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ABSTRACT. Image segmentation is the task of partitioning an image into indi-
vidual objects, and has many important applications in a wide range of fields.
The majority of segmentation methods rely on image intensity gradient to de-
fine edges between objects. However, intensity gradient fails to identify edges
when the contrast between two objects is low. In this paper we aim to intro-
duce methods to make such weak edges more prominent in order to improve
segmentation results of objects of low contrast. This is done for two kinds of
segmentation models: global and local. We use a combination of a reproducing
kernel Hilbert space and approximated Heaviside functions to decompose an
image and then show how this decomposition can be applied to a segmentation
model. We show some results and robustness to noise, as well as demonstrat-
ing that we can combine the reconstruction and segmentation model together,
allowing us to obtain both the decomposition and segmentation simultaneously.

1. Introduction. Image segmentation is a fundamental problem that has numer-
ous applications in various fields. It is still a challenging problem when the contrast
between the object of interest and the rest of the image is low and when there is
dominant noise. The commonly used image gradient information is not effective in
detecting weak edges and thus causes leakage in segmentation.

Variational segmentation methods have been successful for images with clear con-
trast. Depending on whether global or local/selective segmentation is the purpose,
region or edge based segmentation methods have been studied. Many variational
segmentation methods have roots in the Potts model [25], which is NP hard in
multiphase segmentation. Graph cut methods approximate global minimizers in
computationally-efficient ways [7, 6, 3, 31, 5, 32]. The Mumford—Shah model [23] is
a discrete case of the Potts model that assumes piecewise smooth image intensity
function. This is however difficult to implement. One difficulty comes from the
extension of the piecewise smooth function from one sub-domain to another. The
other comes from the non-regularity of the length term. Ambrosio and Tortorelli
proposed an elliptic approximation [2, 1] to simplify the length term. Chan and
Vese [13] simplified the piecewise-smooth Mumford-Shah model into a piecewise
constant case with two phases.
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To handle topology change, a common method is to use the popular level set
method proposed by Osher and Sethian [24]. However, the incorporation of Heav-
iside function to represent the inside and outside domain makes the corresponding
optimization problem nonconvex and easy to get stuck in local minimizers. Chan,
Esedoglu and Nikolova [12] proposed a convex relaxation method to overcome this
issue. Cai et al. [9] introduced two-stage segmentation, involving a convex variant
of the Mumford-Shah model followed by thresholding to obtain the segmentation
result. Various efforts have also been made to improve upon the data fidelity terms
presented in the Chan-Vese model. One such method proposed by Li et al. [20]
is the Region-Scalable Fitting method who used a Gaussian kernel in the fidelity
to allow segmentation of an image containing inhomogeneous intensity. Another
such method was proposed by Wang et al. [29], who proposed the Local Chan-
Vese (LCV) model, which uses an averaging convolution kernel to provide a higher
contrast image, allowing for easier segmentation.

The methods reviewed so far are mainly region based and lead to global seg-
mentation. Another approach, able to achieve local segmentation results, are edge
based methods. The first of which was developed by Kass et al. [19], which was fur-
ther refined by Casselles et al. [10] in the Geodesic Active Contour model (GAC).
The GAC model was used by Gout et al. [15], who added a distance constraint to
encourage the contour to stay near a marker set input by the user to indicate which
object to segment. Further improvements came from Badshah and Chen [4] who
merged the Gout model with region terms in the form of the Chan-Vese fidelity,
and this was later worked on by Spencer and Chen [28] who unbounded the dis-
tance constraint from the regulariser and added it as a separate term. Spencer and
Chen used the Euclidean distance to put a penalty on objects far away from the
target. However this method is rather sensitive to the placement of the markers,
often requiring the markers to cover the entirety of the object and a close tuning of
the parameter. In addition to proposing the above non-convex version, the authors
also used the convex relaxation technique from [12] to obtain an equivalent convex
model.

More recently, Roberts and Chen [26] proposed to change the Euclidean distance
constraint from [28] to an edge weighted geodesic distance constraint. Moreover,
in [27] Roberts and Spencer introduced a reformulated Chan-Vese fitting term for
selective segmentation and making use of the geodesic distance.

Using this as a fitting term provides a much more suitable term for selective
segmentation when compared with the classic Chan-Vese term, allowing for the
background to be composed of multiple regions. In addition, the advantage of
using the geodesic distance over the Euclidean distance from [28] is that it is much
more robust to parameter selection and placement of the marker set. The geodesic
distance increases when an edge is detected, thus is able to apply a penalty on
objects outside the region of interest, making for a much more intuitive distance
constraint.

Another recent approach for selective segmentation was proposed by Liu et al.
[21], who have users to input markers along boundaries of the region of interest and
put a weight related to distance to the marker points on the fidelity term of the
method by Cai et al. [9]. Clearly edge information plays an important role in all
these mentioned models.
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The majority of region and edge based segmentation methods cannot handle
images with low contrast/missing edge information. They often lead to over seg-
mentation caused by leakage. In this work, we present how to use reproducible
Kernel Hilbert space (RKHS) and approximated Heaviside functions to make faint
edges more prominent, and thus enhance the segmentation results. We present
both global and local versions of the proposed method. Extensive numerical results
demonstrate their effectiveness and superiority compared to the state of the arts.

In the next section, we provide a brief review of some modeling tools to be used
in the proposed methods.

2. Background review.

2.1. Global segmentation. As this paper aims to obtain an automatic edge en-
hancement method through RKHS, it is feasible to apply the idea to most of the
commonly-used segmentation models. We demonstrate the global segmentation
idea in the framework of convex relaxed model [12]:

Flu,c1,cs) = /|Vu\dx+>\1/( (%) — c1)2udx

Q
(1) + )\g/ﬂ(z(x) —c)*(1— u)dx—|—£/Ql/ u)dx

where c¢1, ¢ are respectively the mean intensities within and outside the segmenta-
tion boundary T, u(x) € [0,1] is the relaxed function to replace the Heaviside in a
level set formulation. Here v(u) = max{0,2|u — 3| — 1} is an exact penalty term
defined in [16], and it is proven in [12] that the inclusion of this term ensures the
constraint u € [0, 1] holds. We can then define the segmentation result to be the
set ¥ = {x:u(x) >~*} for v* € (0,1). We typically fix v* = 0.5.

2.2. Local segmentation. We can make use of a distance constraint in a model to
segment a particular region of interest. The particular object (or objects) of interest
are indicated by a marker set M, which is a set of points that lie in the object,
typically prescribed by the user. We briefly review the work in [27], which achieved
local segmentation by using a geodesic distance constraint from [26] (similarly to [28]
which used Euclidean distance), and proposed reformulated Chan-Vese like fitting
terms more suitable for local segmentation.

Fu) = / (\VZI)\VU\dX+/ (M f1(2(x)) = Aefa(2(x))) udx

2) +0/DG udx+£/

where g(s) = 1 +L82 is an edge indicator function, D¢ is the geodesic distance
constraint, fi(z(x)) = (2(x) — ¢1)? and

1_’_2()(’;71—017 Cl—’Ylﬁz(X)SCh
falz(x)) = 1= 2= 6 < 2(x) <o+,
0, else.

The selection of parameters v; and 7y, is detailed in [27].
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2.3. Geodesic distance. Compared to Euclidean distance used for local segmen-
tation [28], the geodesic distance is found to perform better in [27] because it is
edge aware. This indicates that edge enhancement can make a big impact through
geodesic distance. Calculating the geodesic distance involves finding the solution
to the Eikonal equation. This is a classic problem in wave propagation, leading to
the time it takes for a wave to travel through a certain medium. A general formula-
tion of the two-dimensional Eikonal equation (although is easily generalised to one
dimension, or easily further extended to higher dimensions) is given as follows

1
3 VD(x)| = ——,x € D(x) = q(x),x € Q.
(3) IVD(x)| o) (x) = q(x)
In [26], ﬁ is chosen to be ﬁ = e+ Bc|V2(x)|? + 06Dg(x), and ¢(x) = 0 with

O = M, where the parameters are fixed by the authors of [26] to be e = 1073, B¢ =
1000 and ¢ = 0.1. A fast sweeping method proposed by [34] is used to solve the
Eikonal equation. Then, if we denote the solution to (3) with this special p and ¢
as D%, the geodesic distance, Dgq, is then defined as

Dg(x)
@ Pale) = 1159 ()l

The solution to the Eikonal equation can be physically interpreted as the mini-
mum time it takes to get to a point x € Q from Q* C Q, where p(x) is the speed of
travel. In a classical wave propagation problem, p(x) would change depending on
the medium of the domain 2. For our application, the domain 2 contains all the
pixels in an image, and so to penalise pixels on the other side of an edge we must
assign a speed p(x) that takes edge information into consideration. In particular,
we would like D to be larger near edges, so we assign smaller values to p(x) when x
is near edges and larger values otherwise. Or, equivalently we let ﬁ to be large at
pixels containing edges, and smaller otherwise. It is useful to note that if p(x) =1
and ¢(x) = 0 then the solution of (3) is simply the Euclidean distance.

Intuitively, the geodesic distance can be understood like this: the distance from
point A to B is small when there is no edge in between A and B as it takes not
much effort to travel from A to B. However, the presence of an edge can be seen as
having to climb a steep hill, requiring more effort. Figure 1 shows the differences
between the two distances on a synthetic image. One can see that the geodesic
distance takes edge information into consideration seriously.

The one flaw of using geodesic distance is that it is heavily reliant on the method
of edge detection. If an edge goes undetected, or even just part of an edge is
slightly obscure, the geodesic distance will fail to penalise regions outside of the
region of interest. Note that the majority of the edge detection methods rely on the
intensity gradient which is very sensitive to noise and low constrast. We propose
to use a reproducible kernel Hilbert space and approximated Heaviside function
(abbreviated as RKHS method) to handle the problem. In the next section, we
review RKHS proposed in [14].

2.4. RKHS and Approximated Heaviside Functions. In [14], Deng, Guo and
Huang use RKHS and approximated Heaviside functions for image super resolution.
Here, we adopt them to separate edge features from smooth components. This will
then be incorporated into global and selective image segmentation in Chapter 2
and Chapter 3 respectively. It is able to detect weak edges where using the image
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FiGURE 1. Comparison of Geodesic and Euclidean distance constraints.

gradient may fail to detect anything significant. This is typically a problem in im-
ages with noise and images in which seperate objects are present with little contrast
between them. Using RKHS to perform segmentation was used in [18], in which
they make use of a limited set of labelled pixels to perform multi-class segmentation
on the same image or similar images. The RKHS methods were able to segment
medical images of low contrast effectively. RKHS theory was also used in [33], in
a segmentation model in order to simplify the computation of solving the model.
Alternatively, recently Li et al. [22] proposed a non-local total variation model
for restoring weak structures in images, demonstrating applications to inpainting,
zooming and denoising. This method does not perform contour detection however,
which can be achieved by taking the gradient of the output.

It is shown in [14] that it is reasonable to model an image to be composed of two
parts: the smooth parts and the edges. RKHS is used to model the smooth parts
of an image, while edges can be represented by a set of approximated Heaviside
functions. In this section we will review some key details about RKHS, show the
kernel we use and lay out the details of the approximated Heaviside function.

Consider an arbitrary set X, with a Hilbert space H of real functions on X. Let
‘H be the family of functions f: X — R. Then H is an RKHS on X if there exists
a symmetric function K : X x X — R such that: i) for all z € X, K(-,z) € H, ii)
there exists a reproducing relation f(x) = (f,K(-,z)) for all f € H. The function
K is called a Kernel function if, for every distinct n points {z1,z2,....,2,} C X,
K(z;, ;) > 0, i.e. K is positive semi-definite function. For every RKHS there
is a unique reproducing kernel, and conversely for every positive definite kernel
K: X x X — R, there is a unique RKHS on X such that K is its reproducing
kernel.

Therefore, the choice of kernel determines which space one wishes to work in.
Choosing K to be polynomials of degree d: K(x,%) = (1 + (x,%))¢ will correspond
to a polynomial space. Whereas, if a Sobolev space is sought, we can use K(x,X) =
177Xl In addition, kernels such as K(x,%) o [x — %[, K(x, %) o |x — X|* corre-
spond to one dimensional piecewise linear and cubic splines respectively.
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For our case we use the popular Gaussian kernel corresponding to C'* space to
model the smooth parts. It is given by:

- 1 \2 _x—x?
(5) K(x,%x) = (7) e 2% .
2mo

Without loss of generality, we may assume that the image intensity function is
defined on a unit domain [0, 1] x [0, 1]. Given an image z of size n X m, we may treat
it as a matrix obtained by evaluating the underlying image intensity function at the
coordinates (j/(n—1),k/(m—1)),7=0,1,....n—1,k=0,1,..m—1, denoted by x;.
The smooth component of the underlying image intensity function is represented
by Zz diK(X, Xi).

Additionally, we extend the typical one dimensional approximated Heaviside
function,

(6) P(t) = 1 + 1 arctan <E>,

2w 6
to two dimensions by considering x € R? and the variation ¢(v;-x+c¢;). With v; =
(cosB;,sin;), this two dimensional approximated Heaviside function can describe
an edge with orientation 6; at position c;. This will allow us to recover edges from
an image at different orientations and at different locations. We can then consider
the edge part of an image to be modelled from a collection of these functions

L N
(7) ne) = 323 bt (Vi x+ ),

where 60, are equally partitioned into ¢ segments between [0,27). In [14], £ = 24,
leading to:

0; € {0,7/12,27/12, ..., 23712},

and ¢;, describing the position of each edge, is taken from ¢; € {0, ﬁ, %, ey 1},
where N = nm is the number of pixels in the image. Note {¢(v;-x+¢;)} is a
redundant dictionary to represent edges, thus most of the b;; should be zero. In
Figure 2, we show some examples of ¢(v; - x + ¢;) from [14].

Combining the RKHS and approximated Heaviside function together, we model

the underlying intensity function as

flx) = ZdiK(m,m + iZijW(vi x4+ cj),

i=1 j=1

In what follows, we elaborate how to incorporate the RKHS and approximated
Heaviside functions into global (Chapter 3) and selective local image segmenta-
tion (Chapter 4). We will present both two stage (feature separation followed by
segmentation) and one stage (combined feature separation and segmentation) for
each.

We first describe the two-stage approach. Given z, an image of size n X m to
be segmented, we assume that it is an estimation of the discretisation of f(z), i.e.,
z = Kd+ VB + €,, in which K;; = K(z;,zx), ¥ collects values of ¢(v; -  + ¢;)
evaluated on discrete grids, § is a vector collecting entries b;; lexicographically, and
€, 1s a random noise.
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FIGURE 2. Left panel: 3D surface images of 1 of nine param-
eter pairs (6,c); right panel: the corresponding 2D images. In

each panel, from left to right and then from top to bottom:
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3. Proposed global segmentation method. In the following section, we pro-
pose to use RKHS based decomposition to aid global segmentation (selective region
of interest segmentation will follow in the next section). We start with a two-stage
method, including a reconstruction model prior to segmentation, and then we pro-
pose unifying the two stages into a single, combined model.

3.1. Two stage global segmentation. We first propose a two stage model to
conduct segmentation of images with low contrast and noise. The first stage is to
run an RKHS based model (8) to obtain a clean approximation to the given input
noisy image to be segmented, and to separate the edge components from the smooth
components. In the second stage, we conduct segmentation on the clean image with
guidance from the edge information (model (25) as an example). In particular, we
aim to use V[ in cases where typically the image gradient is used in order to detect
edges. The problem with the image gradient is that it can be sensitive to noise and
low contrast. Particularly when both noise and regions of low contrast are present,
the image gradient struggles to detect the region of low contrast without detecting
noise. It is common to use a method of denoising when noise is present, however
denoising runs the risk of smoothing out already sensitive edges. The ¥ term aims
to improve on this flaw of the image gradient.

We first use the following novel model to separate edge features and to remove
noise, similar to the one proposed in [14]:

1
(8)  mingllz— (Kd+ W)\ +yd Kd +al|8|l, +vg |V (Kd + ¥5),

where g = g(¥03) = 1+L\\I/6|2 is the edge stopping function based on ¥ which is
better than a gradient based one. The final term encourages the contrast to be low
in homogeneous regions and high near edges.

We implement a block coordinate descent (BCD) scheme [30] and perform the
computation on small overlapping patches of the image. By doing this, details which
might otherwise go unnoticed to the human eye when zoomed out may become
enhanced.
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Implementation: We solve the model (8) by first introducing three auxiliary
variables: 6 such that § = 3, W such that W = Kd+ ¥, and v such that v= VW,
so that we have the following scheme:

.1
i Slle = (Kd+ B)|* +9d"Kd + al|flly + vgTIvl + G110 — B+ b

(9) + AW — (Kd+WB) + bal[* + B[ |[v = YW + by .

To implement a BCD scheme, we start with an initial for each of the d, 3,6, W, v
denoted by d@, 5 9O WO ) and update them alternatively and iteratively
as follows.

The d problem in proximal form;

1
d® = arg min Slle = (Kd+ wAF=) |2 4 vd"Kd + %Hd — d*=D|2
d

(10) + 2w — (Kd -+t + oY)

that is solved by
(11)
4 = A (KTz — (14 po)KTWBED 4 ¢;d*=D 4 py KT(W =D 4 bg’“”)),

where A = (1 + po) K"K + 2yK + (11, (I is identity).
Due to g = g(¥3) being non-linear, we linearise the 8 problem so that we have
the following proximal linear form:

9% = argmin(p®), 5 — 3470) + oY — 5oV

(12) +%HB—B(’“‘”H2,

where =1 = =1 4 (k=1 (gk=1) _ g(k=2)) and p*) = Vf(3*+=D), where f
is given by:

P 1 Ao _
FBE) =3 |z = (Kd® + wp*D) |2 4 pgT v
(13) + B — (Kd® w0 o,
1

(p1+C2)
The 6, W and v problems are given as follows:

(14) Bk — (1 (8% 4+ BFD) 1 (kD — b)),

(15) 0 = axgmin o ¢y + G116 — 5 + oV,

W) = arg min%HW — (Kd® + wpk)y 4 plE=D) 2
w

(16) + 2 vt - w4 bR,

(17) vk — arg min Z/gT\V| + %Hv —vw® 4 bgk71)|\2.
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Solutions are given by

(18) k) — Shrink(ﬂ(k) _ bgk—n’ 3)7
P1

(19) W® =m f_-*(p3]:(v*(v(k—1)—|—bgk1)))+p2}-(Kd(k)+\Ilﬁ(k.)_bgk)))
p2 + p3F(V?) ;

(20) vkt = shrink(VW(k) — bg’“l), p%, -g).
Bregman parameters are updated as follows:

(21) b = p{E=1) k) _ glh),

(22) i) = b L) _ (Kd® 4+ wp*),

(23) bgk) = bgk_l) +v®) —yw k),

The convergence for this model follows similarly to the discussion later in theorem
3.1 in the next subsection, guaranteed by using a BCD scheme [30] to solve.

Figure 3 shows a CT image in which we are interested in segmenting the blood
vessel (pointed by the red arrow), its smooth parts described by Kd (top middle),
and the edge parts described by ¥4 (top right). In the region indicated by the red
arrow, we can see clear edges shown in ¥/ in (c) even though it is hard to visualise
in (a). This is of key interest as we aim to use this in a segmentation model to
improve reliability. In particular, for the region indicated by the red arrow in (a),
we see that the edge indicator function making use of |Vz| has failed to detect the
very small edge at the this point.

Now that we have the decomposition of an input image, we can explore how we
can use this information in a segmentation framework. To demonstrate the effective-
ness of U to aid segmentation of objects of low contrast, we use the segmentation
framework proposed in [8], which unifies the geodesic active contours model [10]
(GAC), and the convex relaxed Chan-Vese model from [12], given by:

F(u) :/ 9(|Vz])|Vuldx + A / (z — ¢1)udx
Q Q
(24) + Ao / (z — c2)(1 — u)dx +§/ v(u)dx,
Q Q
The first stage model (8) provides not only a separation of edge features from

the rest, but also a clean image M = Kd+ V. In the next stage, we use M as the
input and g(¥p3) as a spatially adaptive weight for segmentation:

P = [ WA Vuldx-+ s [ (0 = e0)*uix

(25) + Ao /Q(M — o)} (1 —u)dx + ¢ A v(u)dx.
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(B) Smooth parts, Kd. (c) Edges, ¥5.

(D) g(¥p). (B) [V2|. (F) 9(IVz]).

FIGURE 3. The decomposition of the input image (top left), into
the smooth parts (top middle) and edge parts (top right), obtained
from RKHS model (8), and edge indicator function g(¥j3) (bottom
left). In comparison, we display the gradient of the image, |Vz]
and the edge indicator function ¢(|Vz|) in the bottom middle and
bottom right respectively.

3.2. A combined global segmentation model. So far we have discussed a two-
phase model, which runs the RKHS model (8) as a pre-process to obtain Kd and ¥J3,
then implementing them into our segmentation model of choice. We have chosen
to use the framework given in (24), however our ¥ can be implemented into any
segmentation model which uses information about the edges by simply replacing
|Vz| with 3.

We now consider unifying the RKHS model with a segmentation model to obtain
a simultaneous output. To achieve this, we merge our RKHS model and our chosen
segmentation framework and propose the following unified model:

1
min <[z — (Kd+ 9B)||? + vd"Kd + o||8]|1 + ug"|Vul
d,B,uel0,1],c1,c2 2
(26) + A u (Kd+ 9B —c1)? + (1 —u) (Kd+ U8 — ¢)?|,

where v and g = g(|¥f|) are now discretised N x 1 vectors where N is the total
number of pixels in the given discrete to be segmented image z.

Due to the non-differentiability of the two ¢; terms, we introduce two auxiliary
variables, § such that 6 = 3, and w = (wq, ws) such that w = Vu. Our model then
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takes the form

1
min —|lz = (Kd+W¥ 24 ~dTKd + « + ug'|lw
oan Sl (Kd+ B)|P £ 131l + g w

FAMuT(Kd+ 98 —¢1)?+ (1 —u) " (Kd+ 98 — )],
(27) such that § = 8 and w = Vu.

(27) is approximated using the following augmented form:

1
min Nz = (Kd+UB)||? + vd"Kd + o + g’ |w
d,B,G,w,ue[O,l],cl,CZQH ( B+ [1B8]]1 + ng’ [w]

+ )\[uT(Kd FUB—e)? 4 (1— )T (Kd+ U8 — C2)2}

(28) + 2H10 = 8+ bull3 + Z2{lw — Vu + bl 3,

This gives us 7 sub-problems to solve. In order to guarantee the convergence of
our model, we implement a BCD scheme [30] that has convergence. In particular,
we change the d, ¢y, co and u sub-problems to the proximal form, and we change
the 8 sub-problem to the prox-linear form.

In the following, we explicitly discuss the solution to each of the sub-problems.

d sub-problem:

d® = arg;nin%“z — (Kd+ 9% D)2 4+ y(d)TKd + %Hd —dF2
n /\[(u(k—1))T<Kd+ \I/B(k—l) _ Cgkq))z
(29) + (1= uF )T (Kd 4wt - cg’“—”)ﬂ .
The solution is given by:
d® = A1 (KTz — (1 +20KTER*=D 4 ¢ gD
(30) F2AK T[T g D (1 - u<’H>)}),

where A = (1 +2\)KTK +2yK + (1.
£ sub-problem:

§) = argmin(p®), 5 = 501+ GHI*Y — 540
(31) + 28— ey,

where =1 = =1 4 (k=1 (gk=1) _ g(k=2)) and p*) = v f(3*+=D), where f
is given by:

R 1 .
FEED) =5z = (Kd® + wBED) | 4 pg w7
+A (u(kq))T(Kd(k) + \I,B(kq) o Cgk—l))z

(32) (1= u )T (RA® + wht=D - V2]
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VHBEFY) = —0T(z — (Kd® + w0y
— 20T (WD o (g(p* ) o (1p*Y))
(33) + 22U [Kd®) 4 wptk=1) o Fmy (=) (=D g ety

where @ denotes the Hadamard product between vectors (component wise multi-
plication). Thus the 8 update is given as follows:

(34) B® = ﬁ(m(aww + 0 7Y) 4+ B - ).
f sub-problem:

(35) 0" = axgmin o ¢y + G116 — 5 + oV,

whose solution to this is given by the shrinkage operator

(36) 6*) = shrink(8*) — p{*=1), %),

and we update the Bregman parameter as follows:
k k—1
(37) ) =D ) g,
c¢1 and cy sub-problems:

(38) o = argmin A D)7 (KIS + w50 — ) 4 Loy — eV

Cc1
39) ) = argmin A(1 — N T(Kd® + wp*) — ¢y)? + %HCQ — Y,
ca
and the solutions are given by the following:
C(k) B Cgcgk—l) + 2)\(u(k*1))T(Kd(k) + \Ijﬂ(k))
v 3+ 2\ (uF=D)TT ’

(40)

(9 _ Gy 1221 — u)T(Kd® 1 wp®)
¢ = .

D) Gt A = a )T

u sub-problem:

u® — argmin + 2 jw®D — vy + b2 4 §£||u e
u€[0,1] 2 9
A [(U)T(Kd(k) +up®) _ (9)2
(42) + (1 —u)"(Kd® +wp*) — Cgk))z}.

The solution to this is given by:

poF (V*(wk=D 4 b)) — AF (r(0) + Cs]-'(u("’_l))>
G+ p2F(V?) 7
where rF) = (Kd® + @) — cg}c))2 — (Kd®) + wpk) — cé’c))z7 and F is the fast

Fourier transform operator and F* is its inverse.
w sub-problem:

43) u® = l]—"(

(44) wh) = argmin,ugT\w| + %HW —vu® 4 bék—l)”g.
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We solve it using the same shrinkage operator from the 8 sub-problem, given by:

(45) w®) = shrink(Va®) — b~ L. g)
P2

with the Bregman parameter updated as follows:
(46) b = bl 4w — k),

We summarise the combined global segmentation algorithm in Algorithm 1.

Algorithm 1 Combined global segmentation algorithm.

1: Input: Image z, parameters o, vy, a, A, p1, p2, (1, (2, (3,4 and (5.

2: Initialise u, and d, 8,6, w on each patch arbitrarily.

3: while relativeerror > tolerence do

4:  For each patch, update d, §,  and by as in (30), (34), (36) and (37) respec-
tively. Stitch patches together to obtain Kd and ¥ by averaging intensities
from overlapping patches.

5. Calculate g(¥5) = W

6: Update ¢; and ¢ as in (40) and (41).

7. Update u as in (43) .

8:  Update w and by as in (45) and (46) respectively.

9: end while

10: Output: Reproduced image Kd + Uj5. Segmentation result ¥ = {x : u(x) >
~v*} where we usually fix v* = 0.5.

Theorem 3.1. For any initialisation 3,00, b§0)7 c§0)7 cg0)7 uw® w0, béo)

quence obtained by Algorithm 1 converges to a set of stationary points
(d*’ﬁ*? 9*) b{7c>{7 c§7u*?w*7b§)'

, the se-

The proof is contained in the work of [30], which recommends three different
updates for each sub-problem: original, proximal and prox-linear. Each update
requires certain conditions to hold in the corresponding functional to be minimised.

The 6 and w sub-problems are straightforward as the associated functionals given
in (35) and (44) are strongly convex, thus no changes to the problem are needed
and we can use the original (first) update from [30].

For the d, ¢1, ¢z and u problems, (29), (38), (39), (42), we have used the proximal
update, which involves adding the l5 term with coefficient {;. The only condition
required is that the (; parameters are required to be uniformly lower bounded from
zero and uniformly upper bounded. In practice we typically fix these parameters to
be less than or equal to 1077,

We implement the prox-linear update for the S problem (31) which involves
adding a proximal term as in the proximal update, as well as linearising the ex-
isting terms. The necessary requirement for the prox-linear update is that (33) is
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Lipschitz-continuous. We prove this by definition:
IVf(@) =V f(B) =TT +2))(a ~f)

— 2097 (Wl © ((9(¥a)? - g(¥B)*) ® (Yo — 0H)) ) |
< (142007 (a - 3)|
+ 2|07 (w] © ((9(Wa)? ~ g(WB)) © (Vo — ¥5)) )|
< (1420|070 (a - B)| + 2my\1ﬁ(|w| © (Pa — \1:5))|
= (14200 ¥(a - B)| + 2| T TWE (o — )|
= (1207w + 250 [ TWE| )| - 5],

where W = diag(|w|) and we have used the fact that 0 < g(s) < 1.

3.3. Numerical experiments. In this section we demonstrate the performance of
our proposed global segmentation models (two-stage global segmentation given
by solving (8) followed by (25), and combined one stage global segmentation
given by Algorithm 1). We compare with two models relying on the gradient, given
by the model (24), where the first simply relies on the gradient |Vz| in g, and the
second model is the same as (24), except that g = g¢ = 1 —C, where C is the binary
output of Canny edge detection (so that g = 0 on edges and g = 1 elsewhere). In
addition, we make a comparison with the two-stage method by Cai et al. [9].

Figure 4 shows performance on two different images, where we can see that the
first two columns show the relevant models, corresponding to (24) using just gradient
Vz and (24) using Canny respectively, struggling to separate the white matter from
the grey matter. The third column corresponds to the method by Cai et al., which
is a noticeable improvement over the first two. In comparison, the fourth and fifth
columns, corresponding to our proposed two-stage method and combined one-stage
method respectively, do an improved job at capturing finer details of the white
matter which are smoothed out in the first stage of the Cai method. We note that
the combined global segmentation algorithm is slightly cleaner and sharper than
the two-stage approach, and so is our preferred method. We are able to detect fine
edge details without distracted too much by noise with the combined method.

In Figure 5 we look at the same image but with varying levels of noise, ranging
between 3% to 9%. It is clear to see the combined model in the final two columns
doing a good job at all noise levels at separating the white matter from grey matter.
In comparison to the first two columns ((24) depending only on the gradient |Vz|)
which struggles to segment effectively particularly at higher noise levels. We do
note that the reconstruction part of the combined model model provides a slight
denoising effect, which helps with the result.

In conclusion while the two-stage method is easier to implement, and easier to
tune parameters, the combined one-stage global segmentation method (Algorithm
1) is preferred. The combined method is overall quicker and results are better, due
to its ability to use the decomposition method directly to inform the segmentation.

4. Proposed selective segmentation method. In certain applications, one is
only interested in segmenting some local regions of interest. We may do this in
two manners: two-stage and one-stage. The former is to run RKHS and Heaviside
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FIGURE 4. Segmentation of white matter from MRI brain image.
We show both the contour overlaid on the original image, and
the associated binary segmentation result for each example. First
column: segmentation using edge weighted Chan-Vese using |Vz|
model (24). Second column: Edge weighted Chan-Vese model (24)
using Canny (g = g¢). Third column: Cai et al. [9]. Fourth col-
umn: Proposed two stage global model (8) and (25). Final column:
The proposed combined global segmentation model (26).

feature separation and then use the edge information to help with selective seg-
mentation. The second is to fuse both feature separation and segmentation in one
model. We will address the advantages and disadvantages of each.

4.1. Two stage selective segmentation. We demonstrate the idea of selective
segmentation using the framework of model from Roberts and Spencer (2), but it
could be applied in any segmentation framework that relies on image gradient.

In model (2), there are two places that use gradient: one is in the edge stopping
function, and one is in the geodesic distance function calculation (3). We will replace
the gradient by ¥j. Specifically, we replace g(|Vz|) with g(|¥S|) and redefine the



16 LiaM BUurRrows, WEIHONG GUO, KE CHEN AND FRANCESCO TORELLA

FIGURE 5. Row 1: 3% noise, Row 2: 5% noise, Row 3: 7% noise,
Row 4: 9% noise. We show both the contour overlaid on the origi-
nal image, and the associated binary segmentation result for each
example. First two columns: Using model (24). Final two columns:
Combined model, algorithm (1).

geodesic distance to be based on the solution of
(47) VD (x)| = € + B B| + 0 Dp(x).

The geodesic distance is calculated by normalising as in (4).
In Figure 6, we see the geodesic distance penalty using the image gradient fails
to penalise the region indicated by the red arrow, where there is low contrast and
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not much of an edge to be detected. The geodesic distance using ¥ improves on
this, showing a higher penalty to the bottom left region.

(A) Original image (B) D¢ using Vz. (¢) D¢ using 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 6. Geodesic distances computed using gradient (middle)
and US (right)

Similarly to the global two-stage case, we run the first stage model (8) to obtain
the clean image M = Kd+ ¥ and the decomposition, so that we can use U3 as a
a weight for segmentation, in addition to making use of it in the geodesic distance:

Flu) = / 9|V B))|Vuldx + /Q (ALfo(M) — Ao fo(M)) udx
(48) +9/S)D0(X)udx—|—§/ﬂl/(u)dx,

where D¢ (x) is computed using (47) and (4) and g(¥8) = m

In [27], Roberts and Spencer find the associated Euler-Lagrange equations to
solve their model, using a modified AOS algorithm first introduced in [28] to solve
the resulting time dependent PDE. Instead of taking that approach, we use the dual
formulation method of Chambolle [11], first applied to segmentation problems in
the convex relaxed setting in [8].

Firstly, we fix ¢; to be the average intensity of pixels in the region indicated by
our input, M. In order to minimise with respect to u, we introduce an auxiliary
variable w so that our problem looks as follows:

1
min/g(|\I!,6’\)|Vu|dx—|——/(u—w)2dx
ww fo 2p Jo

(49) +/\/Q(f1(M) —fg(M))wdx—FO/Q’Dg(a:)wdx,

where we have set A\; = Ay = A. Additionally, it is proven in [8] that the penalty
term v(u) in this framework is not needed as the constraint u € [0,1] (as well as
w € [0,1]) holds provided that the initialisation u(?) € [0,1], and so we can omit
it from our functional. We solve by alternating between minimising v and w. Our
first sub-problem is the u subproblem, given by:

1
(50) u® = arg min/ g(| 98| Vu®|dx + — / (u® — wk=1)2gx.
K Jo 2p Ja

u
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The solution is given by
(51) u® = w*=1 _ pdiv pk)|

where p(¥) = (pgk), pgk)), which is solved iteratively with p(® = 0 and

p*) 4 5tV (div(pF)) — #)
at iv(pk))y — w®
1+ [ (div(ph) — 2]

(52) p*H =

After updating for u®, we solve the following problem for w®):
1
(53) w®) = arg min _— / (u® —w®)?dx +/ rw®dx,
w (k) PJo Q

where 7 = A(f1(M) — f2(M)) + 6Dg.
The solution is given by

(54) w® = min{max{u® — pr 0},1}.

Algorithm 2 (Two Stage Selective Segmentation)

1: Input: Image z, parameters v, a,v,o for RKHS and parameters u, A, 0, p, it
and ¢ for segmentation. A set of marker points M that are inside the region of
interest. Fix ¢y to be the average intensity of pixels inside the region indicated
by M.

2: Solve RKHS model (8) to obtain coefficients d and  as well as a clean image
M = Kd+ ¥ that is the input for segmentation.

3: Initialise u such that v = 1 inside M, and u = 0 outside M.

4: Calculate g(¥3) = m and compute Dg according to (47) (4).

5. while relativeerror > tolerence do

6: Update u and w as in (51) and (54) respectively

7. end while

8: Output: Segmentation result ¥ = {x : u(x) > ~*} where we usually fix
v* =0.5.

4.2. A combined selective segmentation model. In section 2.2 we have dis-
cussed combining reconstruction and segmentation models into a unified framework,
allowing us to obtain both the decomposition of an image and the global segmenta-
tion result simultaneously. It is a natural extension to consider a unified framework
to achieve selective segmentation, which we could do for example on the basis of
model (8) (48). This would give us the following model:

. 1
min ||z — (Kd + UB)||> +vd" Kd + o||8||1 + ng(¥B) " |Vul
d,B,u€l0,1]2
(55) +ut | AMfi(Kd+UB) — Ao fo(Kd+ UB)| + 6u' Dg,

where D¢ is the geodesic distance defined using ¥3. This is highly non-linear
however, and very computationally expensive to implement as stated above. This
is mainly due to the inclusion of the geodesic distance term Dg. The geodesic
distance involves solving an Eikonal equation, and to do that on each iteration
drastically slows down the computation speed. In addition, the inclusion of this
term makes the 8 problem highly non-linear.
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To simplify this, we can fix the § used in the calculation of Dg to be the
from the previous iterate, and implement a BCD scheme [30], similar to how we
implemented the global combined model in section 2.2. Implementing in this way
achieves convergence.

4.3. Numerical experiments. In this section we only show some results of the
proposed selective segmentation methods (two stage approach Algorithm 2, and
unified approach (55)), demonstrating how U3 can be used as an improvement over
the traditional |Vz| method. Our proposed global segmentation models are tested
in §3.3. The unified one stage approach (55) is slow and difficult to compute and
the results are not as good as those of the two stage approach Algorithm 2, so we
focus on Algorithm 2 first.

To begin with, we look only at our two stage approach, contrasting the model
(2), which we will denote as method 1 (M1). For simplicity, we denote the proposed
Algorithm 2 as method 2 (M2). The differences between M1 and M2 is M1 uses
|V z| for edge detection, whereas in M2, we run (8) as a preprocess, and use the ¥
output (and reconstructed image) into the segmentation framework.

First, in Figure 7, we present a synthetic image of two neighbouring ellipses
of very slightly different intensities. To test selective segmentation, we set the
initial marker as shown in Figure 7b with the aim to to selectively segment the
ellipse on the left but not both of them as there is an edge between them, and
we start with an initial inside the left ellipse. We add increasing levels of noise to
demonstrate that the Wg is still capable of capturing the edges in the presence of
excessive noise. Using the image gradient in the case of noisy images is a case of
choosing between smoothing (using a preprocess such as total generalised variation
(TGV)) to eliminate noise in order to capture the edges, but not smoothing too
much without blurring the edge. Even at 20% noise in this synthetic example,
the image gradient is not well equipped to detect the small edge between the two
objects without detecting a lot of noise, where as W/ performs well even at 40%
noise. The leaking in gradient based edge detection leads to segmentation of two
ellipses instead of one.

Then we show some examples on medical images. Segmentation of an abdominal
aortic aneurysm is a difficult task as there is often a lack of contrast between the
boundary of the blood vessel and neighbouring objects. Often, the gradient of
the image fails to significantly detect an edge in these regions, however using the
proposed RKHS based Algorithm 2 on small patches, these small edges can become
more prominent, allowing us to segment the blood vessel more effectively. Figures
8 and 9 show the comparison for two different CT images. One can see that the
gradient based approach M1 overshoots at the lower left in Figure 8 and at the
lower left and right in Figure 9.

In addition to visual results, we have supplied heatmaps in Figures 8 and 9 to
visualise the robustness of parameters. As a quantitative measure to assess the
accuracy of our segmentation results, we use the Tanimoto coefliecient (or Jaccard
coefficient [17]) defined as

Y¥NGT

where GT is the ground truth segmentation, and ¥ is the binary segmentation
output from Algorithm 2. A value TC = 1 corresponds to perfect accuracy to the
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(A) Original clean image ) User input M

(¢) M1 output (|Vz|). (D) |¥8|. (E) M2 output (|¥a3].)

(F) M1 output ([V2]). (c) w8 (1) M2 output (V5]

(1) M1 output (|Vz]). (3) |wa. (k) M2 output (|¥g].)

FIGURE 7. Row one: Original clean image and the user input.
Row two: Image and result with 20% noise. Row three: Image and
result with 40% noise. Row four: Image and result with 60% noise.
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(A) Original image (B) User input M. (¢) Ground truth.

(D) M1 output (|Vz|). (F) M2 output (|¥g].)

(G) Heatmap for M1. (1) Heatmap for M2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

- [

FIGURE 8. Segmentation of blood vessel.

ground truth, and as T'C' decreases so does the quality of the segmentation result.
In our heatmaps, we represent as green to be TC' =1, and red to be TC = 0.

In the heatmaps, we vary A € [0,20] (on y axis) and 6 € [0,800] (on x axis), and
the associated colour in the chart is the measure of how accurate that parameter
pair (A, 0) segments the blood vessel. It is clear to see that there is a greater amount
of green (T'C = 1) on our proposed M2 heatmaps, compared to M1 which uses the
gradient.

It is clear to see that the two-stage approach (Algorithm 2) is an improvement
on the existing method using the gradient for edge guidance. We now discuss the
performance of the unified selective model, showing a result in Figure 10. This
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(A) Original image (B) User input M. (¢) Ground truth.

(D) M1 output (|Vz|). (F) M2 output (|¥g].)

(G) Heatmap for M1. (1) Heatmap for M2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

FIGURE 9. Segmentation of blood vessel.

image is the same image as Figure 8, except that it is cropped. We crop it for
two reasons: the first was to increase the computation speed of the model, as
recalculating the geodesic distance on every iteration is computationally expensive.
The second reason is that it was difficult to isolate the object from the background.
The parameter selection is very sensitive, and achieving a result on the full image
was difficult - cropping simplified this task, and we can see in Figure 10 that we have
successfully segmented the blood vessel, without the segmentation result leaking on
the object in the bottom left.

In conclusion, unlike for global segmentation in which we recommend the unified
approach (§3.3), for selective segmentation we recommend the two-stage approach.
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This allows for a quicker computation time and less sensitive parameter selection.
The combined approach for selective segmentation takes a long time to process
due to recomputing the geodesic distance at each iteration, and in addition the
parameters are sensitive.

FIGURE 10. Result of the combined selective model.

Parameter selection: There are some parameters in the definition of the Gauss-
ian kernel (¢), the approximated Heaviside function (J), the edge stopping function
(¢) and in (8), (47) and (49). Some of the parameters are not so sensitive to the na-
tures of the underlying image and are pre-fixed while others need to be tuned. For
parameter that need to be tuned, we usually test on orders of different magnitude
and choose the best. We typically fix ¢ = 12, § = 1074, + = 1000, fix the patchsize
to be 4 x 4 with the overlap of 3. In model (8), we can fix & = 1, v is varied between
10~* and 1072, and « is tuned by ranging between 10~'! and 10~°, choosing the
best for different test images. Similar choices for these parameters can be made
in the respective combined models (global combined and selective combined.) The
parameter in (47) are chosen as: € = 1072, g = 1000 and 6 = 0.1. For the model
(49), we can fix p = 1, whereas A and 6 are tuned empirically depending on the
test image (and similarly for global combined and selective combined.) In (52), we
introduce a time-step, which we fix as 6t = 1/8.

5. Conclusion. In this paper we have proposed RKHS methods to improve seg-
mentation results, particularly in images in which low contrast is present. We began
by introducing a two stage process, involving first an image reconstruction model
(decomposition process) using RKHS and approximated Heaviside functions, and
then using the output from the first model into a segmentation framework. In
addition to the two stage approach, we have proposed unifying to the two stages
into a single, combined model, achieving reconstruction and segmentation simul-
taneously. We compared the effectiveness of both variants (two-stage and unified)
against segmentation frameworks using the traditional |Vz| as edge guidance.

In addition to global segmentation, we then turned our focus to looking at re-
gion of interest selective segmentation, again showing the effectiveness of ¥ over
the traditional gradient approach in segmenting objects with low contrast at the
boundary. We proposed a similar two-stage approach and unified combined model
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for selective segmentation, although we note that the unified approach in the selec-
tive case is less preferred than the two-stage, unlike global segmentation, due to the
increased computation speed of the geodesic distance.
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