Therefore, Py is given by
Pr{max{ly,...,l,} <1}. In the uniform spacing literature,
l;’s are called non-overlapping m-spacings, and their maximum
is called maximal non-overlapping m-spacing.

Definition 4 (M ,5"721) Maximal non-overlapping m-spacing for
k uniform spacings on the unit line is defined for k = m - n as

Z S,

(i—1)m+1

Myl = max Ui —

Ui-1ym) or

max

Notice that M Ig% denotes the load on the maximally loaded
node in the system when the cumulative offered load is 1.
Using a combination of the ideas presented in [18]-[20], we
can derive the following convergence results for M ,gnyzb

Lemma 2. For fixed m, as n — oo
Pr{ (") -mn —log(n) — f, < x} — G(x).
where G(x) = exp (— exp(—x
(M(n fn> /log(n) — 1 a.s.

— 1) logy(n) — log((m — 1)1).
Now we are ready to express Py, and Z in terms of M, ,27;)1

)) is the Gumbel function, and

where f, = (m

Lemma 3. In a system with single-choice storage allocation,

Ps=Pr{M{) <1/5}, T=n M.

Using Lemma 3 and Lemma 2, we determine the behavior
of Px, and Z for large n as follows:

Theorem 1. Consider a system with single-choice storage
allocation. For fixed m, we have as n — o0

Pr{I-m —log(n) — fn <z} — G(z),
Z-m— fn
W —1 as.
where f, = (m — 1)logy(n) — log((m — 1)!).

, pr) can be described by k uniform spacings in [0, X].

If 2, = by, -n/log(n) for some sequence b, > 0, then we
have in the limit n — oo

1
P =
-

Remark 1. Theorem 1 implies Z = O (log(n)) for a system
with single-choice storage allocation and fixed m. It also shows
that the limiting value of Z decays multiplicatively with m. The
scaling of Z with log(n) is aligned with the well-known result
for dynamic load balancing setting with the balls-into-bins
model: if n balls arrive sequentially and each is placed into
one of the n bins randomly, the maximally loaded bin will end
up with O(log(n)/log,(n)) balls with high probability [11].

limsup b,, < m,
P 2

liminf b,, > m.

IV. LOAD BALANCING WITH d-FOLD REDUNDANCY

In d-choice allocation, each of the k& objects is stored on d
different nodes (choices) and each of the n nodes stores k-d/n
different objects.

As discussed at the end of Sec. III, load imbalance 7 in the
system decays with the number of objects stored per node. We
here (and in Sec. V) consider the worst case for load balancing,
which is & = n. This makes it easier to formulate and study the
problem, and also to explain and interpret the derived results.
Results that we present here can be extended using similar
arguments for the general case with a fixed k/n > 1.

In our study of d-choice allocation, we can find sufficient
and necessary conditions on system stability using maximal
d-spacing, which we discuss in the following subsection.

A. Uniform spacings interlude

Definition 5 (M}, 4). Maximal d-spacing within k& uniform
spacings on the unit line is defined as

itd—1

M, ,= max U U, or max E S

kd = o ka1 @ i=1,. k—dtl &= 7
j=i

where d is any integer in [1, k.

Definition 6 (M,icc)l). Maximal d-spacing within k£ uniform
spacings on the unit circle is defined as
i+d—1
M,gcc)l = max Z S;, where S; = S,_}, for i > k.
1=1,..., e
While deriving our main results, we extensively use the elegant
results presented on My, 4 in [19], [21] and in particular [22,
Theorem 1] and [23, Theorem 2, 6]. We show that [22, Theorem
1] and [23, Theorem 2, 6] hold also for M]i(?i when d = o(k).
We only state the following result which gives an intuition
for why the asymptotic results that were previously known for
M, 4 carry over to M,gcc)l when d = o(k).

Lemma 4. For d = o(k), M,gd/Mkd—>1as as k — oo.

B. Evaluating Px, and T for systems with d-choice allocations

A d-choice allocation defines a d-regular balanced bipartite
mapping from the set of objects to the set of nodes, which we
refer to as allocation graph. Its construction can be described

77

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

as follows: i) Map the primary object copies to nodes with
a bijection f, ii) For i going from 1 to d — 1, map the ith
redundant copies for each object to nodes with a bijection f;
such that f;(0) # f;(o) for any j < ¢ and o. Thus, every node
stores one primary and d — 1 different redundant copies. We
refer to a node with the id of the primary object copy stored
on it, i.e., o; is hosted primarily on s;. Subscript in s; or o;
will implicitly denote ¢ mod n throughout. We denote the set
of nodes that host o; with C;.

Load balancing ability in storage is not only determined by
the number of object choices but also on the layout of the
content across the nodes. Since k = n and d > 1, |C;NC;| > 0
for some j # i. Overlaps between C;’s might lead to contention
when the content popularity is skewed towards the objects that
has overlapping choices. Both the number of overlapping C;’s
and the size of the overlaps shall be minimized to improve
the ability of load balancing. However, the size and number
of overlaps cannot be reduced together given a fixed number
of nodes. Denoting the cardinality of a set with | - |, we have

k
YN GinCy| = (d—1)d-k, 3)
i=1 j#i

which comes from observing that each node serves as a choice

for d different objects and counted in exactly the d — 1 of the

intersections. Given that cumulative cardinality of the overlaps

are fixed, i.e., (3), decoupling some of the C;’s can only come

at the cost of enlarging the overlap between some other C;’s.

We first consider the two following simple designs for
constructing d-choice allocation.

Definition 7 (Clustering design). When d|n, the simplest
construction is to form clusters of d nodes such that each

node within the same cluster hosts the same set of d objects.

In other words, f;’s are chosen such that the allocation graph is

composed by n/d separate d-regular complete bi-partite graphs.

Definition 8 (Cyclic design). The next simplest design follows
a cyclic construction by picking f;’s such that f;11(0) =
filo)+1 modn fori=0,...,d—1 and every o.

For instance, 3-choice allocation for 7 objects a, ..., g with
cyclic construction would look like

a b c d e f g
g a b C d € f . (4)
f g a b c d e

For a given set of objects S, union of their choices C};’s

forms the node expansion of S, which we denote by N(S5).

If IN(S)| = =, then there is at most z amount of capacity
available for the joint use of the objects within S. It is surely
impossible to stabilize the system when the cumulative offered
load for S is greater than N (.S). Thus it is desirable to increase
the size of node expansions in the allocation graph in order

to guarantee stability for larger skews in content popularity.

Greater expansion for a given S requires reducing the size of
overlaps between C;’s for the objects in .S, which would imply
overlapping C;’s with the C;’s of objects outside of S.

It is not easy to define a knob that regulates both the overlaps
between C;’s and the node expansions in the allocation graph.
We next define a class of allocations in which the overlaps and
node expansions are loosely controlled by a single parameter.
Definition 9 (r-gap design). An allocation is an r-gap design
if |C;NC;| =0 for j >4 and min{j —i,n— (5 —4)} >r.
Lemma 5. In a d-choice allocation with r-gap design, for set
of objects S = {0;,0i41,...,0i40-1} With i =1,...,n, we
have r > d—1and © < |N(S)| < x+2r.

We can use the properties of r-gap design to find necessary
and sufficient conditions for the stability of storage system.
Lemma 6. Consider a system with d-choice storage allocation
that is constructed with an r-gap design and operating under
a cumulative offered load of .. Then for system stability, a
necessary condition is given as

MT(LCZ) <(i+2r)/%, foranyi=1,...,n—2r
and a sufficient condition is given as
(e)
Mnfr+1 <d/3.
In other words, we have for i =1,...,n —2r

Pr{M),, <d/o} < Ps < Pr{M) < (i+2r)/5}.

Notice that clustering or cyclic design is an r-gap design,
hence the bounds in Lemma 6 are valid for storage allocation
with either design. Their well-defined structure also allows
refining the bounds on Py, as follows.

Lemma 7. In a d-choice allocation constructed with clustering
or cyclic design, we have

Pr{M) <d/s} <Ps <Pr{M{),, <2a/5}.

Using the bounds given in Lemma 7, we can find an
asymptotic characterization for Py and Z as follows.

Theorem 2. Consider a system with d-choice storage alloca-
tion constructed with clustering or round-robin design.
When d = o (log(n)), in the limit n — oo a.s.

1 Z-d

S < <1, 5
2 = Tog(n) + (A D)(1 + logy(n) —log(@) = @

and if ¥, = b, - n/log(n) for some sequence b,, > 0, then

1
7) =
3 { 0

When d = clog(n) for some ¢ > 0, in the limit n — oo a.s.
1 < 2ca I -log(n) <1,)
6~ 3(a+1) logy(n)
where o is the unique positive solution of e=1/¢ = (1+a)e™?,
and if ¥, = b, - n/log(n) for some sequence b, > 0, then

1
P g
ol

where 7 = c(1 + a)? /.

limsupb,,/d < 1,

6
liminf b, /2d > 1. ©

limsupb,, - 1.57/d < 1,

8
liminf b, - 0.257/d > 1, ©

78

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

os n=100

e @ >X=0.2n
vy ¥=0.5n
Aa ¥=0.8n

5.0F

4.0n:"-
35}
3.0}
2.5}
2.0}

1.5} R,

1.0

2 4 6 8 10 12

Fig. 1: Load imbalance factor Z for d-choice allocation with cyclic
construction for varying cumulative offered load 3 and d. Notice that
the three curves generated for different values of X lie on top of each
other since Z is defined (Def. 3) to be irrespective of X.

Remark 2. Theorem 2 implies that i) d choices for each object
initially reduces the load imbalance multiplicatively by d,
ii) exponential reduction in the load imbalance kicks in as
soon as d reaches © (log(n)), i.e., Z goes from ©(log(n)) to
O (loglog(n)/log(n)) as d goes from 1 to O (log(n)). These
results show that the two observations of [12], which were
shown with the dynamic balls-into-bins model under light
offered load (i.e., when O(n) balls are sequentially placed into
n bins) extend to the static setting under general offered load.

Fig. 1 plots the load imbalance factor Z for the system with
n = 100 and varying d. Notice that the value of 7 is close to
log(n) when d = 1 as suggested by Theorem 1, and decays
with 1/d as suggested by Theorem 2. This illustrates that our
asymptotic results are close estimates for the finite case.

Construction with r-gap design decouples C;’s that are r-
apart at the cost of enlarging the overlaps between those that
are close to each other, e.g., see this in the clustering or cyclic
design. Balanced Incomplete Block Designs (BIBD) allows
controlling the overlaps between every pair of C;’s.

Definition 10 (BIBD, [24]). A (d, \) block design is a class of
equal-size subsets of X (set of objects), called blocks (nodes),
such that every point in X" appears in exactly d blocks (choices),
and every pair of distinct points is contained in exactly A blocks.

Since we assume k£ = n, block designs we consider are
symmetric. A symmetric BIBD with A = 1 guarantees that
|C; N Cj| =1 for every j # i. Since this case represents the
minimal overlap between C;’s, we focus on this case and by
block design in the remainder we refer to (d,1) symmetric
BIBD. Since every pair of C;’s overlaps at one node, we have

k
SN lein Gl = (k- 1)k.
i=1 j#£i
Then by (3), a block design is possible only if k = d? —d + 1.

17

1.6 1.07

15t e 0.0 @ 0.0 @

@ @ Clustering, n=9, d=3
v ¥ Cyclic, n=¢ 3
A4 Clustering, 2
@@ Cyclic,n=20,d=4 1.04

v.¥ Block design, n
AvA Cyclic, n=21,d
e e Block design, n

13

12

11 1.01
0 5 10 15 20 0 5 10 15 20 25

Fig. 2: 7 for d-choice allocation with different designs. Note that
clustering and block design do not co-exist for the same d and n.

For instance a 3-choice allocation with block design looks like

a a a b b c c

b f d d e d e

c g e f g g f

Sufficient and necessary conditions presented in Lemma 6

cannot be used on a storage allocation with block design, since

it does not comply with the r-gap design. However using ideas

that are similar to those used to derive Lemma 6, we can find
the following conditions on the system stability.

)

Lemma 8. Consider a system with d-choice allocation con-
structed with block design and operating under a cumulative
offered load of 3. For the stability of the system, a necessary
condition is given as Mr(fgl < (d?* —2d+3)/Y and a sufficient
condition is given as Mfle < d/2%.

Stability conditions given in Lemma 8 allow us to find
bounds on Ps; and Z for storage systems with block design,
similar to those that were stated in Theorem 2. We do not
state them here since they are obtained by simply modifying
the multiplicative factors of the bounds given in Theorem 2.
The upper bound on Z decays with 1/d, which says that d
choices initially reduce load imbalance at least multiplicatively
by d. On the other hand, the lower bound on Z decays in this
case with 1/d?, that is, block design can possibly implement
better scaling of Z in d compared to clustering or cyclic design.
However, in the simulations we observe that this is not the
case and Z decays as 1/d for block design as well.

Our asymptotic analysis does not allow ordering different
allocation designs in terms of their load balancing performance.
As discussed previously, all d-choice allocations yield the same
cumulative overlap between object choices C;’s (recall (3)) and
each design gives a different way of distributing the overlaps
across C;’s. With simulations we find that it is better to evenly
spread the overlaps between C;’s using block design, that is,
many but consistently small overlaps is better than few but
occasionally large overlaps. For instance, Fig. 2 shows Z in 3-
and 5-choice allocations constructed with clustering, cyclic or
block design. We here see that the largest gain in Z is achieved
by moving from clustering to cyclic, while moving to block
design yields a smaller gain in Z. Currently we don’t have a
rigorous way to understand how designs with different overlaps
between C;’s compare with each other in terms of Py or Z.

79

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

V. d-FOLD REDUNDANCY WITH XORS

In this section we will answer Q3. So far we have only con-
sidered d-choice allocations with object replicas. A replicated
copy adds a new choice for only a single object, while a coded
copy can add a new choice simultaneously for multiple objects.
For instance, suppose XOR of objects a, b is stored on a node
that previously hosted neither a nor b. This adds a choice for
both objects; one can now access a by downloading directly a
or (a+ b, b), and access b by downloading directly b or (a + b,
a). When an XOR of r objects (i.e., 7-XOR) is stored on a
node that did not previously host any of the XOR’ed objects,
each of the r objects will gain a recovery set, i.e., a set of r
nodes that can jointly serve the object of interest.

We here consider d-choice storage allocation with 7-XORs,
which is implemented by distributing &k exact and k(d — 1)/r
of 7-XOR’ed object copies evenly across the storage nodes
while complying with Def. 1. Note that XOR’ed sets of objects
shall not intersect pairwise at more than one object since this
would violate the requirement that sets of choices for each must
be disjoint. In addition, we here consider data recovery only
from recovery sets that contain a single XOR’ed object, which
potentially is less storage efficient than schemes that have been
previously proposed based on batch codes and combinatorial
designs [24]-[26]. For instance, 3-choice allocation given in
(4) with object replicas is implemented with 2-XORs as

o [L] b L d 2]

Allocation with 7-XORs reduces the storage overhead
multiplicatively by r. However, object access from a recovery
set requires downloading an object copy from each of the
r nodes that jointly implement the choice, hence download
overhead of object recovery grows multiplicatively with 7.
As a direct consequence of this, load imbalance factor grows
additively with 7 as stated in the following.

Theorem 3. Consider a system with d-choice storage alloca-
tion created with r-XOR’s, where r > 2 is an integer. When
d = o (log(n)), in the limit n — oo we have almost surely

1 Z-d
2 = Tog(m) + a (o
where g =1(d — 1) (1 +logy(n) —log (1 +r(d —1))).
When d = clog(n) for some constant ¢ > 0, in the limit
n — oo we have almost surely

1 7

- <
2 = 1 3 . log, (n)
(Oé +) 2ca log(n)

<1,
+r>

where « is the unique positive solution of e='/¢ = (1+a)e ™.

(1)

Remark 3. Theorem 3 implies that d-choice allocation with
r-XORs achieves the same scaling of 7 in d as if the service
choices were created with replicas (as stated in Remark 2),
while also reducing the storage requirement r times. However,
accessing an object by a recovery set requires downloading
r objects to recover one, thus, increasing the object access
overhead r times. Consequently, Z increases additively in r.

80

[1

—

[2

—

[3

—

[4]

[5

[6

[7

—

[8

[t}

[9

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
(20]
[21]

[22]

[23]

[24]
[25]

[26]

REFERENCES

Jeffrey Dean. Challenges in building large-scale information retrieval
systems: invited talk. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 1-1. ACM, 2009.
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: interactive
analysis of web-scale datasets. Proceedings of the VLDB, 2010.
Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56(2):74-80, 2013.

Xue Ouyang, Peter Garraghan, Renyu Yang, Paul Townend, and Jie
Xu. Reducing late-timing failure at scale: Straggler root-cause analysis
in cloud datacenters. In Fast Abstracts in the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2016.
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass storage systems and
technologies (MSST), 2010 IEEE 26th symposium on. IEEE, 2010.
Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Operating Systems Review, 2010.
Salvatore Sanfilippo. Redis: An open source (BSD licensed), in-memory
data structure store., 2019.

Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Duke Harlan, and Ed Harris. Scarlett: coping
with skewed content popularity in mapreduce clusters. In Proceedings of
the sixth conference on Computer systems, pages 287-300. ACM, 2011.
Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical
processing in big data systems: A cross-industry study of mapreduce
workloads. Proceedings of the VLDB Endowment, 2012.

Mohsen Sardari, Ricardo Restrepo, Faramarz Fekri, and Emina Soljanin.
Memory allocation in distributed storage networks. In IEEE International
Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin,
Texas, USA, Proceedings, pages 1958-1962, 2010.

Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced
allocations. SIAM journal on computing, 29(1):180-200, 1999.

P. Godfrey. Balls and bins with structure: balanced allocations on
hypergraphs. In Proceedings of the 19th annual ACM-SIAM symposium
on discrete algorithms, pages 511-517. Society for Industrial and Applied
Mathematics, 2008.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch
codes and their applications. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 262-271. ACM, 2004.
M. Aktas, S. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. Matthews,
C. Mayer, and E. Soljanin. On the service capacity region of accessing
erasure coded content. In, 2017 55th Annual Allerton Conference on
Communication, Control, and Computing, pages 17-24, 2017.

Sarah E Anderson, Ann Johnston, Gauri Joshi, Gretchen L. Matthews,
Carolyn Mayer, and Emina Soljanin. Service rate region of content
access from erasure coded storage. In 2018 IEEE Information Theory
Workshop (ITW), pages 1-5. IEEE, 2018.

Mehmet Fatih Aktas, Amir Behrouzi-Far, Emina Soljanin, and Philip
Whiting. Load balancing performance in distributed storage with regular
balanced redundancy. arXiv preprint arXiv:1910.05791, 2019.

Ronald Pyke. Spacings. Journal of the Royal Statistical Society: Series
B (Methodological), 27(3):395-436, 1965.

DA Darling. On a the test for homogeneity and extreme values. The
Annals of Mathematical Statistics, pages 450-456, 1952.

Eric Slud. Entropy and maximal spacings for random partitions.
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete, 1978.
Luc Devroye. Laws of the iterated logarithm for order statistics of
uniform spacings. The Annals of Probability, pages 860-867, 1981.
Luc Devroye. Uniform and exponential spacings. In Non-Uniform
Random Variate Generation, pages 206-245. Springer, 1986.
Aleksandar Mijatovi¢ and Vladislav Vysotsky. On the weak limit law
of the maximal uniform k-spacing. Advances in Applied Probability,
48(A):235-238, 2016.

Paul Deheuvels and Luc Devroye. Strong laws for the maximal k-spacing
when k ¢ log n. Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 66(3):315-334, 1984.

Douglas R Stinson. Combinatorial designs: constructions and analysis.
Springer Science & Business Media, 2007.

DR Stinson, Ruizhong Wei, and Maura B Paterson. Combinatorial batch
codes. Advances in Mathematics of Communications, 3(1):13-27, 2009.
Natalia Silberstein and Anna Gél. Optimal combinatorial batch codes
based on block designs. Designs, Codes and Cryptography, 2016.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:25:51 UTC from IEEE Xplore. Restrictions apply.

