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Abstract— Hyperspectral image (HSI) super-resolution refers
to enhancing the spatial resolution of a 3-D image with many
spectral bands (slices). It is a seriously ill-posed problem when
the low-resolution (LR) HSI is the only input. It is better
solved by fusing the LR HSI with a high-resolution (HR)
multispectral image (MSI) for a 3-D image with both high
spectral and spatial resolution. In this article, we propose a novel
nonnegative and nonlocal 4-D tensor dictionary learning-based
HSI super-resolution model using group-block sparsity. By group-
ing similar 3-D image cubes into clusters and then conduct
super-resolution cluster by cluster using 4-D tensor structure,
we not only preserve the structure but also achieve sparsity
within the cluster due to the collection of similar cubes. We use
4-D tensor Tucker decomposition and impose nonnegative con-
straints on the dictionaries and group-block sparsity. Numerous
experiments demonstrate that the proposed model outperforms
many state-of-the-art HSI super-resolution methods.

Index Terms— Hyperspectral imaging (HSI), nonlocal sparse
tensor factorization (NLSTF), nonnegative tensor dictionary
learning, super-resolution.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) consist of a num-

ber of wavelength bands providing abundant spectral
information. Different objects with different colors have a
different spectral response. Even for the same object, it shows
different spectral response under different status (e.g., a good
nut versus a bad nut under the shell). This enables spectral
imaging a strong modality to distinguish one object from
another. It plays an important role in the fields of remote
sensing and various computer vision tasks, such as object
classification, tracking, and recognition. In practice, however,
HSIs are severely limited in spatial resolution due to hardware
constraints. Conversely, multispectral images (MSIs) usually
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have a high spatial resolution but low spectral resolution. The
purpose of HSI super-resolution is to raise the spatial resolu-
tion of HSI. It is often done by fusing a high-resolution (HR)
MSI and a low-resolution (LR) HSI.

The HSI super-resolution techniques which have been pro-
posed in recent years mainly include the matrix factorization
based methods and the tensor factorization based methods.
Matrix factorization based methods rewrite an HSI as a 2-D
matrix with each row corresponding to a spectral band and
treat it as the product of a dictionary and a coefficient
matrix. Kawakami et al. [1] introduced a sparse matrix
factorization method, which reconstructs the HSI by multi-
plying the learned dictionary from the HR-MSI and sparse
coefficients from the LR-HSI. Yokoya et al. [2] proposed a
coupled nonnegative matrix factorization (CNMF) method
for HSI super-resolution by alternately applying nonnegative
matrix factorization (NMF) [3] unmixing to LR-HSI and
HR-MSI. Meanwhile, a sparse NMF method was proposed
by Wycoff et al. [4] to exploit both nonnegativity and sparsity
on HSI. Simdes et al. [5] presented a convex formulation for
HSI super-resolution (known as HySure) based on vector total
variation regularization, which promotes piecewise-smooth
solutions with discontinuity along spectral direction. A non-
parametric Bayesian sparse representation (BSR) method for
the fusion of HSI and MSI was proposed by Akhtar et al. [6].
Dong et al. [7] proposed a nonnegative structured sparse rep-
resentation (NSSR) approach based on the prior knowledge
about spatio-spectral sparsity of the HSI. Lei et al [8]
developed a novel clustering manifold structure-based HSI
super-resolution framework. The learned manifold structure
from the HR-MSI can well capture the spatial correlation
of the target HR-HSI. By organizing 3-D tensors into 2-D
images, image factorization-based approaches gain computa-
tional simplicity and are often faster but lose high-dimensional
structures. Just like when one collapses a 3-D paper origami
into a 2-D piece of paper, the 3-D structure is lost even
though the creases are still there. In comparison, tensor
factorization-based approaches keep data structure better but
pay the price of heavier computation.

Spectral data comes with a 3-D tensor structure. Tensor
representation and modeling are better in preserving struc-
tures and have gained attention recently. They have pro-
vided impressive results in multidimensional HSI restoration.
Qi et al. [9] proposed a tensor factorization-based denoising
approach using an intrinsic tensor sparsity (ITS) measure.
Their approach considers global correlation along the spectral
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direction and nonlocal self-similarity along the spatial direc-
tion of the underlying HSI. Wei and Fu [10] presented a
low-rank Bayesian tensor factorization (LBTF) approach for
HSI denoising, which describes the inherent spatial-spectral
correlation of HSIs. A tensor robust principle component
analysis method based on tensor singular value decompo-
sition (t-SVD) and tensor nuclear norm was proposed by
Yang et al. [11]. They built a framework for hyperspectral
compressive sensing with anomaly detection, which recon-
structs the HSI and detects the anomalies simultaneously.
For HSI super-resolution, Dian et al. [12] proposed a nonlo-
cal sparse tensor factorization (NLSTF) model that induces
spatial dictionaries and core tensors from HR-MSI and spec-
tral dictionaries from LR-HSI, respectively. Dian et al. [13]
further proposed a semiblind fusion method based on NLSTF.
Howeyver, this method does not combine LR-HSI and HR-MSI
to estimate the dictionary and the core tensor for each cluster.
Chang et al. [14] presented a weighted low-rank tensor recov-
ery model by using high-order singular value decomposition
(HOSVD). It updates core tensors iteratively while fixing the
dictionaries along every mode. A coupled canonical polyadic
decomposition model was proposed by Kanatsoulis ef al. [15].
This approach, however, did not consider the spatial non-
local self-similarity and tensor sparsity prior. Very recently,
Li et al. [16] proposed a coupled sparse tensor factoriza-
tion (CSTF)-based HSI super-resolution model. The high
spatial-spectral correlations in the HR-HSI are modeled by
the sparsity of the core tensors. A coupled tensor factorization
of the LR-HSI and of the HR-MSI is adopted. However,
the nonlocal spatial similarity in HSIs was not modeled.
Furthermore, a spatial-spectral sparse representation-based
method (SSSR) was presented by Dian et al. [17] to exploit
the nonlocal spatial similarities, prior to spectral unmixing and
a sparse prior to the fusion problem. Dian et al. [18] proposed
a low tensor-train rank (LTTR)-based HSI super-resolution
approach, where an LTTR prior is designed to learn the corre-
lations among the spatial, spectral, and nonlocal modes of each
4-D similar cluster. In addition, a subspace-based low tensor
multirank regularization method for HSI super-resolution was
proposed by Dian er al. [19]. They approximated the target
HR-HSI with low-dimensional spectral subspace learned from
the LR-HSI and corresponding coefficients estimated with low
tensor multirank prior. Xu et al. [20] applied a tensor-tensor
product-based tensor sparse representation that can preserve
the spectral and spatial similarities between nonlocal similar
patches in HSIs. Recently, some deep learning-based methods
have been proposed for HSI super-resolution and remote
sensing restoration. A deep residual pan-sharpening neural net-
work (DRPNN) for the fusion of MSI and panchromatic image
was proposed by Wei et al. [21]. They employed the nonlin-
earity of a convolutional neural network to achieve robust and
high accuracy fusion. In addition, Dian et al. [22] proposed to
learn the map between initialized HR-HSI and ground truth via
a deep residual convolutional neural network. Then, the deep
HSI sharpening method (DHSIS) incorporates the learned deep
priors into the LR-HSI and HR-MSI fusion framework. In this
article, we mainly study the tensor factorization-based methods
in HSI super-resolution. Peng et al. [23] extended 2-D image
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group sparsity to HSI group-block sparsity and developed a
nonlocal tensor dictionary learning model for HSI denoising
problem. They employed the group-block sparsity prior to
model the spatial nonlocal self-similarity and spectral global
correlation simultaneously. By using the Tucker decomposition
technique on each cluster of the noisy HSI directly, the quality
of the restoration can be greatly improved.

Motivated by [23], we extend the group-block sparsity prior
to HSI super-resolution. However, the HSI super-resolution
problem is different from HSI denoising since it is more ill-
posed. Denoising problem only has one input and the proposed
fusion-based super-resolution work has two inputs, each one
has a convolution relation with the underlying HR image along
the spatial direction and the other one along the spectral
direction. The data fidelity term thus contains two terms
and due to the convolution, the computation is much harder
than the denoising problem. Each of the dictionaries and the
core tensor are estimated by using the information from both
HR-MSI and LR-HSI. The group-block sparsity was based
on the clustering of cubes. In the HSI denoising problem,
there is only one clustering to be done, i.e., on the noisy
input. In the HSI super-resolution problem, the clustering
has to be done on two inputs and the clustering has to be
matched up during the computation. In the HSI denoising
work, the rank was predetermined using AIC/MDL proposed
by Wax and Kailath [24] in 1985. The rank of the dictionary
matrices are computed from the given noisy HSI beforehand
and fixed during the computation. Especially, the dictionary
matrices are narrow as they have less columns than rows.
The results thus rely heavily on the accuracy of the rank
precomputed. In our work, we do not fix the rank but use a
more data-driven/adaptive scheme under a redundant scheme:
our dictionary matrices are wide with more columns than
rows and the group block sparsity is involved in the energy
functional to be minimized to automatically determine the
rank.

In this article, in order to keep the high-dimensional data
structure, we propose a nonnegative coupled HSI super-
resolution model from the tensor perspective using a nonlocal
characteristic described by group-block sparsity. We first group
similar 3-D cubes into clusters using K-means++. Similar
3-D cubes in each cluster are organized as a 4-D tensor instead
of collapsing into a 3-D tensor or 2-D matrix. To the best of
our knowledge, this is the first effort in using nonlocal sparsity
on the 4-D tensor data structure for HSI super-resolution.
The spectral correlation and similarity among 3-D cubes bring
tensor sparsity under Tucker decomposition. Compared with
the state-of-the-art HSI super-resolution methods, the contri-
butions of the proposed method are as follows.

1) To the best of our knowledge, this is probably
the first 4-D Tucker decomposition and group-block
sparsity-based HSI super-resolution work. We propose to
combine nonnegative and nonlocal sparsity for the task
of HSI super-resolution. The nonnegativity constraint
ensures the nonnegativity of the HR HSI intensity. The
nonlocal sparsity denoted by group block sparsity is
produced from grouping similar 3-D cubes into clusters.
Tucker decomposition approximation is employed on

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 15,2020 at 13:47:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAN et al.: NONNEGATIVE AND NLSTF-BASED HSI SUPER-RESOLUTION

each cluster represented by a 4-D tensor. The compu-
tation is done on each cluster. Both clusters of HR-MSI
and the corresponding ones in LR-HSI are coupled for
estimating the dictionaries and the core tensor of the
HR-HSI.

2) Different than what is done in the literature, the group-
block sparsity is implemented in a more automatic
data-driven manner. The rank of the dictionary matrices
is not computed from the given noisy HSI beforehand
and fixed as done in, for instance, [23]. In our work,
we use a more data-driven/adaptive scheme under a
redundant framework which better promotes sparsity
than narrow dictionaries used in some works in the
literature.

3) An efficient splitting approach is carefully designed
for the proposed HSI super-resolution model and the
Ly, norm of group sparsity in 2-D images is used
to approximate the group-block sparsity in the tensor
sparse coding process.

The rest of this article is organized as follows. In Section II,
we introduce basis notations and review some preliminaries
on tensors. We introduce the proposed HSI super-resolution
model in Section III. Experimental results are laid out in
Section 1V, and conclusion follows in Section V.

II. NOTATIONS AND PRELIMINARIES

An Nth-order real-valued tensor is an N-dimensional data
array denoted as X € RN >E2-xIv et x;;,.;, betheijiy---iy
entry. The Frobenius norm of X" is here defined by || X|f =
(EiliZ'“iN xi21i2~~~i,v)1/2' The mode-n vectors are obtained by fix-
ing every index but the one in the mode n. The mode-n matri-
cization, also known as the unfolding or flattening, of a tensor
X € RixE-xIv js denoted as X,y € RI¥UililiiIn) gand
arranges the mode-n vectors to be the columns of the matrix.
The n-mode product of a tensor X € R *2*I¥ with a matrix
U € R is given by X x, U € RIv< X xlipixxIy [25]

Definition 1 (Tucker Decomposition): A Tucker decompo-
sition of a tensor X € R"*2*Iv is a decomposition of X" as
a core tensor multiplied by a matrix along each mode

X:yX1A1X2A2---XNAN. (1)

Here, A, € R"*M: are the factor matrices (also known as
the dictionaries along each mode) and ) € RMi*MaxMy g
the core tensor, i.e., the coefficient tensor of X over the N
dictionaries.

In particular, the second-order tensor (image) X can be
expressed as

X = AYB’

where A and B are the dictionaries related to mode-1 vector
(column) and mode-2 vector (row), respectively, and Y is the
coefficient matrix.

Let the vectorization of a tensor X be defined as vec(X') =
vec(X(1y) € RI2+Iv je., the long vector obtained by stacking
all the one-mode vectors vertically. The mode-n unfolding of
the Tucker decomposition is

Xoy =AYy Ay ® - ®A,11 QA1 Q- @AD" (2)

LR-HSI Y

HR-HSI

.
- Zi ’—-—) ClE) | == yuo
¢ i
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—

Stepl: Nonlocal Clustering ~ Step2: Tensor Dictionary Learning
+Tensor Sparse Coding
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Step3: Reconstruction of HR-HSI X

Fig. 1. Tlustration of the proposed HSI super-resolution method.

and its vector representation is
X=AyQAyN_1® - -® Ay (3)
where x = vec(X) and y = vec()).

III. PROPOSED METHOD

The purpose of HSI super-resolution is to estimate the
HR-HSI X € RW*H#*S by fusing the LR-HSI ) € R®*/*S
with the HR-MSI Z € RW*#*s where w < W,h < H, and
s < S. The proposed HSI super-resolution method is shown
in Fig. 1.

First, we construct a group of cubes {Z;}/_, C Rdwxdnxs
from HR-MSI Z € R"*#>s by sweeping all across it with
overlaps [, = dw/2 and [, = dy /2, where [,,, [, are divisible
into W, H, respectively, and n = n,n; is the cube number
and n, = (W —1,)/(dw — lw),np = (H = 1y)/(du — In).
Similarly, we can build a group of cubes {Y;}_; C RwxdixS
from LR-HSI Y and d,, = dw/a,d, = dy/a, a is the scaling
factor (e.g., a = 4,dw = dy = 8,d, = d, = 2). Note that
each cube has full bands. We group the similar cubes of the
HR-MSI Z into K clusters {Z(k’j)};szl,k =1,2,...,K by
K-means++, where K is the number of clusters, and ny is
the number of cubes in the kth cluster. Z*-/) g Rdwxduxs
denotes the jth cube of the kth cluster. For convenience,
we combine the similar cubes in the kth cluster together
to formulate a fourth-order tensor: ZW g Rdwxduxsxn
Correspondingly, based on spatial alignment, the cubes of
LR-HSI Y € R¥*"*S are grouped into K clusters the same
way as Z: {y<’<=f>}’;;1 C R&%wxdixS | =1,2, ..., K. Similarly,
we organize 3-D tensors {Y*-)}}*, into 4-D tensors Y® €
RwxdixSxme go that YO (:, 1, :, j) = Y&, The HR-HSI X
will be reconstructed cluster by cluster and each cluster is
denoted as X®) e RdwxduxSxme }o—1 2 K.

A. Reconstruction Constraints

As pointed out in [12] and [16], the acquired LR-HSI Y
is the spatially (along first and second modes) downgraded
version of A’

V=X x1P x, P, “4)

where P; € R“*W and P, € R"™¥ are the blurring and
downsampling matrices along the first (width) mode and sec-
ond (height) modes, respectively. In addition, the HR-MSI Z
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(@) () (c)

Fig. 2. Illustration of group sparsity, block sparsity, and group-block sparsity.
Blue cubes represent nonzero entries. (a) Group sparsity. (b) Block sparsity.
(c) Group-block sparsity.

contains less bands than the HR-HSI & and is the spectrally
downgraded version of X

Z:XX3P3 (5)

where P; € R**S is the blurring and downsampling matrix

of the third (spectral) mode. Noise was not mentioned in (4)

and (5) for notation simplicity. It is considered in the models.
Thus, for the kth cluster, we have

YO = x® x| P x, P; (©6)
20 = x® x;Ps (7

where P} € R%>4v and P; € R%*% have the same blurring
and downsampling manner with P; € R**% and P, € R"*#,
respectively. They differ only by size. Thus, we drop the
notation *x in P; and P, for convenience.

B. Group-Block Sparsity Prior

We reconstruct the HR-HSI X" cluster by cluster. Since the
cubes in the same cluster are similar and should share certain
characteristics, we attempt to enforce each cluster share the
similar atoms from the spatial and spectral dictionaries and
then use group-block sparsity to describe.

Definition 2 (Group-Block Sparsity [23]): For a higher-
order core tensor C € RI>E->Iv it group-block sparsity
with respect to the factors A, € R >*h n=1,2,..., N(N <
N') is |Cllg = (my,ma,...,my) if and only if the smallest
index subsets 7,1, ..., Iy satisfying c;,..;, = 0 for all
(i],iz,...,iN) ¢ 7Ty x1Ip x--+-x Iy contain my, my, ..., my
elements, respectively.

To help understand group-block sparsity, in Fig. 2, we illus-
trate the relation/difference among group-block sparsity, block
sparsity, and group sparsity using a 4-D tensor, a 3-D tensor,
and a 2-D matrix, respectively. As shown in Fig. 2(a), group
sparsity of a 2-D matrix refers to all columns share zeros at
the same locations, i.e., the matrix contains many zero rows.
Block sparsity [see Fig. 2(b)] of a 3-D core tensor refers to
nonzero entries of it are located within a block, leading to
slices of zeros. It is motivated by the fact that block sparse
signals are more likely to occur than totally random sparse
ones [26]. A 4-D tensor can be considered as an array of 3-D
tensors as shown in Fig. 2(c). Group-block sparsity of a 4-D
tensor can be seen as the extended case of the group sparsity
if you treat each 3-D tensor in the 4-D tensor as a column
vector in a 2-D matrix. The 3-D tensors share locations of
nonzero blocks as shown in Fig. 2(c). Moreover, when there
is only one core tensor in each cluster, i.e., there is only one
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(b)

Fig. 3. Reconstruction results of c® (c) with nonnegative constrains and
those (d) without nonnegative constrains. (a) LR-HSI. (b) Ground truth.
(c) PSNR = 40.28. (d) PSNR = 46.84.

3-D tensor in the array, the 4-D tensor is actually a 3-D tensor,
its group-block sparsity is the same as the block sparsity.

Then, based on group-block sparsity prior and the Tucker
decomposition, the kth cluster X ® of the HR-HSI X can be
formulated as

x® = cw X1 Wi xo Hy x38,,k=1,2,...,K

with [CP 5 < (m,ml,m$)  (8)

where the 2-D matrices W, € R H, e R’
and S; € RS*7¢ denote the dictionaries of the width
mode with r,}’v atoms, the height mode with r,f’ atoms,
and the spectral mode with r{ atoms, respectively. The
4-D tensor C® e R >>rixme s the coefficient of X®
over the three dictionaries. Here, m!' < rl’, mfl < rH,
and m{ <rp.

Combining the relationship (10) and (11) and the

group-block sparsity, we propose the following model:
min
W, >0,H;>0,8,>0,C®

K
1

X = E [Y® —c® xi (PyWy) x2 (PaHy) x3 Sl
2.5

2 K
+5 D120 =9 Wi Hi s (BsSp) I
k=1

st 1ICPNp < (m),m{, mf). ©)

We enforce nonnegativity of the dictionary matrices as
image intensity is nonnegative. We, however, do not force C ®
the core tensor, to be nonnegative to avoid artifacts due to
strong constraints. After all, we do not need every component
to be nonnegative to achieve overall nonnegativity. In Fig. 3,
we compare the reconstruction results with and without non-
negative constraint on C%*). We observe artifacts in Fig. 3(c)
(with constraint on C®) while the one without constraint
[in Fig. 3(d)] leads to better results in both PSNR and visual
effects. Since (9) is separable with respect to k, the cluster
index, the original nonlocal HSI super-resolution problem can
be decomposed into K independent problems

min
W;.>0,H;>0,S,>0,C%

1
x5||y<’<> —CM %y (PyWy) x2 (P2Hy) x3 S/l %

2
+5||z<’<> —C® X, W, x5 Hy x5 (P3Sp) |12

s.t. ICP 5 < (m,?/,m,f',m,f), where k=1,2,..., K.
(10)
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Furthermore, the abovementioned problem can be equiva-
lently reformulated as

min
W, >0,H;>0,8,>0,C*))

1 & , .
x5 D IVED—CED (Y Wi) X2 (P2HE) X3S 7
j=1

A . .
+5 DN = CED o Wi Hox (PsS I
j=I1
st [IC*D g < (m),my,my),
foreachk =1,2,...,K.
(11)

We use an alternating minimization method to solve (11).
We alternate some subproblems iteratively until convergence.
In what follows, we explain how to solve each subproblem.

C. Tensor Dictionary Learning
To update Wy, the subproblem can be rewritten in mode-1
as follows:

1 A
in —|Y; — P 240z - 2 12
win 2|| I 1WiG]l7 + 7 1Z) — W Qi (12)

where Vi = (Y, Y02, YLz = (2,
zg’ff), CLZEML 6 = (€56 €Y G,
C™ Gl and Qi = [C5Qay, €7 Qu),s - €™ Qu].
In addition, YE]B’) ,ZE’{S’), and C(If’” are mode-1 unfolding
matrices of tensors Y/ 2% and C*7) respectively, and
Ga) = (Se ® (PHY)", Quy = ((P3S1) ® Hy)".

By using vec(AXB) = (B” ® A)vec(X), and by letting
w; = vec(Wy), we can easily rewrite the abovementioned
problem as

minl”“l — Dy w3 + Xy (wi) (13)
we 2

where = [vec(Y1)T, V/ivee(Z)T17,
[(G] @ PN, VZQf ®D"]", and

D, =

0, wi, >0

0o, otherwise.

X (we) = {

Since DlTDl is sometimes not of full rank, it is not accurate
to solve the abovementioned minimization problem directly
by the projection method. To better solve for w;, we use an
auxiliary variable w; to split wy, and rewrite (13) as

1 ~
min > u; — Dywel3 + Xs (W)
Wi, Wi 2

S.t. Wk = Wg. (14)

Then, we use standard ADMM to produce the following

iteration scheme:

1 U
1 : 2 w )~ 2
W;{-*' = argmm{—”ul - D1Wk||2+7||wlt{ — Wy — Vt1||2
Wi

- . ~ Mo\ ~
witl = arg~m1n{X+ (W) +7w Wi — with — v ||§}
Wi
Vfl+1 =V 4+ (Wffl —W;(-H).
(15)

Each subproblem has a closed-form solution, which is
written as

-1 ~
w]t(+1 = (DTD] + ”wI) (DlTul + 7’]ww;{ - ”wvi) (16)
VV]’(“ = max(w,’fl +vi, ()). (17

Equation (16) can be solved using QR or Choleskey
factorization.

H; and S; can be updated similarly. For Hy, use h; =
vec(Hy) and rewrite (11) in mode-2 matricization as follows:

1 ~ ~
min oy — Dby |3+ Xs (be), st he=he  (18)
hy by 2
h; can be calculated by the following iteration scheme:

. [1 h 3
it = argmm{— lluz — Daby 3 + 2y, — by — v’zni}
Iy 2 2
ht = argmin{)(+ (Hk) + %nﬁk —hit - v§||§}
.

Vi = (R - R

19)
where wy = [vec(Y2)',vvec(Zy)"1", Yo = [YE%U’
k,2 k,r (k,1 k,2 (k,ng
YED, L YS™W)L and 2, = (250, 257,251

In additon, D, = [(G] ® P)",Vi(Q) ® DT,
G = [CEIESI)G<2)»C§§312)G<2>,~--k,ZCEIES"UG<2>L Go) = (8¢ ®
® W), Q: = [C5"Q). €57 Q). - ... C5™ Q1. and
Q) = ((P5Sy) @ W)

For S, mode-3 matricization is used

o1 ~ ~
min —|[us — Dasg||3 + X4 (8), st S = s (20)
)
s¢ can be found by solving
.1 :
s = argmln{—llua —Dasi I3+ ﬂllgjk — Sk — Véll%}
S 2 2
i — alr;gxlill{)(+ (5) + %n@ —st v;||§}
Sk
Vi = (s )
(21

where s, = vec(Sy), uz = [vec(Y3)”, vAvec(Z3)"17, Y; =

& k2 ) SR k) (ko)
[Y(3) R Y(3) e ,Y(3) M, Zs = [Z(z) R Z(3) et ,(kZISZ) 1,
D; = [(G] ® D7, V2@Q} @ P}, G; = [C5) Gy
ngiz)G(3),-~-,SE:;)}’MGG)],(]{%G) = ((Pz(kag ® (PW)’,
and Qs = [C3°Qp), Ci57Qap)s---»CH" Q3 Qa =
(Hy @ Wp)T.

D. Tensor Sparse Coding

Once the dictionaries Wy, Hy, and S; are updated, our next
problem is to update C®). For fixed Wy, Hy, and Si, C% is
updated by solving

R . .
min > Zl IV — eI sy (PYWi) X2 (PaHE) x5 Sell
j:

R . .
+5 D NEED = €D Wi xa Hic s (B3S0) I
j=1
s.t. [C®D |5 < (m,?/,m,f],ms), where k =1,2,..., K.
(22)
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(a) (b) (© (d)

Fig. 4. Reconstruction results by using (¢) £ norm and (d) ¢;» norm.
(a) LR-HSIL. (b) Ground truth. (¢) PSNR = 34.99. (d) PSNR = 46.84.

According to the relationship between the Tucker model and
Kronecker representation, the abovementioned problem can be
formulated as

mln—IIYU‘) D, COY7+> IIZ(’” D,CY 7 + 2ICW

c®

(23)
where CO = [ckD ®2 ckmo] y® = [ykD
y&2 o y®Em] s and ZW = [z2&D) z®2 0 z®m0] are

matrices, ¢&/) = vec(C*1), y®/) = vec(Y*), and 2%/ =
vec(Z®*:-))) are vectors by stacking all the mode-1 vectors of
tensor C%7) Y&-1) and Z*7) | respectively, and the matrices
D; = S, ® (PHy) ® (P W) € RéwdSririnl Py = (P3S;) @
H, ® W, € Réwdusxr' i are the dictionaries. Note the first
two terms in (23) are identical to the energy function in (22).
The only difference is the data structure. With the matricization
of C®, the group-block sparsity is relaxed to the following
group sparsity regularizer [27] in 2-D images:

N
IAlpg = llosll?
i=1

where «@; denotes the i-th row of A. The pair (p,q) is
usually set as (1, 2) or (0, oo). In the €y case, this
optimization problem is intractable, and could be solved by
a greedy approach such as simultaneous orthogonal matching
pursuit (SOMP). We have observed experimentally that the
reconstructed HSI is in general of better quality when using
the £;, norm rather than the pseudo ¢y norm, as shown
in Fig. 4. Here, we use the convex ¢, norm for updating
C®, which can be solved efficiently with ADMM. First, (23)
can be equivalently simplified as

(24)

min — ||U(k)

i DCO 3 + 2.I1CP1 2
c®

(25)

Y D
(k) — — 1 (k)
where U [\/IZ(’Q} and D |:\/ID2:|. To solve C'¥,
we add an auxiliary variable B®) to substitute C%), and rewrite
the abovementioned problem as

min — ||U(k)

DB® |2 + 2.ICP|; 5, s.t. B® =B,
Ck)

(26)

Then we use standard ADMM to produce the following
scheme:

BO ! = arg mln{‘ Iu® —pB®|%

B®

+21BY — c®' - vz}
2

CO™ = argmin{2.[CY[|; »

)

Ne t+1
+2BOT — e v

27)

Vt+l — Vt
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Algorithm 1 Nonlocal Sparse Tensor Decomposition-Based
HSI Super-Resolution
Input: LR-HSI ), HR-MSI Z, Py, P,, P3 and 1 > 0.
Output: HR-HSI X
Group the similar cubes of Z and ) into cluster tensors
Z® and y® by K-means ++, and initialize Wy, H; and
Si by using Tensor factorization technique on Z® and Y®,
k=1,..., K. For each cluster k,
repeat
step 1. Update core tensor C¥) by solving (27).
step 2. Update dictionary W; by solving (15).
step 3. Update dictionary Hy by solving (19).
step 4. Update dictionary S; by solving (21).
until stopping criterion is satisfied.
Estimate X® by the Equation (8). Reformulate X® to
obtain X.

For subproblem B(k)tﬂ, it has a closed-form solution

B! = (D7D + 5.1) ' (D7UY 4 5. CY" 4 V7). @28)

Observe that the subproblem C®'*" can be separated with
respect to each row of C®). Focusing on the ith row of C®),
denoted as ka), it suffices to solve a problem in the following
form:

2 1
min 2|9, + L BO™ — c® —vr2, (29)
c® 2
It has a closed form solution in terms of shrinkage
¢ =5 <B?">’+1 —V £> (30)
where S is a shrinkage operator and S(f, ©) = (f/Ifl2)

max{|| fll2 — u, 0}.
Once the dictionaries W, H;,S;, and core tensors

{C®DYIL, are known, all overlapping HR-HSI cubes can be
estimated. Finally, the estimated cube sets can be returned to
the original place to reconstruct the HR-HSI X. Overlapping
regions take the average as intensity.

We now summarize the proposed algorithm in Algorithm 1.

In addition, we state the convergence of the ADMM algo-
rithm for Wy, Hy, Sy, and C%® in the following theorem. The
basic convergence result can be found in several references,
such as [28].

Theorem 1: Let the constant #, > 0,7, > 0,5, > 0,
and 7. > 0 be given and suppose that there exists a KKT
point for problem (14), (18), (20), and (26), respectively. Then
these sequences (w}, W), (hi, h}), (s;,3,), and (B®', C®")
generated by the iteration scheme (15), (19), (21), and (27)
converge to some KKT point, respectively.

I'V. NUMERICAL EXPERIMENTS

In this section, we numerically demonstrate the superior
performance of the proposed model. We compare it with
several related HSI super-resolution methods: subspace reg-
ularization method HySure [5], CNMF [2], and CSTF [16].
We test the effectiveness of our proposed method on the
CAVE database [29], Harvard database [30], Indian Pines
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Fig. 5. PSNR curve as a function of parameters (a)n/K and (b)log(4.).

image [31], and the Pavia image [32]. The CAVE database
contains 32 HSIs, each with 31 spectral bands, ranging from
400 to 700 nm in 10-nm steps, and a spatial resolution
of 512 x 512. The Harvard database containing 50 HSIs of
size 1392 x 1040 x 31 was captured with the wavelengths in
the range of 420-720 nm at an interval of 10 nm. For the
convenience of spatial sampling, we choose the upper left
1024 x 1024 pixels as the ground truth image. The Indian Pines
image was obtained by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor, and the whole image contains
145 x 145 pixels and 224 spectral bands in the wavelength
range 400-2500 nm. In our experiments, a subimage of size
120 x 120 x 224 is used as the ground truth image X’. The
Pavia image was obtained by the reflective optics system
imaging spectrometer (ROSIS), and the whole image contains
610 x 340 pixels and 115 spectral bands. In our experiments,
the water vapor absorption bands were removed and only a
subimage of size 256 x 256 x 93 was used to evaluate the
performance of HSI super-resolution. All the key parameters
are optimally assigned in each method, and the experiments
are run under Windows 7 and MATLAB R2017a with Intel
Core 15-5200U CPU at2.80 GHz and 8-GB memory.

A. Implementation Details

In the experimental tests, we run the proposed method for
different values of key parameters. In general, the proposed
method performs best when the number of clusters K =
(n/60), n is the total number of cubes, and the sparsity
regularization parameter 1. is set as 107*. For illustration
intuitively, the PSNR curves of the reconstructed results of
chart and stuffed toys in the CAVE dataset for (n/K) €
[30, 100] and log(4.) € [—6, —2] are plotted in Fig. 5. We can
clearly see that the PSNR value reaches its maximum at
(n/K) = 60 and log(4.) = —4. Similar phenomena can
be observed for other test images. In addition, we test the
proposed method when the log operation of the penality para-
meters #y,, fJn, N5, o varies from 1 to —3, and then they are
set as n, = np = 0.1, 1, = 5. = 0.01 to get the best results.
In addition, in order to speed up the algorithm, we adopt the
Tucker decomposition on Z® and extract the dictionaries of
the width mode and height mode to initialize W; and Hjy.
We adopt the Tucker decomposition on Y® and extract its
dictionary of the spectral mode to initialize S;. Without special
statements, the stopping criterion of the algorithm for each
cluster is (JA®" — x® 1121 x® 7112y < 1 x 1076, As for
the selection of the number of dictionary atoms, we set r,fV =
r,f’ = 2a and rkS = 8, where «a is the scale factor. In addition,

TABLE I

COMPARISON ON THE AVERAGE VALUES OF FOUR QUANTITATIVE
MEASURES ON 32 SCENES FROM CAVE DATASET
WITH UNIFORM BLUR

Method | HySure [5] | CNMF [2] [ CSTF [16] | Proposed
a=38
PSNR 42.121 43718 44.762 46.794
RMSE 2.532 2.172 1.998 1.544
SAM 10.588 5.345 6.088 4.369
ERGAS 1.419 1.166 1.076 0.859
a=16
PSNR 39.820 43.344 43.546 44.900
RMSE 3.590 2.266 2.370 1.939
SAM 16.209 5.509 6.822 5.226
ERGAS 0.956 0.620 0.624 0.531
a=32
PSNR 38.505 42.301 42.226 42.943
RMSE 4.464 2.571 2.848 2.437
SAM 20.011 5.959 7.837 6.495
ERGAS 0.570 0.345 0.367 0.326

the spatial size of HR-MSI cubes is empirically chosen as
2a x 2a (i.e., dw = 2a,dy = 2a), then the size of the
corresponding LR-HSI cubes is 2 x 2 (i.e., d, = 2,d, = 2).

B. Experimental Results on Simulated Images

In this section, we first use the CAVE database as ground
truth image A&, and simulate the LR-HSI ) by uniformly
averaging over disjoint a x a blocks (e.g., a = 8, 16,32).
The HR-MSI Z is generated by degrading the HSI X using
a spectral transform matrix P3; based on the response of a
Nikon D700 camera. All of the four quantitative measures for
all compared HSI super-resolution methods on all 32 scenes
have been calculated and recorded. Table I lists their average
values of all compared methods. The first and third rows of
Fig. 6 show the constructed images of chart and stuffed toy at
630 nm with the scaling factor 16 and 32, respectively. Their
corresponding absolute error images are shown in the second
and fourth rows. Blue color corresponds to low error. We
observe from the zoomed-in patches that the proposed method
performs better in recovering details, especially for regions
containing more texture information. The proposed method
shows better performance than all the other three methods both
quantitatively and qualitatively in most cases.

Next, we further demonstrate the performance of the pro-
posed method to Gaussian blur on the CAVE database and
the Harvard database. We simulate ) by employing a 8 x 8
Gaussian blur function of standard deviation 3 to & before
downsampling with scaling factor 8. The quantitative results
obtained with different test methods are compared in Table II.
We can clearly see that the proposed method significantly out-
performs other methods with respective to all the quantitative
measures.

C. Experimental Results on Remote Sensing Data

In this section, we mainly demonstrate the performance of
the proposed method on the Indian Pines image. The HR-MSI
Z with six bands is degenerated by using Landsat sensor,
and each spectral band captures the 450-520-, 520-600-,

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 15,2020 at 13:47:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

B ]
(a)

Fig. 6.

Reconstructed images and the corresponding error images of chart and stuffed toy at 630 nm with uniform blur and scaling factor (Top two rows)

a =16 and (Bottom two rows) a = 32. (a) Ground truth. (b) HySure. (c) CNMF. (d) CSTF. (e) Proposed.

TABLE I

COMPARISON ON THE AVERAGE VALUES OF FOUR QUANTITATIVE
MEASURES ON CAVE DATA SET AND HARVARD DATA SET
WITH GAUSSIAN BLUR

Method | HySure [5] | CNMF [2] | CSTF [16] [ Proposed
Cave dataset

PSNR 42.051 43.625 43.873 46.651

RMSE 2.546 2.233 2.150 1.578

SAM 10.577 5.344 6.292 4.391

ERGAS 1.417 1.178 1.157 0.879
Harvard dataset

PSNR 44.248 45.877 45.471 46.526

RMSE 1.901 1.629 1.758 1.506

SAM 3.616 2.981 3.289 2.699

ERGAS 1.277 0.998 1.002 0.946

630-690-, 760-900-, 1550-1750-, and 2080-2350-nm infor-
mation of the HSI X, respectively. The LR-HSI ) is generated
as the spatial degradation manner for the CAVE data set and
the Harvard data set. Both uniform blur and Gaussian blur are
tested with scaling factor 8 (see Table III). We observe that
the proposed method still leads to the best results among all
test methods.

D. Experimental Results on Remote Sensing Data Corrupted
by Gaussian Noise

In this section, we consider to verify the robustness of
the proposed model to the noise by using on the Pavia data
with Gaussian noise. We generate the noisy LR-HSI ) and
HR-MSI Z in the same way as CSTF. The noisy LR-HSI Y

is simulated by first uniformly averaging over disjoint 8 x 8
blocks of &X', and then adding Gaussian noise. We use SNRh
to denote SNR of the simulated noisy LR-HSI. To generate
the noisy HR-MSI Z, first, X’ is downsampled by using the
IKONOS-like reflectance spectral response filter [33], and we
then add Gaussian noise. We use SNRm to represent SNR
of the noisy HR-MSI. Fig. 7 shows the reconstructed images
and the corresponding absolute error images from CSTF and
the proposed method at the 45th and 60th bands. We only
listed the comparison with CSTF as it outperforms others on
these data. The quantitative results obtained with different test
methods on the Pavia image are compared in Table IV. We
observe that the proposed method still leads to the best results
among all test methods.

E. Experimental Results on Real Data Set

In this section, we further evaluate the performance of the
proposed method on real HSI and MSI data set captured by
the Hyperion sensor and the Sentinel-2A satellite as described
in [16]. The used sizes of HSI and MSI are 120 x 120 x 89 and
360 x 360 x 4, respectively. Therefore, the spatial downsam-
pling factor is 3. For the real data set, the spatial degradation
matrices Py, P,, and the spectral response matrix P; are
unknown. In this experiment, the convolution blur matrix and
spectral response matrix are estimated according to the method
developed in [5]. Since the proposed method and CSTF are
designed for the case that the convolution blur matrix can
be decomposed into two spatial modes, we use two sepa-
rate blur responses to approximate the estimated convolution
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TABLE IIT
PERFORMANCE COMPARISON OF THE METHODS ON THE INDIAN PINES IMAGE WITH SCALING FACTOR 8

Method [ CNMF [2] [ NLSTF [12] [ NSSR [7] [ HySure [5] [ CSTF [16] [ Proposed
Uniform blur

PSNR 42911 49.854 47.868 46.446 50.801 51.399

RMSE 2.533 1.193 1.426 1.566 0.900 0.889

SAM 2.376 1.087 1.133 1.457 0.895 0.858

ERGAS 9.406 9.375 9.376 9.382 9.368 9.368
Gaussian blur

PSNR 42.736 46.265 46.708 45.780 48.583 49.222

RMSE 2.593 1.669 1.561 1.728 1.224 1.140

SAM 2.428 1.365 1.235 1.536 1.140 1.021

ERGAS 9.408 9.385 9.382 9.384 9.374 9.370
TABLE IV

PERFORMANCE COMPARISON OF NOISY CASES ON THE PAVIA DATA WITH SCALING FACTOR 8

Method | CNMF [2] | NLSTF [12] | NSSR [7] | HySure [5] | CSTF [16] | Proposed
SNRh=35dB, SNRm=40dB

PSNR 38.728 42548 0578 42.635 43.073 3412

RMSE 3117 2.006 2.095 2.259 2.195 1.913

SAM 2.690 2.280 2215 2.400 2254 1.984

ERGAS | 0.868 0555 0.566 0.579 0.612 0.531
SNRh=30dB, SNRm=35dB

PSNR 38.483 39.541 40.398 41.589 2.073 42214

RMSE 3.189 2.748 2581 2319 2.149 2125

SAM 2.761 3262 2.794 2.533 2.279 2254

ERGAS | 0.891 0.791 0.726 0.639 0.606 0.596

Fig. 7. Reconstructed images and the corresponding error images of the
Pavia image at the 45th and 60th bands with scaling factor a = 8. (a) LR-HSIL
(b) Ground truth. (c) CSTFE. (d) Proposed.

blur matrix. Fig. 8 shows the reconstructed HR-HSIs from
CSTF and the proposed method. We observe that the results
of CSTF contain obvious artifacts near edges and our method
gives better visual quality for this real data set.

74 5 I
(®)

Fig. 8. Reconstructed images of the real data set at (Top row) 15th band and
(Bottom row) 58th band. (a) LR-HSI. (b) HR-MSI. (c) CSTF. (d) Proposed.

TABLE V

NECESSITY OF USING BOTH NONNEGATIVE CONSTRAINT AND
GROUP-BLOCK SPARSITY. CAVE DATA SET WITH UNIFORM
BLUR AND SCALING FACTOR 8 ARE USED

Method PSNR | RMSE | SAM | ERGAS
Group-block sparsity only | 32.140 7.739 4.682 6.264
Non-negative only 44.048 2.359 5.220 1.171
Both constraints 46.794 1.544 4.369 0.859

FE. Effectiveness of the Nonnegative Constraint and
Group-Block Sparsity Constraint

In this section, we have also discussed the effectiveness
of the nonnegative constraint on dictionaries and group-block
sparsity constraints on core tensors. To demonstrate effectively,
we add the experiments without the nonnegative constraint
(i.e., group-block sparsity only, #, = m = n, = 0)
and the experiments without group-block sparsity constraint
(i.e., nonnegative only, 1, = 0). Their quantitative results on
the CAVE data set compared to the proposed approach with
both constraints are listed in Table V. It should be noted that
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TABLE VI
RUNNING TIME COMPARISON ON A TEST IMAGE OF SI1ZE 512 x 512 x 31 WITH SCALING FACTOR 16

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Method | CNMF [2] | NLSTF [12]

NSSR [7]

HySure [5] | CSTF [16] | Proposed

53.24 143.92

time(s)

163.56

332.52 1549.52 804.83

Je = 0 are set in (31) and core tensors C% are still solved
by using the ADMM structure instead of solving a quadratic
problem directly by setting 4. = 0 in (29). We can clearly
observe that both the nonnegative constraint and group-block
sparsity regularization are reasonable and effective, and the
proposed approach produces obviously the best results.

G. Computation Cost

Actually, the computation of the proposed algorithm is
more expensive than matrix-based methods due to unavoidable
clustering and reshaping data between tensors and matrices,
vectors. Generally speaking, for an image with a size of
512 x 512 x 31, our proposed model takes about 41 s to
perform one iteration with our unoptimized MATLAB codes
and CPU implementation. However, the proposed algorithm
runs much faster than the state-of-the-art tensor-based CSTF
method [16]. The whole running time comparison is shown
in Table VI. We will study how to employ block pro-linear
method to accelerate the computation. We will also study how
to handle the cases when the degradation operators Py, P», and
P; are unknown. Inverse filters will be explored regarding this
issue.

V. CONCLUSION

In this article we propose a novel HSI super-resolution
approach based on nonnegative tensor dictionary learning
and group-block sparsity. We first divide the LR-HSI Y
and HR-MSI Z into 3-D cubes and cluster them into some
clusters represented by 4-D tensors. By using the Tucker
tensor factorization technique for each cluster, the problem of
HSI super-resolution can be reformulated as a joint estimation
of core tensors and dictionaries of three modes. The sparse
representation ensured that similar cubes share the same
atoms from the spatial and spectral dictionaries, and we can
well reconstruct some texture information. Both quantitative
and qualitative numerical experiments demonstrate that the
proposed model can provide some state-of-the-art results in
HSI super-resolution.
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