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Abstract— Queuing systems with redundant requests have
drawn great attention because of their promise to reduce the
job completion time and variability. Despite a large body of
work on the topic, we are still far from fully understanding
the benefits of redundancy in practice. We here take one step
towards practical systems by studying queuing systems with
bi-modal job service time distribution. Such distributions have
been observed in practice, as can be seen in, e.g., Google
cluster traces. We develop an analogy to a classical urns
and balls problem, and use it to study the queuing time
performance of two non-adaptive classical scheduling policies:
random and round-robin. We introduce new performance
indicators in the analogous model, and argue that they are
good predictors of the queuing time in non-adaptive scheduling
policies. We then propose a non-adaptive scheduling policy
that is based on combinatorial designs, and show that it
has better performance indicators. Simulations confirm that
the proposed scheduling policy, as the performance indicators
suggest, reduces the queuing times compared to random and
round-robin scheduling.

I. INTRODUCTION

In distributed computing/storage systems, redundancy
plays an important role in harnessing the mean sojourn
time of jobs, [1] and [2]. It is widely studied in theory
[3], [4], and employed in practice, [5], [6]. Redundancy is
particularly beneficial in systems with high variability in job
service times [7].

In systems with multiple servers, each with its own
queue, submitting redundant copies of an arriving job to
multiple servers brings twofold benefit. First, by waiting
in multiple queues, jobs get to service faster (on average)
than the no-redundancy scenario. This happens because
redundancy brings diversity to queuing time of the jobs,
which on average decreases the waiting time in the queue
since some copies of each job face shorter queues than
the others. The second benefit arises when jobs experience
high variability in their service time. This problem, which
is caused by "stragglers" [8], can significantly increase the
average service time and its variability [9]. By letting jobs
be served concurrently at multiple servers, jobs experience
the minimum service time across the servers [10].

Two scenarios have been proposed for treating redun-
dancy in distributed systems. In the first scenario, [3] and
[11], copies of an arriving job are submitted to multiple
servers and the redundant copies get cancelled once the
first copy starts service. The first copy of a job starting
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the service is the one which faces the least-work-left queue
among all the copies. This scenario is beneficial when the
variability in queuing times is high. For instance, systems
with bi-modal or multi-modal service time of jobs could
benefit from it. Note that, in this scenario redundancy incurs
no extra service cost, since only one copy of a job gets into
service. In a second scenario, [7], on the other hand, copies
of a job may get into service concurrently and the redundant
copies get cancelled only when the first copy finishes
service. The gain of this scenario is that it can reduce the
variability in the life time of the jobs, i.e, queuing time plus
service time. As an example, systems with heterogeneous
servers or homogeneous servers with non-careful resource
sharing could benefit from this scenario.

Job scheduling problems in distributed systems has been
under study since the emergence of these systems [12].
This problem has been studied with different objectives,
e.g., load balancing [13], fairness [14], minimizing the
average/variability of job life time in the system [15], max-
imizing resource utilization [16]. Since these objectives are
not always aligned, studies have been devoted to designing
scheduling policies that can provide a reasonable trade-
off [14]. In the case of jobs with redundancy, a related
line of work looks into how many servers should be used
for job replication, [7] and [17]. In general, scheduling
policies can be categorized into adaptive and non-adaptive
policies. While adaptive policies, e.g., join the shortest
queue [18] or power-of-d choices [7], use information of
queues’ length/servers’ workload to pick servers for arriving
jobs, non-adaptive policies, e.g., random or round robin
[19], make a blind decision. In systems with redundancy,
multiple servers have to be selected, and thus the problem
could be exponentially harder in a system with redundancy
than in its no-redundancy counterpart. The role of redun-
dancy to diversify the queuing/service time also adds a
new dimension to the scheduling problem, and the classical
scheduling policies, designed for no-redundancy systems,
may not have the expected performance in systems with
redundancy.

In this work, we consider a distributed system with n
servers, each with its own queue. Job service times follow
a bi-modal behavior: an arriving job (on average) has either
a short or long service time. The service requirement of
a job is not known upon arrival. This model has been
observed in practice; see e.g, Google trace data [20]. Upon
arrival, r copies of each job (r ≤ n) get scheduled in r
different servers. The service time of each copy is sampled



from a fast exponential distribution if the job is short or
a slow exponential distribution if the job is long. With bi-
modal jobs’ service time, there will be a high queuing time
variability across the copies of a job. Nevertheless, since the
exponential distribution is not heavy-tailed, a job will not
face high variability in service time across its redundant
copies. Accordingly, we consider the first scenario for
handling redundancy, where the redundant copies of a job
get cancelled as soon as the first copy starts the service. In
this setup, by developing an analogy to the classical urns
and balls problem, we study the performance of two well
known non-adaptive scheduling policies, random and round-
robin. We then propose a new non-adaptive scheduling
policy based on combinatorial block designs which shares
the positive capabilities of both random and round-robin
policies without having their negative properties. Then,
through simulation of the queuing system, we show that
the new scheduling policy outperforms the existing non-
adaptive policies by a considerable margin.

This paper is organized as follows. In Sec. II, we present
the queuing system model. In Sec. III, we develop an
urns and balls analogy to our queuing problem, and define
and analyze there performance indicators in the analogous
system. In Sec. IV, we analyse our queuing system with
different scheduling policies by simulation, and show that
its performance is indeed well predicted by the performance
indicators of the analogous urns and balls system.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Architecture and Service model

In our studied system, shown in Fig. 1, there are n identi-
cal servers. Upon arrival, r copies of a job get scheduled into
r servers and once the first copy enters service the redundant
copies get cancelled. The service time of each copy of a job
is sampled from a fast exponential distribution if the job is
short and from a slow exponential distribution if the job is
long. Let’s define the exponential random variable τ , with
rate µ1, to be the service time of short jobs and

q =
average service time of long jobs
average service time of short jobs

. (1)

The average service time of long jobs is the random variable
qτ , which is an exponential with rate µ1/q. This model for
scaling the service time distribution is also proposed in [21].
We model the frequency of arriving a long job by p ∈ [0, 1],
such that an arriving job is a long one with probability p
and a short one with probability 1− p.

B. Scheduling Policies

We consider non-adaptive scheduling policies, where
servers are selected for arriving jobs with no side knowledge
of the workloads on servers. We are interested in the effect
of scheduling policies on the queuing time of jobs, defined
as the waiting time in the queue experienced by the first
copy that starts service. Among non-adaptive policies, we
specially focus on random and round-robin, due to their
popularity both in theory and practice. With random policy,

Fig. 1. System model.

for each arriving job r servers are randomly selected and
one copy gets assigned to each server. Round-robin policy
on the other hand takes a more structured approach, where
it assigns jth copy of ith arriving job to the server indexed
by ((i − 1)r + j) mod n for j = 1, 2, . . . , r. We then
propose a new scheduling policy based on combinatorial
block designs, which is also a non-adaptive policy, and show
how it reduces the average queuing time by managing the
overlaps between set of selected servers across the jobs.

For scheduling jobs with bi-modal service time redun-
dantly, the following two considerations have to be taken
into account. First, load balancing should not be compro-
mised, in the sense that the amount of actual workload
assigned to the servers should be balanced. Note that,
load balancing has been the central objective for design-
ing schedulers in queuing systems. Nevertheless, we have
observed that, with bi-modal jobs’ service time behavior,
the following objective should also be considered while
designing a scheduling policy: the set of servers assigned
to a job should make as less overlaps as possible with the
set of servers assigned to the existing jobs in the system. To
understand the importance of the second objective, consider
the case where a small job arrives and, among others, there
is a large job waiting in r queues. If the set of servers
assigned to the small job completely overlaps with the
servers that are already assigned to the large job then the
small job is trapped behind the large one in every queue its
assigned to. Therefore, it will definitely experience a long
service time while waiting in the queue. Whereas, if the sets
of assigned servers has a comparatively few overlaps, then
the small job may find a queue in which it has to wait much
less than the queues in which it has overlap with a large
job. Therefore, with bi-modal jobs’ service time behavior,
a scheduler should be able to minimize overlaps between
the set of assigned servers to jobs. In other words, it should
be able to provide enough diversity in queuing times across
the redundant copies of every arriving job.

To improve load balancing, a round-robin assignment of
jobs may be helpful. This policy achieves the best expected
balance in the loads assigned to servers. However, in terms
of diversity of redundancy it is inferior to the other policies
we study here, the reason of which will be quantified in
Section III. Random policy, on the other hand, performs
better in terms of diversifying redundancy but it is not as
effective as round-robin in terms of load balancing.



C. Problem Statement

Analyzing queuing time with multiple parallel servers
and general distribution of service time of jobs is known
to be a hard problem and only approximations, based on
first and second moment of service time distribution, have
been proposed, e.g [22], [23]. Nevertheless, [24] shows
that even these approximations are not accurate, since the
queuing time in a queuing system varies with the third
moment of service time distribution quite drastically [24,
Fig.1]. Queuing systems with redundancy, on the other hand,
are studied in literature, e.g. [3], [11], [21], [25]. With
redundancy, two scenarios for the cancellation of redundant
copies of a jobs have been studied; cancellation after the
first copy starts service, [3], [11], and cancellation after the
first copy finishes service, [21], [25]. As stated earlier, we
consider the former scenario in this work.

The metric of interest for us is the queuing time in
systems with redundancy. We define the queuing time of
a job as the time interval between the arrival of the job
and the entrance of its first copy to service. Analyzing the
queuing time with the aforementioned model turns out to be
a hard queuing problem [11]. To develop insight about this
problem we propose the following analogy to the classical
urns and balls problem.

III. PERFORMANCE ANALYSIS

A. An Urns and Balls Analogy

Let’s consider the only-arrival system, where servers do
not run and jobs arrive and get scheduled to the queues
of servers, according to an arbitrary scheduling policy.
Note that we are interested in studying the performance
of scheduling policies, in terms of queuing time. But as
we mentioned earlier, the queuing time in a system with
redundancy and bi-modal jobs’ service time distribution,
is determined by the scheduling policy’s capability of
providing load balancing and diversity of redundancy in
the set of assigned servers across the jobs. We believe
that a scheduling policy’s capability of improving these
indicators in the only-arrival system is a good indicator of
it’s performance in the actual queuing system.

The characteristics of queues in the only-arrival system
can be studied with classical urns and balls problem, as
follows. For n urns and a given parameter r, such that
1 ≤ r ≤ n, let’s define experiment1 as drawing r urns,
according to an arbitrary (scheduling) policy and without
replacement from the set of n urns, and placing a ball into
each one. It is easy to see that the statistics of the occupancy
of urns after repeating experiment1 for T times is same
as the statistics of the queues’ length in the only-arrival
system after arriving T jobs. In the rest of this paper we
assume n|T . For a given set of parameters, i.e. n, r and
T , statistics of occupancy of the urns only depends on the
(scheduling) policy, of how to select r urns out of n. We
use the term scheduling for choosing urns due to its analogy
to scheduling jobs into servers. In what follows, we will
define the performance indicators for load balancing and

diversity of redundancy. Then we will discuss and compare
non-adaptive scheduling policies in terms of the defined
indicators.

B. Performance Indicators

Let’s define NT
i , i = 1, 2, . . . , n, as the random vari-

able for the number of balls in urn i after T repetitions
of experiment1. We also define the order statistics of
{Ni}ni=1, as NT

k:n, k = 1, 2, . . . , n.

Definition 1. The Load Balancing Factor (LBF) of a policy
is defined as the ratio of the average number of balls in
the minimum loaded urn to the average number of balls in
the maximum loaded urn, when the policy is applied for
drawing urns in T repetitions of experiment1,

LBFpolicy :=
E
[
NT

1:n

]
E [NT

n:n]
. (2)

Let’s call that the set of chosen urns in the first repetition
of experiment1 the initial set. We define random variable
X , as the number of overlaps in the set of chosen urns in an
arbitrary repetition of experiment1 with the initial set. The
following definitions are based on the first and the second
moment of this random variable. In the rest of this paper,
we consider the case where T ≥ ⌈n

r ⌉, in order for X to
have positive moments.

Definition 2. The Redundancy Overlap Factor (ROF) of a
specific policy is defined as the inverse of the first moment
of random variable X,

ROFpolicy :=
1

E[X]
. (3)

Definition 3. The Redundancy Diversity Factor (RDF) of a
specific policy is defined as the inverse of the second moment
of positive random variable X,

RDFpolicy =
1

E[X2]
. (4)

The importance of ROF and RDF can be explained as fol-
lows. The reason for introducing redundancy in a distributed
system is to diversify the queues a job is assigned to, which
in turn (on average) reduces the chance of all copies of the
job to be stocked in a long queue. Therefore, especially
in systems with bi-modal service time of jobs, overlaps
between the set of (redundant) copies of consequent jobs
could reduce or even nullify the benefit of redundancy.
Hence, with lower average overlap, a policy makes a higher
utilization of the redundant requests. On the other hand,
between two policies with the same first moment, the one
which has lower second moment is preferred, because the
policy with larger second moment makes small overlaps in
some repetitions and large overlaps in some others. With
this behavior, the potential diversity that could be achieved
by redundancy wont be leveraged. Thus, with keeping a
moderate overlap in all repetitions of the experiment1, a
policy with lower second moment gets the better out of the
redundant requests. Next, we will study these indicators for



different scheduling policies. Note that, greater values are
desirable for all of LBF, ROF and RDF.

C. Random Scheduling

With this policy, each arriving job gets scheduled to r
servers, chosen uniformly at random without replacement,
from the set of n servers. under the urns and balls analogy,
at each repetition of experiment1, r urns get selected
randomly from the set of n urns. With r = 1, the problem
boils down to the classical urns and balls problem where
several analytical results exist for the occupancy of the
urns, e.g. [26], [27]. However, with r > 1 there are very
few works addressing the occupancy problem. Recently, the
author of [28], inspired by [29], proposed asymptotic results
for the number of balls in the maximum loaded bin, when
n → ∞. We adopted the following lemma from [28].

Lemma 1. The load balancing factor, after T repetitions
of experiment 1, with random selection of urns can be
asymptotically approximated by,

lim
n→∞

LBFrand = max

⎧⎨⎩0,

Tr
n −

√
2Tr(n−r)log(n)

n2

Tr
n +

√
2Tr(n−r)log(n)

n2

⎫⎬⎭ . (5)

Proof. The average number of balls in the maximum loaded
bin, after T repetitions of experiment1 and with random
scheduling, see [29], is,

E[Nn:n] =
Tr

n
+ Cn,r

√
T +O

(
1/
√
T
)
. (6)

Then it is proved in [28] that,

lim
n→∞

Cn,r =

√
2r(n− r)log(n)

n2
. (7)

Therefore,

lim
n→∞

E[Nn:n] =
Tr

n
+

√
2Tr(n− r)log(n)

n2
. (8)

Using the same approach as in [28], the number of balls
in the minimum loaded urn could be approximated by,

lim
n→∞

E[N1:n] =
Tr

n
−
√

2Tr(n− r)log(n)
n2

. (9)

However, since this approximations are derived using
central limit theorem, negative values are also possible.
In fact, it is easy to verify that for (9) to be positive,
T > 2(nr − 1)logn. Therefore, an approximation of the
number of balls in the minimum loaded urn could be given
as,

lim
n→∞

E[N1:n] = max

{
0,

T r

n
−
√

2Tr(n− r)log(n)
n2

}
,

(10)
which completes the proof.

The approximations for the number of balls in the maxi-
mum/minimum loaded urns together with their experimental
values are plotted in Fig. 2. The approximated values follow
the experiment very closely, both for the maximum loaded

and the minimum loaded bins. In Fig. 3, experimental and
approximated values of LBF are plotted. The approximated
values follow the experiment closely. Nevertheless, there is
a gap between the two set of values, which decreases as r
gets closer to n. Note that, taking r as a variable is only for
showing the performance of our approximations and, later
in this section, we will see that there should be a one-to-
one relation between r and n, for random scheduling to be
comparable with the other policies.

Fig. 2. Average number of balls in the maximum and the minimum loaded
urns after 50 repetitions of experiment1 (arrival of 50 jobs in the only-
arrival system), as a function of the redundancy level r, for three different
values of the number of urns (servers) n.

Fig. 3. Load balancing factor (LBF) after 50 repetitions of experiment1
(arrival of 50 jobs in the only-arrival system), as a function of the
redundancy level r, for three different values of the number of urns
(servers) n.

Proposition 1. With T repetitions of experiment 1 and
random urn selection in each round,

ROFrand =
n

r2
, RDFrand =

n(n− 1)

r2(n+ r(r − 2))
. (11)

The proof is omitted because of the space constraint.



D. Round-Robin Scheduling

With round-robin scheduling, the urns in each repetition
of experiment1 are chosen in a cyclic fashion. Particu-
larly, for repetition i the chosen urns are ((i − 1)r + 1)
mod n, ((i− 1)r+ 2) mod n, . . . , ((i− 1)r+ r) mod n,
for i ∈ [1, T ].

Proposition 2. With round-robin scheduling,

LBFround−robin = 1. (12)

Proposition 3. With round-robin scheduling,

ROFround−robin ≈ n

r2
, as T → ∞,

RDFround−robin ≈ 3n

2r3 + r
, as T → ∞.

(13)

Proof. With round-robin policy, let’s consider (without loss
of generality) that the initial set is {1, 2, . . . , r}. Now
suppose we repeat experiment1 for T − 1 times (after the
first repetition), such that n|T . As the result, there will be
T − 1 sets of bins, chosen according to round-robin policy.
It is easy to see that the number of sets that overlap with
the initial set in k place is 2T

n − 1, for k ∈ [1, r − 1],
and T

n − 1, for k = r. Therefore, the probability of a set
of urns drawn in an arbitrary repetitions of experiment1,
within the following T − 1 repetitions, to have exactly k
overlapping urns with the initial set is,

Pr{X = k} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− 2r−1

n + r
T k = 0,

2
n − 1

T k = 1, 2, . . . , r − 1,
1
n − 1

T k = r,

0 otherwise.
(14)

Therefore,

E[X] =

(
1

n
− 1

T

)
r +

r−1∑
k=1

k

(
2

n
− 1

T

)
≈ r2

n
as T → ∞.

(15)

And

E[X2] =

(
1

n
− 1

T

)
r2 +

r−1∑
k=1

k2
(
2

n
− 1

T

)
≈ 2r3 + r

3n
as T → ∞.

(16)

Respective substitution (15) and (16) in (3) and (4), com-
pletes the proof.

E. Scheduling with Block Designs

1) Preliminary on Block Designs: A block design is a
pair (X ,A), where X is a set of objects and A is a set of
non-empty subsets of X , called blocks [30]. In this work
we focus on a certain type of designs called Balanced
and Incomplete Block Designs (BIBD), defined as follows.
A (ν, k, λ)-BIBD is a design that satisfies the following
properties,

1) |X | = ν,
2) every block consists of k objects, and
3) every pair of distinct objects is contained in exactly

λ blocks.
Note that, BIBD may not be possible for an arbitrary set
of parameters. In fact, to satisfy the preceding properties
the parameters are tightly dependent. Particularly in a sym-
metric BIBD, λ(ν − 1) = k(k − 1). In this work, we
only consider symmetric BIBDs with λ = 1. The reason
for this choice is that with λ = 1, the design provides
minimum overlap between the blocks. As an example, with
X = {0, 1, . . . , 6}, the (7, 3, 1)-BIBD is

012, 034, 056, 146, 157, 247, 256.

For simplicity, we refer to a symmetric BIBD with λ = 1
as BIBD in the rest of this paper.

2) Scheduling with BIBD: We choose n and r in
experiment1 such that there exist a (n, r, 1)-BIBD. For
that to exist, n and r should satisfy n = r(r− 1)+ 1. With
scheduling with BIBD, in each repetition of experiment1,
we choose r urns the indices of which is dictated by one of
the n possible blocks, and blocks get selected in a round-
robin fashion from the set of all blocks. For a visualization
on the scheduling with BIBD visit [31]. According to the
properties of the blocks in a BIBD, we next derive LBF,
ROF and RDF for BIBD policy.

Proposition 4. With T repetitions of experiment1, such
that n|T , and BIBD scheduling,

LBFBIBD = 1. (17)

Proof. It is easy to see that at the end of every n rounds
each urn have got selected r times. Since n|T , each urn
gets selected exactly Tr

n . Therefore urns get selected for
equal number of times throughout the T repetitions of
experiment1.

Proposition 5. With BIBD scheduling, we have

ROFBIBD ≈ n

n+ r − 1
, RDFBIBD ≈ n

n+ r2 − 1
. (18)

Proof. The proof is same in principle with the proof of
Proposition 3. Except, the probability distribution for the
random variable X is,

Pr{X = k} =

⎧⎪⎨⎪⎩
n−1
n k = 1,

1
n − 1

T k = r,

0 otherwise.
(19)

Therefore,

E[X] =
n− 1

n
+

(
1

n
− 1

T

)
r

≈ n− 1

n
+

r

n
as T → ∞,

=
n+ r2 − 1

n
.

(20)



And,

E[X2] =
n− 1

n
+

(
1

n
− 1

T

)
r2

≈ n− 1

n
+

r2

n
as T → ∞,

=
n+ r2 − 1

n
.

(21)

Respective substitution of (20) and (21) in (3) and (4)
completes the proof.

F. Comparison of the Indicators

In order to compare the scheduling policies we have to
maintain the relationship between n and r that is dictated
by BIBD policy, i.e. n = r(r − 1) + 1.

In terms of LBF, which we defined as the ratio of
expected number of balls in the minimum loaded urn to that
of the maximum loaded urn, round-robin and BIBD policies
perform the same. In fact they achieve the highest possible
load balancing, by assigning urns with equal number of
balls when n|T . The load balancing property of random
policy is inferior to the other policies, as it is shown in Fig.
4. On the other hand, in terms of ROF all three policies
perform the same, as it can be seen in Table I. This is a
surprising result, showing that if we select urns randomly at
each repetition we would (on average) see the same amount
of overlap as the case where the urns get selected with
round-robin and BIBD, which are structured policies. In
terms of RDF, random and BIBD policies perform equally,
being superior to round-robin. The fact that random and
BIBD have the same second moment of overlaps is quite
counter-intuitive, since with random policy there is a higher
number of possible sets, i.e.

(
n
r

)
, that can be selected at

each repetition of experiment1 compared to the number
of possibilities with BIBD, i.e. n. Accordingly, one would
expect the random policy to have a better performance in
diversification of the sets of selected urns in the repetitions
of experiment1, compared to the (structured) BIBD policy.
However, by looking closer to BIBD design it can be seen
that, the gain of the policy, in terms of the number of non-
interesting possible sets that it eliminates, is much greater
than the pain of it, in terms of the number interesting
possible sets that it prevents from happening. On the other
hand, round-robin policy falls behind the other two policies
in terms of RDF, which makes it inferior in handling the
overlaps of the selected urns. Moreover, RDF of round-robin
decreases as r increases, which makes it a non-interesting
policy when r is large. In fact, we will see in Sec. IV that
the performance round-robin policy in a queuing system is
more inferior to the other policies when r is large. Putting
all together, the average overlap is the same for all three
policies, but in terms of diversity of redundancy round-
robins is inferior to the other two policies.

In queuing systems, when jobs’ service time are is bi-
modal, the round-robin scheduling policy fails to manage
the overlap between the assigned servers to subsequent jobs,
increasing the chance of a small job getting trapped behind

Fig. 4. LBF and RDF for non-adaptive scheduling policies as a function
of redundancy level r and number of urns (servers) being n = r(r−1)+1.

large jobs in many servers. On the other hand, random
policy fails to maintain load balancing across the servers,
which in turn increases the average waiting time in queues.
Among the three non-adaptive policies, BIBD provides
perfect load balancing and it has the best performance in
terms of diversity of redundancy, which makes it a perfect
candidate for scheduling of jobs in the system shown if Fig.
1. This observation will also be approved by simulations in
the following section.

IV. SIMULATION RESULTS

In this section we provide simulations results for queuing
time with the scheduling policies discussed throughout
the paper. We implemented a queuing system, with n
servers, each with its own queue, such that each arriving
job gets scheduled to r servers, selected according to a
given scheduling policy. The redundant copies of a job get
cancelled immediately after the first copy starts the service.
If there is an idle server among the selected ones, the job
enters service on that server, with no more redundant copies.
With more than one idle server, ties are broken arbitrarily.

The bi-modal nature of jobs’ service times has been
observed in practice, e.g. Google Traces [20] and is studied
in queuing theory literature [24]. The service times of copies
of a job are sampled from a fast exponential distribution if
the job is short or from a slow exponential distribution if
the job is long. Assuming 1/µ1 to be the average service
time of the small jobs, using the model proposed in [21],
the average service time of large jobs is 1/µ2 = q/µ1,
with q being defined as (1). Arrival of the jobs follows a
Poisson process, with inter-arrival rate of λ. Each figure
in this section consists of two sub-figures. The one at the
left shows the queuing time for low arrival rates and the
one at right shows the queuing time for high arrival rates.
The set of parameters for each plot is shown by a 5-tuple,
(n, r, µ1, q, p).

Fig. 5 shows the average queuing time for the



TABLE I
PERFORMANCE INDICATORS OF SCHEDULING POLICIES

Policy LBF(≤ 1) ROF(≤ 1) RDF(≤ 1)

Random max

⎧⎨⎩0,
Tr

(r−1)2+r
−
√

2Tr(r−1)2 log((r−1)2+r)

((r−1)2+r)2

Tr
(r−1)2+r

+

√
2Tr(r−1)2 log((r−1)2+r)

((r−1)2+r)2

⎫⎬⎭ (r−1)2+r
r2

(r−1)2+r
r(2r−1)

Round-robin 1 (r−1)2+r
r2

3[(r−1)2+r]
r(2r2+1)

BIBD 1 (r−1)2+r
r2

(r−1)2+r
r(2r−1)

three scheduling policies, with (n, r, µ1, q, p) =
(13, 4, 10, 10, 0.1). In all arrival rates, BIBD policy
outperforms both random and round-robin. The
improvement ranges from about 10% in high arrival
rate up to 20% in lower to medium arrival rates. The
reason for less improvement in higher arrival regime
is that, due to the higher average queue length, the
contribution of the scheduling policy in the average waiting
time is less dominant compared to the contribution of the
queue length. With (n, r, µ1, q, p) = (21, 5, 10, 10, 0.1),
Fig. 6 shows that the relative performance of random and
BIBD policies is almost the same as in n = 13 and r = 4.
However, round robin policy becomes more inferior, due
to larger r. The BIBD policy reduces the queuing time
by 10% and 25% compared to random and round-robin,
respectively. Note that, the larger the r the higher the
importance of handling overlaps between the redundant
copies of jobs. As it is shown in Fig. 4, round-robin is the
least effective policy for handling overlaps due to small
RDF, which decreases as r is increases.

Fig. 5. Average queuing time for non-adaptive scheduling policies, with
(n, r, µ1, q, p) = (13, 4, 10, 10, 0.1).

Now if we keep the same n, r and p and just increase q,
i.e. increase the average service time of the long jobs, with
(n, r, µ1, q, p) = (21, 5, 10, 50, 0.1), it can be seen from Fig.
7 that the performance gap between round robin, which
does not handle overlaps, and BIBD/random gets larger.
This observation holds for both low and high traffic regimes.
With this set of parameters, BIBD reduces the queuing time
by 100% when compared to the round-robin policy. It is
worth mentioning that, although round robin is an effective
policy for load balancing, when the probability of large jobs
is small but their average size is large, it fails to balance

Fig. 6. Average queuing time for non-adaptive scheduling policies, with
(n, r, µ1, q, p) = (21, 5, 10, 10, 0.1).

the loads on servers due to those large but not frequent
jobs. Nevertheless, as it can be seen from Fig. 8, when
the probability of large jobs is high, with (n, r, µ1, q, p) =
(21, 5, 10, 15, 0.5), round robin performs closer to BIBD.
On the other hand, random policy, which is more effective
with handling overlaps, has a closer performance to BIBD
when p is smaller. This happens because, with small p
long jobs are not frequent and even BIBD, which balances
the average load, fails in load balancing. Therefore, the
load balancing capability of a scheduling policy has small
impact on its performance when p is small. In Fig. 8, BIBD
outperforms random and round-robin policies by up to 25%
and 50%, respectively.

Fig. 7. Average queuing time for non-adaptive scheduling policies, with
(n, r, µ1, q, p) = (21, 5, 10, 50, 0.1).

V. CONCLUSIONS AND FUTURE WORK

We studied the queuing time in a distributed system with
n servers, each with its own queue, where each arriving



Fig. 8. Average queuing time for non-adaptive scheduling policies, with
(n, r, µ1, q, p) = (21, 5, 10, 50, 0.5).

job gets replicated into r servers, according to some non-
adaptive scheduling policy. We considered jobs with bi-
modal service times, where each arriving job has on average
a long service time with probability p and short service
time with probability 1−p. Specifically, the service time of
each copy of short/long job was sampled from a fast/slow
exponential distributions.. By developing an analogy to
the classical urns and balls problem we introduced new
performance indicators for scheduling policies. We studied
random and round-robin scheduling policies in the anal-
ogous model and then proposed a new scheduling policy
based on combinatorial block designs. We showed that the
proposed policy provides higher diversity in the queuing
time across the copies of a job and, therefore, leverages the
potential of redundancy. Finally, by simulating a queuing
system we showed that the proposed scheduling policy is
indeed superior to the other policies, in terms of queuing
time. As a future work, the steady state analysis of queuing
systems with bi-modal job service time distribution can be
considered. Using other types of block designs for load
balancing and/or diversification of jobs’ service time can
also be the subject of future studies.
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