
2266 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Straggler Mitigation at Scale
Mehmet Fatih Aktaş and Emina Soljanin, Fellow, IEEE

Abstract— Runtime performance variability has been a major
issue, hindering predictable and scalable performance in modern
distributed systems. Executing requests or jobs redundantly
over multiple servers have been shown to be effective for
mitigating variability, both in theory and practice. Systems
that employ redundancy has drawn significant attention, and
numerous papers have analyzed the pain and gain of redundancy
under various service models and assumptions on the runtime
variability. This paper presents a cost (pain) vs. latency (gain)
analysis of executing jobs of many tasks by employing replicated
or erasure coded redundancy. The tail heaviness of service time
variability is decisive on the pain and gain of redundancy and we
quantify its effect by deriving expressions for cost and latency.
Specifically, we try to answer four questions: 1) How do replicated
and coded redundancy compare in the cost vs. latency tradeoff?
2) Can we introduce redundancy after waiting some time and
expect it to reduce the cost? 3) Can relaunching the tasks
that appear to be straggling after some time help to reduce
cost and/or latency? 4) Is it effective to use redundancy and
relaunching together? We validate the answers we found for each
of these questions via simulations that use empirical distributions
extracted from a Google cluster data.

Index Terms— Coded and replicated redundancy, straggler
relaunch, cost vs. latency tradeoff in distributed computing.

I. INTRODUCTION

PROVIDING predictable performance is an important
ongoing challenge for distributed computing systems.

In distributed settings, a job is split into multiple smaller
tasks, which get spread over separate resources for parallel
execution. Task execution times in modern systems are known
to exhibit significant runtime variability due to many factors
such as power management, software or hardware failures,
maintenance, and most importantly, resource sharing [3]–[9].
Runtime variability may cause some tasks to straggle and take
much longer to complete than other tasks in the job. Since a
distributed job completes only when all its tasks complete,
straggler tasks significantly delay the job completion. As the
number of tasks in a job increases so does the chance that at
least one of them will be a straggler, thus the impact of strag-
glers on the job completion time is greater at scale [7], [10].

Straggler problem has received significant attention from
the systems research community. Existing solution techniques

Manuscript received September 7, 2018; revised May 6, 2019 and
September 6, 2019; accepted September 11, 2019; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor B. Shrader. Date of publication
October 28, 2019; date of current version December 17, 2019. This work was
supported by the National Science Foundation under Grant CIF-1717314.
A preliminary version of this paper appeared in the ACM SIGMETRICS
Performance Evaluation Review [1], [2]. (Corresponding author:
Mehmet Fatih Aktaş.)

The authors are with the Department of Electrical and Computer
Engineering, Rutgers University, Piscataway, NJ 08854 USA (e-mail:
mehmet.aktas@rutgers.edu; emina.soljanin@rutgers.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2019.2946464

fall into two categories: i) Squashing runtime variability via
preventive actions such as blacklisting faulty machines that
frequently exhibit high variability [4], [10] or learning the
characteristics of task-to-node assignments that lead to high
variability and avoiding such problematic task-node pair-
ings [11], ii) Speculative execution by launching the tasks
together with replicas and waiting only for the fastest copy
to complete [5], [12]–[15]. Because runtime variability is
caused by intrinsically complex reasons, preventive mea-
sures for stragglers could not fully solve the problem and
runtime variability continued plaguing the compute work-
loads [10], [14]. Speculative task execution on the other hand
has proved to be an effective remedy, and indeed the most
widely deployed solution for stragglers [7], [16]. For instance
with task replication, median runtime slowdown experienced
by the tasks within a job is brought down from 8 (and 7) to
1.08 (and 1.1) in Facebook’s production Hadoop cluster (and
Bing’s Dryad cluster) [16].

Executing tasks with greater number of copies will surely
reduce the chance of having to wait for a straggler. However,
task replicas occupy system resources that could otherwise
be used to execute other tasks. Furthermore, if task replicas
are employed excessively, they can overburden the system and
further aggravate the runtime variability, given that the primary
cause of runtime variability is resource sharing. Therefore,
replicas are employed with care in practice, e.g., replica tasks
are used only for jobs with a few tasks [14], or only tasks
that straggle beyond some threshold are replicated [12]. More
recently, replicas are proposed to be dispatched for single-task
jobs only if any server is found idle, which is shown, with
a queueing theoretic analysis, to not drive the system to
instability by dispatching excessive number of replicas [17].

This paper focuses on two important performance metrics
for distributed job execution: 1) Latency, measuring the time
to complete the job, and 2) Cost, measuring the total resource
time spent to execute the job. Job execution is desired to be fast
and with low cost, but these are often conflicting objectives.
Cost of executing a job depends on the number of tasks1 and
the time each task takes to finish. Executing a job with task
replicas is expected to reduce the time spent by the tasks in
the system, while also increasing the total number of tasks
involved in completing the job, which is likely to increase
the cost. It is important to understand the effect of added
redundancy not only on the latency but also on the cost because
the load exerted on the system by a job execution is determined
by its cost (as elaborated in Sec. II-A).

1Resource usage of tasks vary across different jobs or might vary even within
the same job in practice [18]. We abstract this complexity by assuming that
each task uses one unit of resource per unit time.

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6780-4463

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2267

Erasure coding implements a more general form of redun-
dancy than simple replication, and has been considered for
straggler mitigation both in data download [19]–[21], and
more recently in distributed computing context [22]–[28]. With
coding, a job of k tasks is expanded into a job of n tasks with
n−k parity tasks. Parity tasks are constructed by encoding the
initial k tasks, which is done by embedding redundancy either
in the computational procedure collaboratively implemented
by the tasks (e.g., [22]) or in the data the tasks consume during
execution (e.g., [26]). If coded tasks are created with MDS
code, the most commonly used encoding model, any k of the
n tasks would be sufficient to recover the desired outcome of
the job, thus only the fastest k tasks would be sufficient for
completing the job.

Modeling task execution times and the variability they
exhibit is crucial for the theoretical analysis of straggler
mitigation techniques to match with the experimental mea-
surements. In the analysis of straggler mitigation techniques,
variability in execution times is commonly expressed with a
fixed straggling factor. The straggling factor for each task is
typically assumed to be independently drawn from a fixed
random variable, which we also adopt in this paper. However,
runtime variability is known to be to a large part caused
by resource sharing in practice [7]–[9], and the redundant
tasks added into system exert additional load on the system
resources, which is expected to aggravate the runtime variabil-
ity. Therefore, we believe that the model of variability should
account for the redundancy added into system. In Sec. IV,
we consider a model where the tail of task execution times
changes with the level of redundancy added into system, and
we study the cost and latency of redundancy under this model.

There are various decisions to make while employing
redundancy for straggler mitigation. The first natural step
is to decide adding whether replicated or coded tasks, and
how many of them. Secondly, waiting for some time before
launching the replica tasks has been considered to reduce the
cost of redundancy [29]. A natural question is that does waiting
before launching the redundant (replicated or coded) tasks help
in general to reduce cost. In this paper, we analyze the cost vs.
latency tradeoff to find out the best practice in making these
decisions. As an alternative to adding redundancy, cancelling
and relaunching the tasks that appear to be straggling after
waiting some time has been considered [12]. This is justified
by the heavy tailed nature of task execution times as observed
in practice [7], [30], [31]. We quantify the effect of straggler
relaunch on the cost vs. latency tradeoff in terms of the
tail heaviness pronounced by the service time variability.
We also consider employing straggler relaunch together with
redundancy, and analyze its effects on cost and latency. Parts
of the results presented in this paper were published in [1], [2].

This paper is structured as follows. In Sec. II, we explain
the system model that is used for the presented analysis,
and formally define the cost and latency of distributed job
execution. In Sec. III, we examine the effect of the type
and level of redundancy, and the launch time of redundant
tasks on the cost vs. latency tradeoff. In Sec. IV, we evaluate
the performance of job execution with redundancy when the
redundant tasks added into system changes the tail of service
time variability. In Sec. V, we study straggler relaunch and

investigate its impact on the cost and latency. In Sec. VI,
we consider employing straggler relaunch together with redun-
dancy. In Sec. VII, we summarize our key findings, discuss the
shortcomings of our analysis and possible future directions.

Summary of Observations: Coding allows increasing the
level of added redundancy with finer steps than replication,
which translates into greater achievable cost vs. latency region.
Waiting for some time before launching the redundant tasks
is not effective in trading off latency for reduced cost when
the employed redundancy is coding, that is, one can obtain
lower latency for the same cost by launching less number of
coded tasks rather than delaying their launch time. When the
employed redundancy is replication, some cost reduction is
possible by launching the replica tasks after waiting some
time. Coding is more efficient than replication in the cost
vs. latency tradeoff; adding coded tasks into job execution
yields higher reduction in latency per incurred cost (hence per
incurred additional load on the system) compared to adding
replicated tasks. Execution with redundancy reduces the cost
and latency together when enough tail heaviness is pronounced
by the service time variability. The required tail heaviness is
smaller when coding is employed compared to replication. The
advantage of coding over replication becomes greater when the
job is executed at higher scale, i.e., when the job consists of
greater number of parallel tasks.

Relaunching tasks that appear to be straggling after some
time reduces the cost and latency when relaunching is
performed at the right time and enough tail heaviness is pro-
nounced by the service time variability. Redundancy and strag-
gler relaunch serve the same purpose of mitigating stragglers,
hence employing both together require greater tail heaviness in
service time variability in order to reduce the cost and latency.

II. SYSTEM MODEL

We adopt a system model that is an extension of what is
adopted in [29]; execution time (duration from its launch time
to completion) of each task is modeled with a single random
variable. All k tasks of a job are launched simultaneously
and the execution time of each is assumed to be identically
and independently distributed (i.i.d.). We use two canonical
distributions to model task execution times: 1) Shifted expo-
nential SExp(s, μ) with a positive minimum value s and a tail
decaying exponentially at rate μ, and 2) Pareto(s, α) with a
positive minimum value s and a power law tail with index α.
Minimum value of the distribution models the minimum
service time of the tasks (i.e., task size), while tail of the
distribution models the slowdown due to runtime variability;
smaller μ or α implies greater chance for stragglers.

Task execution times in modern compute systems are known
to exhibit heavy tail [7], [30], [31]. In Fig. 2, we plot
the tail distribution of the task execution times2 that we
extracted from a Google Trace data for jobs with 15, 400,
or 1050 tasks [30]. Note that both axes in the plots are in
log scale, hence an exponential tail would have appeared as
an exponentially decaying curve, while a true power law tail
(e.g., tail of Pareto) would have pronounced a linear decay at a

2Task execution times are calculated as the difference between the
timestamps for SCHEDULE and FINISH events for each task as given in [30].

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2268 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 1. A job of four tasks is executed by launching replicated (Left) or
coded (Right) tasks, some time Δ after launching job’s initial tasks. Check
marks represent task completions while crosses represent cancellations. With
replication, exact clones of the remaining tasks are launched, while with
coding, parity tasks can be used as a “clone” for any task, therefore, stragglers
do not have to be tracked down.

constant rate [32]. Tail distributions shown in the figure exhibit
exponential decay at small values and a linearly decaying
trend at larger values, which indicates a heavy tailed runtime
variability [33]. Note that the steep decay of the tail at the far
right edge is due to the bounded support of the distributions.

Assuming execution times to be identically distributed for
tasks within the same job is appropriate since jobs in practice
are known to be a collection of one or more usually identical
tasks [30], [34]. However, when task execution times are
modeled using a distribution with a minimum value of zero
(e.g., exponential distribution), assuming independent execu-
tion times across the initial and redundant tasks proved to
be problematic because added redundancy in this case can
make job execution time arbitrarily small. This is in contrast
to reality where tasks have an inherent size and due to this,
job execution times are lower bounded by a positive value
regardless of the level of added redundancy. Modeling task
execution times with a minimum value of zero have previously
led to theoretical results that are at odds with experimental
measurements. Implications of this are discussed in detail
in [17] and authors propose a better model for service times in
which the time due to task size is decoupled from the time due
to runtime variability. Specifically, service times are modeled
as s×Sl where s represents the inherent task size and Sl is the
slowdown factor, which is assumed to be i.i.d. across tasks and
servers with a minimum value of 1. Distributions that we adopt
for modeling task execution times can be expressed using
the decoupling method introduced in [17]; SExp(s, μ) can be
written as s×SExp(1, μ) or Pareto(s, α) as s×Pareto(1, α).

In our model, redundant tasks are added into execution only
if the job does not complete within some time Δ. Redundancy
is introduced either in the form of task replicas or coded
parity tasks. When replication is employed, c replicas are
launched for every remaining task at time Δ. When coding is
employed, n−k MDS coded parity tasks are launched at time
Δ (see Fig. 1). When straggler relaunch is implemented, tasks
(initial or redundant) remaining at time Δ are canceled and
fresh replacements are immediately launched in their place.

We define the cost of executing a job as the sum of
the lifetimes of all the tasks (including the redundant ones)
involved in its execution. Lifetime of a task is the duration
from its launch to its completion or cancellation. Depending on
the application domain, there are two possible cost definitions:
1) Cost with task cancellation; outstanding redundant tasks are
canceled as soon as the job completes (as illustrated in Fig. 1),
which is a viable option for distributed job execution, 2) Cost
without task cancellation; outstanding redundant tasks are left

to run until they complete, which for instance is the only
option for routing messages with redundancy in an oppor-
tunistic network [35]. We assume that task cancellation takes
place instantly and does not incur any delay. In the following
subsection, we elaborate on the meaning and consequences of
the job execution cost.

A. On the Cost of Job Execution
Cost, as is defined here, reflects the total resource time spent

while executing a job. Lower cost translates into executing
the same job by occupying less area in system capacity ×
time space. Thus, reducing the cost of job executions allows
fitting more jobs per area and leads to higher system
throughput [36].

As we show in the following sections, adding redundant
tasks into a job execution can increase or decrease the cost
depending on the variability pronounced in task execution
times, and the type and level of introduced redundancy. Since
redundancy can lead to higher cost, it should be employed with
care. Executing jobs at a higher cost implies occupying greater
portion of system’s overall capacity per job, which increases
the load on the system. This may translate into greater conges-
tion in the system resources, hence aggravate job slowdowns or
even drive the system to instability. For instance, [17] shows,
with a queueing theoretic analysis, how excessive replication
of single-task job arrivals can drive system to instability.
As another example, [14] introduces a system, named as Dolly,
which launches replicas only for small jobs that consist of
≤ 10 tasks. This is shown to achieve significant reduction
in latency without overburdening the system according to the
traces collected on two clusters at Facebook and Microsoft
Bing. The underlying reason for the success of their replica-
tion scheme is the workload characteristics; small jobs were
observed to tend to have short duration, thus, replicating them
did not introduce substantial cost overhead in the system,
while returning substantial reduction in the latency of short
jobs.

The workload and system characteristics considered in [14]
are not universal; execution with redundancy is relevant in
general not only for small jobs but also for jobs that run
at higher scale for large duration. Job slowdowns due to
stragglers is an emerging problem for future high performance
computing (HPC) systems . Exascale computing is expected
to be implemented by systems that are much larger in size
and will enable execution at unprecedented levels of paral-
lelism. These future systems are anticipated to be prone to
much higher node level runtime variability [37]. Moreover,
to implement high resource utilization, resource scheduling
in these systems is suggested to be realized with time-sharing
rather than today’s de facto batch scheduling [38]. As resource
sharing is pointed out as the primary cause of stragglers in
data centers [7], performance of future HPC systems is likely
to greatly suffer from stragglers. Simulations over the traces
collected on Edison Supercomputer demonstrate that jobs with
larger number of tasks and shorter duration experience higher
slowdowns due to runtime variability under batch scheduling,
while under time-sharing based resource scheduling, slow-
downs are observed to be relatively uniform regardless of the
number of tasks or the job duration [38].

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2269

Fig. 2. Empirical tail distribution of task execution times for Google cluster jobs with number of tasks k = 15, 400, 1050.

B. Notation and Tools for Analysis

Expected cost (C) and latency (T) are the two metrics that
we use to quantify the pain and gain of distributed execution
of jobs with redundancy and/or straggler relaunch. Thus,
the cost and latency by themselves imply their expected values
throughout, and any other quantity associated with them is
made explicit. Note that the cost and latency depend on the
number of tasks k that constitute the job, task sizes s, runtime
variability (determined by μ or α), the level of redundancy
added into the job (c task replicas or n − k coded tasks),
as well as the time Δ at which redundant tasks are launched
and/or straggler relaunch is performed.

Derivations of the cost and latency expressions make fre-
quent use of the law of total probability since we consider
adding redundancy and/or performing straggler relaunch after
waiting some time Δ. Results from order statistics are essential
for the derivations since only a subset of the launched tasks is
necessary for job completion when redundancy is employed.
Derivations presented in the paper require tedious algebra at
times and the expressions involve some special functions that
commonly appear while working with order statistics. For
completeness, we kept every non-trivial step in the proofs.
This made some proofs lengthy and we placed them in the
Appendix that is made available as a supplement to this paper.

We here give an overview of the notation and special
functions that appear throughout the paper. For their detailed
definitions and interesting properties, we refer the reader
to [39]. Xn:i denotes the ith order statistic of n i.i.d. samples
drawn from a random variable X . Hn, the nth harmonic
number, is defined as

∑n
i=1 1/i for n ∈ Z

+ or as
∫ 1

0 (1−xn)/
(1 − x)dx for n ∈ R. Hn2 , the nth generalized harmonic
number of order two, is defined as

∑n
i=1 1/i2. Incomplete Beta

function B(q; m, n) is defined for q ∈ [0, 1], m, n ∈ R
+ as∫ q

0
um−1(1 − u)n−1du, Beta function B(m, n) as B(1; m, n)

and its regularized form I(q; m, n) as B(q; m, n)/B(m, n).
Gamma function Γ(x) is defined as

∫∞
0 ux−1e−udu for x ∈ R

or as (x − 1)! for x ∈ Z
+.

III. CODING VS. REPLICATION

In this section, we study the cost vs. latency tradeoff in
executing a distributed job by adding task replicas or coded
tasks after waiting some time Δ. Note that we do not consider
straggler relaunch until Sec. V. Theorems given below firstly
present expressions for the cost and latency assuming expo-
nential task execution times, which we then use to derive the
cost and latency for shifted-exponential task execution times.

Consider Executing a Job of k Tasks by Adding c Replicas
for Each Remaining Task After Waiting Some Time Δ:

Theorem 1: Suppose task execution times are i.i.d. with
Exp(μ). Distribution of job execution time is given as

Pr{T ≤ t} =
(
1 − �(t ≤ Δ)(e−μt − e−μΔ)

−�(t > Δ)e−μ((c+1)(t−Δ)+Δ)
)k

(1)

Latency is well approximated as

E[T] ≈ 1
μ

(
Hk − c

c + 1
Hk−kq

)
. (2)

Cost with (Cc) or without (C) task cancellation is given as

E[Cc] =
k

μ
, E[C] = (c(1 − q) + 1)

k

μ
. (3)

where q = 1 − e−μΔ.
Theorem 2: Suppose task execution times are i.i.d. with

SExp(s, μ). Distribution and the expected value of job execu-
tion time are given as

Pr{T > t} = Pr{Te > t − s},
E[T] = s + E[Te]. (4)

where Te is the job execution time when task execution times
are distributed as Exp(μ), for which the distribution and
expected value are given in Thm. 1.

Cost with task cancellation is given as

E[Cc] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(c + 1)

(
s +

1
μ

×
(

1 − c

c + 1
(e−μΔ + μΔ)

)) Δ ≤ s,

k

(
s +

1
μ

(
1 + c

(
1 − q − e−μΔ

)))
o.w.

(5)

Cost without task cancellation is given as

E[C] = k (c(1 − q) + 1) (s + 1/μ). (6)

where q = �(Δ > s)
(
1 − e−μ(Δ−s)

)
.

Consider Executing a Job of k Tasks by Adding n−k Coded
Tasks After Waiting Some Time Δ:

Theorem 3: Suppose task execution times are i.i.d. with
Exp(μ). Distribution and the expected value of job execution
time are well approximated as

Pr{T > t} ≈ �(t ≤ Δ)
(
qk − (1 − e−μt)k

)
+ I

(
�(t > Δ)e−μ(t−Δ); n − k + 1, k(1 − q)

)
− qkI

(
�(t > Δ)e−μ(t−Δ); n − k + 1, 0

)
,

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2270 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

E[T] ≈ Δ − 1
μ

(B(q; k + 1, 0) + Hn−kq − Hn−k) . (7)

Cost with (Cc) or without (C) task cancellation is given as

E[Cc] =
k

μ
, E[C] =

k

μ
qk +

n

μ

(
1 − qk

)
, (8)

where q = 1 − e−μΔ.
Theorem 4: Suppose task execution times are i.i.d. with

SExp(s, μ). Distribution and the expected value of job execu-
tion time are given as

Pr{T > t} = Pr{Te > t − s},
E[T] = s + E[Te], (9)

where Te is the job execution time when task execution times
are distributed as Exp(μ), for which the distribution and the
expected value are given in Thm. 3.

Cost with (Cc) or without (C) task cancellation is given as

E[C] =

{
n (s + 1/μ) Δ ≤ s,(
k + (1 − q̃k)(n − k)

)
(s + 1/μ) o.w.

E[Cc] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k/μ + ns − (n − k)qk

×
(

Δ + kμ

(
ζ

μqk
− Δ

(
1
q
− 1
)))

Δ ≤ s,

(≈) E[C] − n − k

μ

(
1 − qk + ζ−k(1−q)

× B(ζ; k − kq + 1, 0)
(
q̃k − qk

)) o.w.

where q = �(Δ > s)
(
1 − e−μ(Δ−s)

)
, q̃ = 1 − e−μΔ and

ζ = 1 − e−μs.
In distributed computing systems, outstanding redundant

tasks can be canceled by signaling the computing nodes as
soon as the job completes, hence we always refer to the cost
with task cancellation in the discussions throughout the paper.

When task execution times are exponentially distributed,
expressions in Thm. 1 and 3 tell us that job execution cost
neither depends on the time Δ at which redundant tasks
are launched nor the level of employed replicated (c) or
coded (n) redundancy. Therefore, according to our model with
exponentially distributed task execution times, launching all
the available redundant tasks at the beginning (i.e., Δ = 0)
achieves the minimum latency with zero penalty in cost.

Recent research proposes waiting for some time before
replicating the tasks to reduce the cost of redundancy [29].
Using the expressions given in Thm. 2 and 4, Fig. 3 plots
the cost vs. latency tradeoff in executing the same job with
different levels of replicated or coded redundancy, by varying
the launch time Δ of the redundant tasks between 0 and ∞.
First, let us focus on the case with SExp task execution
times as shown in Fig. 3 (Top). Cost monotonically decreases
while latency monotonically increases with Δ. Let C(c, Δ),
T (c, Δ) be the cost and latency when c replicas are added for
each remaining task after waiting some time Δ. Increasing
Δ initially allows significant reduction in cost while causing
a slight increase in latency. However, as soon as T (c, Δ)
exceeds T (c − 1, 0) (plot shows this for c = 2) increasing
Δ further does not make sense; one can achieve less cost
for the same latency by reducing c rather than increasing Δ.

Fig. 3. Achievable cost (with task cancellation) vs. latency in executing a job
of k tasks with replicated (c = 1, 2) or coded (n ∈ [k + 1, 3k]) redundancy.
Each cost vs. latency curve is drawn for a fixed number of redundant tasks
by varying the launch time Δ of redundant tasks. Task execution times are
i.i.d. with SExp (Top) and Pareto (Bottom).

This behavior of cost vs. latency tradeoff is more apparent
when coded redundancy is employed. Increasing Δ from
zero initially returns no visible cost reduction while incurring
significant increase in the latency, while it does yield visible
reduction in cost only after Δ reaches a certain value. In other
words, adding coded tasks with delay can yield significant cost
reduction only after significant sacrifice in latency. Consider
the cost and latency value at a sufficiently large value of Δ
on a curve for a number of coded tasks n − k = r > 1, then
the curve below for n− k = r − 1 attains the same latency at
less cost at a smaller value of Δ. Thus, given a job execution
with a sufficiently large value of Δ and r > 1 coded tasks,
same latency can be achieved for less cost by reducing Δ and
decrementing r. The same conclusions hold for the case with
Pareto task execution times (shown in Fig. 3 (Bottom)).

The remainder of this section is concerned with the cost vs.
latency tradeoff when redundant tasks are launched together
with the original tasks (i.e., Δ = 0), which we refer to as zero-
delay redundancy. For the case with Δ > 0, we could derive
the cost and latency expressions only when the distribution
of task execution times, which we refer to as X here, has
exponential tail. This is because in the absence of memoryless
property (e.g., when X is heavy tailed), derivations require
working with the order statistics of samples drawn from
two different distributions3; residual execution time of the

3This issue disappears when the remaining tasks at time Δ are relaunched.
This is why in Sec. V, we will be able to derive the cost and latency
expressions for the case of jointly performing straggler relaunch and launching
redundant tasks after waiting some time Δ.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2271

Fig. 4. Cost vs. latency of executing a job of k = 10 tasks by employing zero-delay replicated or coded redundancy. The level of employed redundancy,
c for replication and n for coding, varies along each curve. Tail heaviness of task execution times increases from left to right.

remaining task copies after time Δ is distributed as X |X > Δ,
while the execution time of copies that are newly launched at
time Δ is distributed as X . Order statistics of independent
but non-identical random variables has been studied in the
literature [40]. Using the results available in the literature, cost
and latency expressions in the case with non-exponential X
could be written out, however, the expressions are unwieldy
(relatively bearable for job execution with replicas compared
to execution with coded tasks). We did not pursue deriving
such cumbersome expressions because our purpose was to
observe the effect of Δ on the cost vs. latency tradeoff, which
was very well served by the expressions we derived for the
case with shifted-exponential X . When Δ = 0, cost and
latency expressions can be derived with fairly tractable steps
when X has either exponential or heavy tail.

Theorem 5: Let the cost (with task cancellation) and latency
of executing a job of k tasks be Cc, Tc when each task is
launched together with c replicas, and let them be Cn, Tn

when job is launced with n− k additional coded tasks. When
task execution times are i.i.d. with SExp(s, μ),

E[Tc] = s +
Hk

(c + 1)μ
, E[Cc] = k

(
(c + 1)s +

1
μ

)
,

E[Tn] = s +
1
μ

(Hn − Hn−k), E[Cn] = ns +
k

μ
.

When task execution times are i.i.d. with Pareto(s, α),

E[Tc] = sk!
Γ (1 − 1/ ((c + 1)α))

Γ (k + 1 − 1/ ((c + 1)α))
,

E[Cc] = sk(c + 1)
α

α − 1/(c + 1)
,

E[Tn] = s
n!

(n − k)!
Γ(n − k + 1 − 1/α)

Γ(n + 1 − 1/α)
,

E[Cn] = s
n

α − 1

(
α − Γ(n)

Γ(n − k)
Γ(n − k + 1 − 1/α)

Γ(n + 1 − 1/α)

)
.

Using the expressions given in Thm. 5, Fig. 4 plots the cost
vs. latency tradeoff in executing the same job by introducing
varying levels of zero-delay replicated or coded redundancy.
Under both SExp and Pareto task execution times, coding
always achieves less latency for the same cost compared to
replication. This observation is formally stated in Thm 6.

Theorem 6: Consider launching a job of k tasks with
redundant tasks. Cost and latency is lower when kc MDS
coded tasks are added compared to adding c replicas for each
task.

Fig. 5. Cost vs. latency for zero-delay redundancy systems. The width of
horizontal error bars is equal to the standard deviation of latency and the
width of vertical bars is equal to the standard deviation of cost.

When task execution times are light tailed, adding redundant
tasks into the job reduces its latency but increases its cost.
In [29], replication is demonstrated to reduce the cost and
latency together when task execution times are heavy tailed.
Using the exact expressions in Thm. 5, Fig. 4 illustrates that
redundancy can reduce cost and latency together when the tail
of task execution times is heavy enough. Reduction in the cost
and latency is greater with coding compared to replication.
We elaborate at the end of this section on the tail heaviness
required to achieve reduction in the cost and latency together.

Although closed form expressions are formidable to
derive, second moments of the cost and latency can be exactly
computed as described in Thm. 7, which enables us to compute
the standard deviation of the cost and latency. Fig. 5 plots the
expected cost and latency values with error bars of width equal
to the standard deviation in respective dimensions. Variability
in the cost and latency naturally decreases with increasing
levels of redundancy. Fixing the number of added redundant
tasks, coding achieves less variability compared to replication.

Theorem 7: Consider launching a job of k tasks with
redundant tasks. Let us denote the cost and latency as Cc,
Tc when c replicas are added for each task, and as Cn, Tn

when n − k coded tasks are added. For X ∼ Exp(μ) and
j ≥ i, we have

E[Xn:iXn:j] =
1
μ2

(
Hn2 − H(n−i)2

+ (Hn − Hn−i)(Hn − Hn−j)
)
.

as given in [41, Pg. 73]. Let Y ∼ Exp((c + 1)μ). When task
execution times are i.i.d. with SExp(s, μ), second moments of

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2272 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

the cost and latency are given as

E[T 2
c] =

(
s +

Hk

(c + 1)μ

)2

+
Hk2

(c + 1)2μ2
,

E[C2
c] = (k(c + 1)s)2 + 2k(c + 1)s

k

μ

+ (c + 1)2
k∑

i,j=1

E[Yn:iYn:j]

E[T 2
n] =

Hn2 − H(n−k)2

μ2
+
(

s +
Hn − Hn−k

μ

)2

,

E[C2
n] = (ns)2 + 2ns

k

μ
+ (n − k)2E[X2

n:k]

+ 2(n− k)
k∑

i=1

E[Xn:iXn:k] +
k∑

i,j=1

E[Xn:iXn:j].

For X ∼ Pareto(s, α), given α > max{2/(n − i +
1), 1/(n− j + 1)} and j ≥ i, we have

E[Xn:iXn:j]

= s2 n!
Γ(n + 1 − 2/α)

× Γ(n − i + 1 − 2/α)
Γ(n − i + 1 − 1/α)

Γ(n − j + 1 − 2/α)
Γ(n − j + 1)

.

as given in [42, Pg. 62]. Let Y ∼ Pareto(s, (c + 1)α). When
task execution times are distributed as Pareto(s, α), second
moments of the cost and latency are given as

E[T 2
c] = E[Y 2

k:k],

E[C2
c] = (c + 1)2

k∑
i,j=1

E[Yk:iYk:j],

E[T 2
n] = E[X2

n:k]

E[C2
n] = (n − k)2E[X2

n:k] + 2(n − k)
k∑

i=1

E[Xn:iXn:k]

+
k∑

i,j=1

E[Xn:iXn:j].

Proof Sketch: Derivations follow from the cost and latency
formulation given in the proof of Thm. 5.

When task execution times are heavy tailed, it is possible
to reduce latency by adding redundant tasks and still pay for
the baseline cost of executing the job with no redundancy
(cf. Fig. 4). We refer to this as latency reduction at no cost.

Corollary 1: Suppose task execution times are i.i.d. with
Pareto(s, α). Launching a job of k tasks by adding c replicas
for each task can reduce its latency up to a minimum value
E[Tmin] without incurring any additional cost if and only if
α < 1.5, and for cmax = max { �1/(α − 1)	 − 1, 0 }, we have

E[Tmin] = sk!
Γ (1 − 1/ (α(cmax + 1)))

Γ (k + 1 − 1/ (α(cmax + 1)))
. (10)

A sufficient condition to reduce latency with no additional
cost by adding n − k coded tasks is given as

αα ≤ n

n − k + 1
, (11)

Fig. 6. Maximum relative latency reduction at no cost by employing
replicated or coded redundancy vs. the tail of task execution times.

a necessary condition is given as

αα ≤ n + 1
n − k

, (12)

the minimum latency at no additional cost is given as

E[Tmin] = f(nmax). (13)

such that

f(n) = s
n!

(n − k)!
Γ(n − k + 1 − 1/α)

Γ(n + 1 − 1/α)
,

nmax = max
{

n

∣∣∣∣ f(n) − f(k)
(n − k)

− α ≤ 0
}

,

or it is bounded as follows

E[Tmin] < s

(
α + k!

Γ(1 − 1/α)
Γ(k + 1 − 1/α)

)
. (14)

Fig. 6 plots the maximum relative latency reduction at no
cost in executing the same job under varying degree of tail
heaviness in task execution times. Maximum relative latency
reduction at no cost is defined as (E[T0] − E[Tmin]) /E[T0]
where E[Tmin] is the minimum possible latency at no cost,
and E[T0] is the baseline latency of executing the job with
no redundancy. As stated in Cor. 1, when the employed
redundancy is replication, latency reduction at no cost is
possible only when the tail index of task execution times is
less than 1.5, that is, only when the tail of task execution
times is quite heavy. Employing coded redundancy relaxes
this requirement on the tail heaviness, as also shown in the
plot. When the employed redundancy is replication, the tail
heaviness requirement is independent of the number of tasks
k that constitute the job, while employing coded redundancy
relaxes the requirement on the tail index further at larger k,
i.e., the upper threshold on the tail index increases with k. This
can be explained as follows. A task replica can only replace
its original copy, while a coded task can replace any of the
k initial tasks. Thus, coded tasks can mitigate stragglers more
effectively when the job is executed at higher scale (larger k),
while the effectiveness of task replicas is not associated with
the scale of execution. Consequently for jobs that run at higher
scale, coding can reduce latency at no cost even under lighter
tailed task execution times, while the scale of execution does
not change the tail heaviness requirement for replication.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2273

Fig. 7. Simulated cost vs. latency curves for executing jobs with k = 15, 400, 1050 tasks by employing zero-delay replicated or coded redundancy. Task
execution time distributions used in the simulations are extracted from a Google Cluster Trace data [30].

Demonstration Using Google Cluster Data: We simulated
job executions with replicated or coded redundancy by using
task execution time distributions extracted from a Google
Cluster data [34]. Google released this data from a cluster
running a mixed workload of short or long running MapRe-
duce batch jobs, services and interactive queries [30].

Fig. 7 plots the cost vs. latency curves using the three
empirical distributions for jobs with k = 15, 400, 1050 tasks
that were previously illustrated in Fig. 2. In all three, coding
is doing better than replication in the cost vs. latency tradeoff.
Execution with redundancy could reduce the cost and latency
together because each of these distributions pronounces heavy
tail at large values (cf. Fig. 2). In the execution of jobs with
15 or 1050 tasks, employing replication does not allow for
latency reduction at no cost but coding does. In the execution
of job with 400 tasks, although replication seems to achieve
less cost and latency at first, coding outperforms replication
beyond a certain level of redundancy.

IV. WHEN REDUNDANCY CHANGES THE TAIL

So far we have ignored the impact of redundancy on the
system. Redundant tasks exert extra load on the system, which
is likely to aggravate the existing contention in the system
resources. Given that resource contention is the primary cause
of runtime variability [7], the added redundant tasks are likely
to increase the variability in task execution times.

Compute servers are typically shared by the tasks of jobs
that simultaneously execute on the cluster [18]. Two canon-
ical server sharing strategies are 1) Processor sharing: tasks
time-share the server according to a round-robin scheduling,
2) Queueing: tasks wait in a queue and are accepted into
service one at a time. Modern Operating Systems implement a
mix of processor sharing and First-come First-served (FCFS)
queueing to host multiple processes on a server, e.g., schedul-
ing classes SCHED_FIFO and SCHED_RR in the Linux
Kernel [43]. A compute server in reality hosts several shared
resources (e.g., CPU, memory, I/O bus, etc.) and each with
its own scheduling scheme. For simplicity, we here model
servers to host only CPU. We adopt limited processor sharing
model in which tasks are allowed to time-share the server
(while being served over multiple CPU cores or threads)
until a limited number of them accumulate, beyond which
the remaining tasks wait in a FCFS queue. Limited processor
sharing is shown to implement robust performance (in terms
of the tail of response time) for both heavy and light tailed
task sizes [44].

Fig. 8. Cost vs. latency for a particular type of job with 20 tasks of unit size.
Arriving jobs are expanded with coded tasks at a multiplicative factor of r.
Simulated values are given for increasing values of r; we start with r = 1
(No redundancy) and then increase r by 0.1 at each step.

In order to understand the impact of added redundancy
on the system’s runtime variability, we simulated a cluster
of servers, each implementing a limited processor sharing
queue. Jobs of varying number of tasks and size (mini-
mum task execution time) arrive to cluster according to a
Poisson process. Distribution of task sizes and number of
tasks within real compute jobs are known to exhibit heavy
tail [30], [45]–[47]. Therefore in our simulation: i) Task
size for each arriving job is independently sampled from a
Truncated-Pareto (a canonical continuous heavy tailed) distri-
bution with minimum value of 1, maximum value of 1010 and
tail index of 1.1. The choice of Truncated-Pareto distribution
and the values for its parameters come from the distribution of
real compute task sizes presented in [48]. ii) Number of tasks
that constitute each arriving job is independently sampled from
a Zipf (a canonical discrete heavy tailed) distribution. Each
arriving job is expanded with the same rate r > 1; a job of k
tasks gets expanded into n = �rk	 tasks by adding �rk	 − k
coded tasks, and the resulting n tasks are dispatched to the
n servers with the least number of tasks in the cluster. As
soon as any k of the n tasks of a job is completed, the job
completes and its remaining n − k outstanding tasks (either
in service or waiting in a queue) get immediately removed
from the cluster. Expanding jobs with the same rate r ensures
fairness by introducing redundancy in proportion to the scale
k at which a job is executed.

Cost and latency values for a particular type of job with
a fixed number of tasks of unit size are plotted in Fig. 8 for
increasing values of r. Each simulated server in the cluster
implements limited processor sharing queue with a limit

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2274 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

of 8 tasks. The latency of the job is the time span between its
arrival and departure to and from the system. The cost of the
job is the sum of the service time of every task involved in
its execution. Simulated curve shows that redundancy initially
reduces latency significantly with little change in cost, then
reduces latency but increases cost, and finally beyond a
level increases latency with little change in cost. In order
to evaluate the appropriateness of modeling task execution
times with canonical heavy tailed distributions, we first
fitted Pareto and Truncated-Pareto distributions on the task
execution times sampled from the simulation, then substituted
these fitted models in the analytical cost and latency
expressions. We presented cost and latency expressions for
Pareto task execution times in Thm. 5. Cost and latency are
formidable to derive in closed form for Truncated-Pareto
task execution times, but their computation involves a
single integral which we evaluate numerically (refer to
[42, Pg. 63]). Parameters of the Pareto (minimum value and
tail index) and Truncated-Pareto (minimum and maximum
values, and tail index) models are estimated using the
unbiased MLE estimators that are respectively presented
in [49] and [50, Thm. 1].

The comparison given in Fig. 8 between the simulated and
fitted values of cost and latency shows that modeling task
execution times with Pareto distribution is fairly appropriate
to study the cost vs. latency tradeoff. This is not surprising
since the asymptotic approximations of the tail of waiting
times in FCFS or processor sharing queues have demon-
strated that heavy tailed task sizes result in heavy tailed
delay [51]–[53]. However one caveat of the model is that it
cannot capture the case we observe in (the top right of) Fig. 8
in which adding more redundancy increases latency with little
change in cost. In the remainder of this section, we study the
cost vs. latency tradeoff by adopting a Pareto task execution
time model that is dependent on the rate r at which redundancy
is added into all the jobs executing in the system. Expansion
of a job with task replicas at (an integer) rate of r refers to
launching r−1 replicas for each of the k tasks within the job.

Redundant tasks added into the system are expected to
aggravate resource contention, and consequently increase the
variability in task execution times. Therefore, the impact of
redundant load exerted on the system should be incorporated
in the Pareto(s, α) distribution that we use to model task
execution times. Under stability, an arriving job, with nonzero
probability, can find the system empty and complete exe-
cution without having to share servers with any other job.
Thus, we assume that minimum task execution time s solely
reflects the task size and is not affected by resource contention.
Then, the impact of added redundant load should be captured
by the only remaining parameter, the tail index α. Smaller α
implies greater variability (implying greater chance and impact
of resource contention), so α is expected to get smaller as more
redundancy is added into the jobs, which is indeed what we
observe in the simulations. We directly use the job expansion
rate r to quantify the level of added redundancy and model
α as a function of r. Note that we do not study the exact
trend which describes how α changes with r, but rather try
to understand the requirements on the relationship between α
and r that leads to gain or pain in the cost vs. latency tradeoff.

We firstly present sufficient conditions in terms of α and r to
yield a reduction or incur an increase in latency.

Theorem 8: Suppose that task execution times are i.i.d. with
Pareto with tail index αi when jobs arriving to the system
are expanded with redundant tasks by a multiplicative factor
of ri > 1. Consider increasing ri to rj . If jobs are expanded
with coded tasks, a sufficient condition to reduce the latency
of a job of k tasks by the change ri → rj is

αi/αj ≤ log
(

ni

ni − k + 1

)
/ log

(
nj + 1
nj − k

)
, (15)

a sufficient condition to incur an increase in job’s latency is

αi/αj ≥ log
(

ni + 1
ni − k

)
/ log

(
nj

nj − k + 1

)
, (16)

where ni = �kri	 and nj = �krj	. If jobs are expanded
with task replicas, a necessary and sufficient condition for the
change ri → rj to reduce latency is given for any job as

αi/αj < rj/ri. (17)

Condition (15) for the case of expanding jobs with coded
tasks is sufficient to reduce latency, but it may not give tight
guarantees. It can be made easier to interpret by expressing the
expansion rate r as n/k for a given job of k tasks. Increasing
the rate from n/k to (n + 1)/k, the condition (15) becomes

αn

αn+1
≤ log

(
n

n − k + 1

)
/ log

(
n + 2

n − k + 1

)
< 1.

This says that if the tail heaviness of task execution times
(or α) stays the same or becomes lighter as r increases,
increasing r reduces latency for all jobs regardless of k.
This is not informative since we already know that latency
monotonically decreases in n when the tail heaviness of task
execution times stays the same let alone when it gets lighter
(cf. Thm. 5).

Next we derive an approximate necessary and sufficient
condition to reduce latency of a particular job by increasing r,
in the case where jobs are expanded with coded tasks. Pre-
sented approximation yields close estimates for large enough
values of r, in particular when r > 2. Approximating the quo-
tient of Gamma functions with Sterling’s approximation [54],
latency of executing a job of k tasks in a system with coded
expansion rate r = n/k is approximately given as

E[Tn] ≈ s

(
1 +

k

n − k + 1

)1/αn

,

which gives us the following approximation for the ratio

E[Tn+1]
E[Tn]

≈
(

1+
k

n−k+2

)1/αn+1 (
1+

k

n−k+1

)−1/αn

.

This gives us the following approximate necessary and suffi-
cient condition on the growth of tail index to reduce the latency
for jobs of k tasks by increasing r from n/k to (n + 1)/k,

E[Tn+1]
E[Tn]

� 1 ⇐⇒ αn+1

αn
� log(1 + k/(n − k + 2))

log(1 + k/(n − k + 1))
.

The condition above and the ones given in Thm. 8 are
quantitative expressions of our intuition; when the redundant

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2275

load exerted on the system increases the runtime variability,
it gets harder to reduce latency by executing jobs with more
redundancy as the level of employed redundancy gets higher.
When jobs are expanded with task replicas, the condition to
reduce latency with more redundancy does not depend on
the number of tasks k (scale) within the job; higher level of
replication achieves less latency as long as the relative growth
in the job expansion rate r is larger than the relative reduction
in the tail index α (i.e., relative growth in tail heaviness) of task
execution times. In Sec. III, coded redundancy is shown to be
more effective for jobs that run at greater scale. Similarly here
when jobs are expanded with coded tasks, increased runtime
variability due to redundant load can be better compensated
by jobs that run at greater scale. In addition, the threshold for
redundancy to start incurring higher latency grows at a slower
rate in r when coded tasks are used compared to using task
replicas. This is due to the fact that coded redundancy is more
efficient; it yields greater reduction in latency per introduced
redundant task compared to replication.

V. STRAGGLER RELAUNCH

Throughout this section, we assume task execution times
are heavy tailed. There are two properties of heavy tailed
task execution times that greatly affect the distributed job
execution [33]. Firstly, the longer a task has taken to execute,
the longer its average residual lifetime is expected to be. Sec-
ondly, the majority of the mass in a set of sample observations
drawn from a heavy tailed distribution is contributed by few
samples. This suggests that among all tasks within a job,
few of them are expected to be stragglers with much longer
completion time compared to the non-stragglers.

After launching a job, let us wait for a reasonably large Δ
amount of time and check whether the job is completed or not.
If the job is still running, we expect only a few tasks remaining
which we refer to as stragglers. Heavy tailed nature of the task
execution times suggests that the tasks straggling beyond time
Δ are expected to take at least Δ more to complete on average.
It also suggests that if a fresh copy is launched at time Δ for
each straggling task, fresh copies are likely to complete before
their corresponding old copies.

In this section, we show that straggler relaunch, that is,
replacing the straggling tasks with fresh copies after wait-
ing for some time, can yield significant reduction in cost
and latency when the task execution times are heavy tailed
enough. We investigate the level of tail heaviness required for
straggler relaunch to be effective. The selection of the tasks
to be relaunched is decided by the time Δ we wait before
relaunching the remaining tasks. Untimely relaunch might be
either late and cause delayed cancellation of the stragglers,
or might be early and cause killing the non-straggler tasks
as well. We find an approximation for the optimal time to
perform straggler relaunch, which turns out to have a simple
and insightful form. Lastly, we consider performing straggler
relaunch jointly with adding redundant tasks into the job
execution.

Exact expressions for the cost and latency of job execu-
tion with straggler relaunch are given in Thm. 9. Note that
we assume relaunching tasks takes place instantly and does

Fig. 9. Cost vs. latency of executing a job of 100 tasks by relaunching the
remaining tasks after waiting some time Δ. Relaunch time Δ is varied from
0 to ∞ along the curve.

not incur any additional delay. Performing straggler relaunch
before the minimum task completion time s causes meaning-
less work loss and further delays the job completion, while
performing straggler relaunch at the right time significantly
reduces the latency. The cost is a direct function of the latency
in the absence of redundant tasks, hence reduced latency
implies reduced cost as well (as illustrated in Fig. 9).

Theorem 9: Suppose task execution times are i.i.d. with
Pareto(s, α). Consider executing a job of k tasks by relaunch-
ing all the remaining tasks after waiting some time Δ. Then,
the distribution of job completion time is given as

Pr{T > t}
= 1 − (�(t > s) (1 − (s/t)α))k

+ (q + �(t > Δ) (1 − (Δ/t)α) (1 − q))k

+ (q+�(t > Δ+s) (1−(s/(t−Δ))α) (1−q))k . (18)

Latency is given as

E[T] =

⎧⎪⎨
⎪⎩

Δ + L Δ ≤ s,

Δ(1 − qk) + L
(
(s/Δ − 1)

× I(1 − q; 1 − 1/α, k) + 1
) o.w.

(19)

Cost with (Cc) or without (C) task cancellation is given as

E[Cc] =

⎧⎪⎨
⎪⎩

kΔ+
1

α − 1
(ksα−L)+k(1−q)Δ Δ ≤ s,

α

α − 1
(k(1 − q)(s − Δ) + ks) o.w.

E[C] =

⎧⎪⎨
⎪⎩

kΔ + ks
α

α − 1
Δ ≤ s,

α

α − 1
(ks(2 − q)) − kΔ(1 − q)

α − 1
o.w.

(20)

where q = �(Δ > s) (1 − (s/Δ)α), and L = sk!Γ(1 −
1/α)/Γ(k + 1− 1/α) is the baseline latency of executing the
job without straggler relaunch.

Lemma 1: Suppose task execution times are distributed
as Pareto(s, α), and let Tnorel denote the baseline comple-
tion time for executing a job of k tasks without straggler
relaunch. A sufficient condition for reducing the cost and
latency of job execution by performing straggler relaunch is
given by

E[Tnorel] > 4s. (21)

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2276 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

This gives a looser sufficient condition on the tail index as

α < ln(k)/ ln(4). (22)

Optimal relaunch time to execute the job with minimum cost
and latency is approximately given as

Δ∗ ≈
√

sE[Tnorel] = s

√
k!Γ(1 − 1/α)

Γ(k + 1 − 1/α)
. (23)

This implies that average fraction of the tasks that are
relaunched by the optimal strategy is approximately given as

p∗ ≈ (s/E[Tnorel])
α/2 ≈ Γ(1 − 1/α)−α/2

√
k + 1

. (24)

Sufficient conditions and the approximations given above are
asymptotic and become exact in the limit k → ∞.

An approximate expression for the relaunch time Δ∗ that
minimizes the cost and latency of job execution is given in
Lemma 1. The given approximation converges to the true
optimal as k gets larger, e.g., approximate Δ∗ is very close to
the true optimal for the case shown in Fig. 9 with k = 100.
Optimal relaunch time is an increasing function of the number
of tasks k and the task sizes s, which intuitively makes sense.
Also it is a decreasing function of α, meaning that it is better to
relaunch earlier when the tail of task execution times is lighter,
while for heavier tail, delaying relaunch further helps to
identify the stragglers better. This is because relaunching tasks
is a choice of canceling the work that is already completed
in order to get possibly lucky and execute the replacement
copies much faster. When the task execution times are heavier
in tail, the residual lifetime of the straggler tasks is expected
to be much larger, and the gain of relaunching stragglers can
compensate for the work loss. However with lighter tailed task
execution times, it is better to try our chance with relaunching
earlier and keep the work loss limited.

As discussed above Δ∗ gets smaller as α increases, but this
does not imply relaunching a larger fraction of the job’s tasks.
When relaunching is performed after waiting Δ∗, fraction p∗

of the tasks that are relaunched monotonically decreases4 with
α, that is, fewer tasks get relaunched on average by the optimal
strategy as the tail gets lighter. In addition, p∗ decreases with k,
which means for jobs with larger number of tasks, optimal
strategy dictates relaunching smaller fraction of the tasks. For
instance, suppose α = 2 and k = 10, then p∗ ≈ 0.17, which
implies 17% of the tasks would need to be relaunched on
average with the optimal strategy, while if k = 100, then only
6% of the tasks would need to be relaunched on average.

We assume relaunching tasks does not introduce any addi-
tional delay. Given that, the cost of job execution directly
changes with the latency, thus, optimal relaunch time that
minimizes latency also minimizes the cost. Note that cost of
relaunching may not be ignored in practice, which is why
results presented here on the performance of straggler relaunch
can only be taken as optimistic guidelines.

For relaunching to be effective, work loss due to the cancel-
lation of already running tasks should be compensated by the

4p∗ is a monotonically decreasing function of α. As the tail of task execution
times becomes very heavy; limα→1 Γ(1 − 1/α)−α/2 = 1, and as the tail
becomes very light; limα→∞ Γ(1 − 1/α)−α/2 ≈ 0.749.

Fig. 10. Maximum reduction in the latency of executing a job of k tasks
with straggler relaunch (relative to the baseline without relaunch) depends on
the tail of the task execution times. Vertical dashed lines indicate the sufficient
condition given on α in Lemma 1.

gain of not having to wait very long for the stragglers. In other
words, straggler relaunch is effective only if the tail of task
execution times is heavy beyond a level. Otherwise relaunch-
ing tasks hurts performance; it incurs additional cost and
latency in the job execution. For instance, relaunching always
hurts when task execution times have light tail, i.e., when the
tail decays at least exponentially fast.

Lemma 1 presents an asymptotic sufficient condition for
straggler relaunch to be effective, which has a particularly nice
form; if the baseline latency without relaunching is greater
than 4 times the minimum task completion time s, then
relaunching stragglers at the right time will reduce the cost
and latency of job execution. Reformulation of this condition
in terms of the tail index α suggests that straggler relaunch
is effective as long as α is less than a threshold, which is the
same as saying the tail of task execution times should be heavy
beyond a level. Note that this condition on the tail index α
does not depend on the minimum task completion time s and
is only proportional with the logarithm of the scale k of job
execution, which we also validate by numerically computing
the exact necessary and sufficient condition on α (see Fig. 10).

VI. REDUNDANCY TOGETHER WITH RELAUNCH

In this section, we consider employing redundant tasks and
straggler relaunch jointly for straggler mitigation.

A. Zero-Delay Redundancy With Relaunch

Firstly, we consider launching the redundant tasks (c repli-
cas for each task or n − k coded tasks) together with the
k initial tasks of a job, then relaunching each remaining task
(initial or redundant) after waiting some time Δ. Thm. 10 gives
exact expressions for the latency and Lemma 2 presents an
asymptotic sufficient condition for relaunching to be effective
in reducing latency, and also presents an approximate value for
the optimal relaunch time. Relaunch time Δ does not affect
the level of added redundancy, hence the optimal relaunch time
that minimizes latency also minimizes cost.

Theorem 10: Suppose task execution times are i.i.d. with
Pareto(s, α). Consider launching a job of k tasks together
with redundant tasks then relaunching all remaining tasks after
waiting some time Δ. Let E[Tnorel] denote the baseline latency
without straggler relaunch as given in Thm 5.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2277

Fig. 11. Cost vs. latency curves for executing a job of 100 tasks by adding redundancy and performing straggler relaunch after time Δ. Each curve is plotted
by interpolating between the incremental steps of time Δ.

When job is launched by adding c replicas for each task,

E[T] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ + E[Tnorel] Δ ≤ s,

Δ(1 − qk) + E[Tnorel]
(
1+

(s/Δ − 1)I(1 − q; 1 − 1/α, k)
) o.w.

(25)

where q = �(Δ > s)
(
1 − (s/Δ)(c+1)α

)
.

When job is launched by adding n − k coded tasks,

E[T] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ + E[Tnorel] Δ ≤ s,

ΔI(1 − q; n − k + 1, k) + E[Tnorel]
(
1+

(s/Δ − 1)I(1 − q; n − k + 1 − 1/α, k)
) o.w.

(26)

where q = �(Δ > s) (1 − (s/Δ)α).
Lemma 2: Suppose task execution times are i.i.d. with

Pareto(s, α). Let E[Tnorel] denote the latency for a job of
k tasks that is launched together with task replicas or coded
tasks (without straggler relaunch), which is given in Thm. 5.
A sufficient condition that guarantees reduction in cost and
latency by also performing straggler relaunch is given as

E[Tnorel] > 4s. (27)

A looser sufficient condition is, when task replicas are used

α <
ln(k)

(c + 1) ln(4)
, (28)

or when coded tasks are used

α <
ln (n/(n − k + 1))

ln(4)
. (29)

Optimal relaunch time for minimum cost and latency (either
when task replicas or coded tasks are used) is approximately

Δ∗ ≈
√

sE[Tnorel]. (30)

Sufficient conditions and the approximations given above are
asymptotic and becomes exact in the limit k → ∞.

Proof Sketch: Very similar to the proof of Lemma 1.
Launching a job with redundant tasks mitigates the effect

of stragglers, so does relaunching the stragglers after waiting
some time. Therefore, the relative latency and cost reduction
harvested from straggler relaunch decreases when it is used
jointly with redundancy. Straggler relaunch is effective only
when the effect of stragglers is significant, i.e., when the tail
of task execution times is heavy beyond a level (cf. Lemma 1).

Adding redundant tasks into the job execution already “cuts”
some of the tail, hence the initial tail heaviness that is required
for relaunching to be effective increases with the level of
added redundancy. Sufficient conditions (28) and (29) given
on the tail heaviness are asymptotic representations of this
observation. The upper threshold given on the tail index as
the sufficient condition decays (i.e., required tail heaviness
increases) with the level of added redundancy faster when
task replicas are used (decays as 1/(c+1)) compared to using
coded tasks (decays as ln (n/(n − k + 1))).

B. Delayed Redundancy With Relaunch

Secondly, we consider adding redundant tasks and perform-
ing straggler relaunch jointly after waiting some time Δ. Cost
and latency of job execution in this case are are presented in
Thm. 11. Using these expressions, Fig. 11 plots the cost vs.
latency tradeoff by varying Δ from 0 to ∞ for different levels
of added redundancy.

When the number of added coded tasks is low, there exists
an optimal time Δ that minimizes the cost and latency of
job execution (Left, Fig. 11). This is the same observation
that we previously made for the case of performing straggler
relaunch without adding any redundancy (cf. Fig. 9). As the
number of added coded tasks increases, redundancy becomes a
greater effect on the cost and latency than straggler relaunch,
hence waiting for some time before adding redundant tasks
becomes ineffective to reduce the cost (Middle, Fig. 11). This
is the same observation that we made previously for the case
of employing delayed redundancy without straggler relaunch
(cf. Fig. 1). When task replicas are used rather than coded
tasks, regardless of the number of added replicas, delaying
Δ is ineffective to reduce the cost (Right, Fig. 11). This is
because replicating each remaining task after some time Δ
even by one is enough to dominate the effect of straggler
relaunch on the cost vs. latency tradeoff.

Theorem 11: Suppose task execution times are i.i.d. with
Pareto(s, α). Let E[Tnored] denote the latency of executing a
job of k tasks by relaunching each remaining task after some
time Δ (without adding redundant task) as given in Thm. 9.

Consider relaunching and adding c replicas for each
remaining task after some time Δ. Then, latency is given as

E[T] ≈
⎧⎨
⎩Δ + sk!

Γ(1 − 1/α̃)
Γ(k + 1 − 1/α̃)

Δ ≤ s,

E[Tnored] + f(α̃) − f(α). o.w.

(31)

for f(α) = s Γ(1−1/α)
Γ(−1/α) B(k − kq + 1,−1/α).

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

2278 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Cost with (Cc) or without (C) task cancellation is given as

E[Cc] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kΔ + ks(c + 1)
α̃

α̃ − 1
Δ ≤ s,

kα

(α − 1)
(s − Δ(1 − q))

+k(1 − q)Δ + ks(c + 1)(1 − q)
α̃

α̃ − 1
o.w.

E[C] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kΔ + ks(c + 1)
α

α − 1
Δ ≤ s,

kα

(α − 1)
(s − Δ(1 − q))

+k(1 − q)Δ + ks(c + 1)(1 − q)
α

α − 1
o.w.

where α̃ = (c + 1)α and q = �(Δ > s)(1 − (s/Δ)α).
Consider adding n−k coded tasks instead of task replicas.

Then, latency is given as

E[T] ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δ + s
n!

(n − k)!
Γ(n − k + 1 − 1/α)

Γ(n + 1 − 1/α)
Δ ≤ s,

Δ(1 − qk) + s
(B(n − kq + 1,−1/α)

B(n − k + 1,−1/α)

+kB(q; k, 1 − 1/α) − qk
)

o.w.

(32)

Cost with (Cc) or without (C) task cancellation is given as

E[Cc]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

kΔ+s
n

α−1

(
α− Γ(n)

Γ(n−k)
Γ(n−k+1−1/α)

Γ(n+1−1/α)

)
Δ≤s,

α

α − 1
(k(1 − q)(s − Δ) + ns)

+ k(1 − q)Δ − s(n − k)qk

− s

α − 1
(n − k)

B(n − kq + 1,−1/α)
B(n − k + 1,−1/α)

.

o.w.

E[C]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kΔ + ns/(1 − 1/α)
Δ ≤ s,

α

α − 1
(
ks(1 − q + qk)

+ ns(1 − qk)
)− kΔ(1 − q)

α − 1

o.w.

(33)

where q = �(Δ > s)(1 − (s/Δ)α).

VII. CONCLUSIONS

This paper presented a theoretical performance evaluation
of the two most widely deployed straggler mitigation tech-
niques for distributed job execution: i) adding redundant tasks
(together with the original tasks or after waiting some time)
into the job and waiting only for a sufficient subset of all
launched tasks for job completion, ii) waiting for some time
after launching the job and relaunching its remaining tasks.
We derived the cost and latency expressions for executing
the job by applying either one of these techniques or both
jointly. Using the derived expressions, we found the following

guidelines for the application of these techniques: i) Waiting
for some time before launching redundant tasks is not effective
to reduce the cost of redundancy. ii) Launching a job with
redundant tasks can reduce not only its latency but also its
cost. iii) Launching a job with MDS coded tasks achieves
less cost (hence incurs less additional load on the system) and
latency than using task replicas. iv) Relaunching remaining
tasks after waiting some time is effective only if the tail of
task execution times is heavier beyond a level, and employing
redundant tasks together with straggler relaunch increases this
tail heaviness requirement.

In our system model, we abstract away the job dispatching
and resource sharing dynamics by modeling execution times
of tasks within a job as i.i.d. random variables. This rather
lumped model allows deriving insightful expressions that
allows evaluating and comparing widely deployed straggler
mitigation techniques. However, application of these tech-
niques modifies the system dynamics and it is necessary to
augment the model to reflect the impact of this modification on
task execution times. This is an ongoing challenge for us and
Sec. IV presented a simulation driven attempt in this direction.

REFERENCES

[1] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:
Which clones should attack and when?” ACM SIGMETRICS Perform.
Eval. Rev., vol. 45, no. 2, pp. 12–14, 2017.

[2] M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
relaunch of tasks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45,
no. 3, pp. 224–231, 2018.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” ACM
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, 2007.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[5] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using mantri,” in Proc. OSDI, Oct. 2010, vol. 10, no. 1, p. 24.

[6] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proc. 9th USENIX Conf. Netw.
Syst. Design Implement., 2012, p. 2.

[7] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[8] X. Ouyang, P. Garraghan, R. Yang, P. Townend, and J. Xu, “Reducing
late-timing failure at scale: Straggler root-cause analysis in cloud dat-
acenters,” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2016, pp. 1–3.

[9] H. Zhou, Y. Li, H. Yang, J. Jia, and W. Li, “BigRoots: An effective
approach for root-cause analysis of stragglers in big data system,” 2018,
arXiv:1801.03314. [Online]. Available: https://arxiv.org/abs/1801.03314

[10] J. Dean. (2012). Achieving Rapid Response Times in Large Online
Services. [Online]. Available: https://research.google.com/people/jeff/
latency.html

[11] N. J. Yadwadkar and W. Choi, “Proactive straggler avoidance using
machine learning,” Univ. California, Berkeley, Berkeley, CA, USA,
White Paper, 2012.

[12] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,” in
Proc. OSDI, 2008, vol. 8, no. 4, pp. 29–42.

[13] S. Melnik et al., “Dremel: Interactive analysis of Web-scale datasets,”
Proc. VLDB Endowment, vol. 3, pp. 330–339, Sep. 2010.

[14] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. 10th USENIX Symp.
Netw. Syst. Design Implement., 2013, pp. 185–198.

[15] A. Vulimiri et al., “Low latency via redundancy,” in Proc. 9th ACM
Conf. Emerg. Netw. Exp. Technol., 2013, pp. 283–294.

[16] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,” in Proc.
ACM Conf. Special Interest Group Data Commun., 2015, pp. 379–392.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

AKTAŞ AND SOLJANIN: STRAGGLER MITIGATION AT SCALE 2279

[17] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and B. Van Houdt,
“A better model for job redundancy: Decoupling server slowdown and
job size,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3353–3367,
Dec. 2017.

[18] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[19] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in
Proc. 50th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2012, pp. 326–333.

[20] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2012, pp. 2766–2770.

[21] S. Kadhe, E. Soljanin, and A. Sprintson, “When do the availability codes
make the stored data more available?” in Proc. 53rd Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep./Oct. 2015, pp. 956–963.

[22] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100–2108.

[23] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2017.

[24] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradi-
ent coding,” 2016, arXiv:1612.03301. [Online]. Available: https://arxiv.
org/abs/1612.03301

[25] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-
optimal straggler mitigation for distributed gradient methods,” 2017,
arXiv:1710.09990. [Online]. Available: https://arxiv.org/abs/1710.09990

[26] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5434–5442.

[27] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler
mitigation in distributed matrix multiplication: Fundamental limits
and optimal coding,” 2018, arXiv:1801.07487. [Online]. Available:
https://arxiv.org/abs/1801.07487

[28] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using Reed–Solomon codes,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2018, pp. 2027–2031.

[29] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.

[30] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace
analysis,” Intel Sci. Technol. Center Cloud Comput., Carnegie Mellon
Univ., Pittsburgh, PA, USA, Tech. Rep. ISTC-CC-TR-12-101, 2012,
p. 84.

[31] G. Ananthanarayanan et al., “GRASS: Trimming stragglers in approx-
imation analytics,” in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement., 2014, pp. 289–302.

[32] J. Nair, A. Wierman, and B. Zwart, “The fundamentals of heavy-tails:
Properties, emergence, and identification,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 41, no. 1, pp. 387–388, 2013.

[33] M. E. Crovella, “Performance evaluation with heavy tailed distributions,”
in Proc. Workshop Job Scheduling Strategies Parallel Process., 2001,
pp. 1–10.

[34] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format + schema,” Google, Mountain View, CA, USA, White Paper,
2011.

[35] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based
routing for opportunistic networks,” in Proc. ACM SIGCOMM Workshop
Delay-Tolerant Netw., 2005, pp. 229–236.

[36] G. Joshi, “Boosting the throughput of a multi-server system via adaptive
task replication,” in Proc. ACM SIGMETRICS. MAMA, 2017.

[37] D. L. Brown et al., “Cross cutting technologies for computing at
the exascale,” US DoE Office Adv. Sci. Comput. Res., Nat. Nucl.
Secur. Admin., Washington, DC, USA, Tech. Rep. PNNL-20168, 2010.
[Online]. Available: https://digital.library.unt.edu/ark:/67531/metadc
841613/

[38] S. Hofmeyr, C. Iancu, J. Colmenares, E. Roman, and B. Austin, “Time-
sharing redux for large-scale HPC systems,” in Proc. IEEE 18th Int.
Conf. High Perform. Comput. Commun., IEEE 14th Int. Conf. Smart
City, IEEE 2nd Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS),
Dec. 2016, pp. 301–308.

[39] F. W. J. Olver et al., Eds., NIST Digital Library of Mathematical Func-
tions, Release 1.0.24. 2019. [Online]. Available: http://dlmf.nist.gov/

[40] R. Bapat and M. Beg, “Order statistics for nonidentically distributed
variables and permanents,” Sankhyā: Indian J. Statist., A, vol. 51, no. 1,
pp. 79–93, 1989.

[41] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in
Order Statistics. Philadelphia, PA, USA: SIAM, 2008.

[42] B. C. Arnold, Pareto Distribution. Hoboken, NJ, USA: Wiley, 2015.
[43] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O

Ports to Process Management. Sebastopol, CA, USA: O’Reilly Media,
2005.

[44] J. Nair, A. Wierman, and B. Zwart, “Tail-robust scheduling via limited
processor sharing,” Perform. Eval., vol. 67, no. 11, pp. 978–995,
2010.

[45] W. Leland and T. J. Ott, Load-Balancing Heuristics and Process
Behavior, vol. 14, no. 1. New York, NY, USA: ACM, 1986.

[46] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime
distributions for dynamic load balancing,” ACM Trans. Comput. Syst.,
vol. 15, no. 3, pp. 253–285, 1997.

[47] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
lessons from a publicly available Google cluster trace,” Dept. EECS,
Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2010-95, 2010, vol. 94.

[48] N. Bansal and M. Harchol-Balter, “Analysis of SRPT scheduling: Inves-
tigating unfairness,” ACM SIGMETRICS Perform. Eval. Rev., vol. 29,
no. 1, pp. 279–290, 2001.

[49] M. Rytgaard, “Estimation in the Pareto distribution,” ASTIN Bull., J.
IAA, vol. 20, no. 2, pp. 201–216, 1990.

[50] I. B. Aban, M. M. Meerschaert, and A. K. Panorska, “Parameter
estimation for the truncated Pareto distribution,” J. Amer. Stat. Assoc.,
vol. 101, no. 473, pp. 270–277, 2006.

[51] A. P. Zwart, Queueing Systems With Heavy Tails. Eindhoven,
The Netherlands: Technische Univ. Eindhoven, 2001.

[52] T. Sakurai, “Approximating M/G/1 waiting time tail probabilities,”
Stochastic Models, vol. 20, no. 2, pp. 173–191, 2004.

[53] M. Olvera-Cravioto, J. Blanchet, and P. Glynn, “On the transition from
heavy traffic to heavy tails for the M/G/1 queue: The regularly varying
case,” Ann. Appl. Probab., vol. 21, no. 2, pp. 645–668, 2011.

[54] F. Tricomi and A. Erdélyi, “The asymptotic expansion of a ratio of
gamma functions,” Pacific J. Math., vol. 1, no. 1, pp. 133–142, 1951.

[55] R. Garrappa, “Some formulas for sums of binomial coefficients and
gamma functions,” Int. Math. Forum, vol. 2, no. 15, pp. 725–733, 2007.

[56] W. Gautschi, “Some elementary inequalities relating to the gamma and
incomplete gamma function,” Stud. Appl. Math., vol. 38, nos. 1–4,
pp. 77–81, 1959.

Mehmet Fatih Aktaş received the B.Sc. degree in electrical engineering
from Bilkent University, Ankara, Turkey, and the M.Sc. degree in computer
engineering from Rutgers University, where he is currently pursuing the Ph.D.
degree. His research interests include distributed computer systems, applied
probability, and reinforcement learning.

Emina Soljanin (S’90–M’95–SM’03–F’14) was a Distinguished Member of
Technical Staff for 21 years in Mathematical Sciences Research with Bell
Labs before moving to Rutgers in January 2016. She is currently a Professor
with Rutgers University. She is also a coding, information, and, more recently,
queuing theorist. Her interests and expertise are wide. Over the past quarter of
the century, she has participated in numerous research and business projects,
as diverse as power system optimization, magnetic recording, color space
quantization, hybrid ARQ, network coding, data and network security, and
quantum information theory. Dr. Soljanin is a co-organizer of the DIMACS
2001–2005 Special Focus on Computational Information Theory and Coding
and 2011–2015 Special Focus on Cybersecurity. She is a 2017 outstand-
ing alumnus of the Texas A&M School of Engineering, a 2016–2017
Distinguished Lecturer for the IEEE Information Theory Society, and the
2019 President for the Society. She served as an Associate Editor for Coding
Techniques for the IEEE TRANSACTIONS ON INFORMATION THEORY, on the
Information Theory Society Board of Governors, and in various roles on other
journal editorial boards and conference program committees.

Authorized licensed use limited to: Rutgers University. Downloaded on November 25,2020 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

