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Abstract. Hyperspectral image (HSI) super-resolution is a technique to im-
prove the spatial resolution of a HSI for better visual perception and down

stream applications. This is a very ill-posed inverse problem and is often

solved by fusing the low-resolution (LR) HSI with a high-resolution (HR) mul-
tispectral image (MSI). It is more challenging for blind HSI super-resolution,

i.e., when the spatial degradation operators are completely unknown. In this
paper, we propose a novel sparse tensor factorization model for the task of

blind HSI super-resolution using the spatial non-local self-similarity and spec-

tral global correlation of HSIs. Image clustering method is employed to collect
some similar 3D cubes of HSIs which can be formed as some 4D image clus-

ters with high correlation. We conduct cluster wise computation to not only

save computation time but also to introduce a non-local regularity originated
from the redundancy of cubes. By using the sparsity of tensor decomposition

and the low-rank in non-local self-similarity direction underlying 4D similar

clusters, we design a sparse tensor regularization term, which preserves the
spatial-spectral structural correlation of HSIs. In addition, we present a prox-

imal alternating direction method of multipliers (ADMM) based algorithm to
efficiently solve the proposed model. Numerical experiments demonstrate that
the proposed model outperforms many state-of-the-art HSI super-resolution

methods.

1. Introduction. A hyperspectral image (HSI) is a three-dimensional tensor with one dimension

corresponding to bands providing abundant spectral information. It has attracted increasing
interest and attention from researchers in remote sensing [10, 2], computer vision [26, 21, 28, 29, 16]

etc.. However, HSIs often suffer from spatial resolution degradation due to various hardware

limitations. HSI super-resolution is a computational algorithm that raises the spatial resolution of
HSI. It is often done by fusing a low-resolution (LR) HSI with a high-resolution (HR) multispectral

image (MSI) of the same scene. LR-HSI and HR-MSI have complementing properties in terms of
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resolution. The later one has higher spatial while lower spectral resolution while the former one
is the opposite. Almost all HSI super-resolution work assumes the degrading operators between

the low resolution image and its high resolution analog are known but in reality they are not

available. It is therefore important to address the issue of blind super-resolution, the problem of
simultaneously resolution enhancement and degrading operators.

Super-resolution, especially blind super-resolution is a seriously ill-posed problem. Appropriate
selections of regularization plays an essential role in the success of this problem. Spatial/spectral

similarity and sparsity have proven to be effective. Methods in the literature are based on either 2D

matrix or 3D tensor modeling. Matrix based methods unfold the 3D multispectral and hyperspec-
tral images into 2D matrices so that for instance each row corresponding to one spectral band at

all spatial locations. Matrix decomposition and sparsity are then adopted for super-resolution. In

[13], Kawakami et al. introduced a sparse matrix factorization method, which reconstructs the HSI
by multiplying the learned dictionary from the HR-MSI and sparse coefficients from the LR-HSI.

Wycoff et al. [31] proposed a sparse non-negative matrix factorization method that exploits both

non-negativity and sparsity of HSI. In [37], Yokoya et al. proposed a coupled non-negative ma-
trix factorization (CNMF) method for HSI super-resolution by alternately applying non-negative

matrix factorization (NMF) [17] unmixing to LR-HSI and HR-MSI. However, the sparsity con-

straints of HSIs is not considered. In [24], Simões et al. presented a convex formulation for HSI
super-resolution (known as HySure) based on vector total variation regularization, which promotes

piecewise-smooth solutions with discontinuity along spectral direction. In addition, the spatial and
spectral responses of the sensors are both estimated from the observed images. In [32], an adaptive

sparse matrix representation method was proposed by Wei et al.. In [1], a non-parametric Bayesian

sparse representation (BSR) method for the fusion of HSI and MSI was proposed by Akhtar et
al.. In [6], Dong et al. proposed a clustering-based non-negative structured sparse representation

approach with spatial-spectral sparsity of the HSI. In [39], Zhang et al. developed a novel clus-

tering manifold structure based HSI super-resolution framework. The learned manifold structure
from the HR-MSI can well capture the spatial correlation of the target HR-HSI.

Transforming 3D images into 2D matrices however loses spectral correlation. Tensor modeling

better preserves the data structure. Recently, tensor based methods have been successfully applied
to hyperspectral image processing, such as restoration [22, 4, 9, 25, 35, 36], segmentation [40],

matching [20], recognition [11, 12], classification [41, 42] and unmixing [3, 19, 23]. In [7], Dian

et al. proposed a non-local sparse tensor factorization (NLSTF) model for HSI super-resolution,
which induces spatial dictionaries and core tensors from HR-MSI and spectral dictionaries from

LR-HSI, respectively. However, this method does not combine LR-HSI and HR-MSI to estimate
the dictionaries and the core tensor for each cluster. Chang et al. [4] presented a weighted low-rank

tensor recovery model by using high order singular value decomposition. It updates core tensors

iteratively while fixing the dictionaries along every mode. In [14], a coupled tensor factorization
model was proposed by Kanatsoulis et al. to tackle the HSI and MSI fusion task when the spatial

degradation operator is unknown or inaccurately estimated. This approach however didn’t consider
the spatial non-local self-similarity and tensor sparsity prior. Very recently, Li et al. [18] proposed
a coupled sparse tensor factorization (CSTF) based HSI super-resolution model, however, without

considering the non-local spatial similarity in the HSI. To incorporate non-local similarity and

global correlation across spectrum, cubes based methods are adopted. Images are divided into
full band patches (FBP) and grouped into clusters based on similarity. For each of the cluster, its

FBPs are either organized into a 3rd order tensor by unfolding along spectral dimension [4, 36]
or a 4th order tensor without any unfolding to preserve the high dimension structure [22, 7]. The
computation is then done cluster by cluster. In this work, we adopt 4th order tensor modeling to

best preserve the data structure.

The majority of the hyperspectral super-resolution work assumes the spatial degrading operator
is known or is easy to be estimated before hand. In practice, they are usually unknown or hard to be

estimated accurately. In this paper, we propose a novel blind HSI super-resolution when the spatial
degradation operators are completely unknown. This method combines non-local regularity and

sparse tensor factorization into a unified framework. We first group similar 3D cubes into clusters

using K-means ++. The similar cubes in each cluster are organized in a 4th order tensor and
represented using Tucker decomposition. The HSI super-resolution problem can be changed to

calculate the spatial and spectral dictionaries of three modes and the corresponding core tensor

for each cluster. Moreover, a new tensor sparsity measure is designed, and it can be easily extended
to many other problems. Furthermore, an effective proximal ADMM based algorithm is proposed
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to solve the blind HSI super-resolution problem. Numerical experiments show that the proposed
approach provides impressive blind HSI super-resolution results.

The rest of the paper is organized as follows. In Section 2, we briefly introduce basis notations

and review some preliminaries on tensors. We present the proposed HSI super-resolution model in
Section 3. In Section 4, we show the blind algorithm and some details about the implementation.

Experimental results are laid out in Section 5 and conclusion follows in Section 6.

2. Notations and preliminaries. Let X ∈ RI1×I2···×IN be an Nth-order real valued ten-
sor and xi1,i2,··· ,iN be its (i1, i2, · · · , iN )-element. Then the corresponding l1 norm is defined

as ‖X‖1 =
∑

i1,i2,··· ,iN
|xi1,i2,··· ,iN |, and the Frobenius norm of X is calculated by ‖X‖F =√ ∑

i1,i2,··· ,iN
x2i1,i2,··· ,iN . ||X ||0 denote the l0 semi-norm counting the number of non-zero ele-

ments in X .

The mode-n vectors of a tensor X are those obtained by fixing every index except the n-th
one. For instance, mode-1 vectors are X (1 : I1, 1, · · · , 1), X (1 : I1, 1, · · · , 2), etc. The mode-n

matricization, also known as the unfolding or flattening, of a tensor X ∈ RI1×I2···×IN is the

matrix denoted as X(n) ≡ unfoldn(X ) ∈ RIn×(I1···In−1In+1···IN ) and obtained by arranging the

mode-n vectors to be the columns. The n-mode product of a tensor X ∈ RI1×I2···×IN with a

matrix U ∈ RJ×In is denoted by X ×n U ∈ RI1×···×In−1×J×In+1×···×IN , with entries

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iN ujin .(1)

Besides, the n-mode product can also be calculated by the matrix multiplication:

Y = X ×n U⇔ Y(n) = UX(n).(2)

For distinct/same mode multiplication, we have

X ×m A×n B = X ×n B×m A(m 6= n),

X ×n A×n B = X ×n (BA).

Definition 2.1 (Tucker Decomposition). Tucker decomposition of an Nth-order tensor X ∈
RI1×I2···×IN can be written as

X = Y ×1 A1 ×2 A2 · · · ×N AN .(3)

Here, An ∈ RIn×Mn are the factor matrices along mode n and Y ∈ RM1×M2···×MN is called the

core tensor.

Let the vectorization of a tensor X be defined as vec(X ) ≡ vec(X(1)) ∈ RI1I2···IN , i.e. the

long vector obtained by stacking all the mode-1 vectors vertically. The mode-n unfolding of the
Tucker decomposition (3) is [15]:

X(n) = AnY(n)(AN ⊗ · · · ⊗An+1 ⊗An−1 ⊗ · · · ⊗A1)T ,(4)

and its vector representation [5] is

x = (AN ⊗AN−1 ⊗ · · · ⊗A1)y,(5)

where x = vec(X ), y = vec(Y) and the symbol “⊗” denotes the Kronecker product of matrices,
which has the following properties that will prove useful in our discussions:

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)T = AT ⊗BT .

3. The proposed method. Let X ∈ RW×H×S be the target HR-HSI to be recovered, where

W,H and S denote the dimensions of the width, height and spectral mode, respectively. The

tensor Y ∈ Rw×h×S denotes the corresponding LR-HSI, and Z ∈ RW×H×s denotes the HR-MSI
of the same scene, where w < W,h < H and s < S. The purpose of HSI super-resolution is to

estimate the HR-HSI X by fusing the LR-HSI Y with the HR-MSI Z as illustrated in Figure 1.

Reconstructing X from Y, Z when there is noise is an ill-posed inverse problem. When there no
knowledge of the downgrading matrices, it is more difficult.

Due to modeling accuracy and large size of the data, the computation is usually not done

on the entire domain but on clusters of small cubes. Clustering similar cubes together and
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Figure 1. Illustration of the hyperspectral image super-resolution task.

conducting cluster wise computation not only save computation but also bring non-local reg-

ularity. A collection of various similar high dimensional cubes leads to a natural high order

tensor. We will adopt high order tensor decomposition to better model the similarity among
cubes. We divide the HR-MSI Z into 3D cubes {Zi}ni=1 ⊂ RdW×dH×s with overlaps, where

dW and dH denote the spatial width and height dimensions, the overlaps along two spatial

modes are lw = dW /2 and lh = dH/2, respectively, n = nwnh is the number of cubes and
nw = (W − lw)/(dW − lw), nh = (H − lh)/(dH − lh). Similarly, we create another set of small 3D

cubes {Yi}ni=1 ⊂ Rdw×dh×S from the LR-HSI Y in the same way, where dw = dW /a, ds = dH/a,

a is the scaling factor (e.g. in this work, we set a = 8, dW = dH = 16, dw = dh = 2). Then all

the 3D cubes of the HR-MSI Z can be grouped into K clusters {Z(k,j)}nkj=1 (k = 1, 2, · · · ,K) by

K-means++, where K is the number of clusters, nk is the number of cubes in the kth cluster and
Z(k,j) denotes the jth cube of the kth cluster. Furthermore, the similar cubes in the kth cluster

can be organized as a 4th order tensor: Z(k) ∈ RdW×dH×s×nk , the fourth mode indicates cubes
and Z(k)(:, :, :, j) = Z(k,j). According to the spatial correspondence, we can group the cubes of

LR-HSI Y into K clusters: {Y(k,j)}nkj=1 ⊂ Rdw×dh×S , k = 1, 2, · · · ,K., and then organize them in

each cluster into 4D tensors Y(k) ∈ Rdw×dh×S×nk . The target HR-HSI X will be reconstructed

cluster by cluster and each cluster is denoted as X (k) ∈ RdW×dH×S×nk , k = 1, 2, · · · ,K.

For the kth cluster, when there is no noise, the acquired Y(k) is the spatially downsampled
version of X (k),

Y(k) = X (k) ×1 P1 ×2 P2,

where P1 ∈ Rdw×dW and P2 ∈ Rdh×dH are the blurring and downsampling matrices along the
width (first) mode and height (second) mode, respectively. In this work, P1 and P2 are both

completely unknown. Besides, Z(k) is the spectrally downsampled version of X (k),

Z(k) = X (k) ×3 P3,

where P3 ∈ Rs×S is the downsampled matrix of the spectral (third) mode. Based on Tucker

decomposition, the kth cluster X (k) of the HR-HSI X can be formulated as

X (k) = C(k) ×1 Wk ×2 Hk ×3 Sk,(6)

where the matrices Wk ∈ RdW×r
W
k ,Hk ∈ RdH×r

H
k and Sk ∈ RS×r

S
k denote the dictionaries of

the width, height and spectral mode, respectively, and the tensor C(k) ∈ Rr
W
k ×r

H
k ×r

S
k×nk is the

coefficient of X (k) over the three dictionaries.

The proposed tensor sparsity measure for X (k) is defined as

S(X (k)) = λc‖C(k)‖0 + µ rank(X
(k)
(4)

),

where X
(k)
(4)

is the unfolding along mode-4, λc and µ are two positive parameters. The first term

enforces sparsity under Tucker decomposition. The second term originates from the fact that the

cubes in the cluster have some self-similarity/correlation that will leads to low-rank of X
(k)
(4)

.
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The minimization problem with l0 semi-norm and rank terms is non-convex. In order to simplify
the computation, we replace the l0 semi-norm by the l1 norm and the rank with the nuclear norm,

S∗(X (k)) = λc‖C(k)‖1 + µ‖X(k)
(4)
‖∗,

where ‖ · ‖∗ is the nuclear norm defined as the sum of the singular values of X
(k)
(4)

.

4. Blind algorithm. Since the spatial degradation operators P1 and P2 are unknown in practice,
we design a blind super-resolution algorithm to solve the proposed model. Representing X (k) in

terms of Tucker decomposition, the proposed model is:

min
C(k),Wk,Hk,Sk

1

2
‖Y(k) − C(k) ×1 (P1Wk)×2 (P2Hk)×3 Sk‖2F

+
λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 (P3Sk)‖2F + λc‖C(k)‖1 + µ‖X(k)

(4)
‖∗.(7)

We solve the above minimization problem by introducing three auxiliary variables M(k) =

X (k) = C(k) ×1 Wk ×2 Hk ×3 Sk,W
∗
k = P1Wk,H

∗
k = P2Hk and forming an approximated

problem:

min
C(k),Wk,Hk,Sk,W

∗
k
,H∗
k
,M(k)

1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F

+
λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 P3Sk‖2F + λc‖C(k)‖1 + µ‖M(k)

(4)
‖∗,

+
β1

2
||W∗

k −P1Wk||2F +
β2

2
||H∗k −P2Hk||2F ,

s.t. C(k) ×1 Wk ×2 Hk ×3 Sk −M(k) = 0,(8)

where M
(k)
(4)

= unfold4(M(k)). Then its augmented Lagrangian function is with the form:

L(C(k),Wk,Hk,Sk,W
∗
k,H

∗
k,P1,P2,M(k),P(k))

=
1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F

+
λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 P3Sk‖2F + λc‖C(k)‖1 + µ‖M(k)

(4)
‖∗

+
β1

2
||W∗

k −P1Wk||2F +
β2

2
||H∗k −P2Hk||2F ,

+
λ2

2
‖M(k) − C(k) ×1 Wk ×2 Hk ×3 Sk − P(k)‖2F ,(9)

where P(k) is the Lagrange multiplier and λ2 is a positive parameter. For better convergence,
we solve the problem under the proximal ADMM framework. We alternate some subproblems

iteratively and each subproblem can be updated as follows.

4.1. C(k) subproblem. With the other parameters fixed, C(k) can be updated by solving

min
C(k)

1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F

+
λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 P3Sk‖2F

+
λ2

2
‖O(k) − C(k) ×1 Wk ×2 Hk ×3 Sk‖2F

+ λc‖C(k)‖1 +
σ

2
‖C(k) − C(k)pre‖2F ,(10)
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where O(k) = M(k) − P(k) and C(k)pre represents the estimated C(k) in the previous iteration.

Furthermore, since C(k) contains nk cubes, the above problem can be equivalently reformulated as

min
C(k,j)

1

2

nk∑
j=1

‖Y(k,j) − C(k,j) ×1 W∗
k ×2 H∗k ×3 Sk‖2F

+
λ1

2

nk∑
j=1

‖Z(k,j) − C(k,j) ×1 Wk ×2 Hk ×3 P3Sk‖2F

+
λ2

2

nk∑
j=1

‖O(k,j) − C(k,j) ×1 Wk ×2 Hk ×3 Sk‖2F

+ λc‖C(k)‖1 +
σ

2
‖C(k) − C(k)pre‖2F ,(11)

According to the relationship between the Tucker model and Kronecker representation (equa-

tion (5)), the above problem can be formulated as

min
C(k)

1

2
‖Y(k) −D1C(k)‖2F +

λ1

2
‖Z(k) −D2C(k)‖2F +

λ2

2
‖O(k) −D3C(k)‖2F

+ λc‖C(k)‖1 +
σ

2
‖C(k) −C

(k)
pre‖2F ,(12)

where C(k) = [c(k,1), c(k,2), · · · , c(k,nk)], Y(k) = [y(k,1),y(k,2), · · · ,y(k,nk)], Z(k) = [z(k,1), z(k,2), · · · , z(k,nk)],
O(k) = [o(k,1),o(k,2), · · · ,o(k,nk)] are matrices, c(k,j) = vec(C(k,j)), y(k,j) = vec(Y(k,j)), z(k,j)

= vec(Z(k,j)), o(k,j) = vec(O(k,j)) are vectors by stacking vertically all the mode-1 vectors of

tensor C(k,j),Y(k,j), Z(k,j) and O(k,j), respectively, and the matrices D1 = Sk ⊗ H∗k ⊗W∗
k ∈

RdwdhS×r
W
k rHk r

S
k , D2 = (P3Sk) ⊗Hk ⊗Wk ∈ RdW dHs×rWk rHk r

S
k and D3 = Sk ⊗Hk ⊗Wk ∈

RdW dHS×rWk rHk r
S
k are the dictionaries.

To solve C(k), we add three auxiliary variables B
(k)
1 ,B

(k)
2 and B

(k)
3 to substitute C(k), and

rewrite the above problem as

min
B

(k)
1 ,B

(k)
2 ,B

(k)
3 ,C(k)

1

2
‖Y(k) −D1B

(k)
1 ‖

2
F +

λ1

2
‖Z(k) −D2B

(k)
2 ‖

2
F

+
λ2

2
‖O(k) −D3B

(k)
3 ‖

2
F + λc‖C(k)‖1 +

σ

2
‖C(k) −C

(k)
pre‖2F ,

s.t. B
(k)
1 = C(k),B

(k)
2 = C(k),B

(k)
3 = C(k).(13)

Then we can use standard augmented Lagrangian method to produce the following scheme:



(B
(k)
1

t+1
,B

(k)
2

t+1
,B

(k)
3

t+1
,C(k)t+1

)

= argmin

B
(k)
1 ,B

(k)
2 ,B

(k)
3 ,C(k)

{
1
2
‖Y(k) −D1B

(k)
1 ‖

2
F +

λ1
2
‖Z(k) −D2B

(k)
2 ‖

2
F

+
λ2
2
‖O(k) −D3B

(k)
3 ‖

2
F +

ηc1
2
‖B(k)

1

t+1
−C(k) −Vt1‖

2
F +

ηc2
2
‖B(k)

2

t+1
−C(k) −Vt2‖

2
F

+
ηc3
2
‖B(k)

3

t+1
−C(k) −Vt3‖

2
F + λc‖C(k)‖1 + σ

2
‖C(k) −C

(k)
pre‖2F

}
,

Vt+1
1 = Vt1 + (C(k)t+1 −B

(k)
1

t+1
),

Vt+1
2 = Vt2 + (C(k)t+1 −B

(k)
2

t+1
),

Vt+1
3 = Vt3 + (C(k)t+1 −B

(k)
3

t+1
),

(14)

By applying an alternating minimization algorithm, (14) becomes

B(k)t+1
= arg min

B(k)

{
1
2
‖U(k) −DB(k)‖2F + 1

2
‖B(k) −C

(k)
∗

t
−Vt‖2F

}
,

C(k)t+1
= arg min

C(k)

{
ηc1
2
‖B(k)

1

t+1
−C(k) −Vt

1‖2F +
ηc2
2
‖B(k)

2

t+1
−C(k) −Vt

2‖2F

+
ηc3
2
‖B(k)

3

t+1
−C(k) −Vt

3‖2F + λc‖C(k)‖1 + σ
2
‖C(k) −C

(k)
pre‖2F

}
,

Vt+1 = Vt + (C
(k)
∗

t+1
−B(k)t+1

),

(15)
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where U(k) =

 Y(k)
√
λ1Z(k)
√
λ2O(k)

 ,V =

 √ηc1V1√
ηc2V2√
ηc3V3

 ,B(k) =


√
ηc1B

(k)
1√

ηc2B
(k)
2√

ηc3B
(k)
3

 ,D =


1√
ηc1

D1 0 0

0
√
λ1√
ηc2

D2 0

0 0
√
λ2√
ηc3

D3


and C

(k)
∗ =

 √ηc1C(k)

√
ηc2C(k)

√
ηc3C(k)

.

1)For C(k)t+1
, it can be solved by soft thresholding:

C(k)t+1
= S(b,

λc

a
),(16)

where a = ηc1 + ηc2 + ηc3 + σ, b = 1
a

[ηc1 (B
(k)
1

t+1
−Vt

1) + ηc2 (B
(k)
2

t+1
−Vt

2) + ηc3 (B
(k)
3

t+1
−

Vt
3) + σC

(k)
pre] and S(f, µ) = f

|f |max{|f | − µ, 0}.

2)For B(k)t+1
, it has a closed-form solution:

B(k)t+1
= (DTD + I)−1(DTU(k) + C

(k)
∗

t
+ Vt),(17)

where DTD+I =


1
ηc1

DT
1 D1 + I1 0 0

0 λ1
ηc2

DT
2 D2 + I2 0

0 0 λ2
ηc3

DT
3 D3 + I3

 , I, I1, I2, I3 are iden-

tity matrices with different sizes, and DTU(k) =


1√
ηc1

DT
1 Y(k)

λ1√
ηc2

DT
2 Z(k)

λ2√
ηc3

DT
3 O(k)

. Since DTD is a very large

matrix, directly calculating it will increase the computation and slow down the operation speed.

Therefore, problem (17) can be equivalently separated as the following three problems:

B
(k)
1

t+1
= (DT

1 D1 + ηc1I1)−1(DT
1 Y(k) + ηc1C(k)t + ηc1Vt

1),

B
(k)
2

t+1
= (λ1DT

2 D2 + ηc2I2)−1(λ1DT
2 Z(k) + ηc2C(k)t + ηc2Vt

2),

B
(k)
3

t+1
= (λ2DT

3 D3 + ηc3I3)−1(λ2DT
3 O(k) + ηc3C(k)t + ηc3Vt

3).

Next, we can further simplify the computation of the B
(k)
1 ,B

(k)
2 and B

(k)
3 subproblems by using

the method in [18] when W∗
k
TW∗

k,H
∗
k
TH∗k,S

T
k Sk have eigenvalue decomposition EiΣiE

T
i , i =

1, 2., 3 respectively, where Ei is unitary, Σi is diagonal. Then, we can get

(DT
1 D1 + ηc1I1)−1 = ((Sk ⊗H∗k ⊗W∗

k)T (Sk ⊗H∗k ⊗W∗
k) + ηc1I1)−1

= (STk Sk ⊗H∗k
TH∗k ⊗W∗

k
TW∗

k + ηc1I1)−1

= (E3Σ3ET3 ⊗E2Σ2ET2 ⊗E1Σ1ET1 + ηc1I1)−1

= ((E3 ⊗E2 ⊗E1)(Σ3 ⊗ Σ2 ⊗ Σ1)(ET3 ⊗ET2 ⊗ET1 ) + ηc1I1)−1

= (E3 ⊗E2 ⊗E1)(Σ3 ⊗ Σ2 ⊗ Σ1 + ηc1I1)−1(ET3 ⊗ET2 ⊗ET1 ),

and

DT
1 Y(k) = [DT

1 y(k,1),DT
1 y(k,2), · · · ,DT

1 y(k,nk)]

= (Y(k) ×1 W∗
k
T ×2 H∗k

T ×3 STk )T(4),

where Σ3 ⊗ Σ2 ⊗ Σ1 + ηc1I1 is a diagonal matrix and its inverse is very easy to calculate, and

AT
(4)

= unfold4(A)T . Similarly, we set S∗k = P3Sk and Ẽi, Σ̃i, for i = 1, 2, 3, are unitary matrices

and non-negative diagonal matrices holding the eigenvectors and eigenvalues of Wk
TWk,Hk

THk

and S∗k
TS∗k, respectively. Then, we have

(λ1DT
2 D2 + ηc2I)−1 = (Ẽ3 ⊗ Ẽ2 ⊗ Ẽ1)(λ1Σ̃3 ⊗ Σ̃2 ⊗ Σ̃1 + ηc2I)−1(ẼT3 ⊗ ẼT2 ⊗ ẼT1 ),

(λ2DT
3 D3 + ηc3I)−1 = (E3 ⊗ Ẽ2 ⊗ Ẽ1)(λ2Σ3 ⊗ Σ̃2 ⊗ Σ̃1 + ηc3I)−1(ET3 ⊗ ẼT2 ⊗ ẼT1 ),
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and

DT
2 Z(k) = (Z(k) ×1 Wk

T ×2 Hk
T ×3 S∗k

T )T(4),

DT
3 O(k) = (O(k) ×1 Wk

T ×2 Hk
T ×3 Sk

T )T(4).

4.2. Wk subproblem. With the other parameters fixed, Wk can be updated by solving

min
Wk

λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 P3Sk‖2F

+
λ2

2
‖O(k) − C(k) ×1 Wk ×2 Hk ×3 Sk‖2F

+
β1

2
||W∗

k −P1Wk||2F +
σ

2
‖Wk −Wk,pre‖2F .(18)

Furthermore, the above problem can be rewritten in mode-1 as the following:

min
Wk

λ1

2
‖[Z(k,1)

(1) ,Z
(k,2)

(1) , · · · ,Z(k,nk)

(1) ]−Wk[C
(k,1)

(1) Q(1),C
(k,2)

(1) Q(1), · · · ,C(k,nk)

(1) Q(1)]‖2F

+
λ2

2
‖[O(k,1)

(1) ,O
(k,2)

(1) , · · · ,O(k,nk)

(1) ]−Wk[C
(k,1)

(1) F(1),C
(k,2)

(1) F(1), · · · ,C(k,nk)

(1) F(1)]‖2F

+
β1
2
||W∗

k −P1Wk||2F +
σ

2
‖Wk −Wk,pre‖2F ,

where Z
(k,j)
(1)

,O
(k,j)
(1)

and C
(k,j)
(1)

are mode-1 unfolding matrices of tensors Z(k,j),O(k,j) and C(k,j),
respectively, and Q(1) = (P3Sk ⊗Hk)T , F(1) = (Sk ⊗Hk)T .

In addition, we can denote Z1 = [Z
(k,1)
(1)

,Z
(k,2)
(1)

, · · · ,Z(k,nk)
(1)

], O1 = [O
(k,1)
(1)

,O
(k,2)
(1)

, · · · ,O(k,nk)
(1)

],

Q1 = [C
(k,1)
(1)

Q(1),C
(k,2)
(1)

Q(1), · · · ,C
(k,nk)
(1)

Q(1)] and F1 = [C
(k,1)
(1)

F(1),C
(k,2)
(1)

F(1), · · · ,C
(k,nk)
(1)

F(1)].

Then, the problem can be reformulated as

min
Wk

λ1

2
‖Z1 −WkQ1‖2F +

λ2

2
‖O1 −WkF1‖2F +

β1

2
||W∗

k −P1Wk||2F

+
σ

2
‖Wk −Wk,pre‖2F .(19)

By using vec(AXB) = (BT ⊗A)vec(X), and by letting wk = vec(Wk), we can easily rewrite

the above problem as

min
wk

1

2
||u1 −D1wk||22,(20)

where u1 = [
√
λ1vec(Z1)T ,

√
λ2vec(O1)T ,

√
β1vec(W∗

k)T ,
√
σvec(Wk,pre)

T ]T , D1 = [
√
λ1(QT

1 ⊗
I)T ,
√
λ2(FT1 ⊗ I)T ,

√
β1(I⊗P1)T ,

√
σI]T . This problem has a closed-form solution written as

wk = (DT
1 D1)−1DT

1 u1.(21)

4.3. Hk subproblem. With the other parameters fixed, Hk can be updated similarly by solving

min
Hk

λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 P3Sk‖2F

+
λ2

2
‖O(k) − C(k) ×1 Wk ×2 Hk ×3 Sk‖2F

+
β2

2
||H∗k −P2Hk||2F +

σ

2
‖Hk −Hk,pre‖2F .(22)

The above problem can be rewritten in mode-2 as follows:

min
Hk

λ1

2
‖Z2 −HkQ2‖2F +

λ2

2
‖O2 −HkF2‖2F +

β2

2
||H∗k −P2Hk||2F

+
σ

2
‖Hk −Hk,pre‖2F .(23)

where Z2 = [Z
(k,1)
(2)

,Z
(k,2)
(2)

, · · · ,Z(k,nk)
(2)

], O2 = [O
(k,1)
(2)

,O
(k,2)
(2)

, · · · ,O(k,nk)
(2)

]. In addition, Q2 =

[C
(k,1)
(2)

Q(2),C
(k,2)
(2)

Q(2), · · · ,C
(k,nk)
(2)

Q(2)], Q(2) = (P3Sk⊗Wk)T , F2 = [C
(k,1)
(2)

F(2),C
(k,2)
(2)

F(2), · · · ,C
(k,nk)
(2)

F(2)]

and F(2) = (Sk ⊗Wk)T .
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Similarly, letting hk = vec(Hk), the above problem can be easily rewritten as

min
hk

1

2
||u2 −D2hk||22,(24)

where u2 = [
√
λ1vec(Z2)T ,

√
λ2vec(O2)T ,

√
β2vec(H∗k)T ,

√
σvec(Hk,pre)

T ]T , D2 = [
√
λ1(QT

2 ⊗
I)T ,
√
λ2(FT2 ⊗ I)T ,

√
β2(I⊗P2)T ,

√
σI]T . This problem has a closed-form solution written as

hk = (DT
2 D2)−1DT

2 u2.(25)

4.4. Sk subproblem. With the other parameters fixed, Sk can be updated by solving

min
Sk

1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F

+
λ1

2
‖Z(k) − C(k) ×1 Wk ×2 Hk ×3 (P3Sk)‖2F

+
λ2

2
‖O(k) − C(k) ×1 Wk ×2 Hk ×3 Sk‖2F +

σ

2
‖Sk − Sk,pre‖2F .(26)

Furthermore, the above problem can be rewritten in mode-3 as follows:

min
Sk

1

2
‖[Y(k,1)

(3)
,Y

(k,2)
(3)

, · · · ,Y(k,nk)
(3)

]− Sk[C
(k,1)
(3)

G(3),C
(k,2)
(3)

G(3), · · · ,C
(k,nk)
(3)

G(3)]‖2F

+
λ1

2
‖[Z(k,1)

(3)
,Z

(k,2)
(3)

, · · · ,Z(k,nk)
(3)

]−P3Sk[C
(k,1)
(3)

Q(3),C
(k,2)
(3)

Q(3), · · · ,C
(k,nk)
(3)

Q(3)]‖2F

+
λ2

2
‖[O(k,1)

(3)
,O

(k,2)
(3)

, · · · ,O(k,nk)
(3)

]− Sk[C
(k,1)
(3)

F(3),C
(k,2)
(3)

F(3), · · · ,C
(k,nk)
(3)

F(3)]‖2F

+
σ

2
‖Sk − Sk,pre‖2F ,

where Y
(k,j)
(3)

,Z
(k,j)
(3)

,O
(k,j)
(3)

and C
(k,j)
(3)

are mode-3 unfolding matrices of tensors Y(k,j), Z(k,j),O(k,j)

and C(k,j), respectively, and G(3) = ((P2Hk)⊗ (P1Wk))T , Q(3) = F(3) = (Hk ⊗Wk)T .

In addition, we can denote Y3 = [Y
(k,1)
(3)

,Y
(k,2)
(3)

, · · · ,Y(k,nk)
(3)

], Z3 = [Z
(k,1)
(3)

,Z
(k,2)
(3)

, · · · ,Z(k,nk)
(3)

],

O3 = [O
(k,1)
(3)

,O
(k,2)
(3)

, · · · ,O(k,nk)
(3)

], G3 = [C
(k,1)
(3)

G(3),C
(k,2)
(3)

G(3), · · · , C
(k,nk)
(3)

G(3)], Q3 =

[C
(k,1)
(3)

Q(3),C
(k,2)
(3)

Q(3), · · · ,C
(k,nk)
(3)

Q(3)] and F3 = [C
(k,1)
(3)

F(3), C
(k,2)
(3)

F(3), · · · ,C
(k,nk)
(3)

F(3)].

Then, the problem can be reformulated as

min
Sk

1

2
‖Y3 − SkG3‖2F +

λ1

2
‖Z3 −P3SkQ3‖2F +

λ2

2
‖O3 − SkF3‖2F

+
σ

2
‖Sk − Sk,pre‖2F .(27)

By using vec(AXB) = (BT ⊗A)vec(X), and by letting sk = vec(Sk), we can easily rewrite

the above problem as

min
sk

1

2
‖u3 −D3sk‖22,(28)

where u3 = [vec(Y3)T ,
√
λ1vec(Z3)T ,

√
λ2vec(O3)T ,

√
σvec(Sk,pre)

T ]T , D3 = [(GT
3 ⊗I)T ,

√
λ1(QT

3 ⊗
P3)T ,

√
λ2(FT3 ⊗ I)T ,

√
σ(IT ⊗ I)T ]T .

This problem has a closed-form solution written as

sk = (DT
3 D3)−1DT

3 u3.(29)

In order to simplify computation, we set M3 = GT
3 ⊗ I,N3 = QT

3 ⊗ P3,A3 = FT3 ⊗ I and

y3 = vec(Y3), z3 = vec(Z3),o3 = vec(O3), sk,pre = vec(Sk,pre). Then, we can obtain

DT
3 D3 = MT

3 M3 + λ1NT
3 N3 + λ2AT

3 A3 + σI

= (GT
3 ⊗ I)T (GT

3 ⊗ I) + λ1(QT
3 ⊗P3)T (QT

3 ⊗P3)

+ λ2(FT3 ⊗ I)T (FT3 ⊗ I) + σI

= G3GT
3 ⊗ I + λ1Q3QT

3 ⊗PT3 P3 + λ2F3FT3 ⊗ I + σI

DT
3 u3 = MT

3 y3 + λ1NT
3 z3 + λ2AT

3 o3 + σsk,pre

= vec(Y3GT
3 + λ1PT3 Z3QT

3 + λ2O3FT3 + σSk,pre).
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4.5. W∗
k subproblem. With the other parameters fixed, W∗

k can be updated by solving

min
W∗
k

1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F +
β1

2
||W∗

k −P1Wk||2F

+
σ

2
‖W∗

k −W∗
k,pre‖

2
F .(30)

Furthermore, the above problem can be rewritten in mode-1 as follows:

min
W∗
k

1

2
‖[Y(k,1)

(1)
,Y

(k,2)
(1)

, · · · ,Y(k,nk)
(1)

]−W∗
k[C

(k,1)
(1)

G(1),C
(k,2)
(1)

G(1), · · · ,C
(k,nk)
(1)

G(1)]‖2F

+
β1

2
||W∗

k −P1Wk||2F +
σ

2
‖W∗

k −W∗
k,pre‖

2
F ,

where Y
(k,j)
(1)

and C
(k,j)
(1)

are mode-1 unfolding matrices of tensors Y(k,j) and C(k,j), respectively,

and G(1) = (Sk ⊗ H∗k)T . In addition, we can denote Y1 = [Y
(k,1)
(1)

,Y
(k,2)
(1)

, · · · ,Y(k,nk)
(1)

] and

G1 = [C
(k,1)
(1)

G(1),C
(k,2)
(1)

G(1), · · · ,C
(k,nk)
(1)

G(1)]. Then, the problem can be reformulated as

min
W∗
k

1

2
‖Y1 −W∗

kG1‖2F +
β1

2
||W∗

k −P1Wk||2F +
σ

2
‖W∗

k −W∗
k,pre‖

2
F .(31)

This problem has a closed-form solution written as

W∗
k = (Y1GT

1 + β1P1Wk + σW∗
k,pre)(G1GT

1 + (β1 + σ)I)−1.(32)

4.6. H∗k subproblem. With the other parameters fixed, H∗k can be updated similarly by solving

min
H∗
k

1

2
‖Y(k) − C(k) ×1 W∗

k ×2 H∗k ×3 Sk‖2F +
β2

2
||H∗k −P2Hk||2F

+
σ

2
‖H∗k −H∗k,pre‖

2
F .(33)

The above problem can be rewritten in mode-2 as follows:

min
H∗
k

1

2
‖Y2 −H∗kG2‖2F +

β2

2
||H∗k −P2Hk||2F +

σ

2
‖H∗k −H∗k,pre‖

2
F .(34)

This problem has a closed-form solution written as

H∗k = (Y2GT
2 + β2P2Hk + σH∗k,pre)(G2GT

2 + (β2 + σ)I)−1,(35)

where G2 = [C
(k,1)
(2)

G(2),C
(k,2)
(2)

G(2), · · · ,C
(k,nk)
(2)

G(2)], G(2) = (Sk⊗W∗
k)T and Y2 = [Y

(k,1)
(2)

,Y
(k,2)
(2)

, · · · ,Y(k,nk)
(2)

].

4.7. P1 subproblem. With the other parameters fixed, P1 can be updated by solving

min
P1

β1

2
||W∗

k −P1Wk||2F +
σ

2
||P1 −P1,pre||2F .(36)

This problem has a closed-form solution written as

P1 = (β1W∗
kW

T
k + σP1,pre)(β1WkW

T
k + σI)−1.(37)

4.8. P2 subproblem. With the other parameters fixed, P2 can be updated by solving

min
P2

β2

2
||H∗k −P2Hk||2F +

σ

2
||P2 −P2,pre||2F .(38)

This problem has a closed-form solution written as

P2 = (β2H∗kH
T
k + σP2,pre)(β2HkH

T
k + σI)−1.(39)
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4.9. M(k) subproblem. With other parameters fixed, M(k) can be updated by solving

min
M(k)

λ‖M(k)
(4)
‖∗ +

1

2
‖L+ P(k) −M(k)‖2F ,(40)

where λ = µ
λ2

and L = C(k) ×1 Wk ×2 Hk ×3 Sk, which has been proven to have the following

closed-form solution:

M(k) = fold4(V1Sλ(Σ)V T2 ),(41)

where V1ΣV T2 is the SVD of unfold4(L + P(k)) and Sλ(Σ) is the soft thresholding operator on
diagonal matrix Σ with parameters λ. The ii-th entry of the diagonal matrix Sλ(Σ) is defined as

Sλ(Σ)ii = max(0,Σii − λ).

4.10. P(k) subproblem. The Lagrangian multipliers are updated by

P(k) := P(k) + λ2(L −M(k)).(42)

Once the dictionaries Wk,Hk,Sk and core tensors C(k) (k = 1, 2, · · · ,K) are known, all

overlapping HR-HSI cubes can be estimated by using equation (6) and returned to the original
place to reconstruct the target HR-HSI X . We summarize the proposed algorithm in Algorithm

1.

Algorithm 1 (Blind Algorithm).

Input: LR-HSI Y, HR-MSI Z, P3.

Output: HR-HSI X .
Group the similar cubes of Z and Y into cluster tensors Z(k) and Y(k) by K-means ++, initialize

Wk,Hk and Sk by using Tensor factorization technique on Z(k) and Y(k), respectively, and

W∗
k,H

∗
k are initialized by averaging every a (a is the scaling factor) rows of Wk and Hk, k =

1, · · · ,K. For each cluster k,

repeat
step 1. Update C(k) by solving (14).
step 2. Update Wk by solving (21).

step 3. Update Hk by solving (25).

step 4. Update Sk by solving (29).
step 5. Update W∗

k by solving (32).

step 6. Update H∗k by solving (35).

step 7. Update Sk by solving (29).
step 8. Update P1 by solving (37).

step 9. Update P2 by solving (39).

step 10. Update M(k) by solving (41).

step 11. Update P(k) by solving (42).

until stopping criterion is satisfied.
Estimate X (k) by the equation (6). Reformulate X (k) to obtain X .

Next, we will state the convergence result of our algorithm for C(k) in the following theorem.
The basic convergence result can be found in several references, such as [27, 34].

Theorem 4.1. Assume (B
(k)
1

∗
,B

(k)
2

∗
,B

(k)
3

∗
,C(k)∗) is the minimizer of problem (13). Suppose

ηc1 = ηc2 = ηc3 , then the sequence (B
(k)
1

t+1
,B

(k)
2

t+1
,B

(k)
3

t+1
,C(k)t+1

) generated by the itera-

tion scheme (14) is convergent and limt→∞C(k)t+1
= C(k)∗.

5. Numerical experiments. In this section, we numerically demonstrate the superior perfor-

mance of the proposed blind HSI super-resolution model on the simulated and real HSIs. In
general, the number of clusters K is set as n

80
with n the total number of cubes. The sparsity reg-

ularization parameters λc and µ of the proposed model are both tested over a range of parameters

10d, d = −6,−5,−4,−3,−2,−1, and then we choose λc = 10−4 and µ = 10−3 for all the data
for simplicity. In addition, the parameter λ1 used to balance two fidelity terms is empirically set
as 10, and we simply set the algorithm parameter λ2 = 10−3. We compare the proposed method

with several related HSI super-resolution methods: a subspace regularization method HySure [24]
1, a coupled non-negative matrix factorization method CNMF [37] 2 and a coupled blind tensor

1http://www.lx.it.pt/~bioucas/publications.html
2http://naotoyokoya.com/
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factorization method STEREO [14] 3. For fair comparison, all the methods are tested with the
same given spectral downsampling matrix P3, instead of estimating it as in Hysure and CNMF.

Moreover, the spatial downsampling location of Hysure is given accurately and the key parameters

are optimally chosen in each method. All the experiments are run under Windows 7 and MATLAB
R2017a with Intel Core i5-5200U CPU@2.80GHz and 8GB memory.

5.1. Evaluation metrics. We adopt five quantitative metrics, including peak signal-to-noise

ratio (PSNR), structural similarity (SSIM), root mean square error (RMSE), spectral angle map-

per(SAM) and erreur relative globale adimensionnelle Synthèse (ERGAS). PSNR is easily defined
based on the mean square error(MSE),

PSNR(X , X̂ ) =
1

S

S∑
k=1

PSNRk, PSNRk = 10 · log10

(
2552

MSE(Xk, X̂k)

)
,

where Xk and X̂k denote the kth band images of the ground-truth HSI X ∈ RW×H×S and the

estimated HSI X̂ ∈ RW×H×S , respectively. MSE(Xk, X̂k) is the mean squared error between Xk

and X̂k. SSIM is used for predicting the perceptual quality in the image. The SSIM of HSI is

designed as the sum of SSIMk of the kth band:

SSIM(X , X̂ ) =
1

S

S∑
k=1

SSIMk, SSIMk =
(2µXkµX̂k

+ C1)(2σ
XkX̂k

+ C2)

(µ2Xk
+ µ2

X̂k
+ C1)(σ2

Xk
+ σ2

X̂k
+ C2)

,

where µXk and µ
X̂k

denote the mean value of the elements in Xk and X̂k, respectively. σXk and

σ
X̂k

denote the variances of Xk and X̂k, respectively. σ
XkX̂k

denotes the covariance between Xk

and X̂k. PSNR and SSIM are commonly used in imaging science to verify experimental results, and

the higher the value of them, the better the image quality. RMSE is used to measure differences

between X and X̂ , which is defined as

RMSE(X , X̂ ) =

√
‖X − X̂‖2F
WHS

.

The lower the RMSE, the lower the reconstruction error. In addition, SAM is defined as

SAM(X , X̂ ) =
1

WH

W∑
i=1

H∑
j=1

arcos
x̂Tij:xij:

‖x̂ij:‖2‖xij:‖2
,

where xij: and x̂ij: represent the spectral vectors at spatial pixel (i, j) of X and X̂ , respectively.
SAM measures the spectral distortion between the estimated and ground-truth images, and small

SAMs correspond to good spectral quality. ERGAS is defined as

ERGAS(X , X̂ ) =
100

a

√√√√ 1

S

S∑
k=1

MSE(Xk, X̂k)

µ2Xk

,

where a is spatial downsampling factor, and small ERGAS values indicate good fusion performance.

5.2. Simulated HSI super-resolution. In this section, we test the effectiveness of the proposed

method on the CAVE database [38], which contains 32 hyperspectral images, each with 31 spectral

bands, ranging from 400nm to 700nm with resolution 10nm, and a spatial resolution of 512 ×
512. We use the CAVE database as the ground truth image X , and simulate the LR-HSI Y by

employing an 8×8 uniform blur or a 7×7 Gaussian blur with 0 mean and standard deviation 3 to

X before downsampling with scaling factor 8 along each of the spatial directions. The HR-MSI Z
is generated by degrading the hyperspectral image X using a spectral transform matrix P3 based

on the response of a Nikon D700 camera 4. The average values of each of the five quantitative

measures for each compared HSI super-resolution methods on all 32 scenes have been listed in Table
1. It can be seen that the proposed method leads to better quantitative results than all the other

three methods. For better comparison, we also show the SAM values of 32 images with uniform
blur corresponding to different methods in Figure 2. We can observe that the proposed method
(red color) has the lowest SAM values for all images in CAVE database. In Figure 3, we compare

their visual performance in peppers (cartoon image) and flowers (texture image) of the CAVE

3We thank the authors of [14] for providing their codes.
4https://www.maxmax.com/nikon_d700_study.htm
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dataset with Gaussian blur. The first and third columns of Figure 3 show the constructed images
of the peppers at the 8th band and the flowers at the 14th band, respectively. Their corresponding

absolute error images are shown in the second and fourth columns. Blue color corresponds to
low error. We observe that all competing methods keep spatial structures well, but the proposed

method leads to the lowest reconstruction errors and the best visual quality in restoring both

smooth areas and texture regions. More details can be observed from the zoomed in patches in
Figure 3. The proposed method performs better than other test methods both quantitatively and

qualitatively.

Table 1. Comparison on the average values of each of the five
quantitative measures on 32 scenes from CAVE dataset with scaling
factor 8.

Methods PSNR SSIM RMSE SAM ERGAS

Uniform blur

CNMF[37] 43.052 0.985 2.299 5.934 1.224

Hysure[24] 41.461 0.975 2.702 10.737 1.497

STEREO[14] 39.680 0.946 3.611 12.212 1.898

Proposed 45.332 0.987 1.822 4.969 0.984

Gaussian blur

CNMF[37] 42.258 0.981 2.511 6.578 1.329

Hysure[24] 41.961 0.977 2.541 10.310 1.425

STEREO[14] 39.542 0.945 3.658 12.251 1.923

Proposed 45.206 0.987 1.847 4.983 0.995

Figure 2. The SAMs of all competing methods on CAVE dataset
with uniform blur

5.3. Hyperspectral remote sensing image super-resolution. In this section, we mainly

demonstrate the performance of the proposed method on the Indian Pines image [30]. The image
was obtained by the Airbornes Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, and the

whole image contains 145×145 pixels and 224 spectral bands in the wavelength range 400-2500nm.
In our experiments, a subimage of size 120×120×224 is used as the ground truth image X . The HR-
MSI Z with six bands is degenerated by using LANDSAT sensor, and each spectral band captures

the 450-520nm, 520-600nm, 630-690nm, 760-900nm, 1550-1750nm, 2080-2350nm information of

Inverse Problems and Imaging Volume 14, No. 2 (2020), 339–361
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LR-HSI:

Ground

truth:

CNMF:

Hysure:

STEREO:

Proposed:

Figure 3. The reconstructed images and the corresponding error
images of fake and real peppers at the 8th band and flowers at the
14th band with Gaussian blur and scaling factor 8.

the hyperspectral image X , respectively. The LR-HSI Y is generated as the spatial degradation

manner for the CAVE dataset. Both uniform blur and Gaussian blur are tested with scaling factor
8. The quantitative results obtained with different test methods on the Indian Pines image are

compared in Table 2. We can clearly see that the proposed method significantly outperforms other
methods with respective to all the quantitative measures, especially for the case of Gaussian blur.
Figure 4 shows the reconstructed images and the corresponding absolute error images of all the

competing methods at the 60th and 130th bands (the bright one and the dark one). We observe

Inverse Problems and Imaging Volume 14, No. 2 (2020), 339–361
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that the proposed method still leads to best results among all test methods. In addition, we report
a numerical evidence for the convergence of the proposed algorithm. The functional energy curve

as a function of the iteration for the first similar cluster with uniform blur is shown in Figure 5.

We can observe that it rapidly stabilizes in a few iteration numbers.

Table 2. The performance comparison of the methods on the In-
dian Pines image with scaling factor 8.

Methods PSNR SSIM RMSE SAM ERGAS

Uniform blur

CNMF[37] 42.866 0.978 2.557 2.394 9.406

Hysure[24] 45.232 0.984 1.891 1.701 9.389

STEREO[14] 48.212 0.985 1.267 1.225 9.405

Proposed 51.441 0.993 0.928 0.888 9.368

Gaussian blur

CNMF[37] 42.740 0.977 2.599 2.430 9.409

Hysure[24] 45.927 0.986 1.703 1.547 9.384

STEREO[14] 47.050 0.981 1.510 1.413 9.438

Proposed 51.326 0.993 0.950 0.904 9.369

5.4. Experimental results on remote sensing data corrupted by Gaussian noise. In this

section, we consider to verify the robustness of the proposed model to Gaussian noise by using the
Pavia data [8]. The whole image contains 610 × 340 pixels and 115 spectral bands, acquired by

the reflective optics system imaging spectrometer (ROSIS). In our experiments, only a subimage

of size 256 × 256× 93 was chosen after removing the water vapor absorption bands. To generate
the noisy LR-HSI Y, the ground truth image X is downsampled by first using the uniform blur

with scaling factor 8 as before, and we then add Gaussian noise. The noisy HR-MSI Z is firstly

simulated by degrading X using the IKONOS-like reflectance spectral response filter[33] and then
adding Gaussian noise. We use SNRh and SNRm to represent SNR of the simulated noisy LR-HSI

and HR-MSI, respectively. Table 3 lists the quantitative results of all compared methods on the

Pavia image with different Gaussian noise. The visual comparison results are shown in Figure 6.
The first and second columns show the reconstructed images and the corresponding error images

at the 45th band of the Pavia image with SNRh 30dB and SNRm 35dB, respectively. The third
and forth columns show the reconstructed images and the corresponding error images at the 75th

band of the Pavia image with SNRh 35dB and SNRm 40dB, respectively. It can be observed that

the proposed model has lower reconstruction errors and better quantitative results than the other
methods.

Table 3. The performance comparison of noisy cases on the
Pavia image with uniform blur and scaling factor 8.

Methods PSNR SSIM RMSE SAM ERGAS

SNRh=35dB, SNRm=40dB

CNMF[37] 37.958 0.982 3.335 2.790 0.958

Hysure[24] 42.573 0.987 2.278 2.420 0.584

STEREO[14] 37.307 0.951 3.715 4.022 1.039

Proposed 43.731 0.989 1.848 1.944 0.497

SNRh=30dB, SNRm=35dB

CNMF[37] 37.694 0.979 3.439 2.885 0.979

Hysure[24] 41.541 0.982 2.338 2.553 0.644

STEREO[14] 35.584 0.932 4.401 4.829 1.252

Proposed 42.097 0.981 2.158 2.349 0.604
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LR-HSI:

Ground

truth:

CNMF:

Hysure:

STEREO:

Proposed:

Figure 4. The reconstructed images and the corresponding error
images of the Indian Pines image at the 60th and 130th bands with
uniform blur and scaling factor 8.

6. Conclusion. Motivated by the fact that the spatial degradation operators are usually unknown
in practice, this work presents a novel blind HSI super-resolution approach based on non-local
sparse tensor factorization. We first group similar 3D image cubes of the LR-HSI Y and HR-MSI
Z into some clusters and then organize them as a 4D tensor for each cluster. The sparse tensor
regularization is designed according to the sparse prior and low-rank of the targeted 4D tensors.

By using the tensor factorization technique for each similar cluster, the problem of HSI super-
resolution can be reformulated to estimate the dictionaries of three modes and their corresponding

Inverse Problems and Imaging Volume 14, No. 2 (2020), 339–361
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Figure 5. The functional energy curve for the proposed algorithm.

core tensors. To solve the proposed method efficiently, we present a proximal ADMM based

algorithm. Numerical experiments on both simulated and real image data demonstrate that the
proposed model can provide some state-of-the-art results in HSI super-resolution.
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