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Abstract—Leader-based data replication improves consis-
tency in highly available distributed storage systems via se-
quential writes to the “leader” nodes. After a write has been
committed by the leaders, “follower” nodes are written by a
multicast mechanism and are only guaranteed to be eventually
consistent. With Age of Information (Aol) as the freshness
metric, we characterize how the number of leaders affects
the freshness of the data retrieved by an instantaneous read
query. In particular, we derive the average age of a read query
for a deterministic model for the leader writing time and a
probabilistic model for the follower writing time. We obtain
a closed-form expression for the average age for exponentially
distributed follower writing time. Our numerical results show
that, depending on the relative speed of the write operation
to the two groups of nodes, there exists an optimal number of
leaders which minimizes the average age of the retrieved data,
and that this number increases as the relative speed of writing
on leaders increases.

I. introduction

Databases are a central part of online services [1],
[2]. They constantly execute write and read operations
from different clients/services. A large fraction of write
operations are updates to the currently stored data [3].
Each update increments the version of the data and sets
its timestamp to the current time. Read operations, on
the other hand, ask for the latest version of the data,
which also has the most recent timestamp. A write/read
operation is consistent if it writes to or reads from the
latest version of the data.

Data availability is a major objective in database
systems [4], [5]. To achieve high availability, data is
partitioned into multiple chunks, and each chunk gets
replicated in multiple storage nodes [6], |7]. These replicas
can possibly be located in different geographic locations to
further improve data availability and storage robustness.
However, according to the CAP theorem [8], availability
and consistency are not achievable at the same time in
a distributed system. Therefore, availability-consistency
trade-offs are inevitable in a distributed database.

Leader-based (replicated) databases have been proposed
to increase data consistency in large scale distributed
storage [9], [10]. In these databases, some of the storage
nodes assigned to a given chunk of data are elected as
leaders. Every write operation to the data chunk is first
written to the leaders, where sequential writes from one
leader to the next guarantee that they always have the
latest version of the data. Thus, write consistency is
guaranteed at the leaders. After sequential writes to the
leaders, the update is committed and gets transmitted

to a set of follower nodes via a multicast mechanism.
After an update is committed, it becomes available to
read and further updates may be initiated. Due to the
guaranteed leaders’ consistency and high availability (by
the existence of the replicas), leader-based systems are
widely deployed in practice. For example, Google Spanner
9], Amazon DynamoDB [11], Apple FoundationDB [12]
have used it as a part of their storage ecosystem, where
they employ the Paxos algorithm [13] for leader election
among the storage nodes. The Raft algorithm [14], an
alternative for Paxos, has been used by MongoDB and
InfluxDB as a leader election algorithm. These databases
are eventually consistent in that the data is guaranteed
to be consistent among the leader nodes, and the data
on each follower eventually will become consistent, in the
absence of subsequent writes.

Freshness of retrieved data in eventually consistent
database systems have been studied in [15]-[18]. With
a probabilistic definition of consistency, [15] studies the
delay-consistency trade-off in a distributed database sys-
tem. Authors in [17] establish a version-based staleness
metric and investigate the delay benefits of eventually
consistent databases and shed light on why they are
good enough in practice. Data staleness in dynamo-style
quorum-based replicated storage systems is studied in
[19]. In this work, using Aol as the freshness metric, the
average age of the retrieved data is studied for different
types of quorum consensus. Aol has been recently used
to characterize data freshness in various types of data
transmission systems [20]—[32].

Despite the existing work on eventually consistent
databases, we are far from understanding the dynamics
governing data freshness in such systems. In particular,
in a leader-based model, we know very little about the
effect of the number of leaders on the freshness of the
data retrieved by a read operation. Having more leaders
improves the consistency of the database since leaders are
guaranteed to have the latest version of the data. On the
other hand, due to the sequential, and thus time-costly
writes, having many leaders can prolong the commit time
of an update, which makes the update more stale when
it becomes available to read. Furthermore, the relative
speed of writing an update to the leaders, compared to
the multicast writing to the follower nodes, is a critical
factor in optimizing system parameters for increasing the
freshness of data retrieved by a read operation.

Using the Aol metric [33]-[43], we study the average



freshness of the data retrieved by a read query in a
leader-based replicated database. We develop two different
models for write operations to 1) the leaders, which are
written by sequential writes, and 2) the followers, which
are written through a multicast. We then derive the
dependence of the average age of the data retrieved by
a read query on our model parameters. We assume the
writing time to the leaders is deterministic and scales
linearly with the number of leaders. However, it is a
random variable for each follower. For the exponential
write time distribution of the follower nodes, we drive
a closed form for the average age of the retrieved data
by a read operation. Our numerical results show that,
depending on the relative speed of the write operation
to the two groups of nodes, there exists an optimal
number of leaders which minimizes the average age of the
retrieved data. In addition, we observe that the average
age monotonically increases or decreases with the number
of leaders, depending the relative speed of the write
operations. Furthermore, for a system with time-varying
demands, we show that it is possible to increase the
number of followers without increasing the average age,
when the data demand gets high.

IT. System model and Problem Formulation

Consider a leader-based database system, where each
data chunk is replicated on n nodes. Out of the n nodes
storing the same chunk one is elected as the leader. To
ensure write consistency, any write query first has to
update the leader. To further improve consistency, the
leader may initiate a series of sequential writes some other
nodes, which with the original leader form the leaders
group. We refer to the rest of the nodes as followers. An
update is initiated to the leaders and is committed once
it is written to all leaders. Each update is written in an
update round, which increments the version of the data
and updates its timestamp to the update initiation time. A
node is said to be consistent if it is written with the latest
update. Thus all leaders get consistent in every update
round, the followers may only be eventually consistent.

In our model, fresh updates are initiated to the leaders
at time instances 0, ¢, 2c, . ... The write operation requires
time ¢ to complete, and thus the kth update initiated at
time kc is committed at time (k + 1)c. We refer to the
time interval of length ¢ as a write slot. After a write is
committed to all leaders, it is forwarded to the followers,
and the next write is initiated by the system. An update
becomes available to read only after it is committed. We
assume that forwarding an update to the followers happens
through a multicast mechanism so that a random number
of follower nodes also receive the latest update in a given
round. Specifically, we assume the write time to each
follower node is described by the random variable T,.
Thus a follower receives the latest update only if T, < c.
We also assume that the T, are iid across the followers,
with CDF F,(t). We refer to a follower with the latest

version of the data as consistent; otherwise a followers is
non-consistent. Thus, the set of consistent followers may
be different in each round.

When a read query is generated, it is sent to r nodes.
The query size parameter r is fixed across the queries.
After reading from r possibly different versions of data,
the system responds to the query with the most recent
version among the r accessed nodes. A read query is
consistent if it retrieves the latest version of the data.
The consistency of a read query is guaranteed if it is sent
to at least one leader. However, sending every read query
to a leader may overload the nodes in the leader group,
which in turn reduces their availability [44]. In practical,
implementations of a leader-based database, e.g. Amazon
DynamoDB, consistency of the read queries is traded for
availability of the leader nodes by sending each query to
r randomly chosen nodes.

In our model, the system cancels the write of the kth
update on a follower if it is not written by the time (k+2)c,
i.e. the end of time slot k + 1. In other words, the kth
update gets preempted when update k + 1 is initiated to
the followers. Thus, the age process at the followers is
statistically the same across both the followers and the
time slots. The age process at the leaders is the same
across the leaders and the time slots, as well. Therefore,
to study the age of a read query it is sufficient to study the
age process at the nodes in a time slot [ke, (k + 1)c), for
any k € {0,1,2,...}. We assume the system has started
running at —oo and the arrival time of a read query 7, is
a uniform random variable in the range [0,c¢). Arrivals in
time slots [ke, (k4 1)c),k = 1,2,... observe statistically
the same age instances at the nodes, as arrivals in the
interval [0, c). We further note that, practical evaluations
in [45] show that the average latency of read operations is
an order of magnitude smaller than the write operations.
Therefore, we assume the read queries are instantaneous
in this work.

We study the average age of the data retrieved by a read
query, defined as follows. The age of information A;(t) (or
simply the age) at node ¢ at time ¢ is the time difference
between time ¢ and the timestamp wu;(¢) of the latest data
update at node i:

Ailt) = t — ui(d). (1)

The age of a read query A(t) at time ¢ is defined as the
minimum age over the set S, of nodes the query is sent
to:
A(t) = minAi(t). (2)
Leaders experience a different age process than the
followers since, in each update round, leaders are guar-
anteed to get the most recent update of the data while
the followers may or may not receive it. The age processes
at a leader and a follower are shown in Fig. [I| Leaders
are written in every update round and their data becomes
available only after every leader is updated and the write
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Fig. 1. The age process for a sample leader node and a sample
follower node. The leader nodes experience the same age process,
illustrated by Ajeader(t). The follower nodes may experience different
yet statistically identical age process, a sample path of which is
illustrated by Afonower(t)-

is committed, which is ¢ units of time after the update
initiation. Thus, the age process is the same for every
leader node, as shown by Ajeader in Fig.

The age processes at the follower nodes are statistically
identical, and illustrated by Agopower (t) in Fig. [1} since the
write time to the follower nodes are iid random variables.
(However, in each update round, a random subset of
followers receives the data at random times.)

III. Age Analysis

For a read query, r instances of the age processes are
sampled from the collective set of [ leaders and n — [
followers. The age of the read is the minimum of the ages at
the queried nodes. The age of the retrieved data depends
on the the types of nodes a read is sent to. Specifically,
we analyse the average age of a read query based on the
following partition:

e Bj: At least one node is chosen from the leaders,
e Bs: No node is chosen from the leaders.
The probability of having at least one leader queried is
1o 02
Pr{B} = )
1 r>n-—1L

r<n-—I,

3)

In what follows, we study the non-trivial case r < n —[.
Since leaders are guaranteed to receive every update,
they are always consistent, and with the freshest data.
Therefore, the age of the retrieved data in event B is the
age at leaders, characterized by the following lemma.

Lemma 1. Given Bj, the average age of a read query is

E[A|By] = 3¢/2. (4)

Proof. When B; occurs, the instantaneous age of the
read is ¢ + T,, where ¢ is the commit time of a write
operation and T, is the arrival time of the read query,
which is uniformly distributed in the interval [0, ¢). Then
the average age of a read can be calculated as

E[A|B] = /OC fr, ) E[A|By, T, = t]dt,
1 c

f/ (c+t)dt = 3¢/2. 0
cJo

When B; occurs, the age of the read query is the age at
the most recently updated follower, among the r followers
the read query is sent to. A follower is consistent at the
arrival time of a read T, if it is written with the most
recent update by T,. For instance, in Fig. [1} the follower
would not return the most recent (k — 2)th update to a
read arriving at T, = t;. Whereas, it would return the
most recent kth update to a read arriving at T, = t5. The
following lemma gives the average age of a read query in
event Bs.

Lemma 2. Given Bs, the average age of a read query is

B8] = ¥ ¢ ff—[lufz T

(5)

Proof. Under event Bs, the data is read from one of the
r selected followers, which we index (1),(2),...,(r). For
a given update to be successful at a follower, it should be
written at most ¢ units of time past the commitment of
that update. Thus, there is a fixed probability p. = F,(c)
(across the update rounds) that a follower successfully
receives an update. Accordingly, we define the geometric
random variable Z(;) as the number of update rounds
follower (i) has missed after its latest update. Thus,
Ziy ~ Geo(l — p). At the time of arrival Tj, the age
at the selected follower i is

A(i) = Z(Z-)c + Ty. (6)
The age of a read query is

A= min{A(l), A(Q), ceey A(,)} (7)

Therefore, the average age of a read can be written as
E[A‘BQ] = ]E[min{Z(l), ey Z(T)}‘BQ]C + E[TABQL (8)
= ]E[Zmin‘Bg]C + E[Ta],

where Z,in is the number of missed update rounds at the
most recently updated follower, among the r followers the
read query is sent to. Since the Z(;) are independent,

E[Zuin| Bs] = / Frs (OVE[Zunin| To = £, Bo)dt
0

%/ > (Pr{Z) > 2|T, = t,Bo}) dt
0 =0
(9)
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Fig. 2. The average age of a read query vs. the number of leaders, see
, when n = 50, r = 1 and A = 1. Increasing [ either monotonically
increases the average age (kK = 50) or monotonically increases it
(k > 100).

Defining F,(t) = py,

PI‘{Z(,L) = 1|Ta = t,Bg} = P¢,
Pr{Z(z) = 2|Ta =1, BQ} = (1 - pt)pm
Pr{Z(z) = 3|Ta =1, BQ} = (1 - pt)(]- - pc)pca

Pr{Z(i) =jlTa =1, B2} = (1 —pe)(1 — pC)j_2p0~ (10)
Therefore,

PY{Z(Z) > O‘Ta =1, BQ} =1,
PI‘{Z(l) > 1‘Ta = t, BQ} =1 — Pt,
Pr{Zu > 2T, = t, B2} = (1 —p:)(1 —pe),

Pr{Zu > 2|T, =1, B2} = (1 — py)(1 —pe)* L
Substituting in @ gives

(11)

1 [ .
E[Zumin|Ba] = E/O Z (Pr{Z > 2|T, = t,Bs}) " dt
z=0
l/c
CcJo
1 — ¢ r
D (E ALl T NI
z=1 0

Ll - P

14> (1 —p)"(1— pc)“Z—”] dt
z=1

=1 12
M CET (12)
Finally, by substituting (12) in (8),
C T
1— F,(t)] dt
EA|B] = 2 4 Jo 0= Ful®)] 0

2 T [1— Fy(a]

Theorem 1. When the follower writing time 7T, is
exponential(\), the average age of a read query is
3¢

n—l
ElA] = 2 %Q;

Proof. With F,(t) =1 —e |

(13)

/0 [1 - Fw(t)]rdt = % (1 _ e—)w“c) ,

and, 1 —[1—F,(c)]” = (1 — e=*"), which by substituting
in completes the proof. O

IV. Numerical Results

In this section, we present numerical results based on
our average age analysis. First, we study the effect of the
number of leaders on the average age of a read query. Since
the writes to the leaders occur sequentially, the number
of leaders should affect the commit time c¢. On the other
hand, knowing that all the nodes are the members of the
same ecosystem, there should be a connection between
the writing time to a leader and that of a follower node.
Accordingly, we assume c is related to the number of
leaders [ and the rate \ of the write process to the followers
by
kRN (14)
where k can be interpreted as the relative speed of writing
to the leaders compared to writing to a follower. Note
that this is not the only model to scale ¢ with the other
system parameters; there are other possibilities. We think
of k as an inherent factor of the underlying system and
show our results for a range of values. With this model
and T, ~ Exp()), the average age of a read query is

n—l
A2k (M)
We further assume that the time unit is chosen such that
A =1 and the average write time to a follower is one time
unit.

Fig. [2| shows the variation of the average age of a read
query as the number of leaders change, when n = 50 and
r = 1. The effect of increasing the number of leaders on
the average age depends on the parameter k. With k£ = 50
the average age increases monotonically; while for £ > 100,
it decreases, also monotonically, with [. Intuitively, when
writing on leaders is relatively slow, i.e. k is small, having
more leaders within a fixed number of nodes increases the
staleness of an update, since it is available to read only
after it is committed. On the other hand, when writing to
the leaders is fast (k is large), then having more leaders
increases the chance of a read query to be sent to a
consistent node. This also can be verified from by
substituting A =1, r = 1 and n = 50,
75 l
E[A]l =1+ {k 1] e (16)

(15)
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Fig. 3. The average age of a read query vs. the number of leaders, see
, when n =50, »r =4 and A = 1. With small k, the average age
increases monotonically with [. With larger k, it decreases initially,
reaches an optimum point and then it increases.

In Fig. [3] the effect of number of leaders on average
age is illustrated when n = 50 and r = 5. With a larger
size of read query, the probability that a read query is
sent to a consistent node is higher. For that reason the
average age is dropped in Fig. |3| compared to Fig. 2l On
the other hand, the monotonic changes in the average
age do not occur for every value of k with » = 5. For
k > 100, the average age decreases initially with the
number of leaders and after reaching an optimum point
it starts increasing. The reason for this behaviour can
be explained as follows. Increasing the number of leaders
has two competing effects on the average age. First, by
increasing the commit time it increases the staleness of
an update. Second, by increasing the number of leaders
and, at the same time, reducing the number of followers
it increases the probability of a read query to be sent to
a consistent and receive (relatively) less stale data. Now,
when r is large, the probability that a read query is sent
to a consistent node is already high. Therefore, the second
effect has smaller contribution to the average age. Thus,
increasing the number of leaders, even when they are fast
to write, does not decrease the average age monotonically.
From , the range of k for which the average age initially
decreases is k > [3n(n —1)/2(n —r)]. With n = 50 and
r = 5, the average age initially decreases with k > 82.

It is clear that increasing the size of a read query r
reduces the average age of its retrieved data. Furthermore,
with fixed [, increasing the number of nodes reduces the
probability of a read query to be sent to a consistent
node and thus it increases the average age, as it is shown
in Fig. Nevertheless, the effect of changing both n
and r, at the same time, is more complex. Consider the
following scenario. A leader-based database has stored a
data chunk, with parameters n, r and [. Due to a growth in
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Fig. 4. Average age of a read query vs. the number of nodes, see
(13), when r» = 10, I = 5 and A = 1. The average age increases
monotonically with the number of nodes.

the demand, the system administrator decides to increase
the number of replicas n, but without deteriorating the
performance. To that end, she could increase the size
of read queries r and therefore may ask the following
question: how much increment in 7 is needed when n
increases to maintain the same average age? Our numerical
results show that, with establishing a relationship between
n and r, one can possibly avoid the increase in the average
age as n increases. For instance, in Fig. [5| the relationship
between the two parameters is r = 10 + n/20. With this
dependence, we can see that increasing the number of
nodes beyond n = 100 does not increase the average age.
This result could be especially useful for systems with
time-varying demands. Finding the exact dependence,
however, is out of the scope of this paper and is left as
an open problem for future study.

V. Conclusion

The average age of the retrieved data by an instanta-
neous read query in a leader-based database was studied.
With a deterministic model for the writing time on the
leaders and a probabilistic model for the writing time on
a follower, the average age of read query was analyzed.
Closed-form average age under exponential distribution
of the follower writing time was derived. It was shown
numerically that, when the writing time on the leaders
group scales linearly with the number of leaders, the
average age could monotonically increase, monotonically
decrease or behave non-monotonically, depending on the
size of the read query and the relative speed of writing on
a leader to writing on a follower. Furthermore, for a data
with dynamic demands, it was shown that it is possible
to keep the average age fixed when the number of follower
nodes increases, with a slight increase in the size of the
read query.
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