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ABSTRACT

Data adaptive tight frame methods have been proven a powerful sparse approximation tool in a variety of
settings. We introduce a model of a data adaptive representation that also provides a multi-scale structure. Our
idea is to design a multi-scale frame representation for a given data set, with scaling properties similar to the
ones of a wavelet basis, but without the necessary self-similar structure. The adaptivity provides better sparsity
properties, using Besov-like norm structure both induces sparsity and helps in identifying important features.

We focus on investigating the efficiency of a weighted l1 constraint in the context of sparse recovery from
noisy data and compare it to the weighted l0 model alongside. Numerical experiments confirm that the recovered
frame vectors assigned lower weights correspond to image elements of larger scale and lower local variation, thus
indicating that weighted sparsity in natural images leads to a natural scale separation.

1. INTRODUCTION

Recent decades of imaging research demonstrated that efficient systems of representation need to be either
redundant or data-adaptive. Sparse representation in redundant systems has been proven to be a powerful tool
of image recovery and analysis. Even though wavelets are widely considered a typical example of a system that
provides sparse representations for natural images, in practice, we are often facing the fact that the level of sparsity
that wavelets or tight frames with low redundancy typically provide is not sufficient for efficient application of
many popular compressive recovery techniques. In this work we explore the possibility of a non-redundant
yet data adaptive representation that also incorporates multi-scale structure. Our idea is to adaptively design
multi-scale representation for a given data set, trying to obtain a basis/frame with scaling properties similar to
the ones of a wavelet basis, but without the necessary self-similar structure. The adaptivity will provide better
sparsity properties based on data correlation, using Besov-like norm structure will both induce sparsity and
identify important features of the data.

Data adaptive tight frame methods have been proven a powerful sparse approximation tool established in
a variety of settings1234.5 In this work we focus on investigating the efficiency of weighted l1 constraint in the
context of sparse recovery from corrupted data and compare it to the weighted l0 model alongside. In other
words, we incorporate the weighted sparsity constraint into a model class that recovers a tight frame in which a
given dataset is represented optimally in a certain sense with the purpose of data analysis and regularization.

After experimenting with several model problems to ascertain the appropriateness of using the Besov 1-1-
1 norm as a measure of imposing a sparsity constraint together with regularity (see Sec. 2), we developed a
methodology for recovering a tight frame in which a given sequence of correlated images from can be represented
optimally in a weighted sparsity sense (see Sec. 3). The weighted norm that we design cannot be used to
measure or enforce classical Sobolev regularity since the adaptively recovered tight frame does not incorporate
the properties of regular wavelets any more. However, the multiscale structure imposed by the weights scaled
analogously to the Besov norm coefficients assigned to different wavelet scales naturally creates an hierarchical
structure in the adaptively recovered frame. Numerical experiments (see Sec. 4) confirm that the recovered
frame elements assigned lower weights correspond to image elements of larger scale and lower local variation,
thus indicating that weighted sparsity in natural images leads to a natural scale separation.

Data adaptive design of a sparse representation becomes especially relevant in the cases when the imaging
data involved has a large number of highly correlated details. In that case joint sparsity becomes a constraint
implicitly exploiting the similarities between data channels for better recovery and adaptive representation allows
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to identify a frame that incorporates the most dominant features shared between the data channels. We include
the results of numerical tests of denoising, as a particular example of image recovery, in the case of images
including repetitive elements and texture, and in the case of a hyperspectral stack, where the similarity of
features between bands (channels) comes from the acquisition method (Sec. 4). We summarize our findings and
outline the future work in Sec. 5.

2. MOTIVATION FOR USING WEIGHTED L1 REGULARIZATION

Besov B1
1,1 space is a subspace of the BV with |u|TV ≤ C‖u‖1,1,16.7 The Besov 1-1-1 norm of a function

u ∈ L2(R) can be expressed via the coefficients of its decomposition in an orthonormal r-regular (r ≥ 1) wavelet
basis generated by the wavelet function ψ and scaling function φ as follows:

‖u‖B1
1,1

=
∑
k∈Z
|〈u, φ0,k〉|+

∞∑
j=1

∑
k∈Z

2j |〈u, ψj,k〉|, here φ0,k(t) = φ(t− k), ψj,k(t) = 2j/2ψ(2jt− k).

Besov regularity has been successfully used in sparse recovery algorithms (see8). Unlike the l1 norm of the
wavelet basis coefficients, the weighted norm imposes sparsity together with the requirement on the coefficient
decay, introducing a mild restriction somewhat resembling joint sparsity with additional requirement on non-zero
coefficients to be localized at ’lower frequency’ positions. Consider using the Besov B1

1,1norm as a regularizer in
simple problems like image denoising via minimizing

E1(u) = ‖u‖B1
1,1

+
λ

2
‖u− u0‖22,

where u0 is a given noisy image. However, it does not immediately lead to great results due to the absence of
translation invariance in the representation, and thus to prioritizing edges in the data positioned along a diadic
grid imposed by the non-redundant wavelet decomposition. Numerical experiments confirm what we could expect
- it still outperforms the output of the minimization problem without the weighing:

E2(u) = ‖Wu‖1 +
λ

2
‖u− u0‖22

here W is a predetermined wavelet decomposition matrix. See Fig. 1(b) and (c) respectively.

(a) (b) (c) (d)
Figure 1. (a) noisy input with SNR = 4.5dB , (b) denoising by minimizing E1 (based on B1

1,1, i.e. weighted l1 norm
of non-redundant wavelet transform) with resulting SNR = 9.75 ,(c) denoising by minimizing E2 (based on l1 norm of
non-redundant wavelet transform) with resulting SNR = 9.1,(d) denoising by minimizing E1 with random shifts

The results were obtained using ADMM implementation,9.10 Results can be slightly improved by using a
redundant representation (the stationary wavelet transform, which, unfortunately, involves using a ‘redundant’
rectangular matrix W of much larger size, making such model hard to implement on a computer with RAM of
32Gb or lower) or, as an alternative, introducing random shifts of the image during the ADMM iterations in
otherwise identical context - see Fig. 1(d).

Denoising result using B1
1,1model applied to image patches is shown in Fig.3. A 256 × 256 image was split

into overlapping patches of size 16 × 16, which formed the image stack. We used matrix W of the 2D wavelet
transform associated with the db2 wavelet and depth of decomposition equal to 3 and D contained the associated
Besov weights. The resulting improvement in SNR was from 20dB to 23.79dB, (the parameters had values
ρ = .2, µ = .005) comparing to the l1 model with the same basis raising the SNR to 22.97dB.
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(a) (b) (c)
Figure 2. (a) Noisy image, SNR = 20.62dB, (b) recovery via minimizing E2 over image patches, SNR = 22.97, (c) recovery
via minimizing E1 over image patches, SNR = 23.79dB

3. DESCRIPTION OF THE MODEL

Let us assume that Y0 is a set of q images of size N ×N that have some correlation/common features and that
can be expected to have a sparse representation in an orthonormal basis. Let the frame analysis operator be
performed by the N × N matrix W , and the synthesis - by its adjoint W ′. Let y0 denote the matrix of size
N2 × q containing images reshaped as column vectors. In the process of minimizing the energies described in
the next paragraph we would like to recover an updated set of images Y via the corresponding reshaped matrix
y = W ′c, where c is of size N2× q. These models require different types of weighted sparsity from the recovered
signal: weighted l1 pseudo-sparsity in the first case and joint weighted l0 sparsity in the second.

M1.The first model we consider is aimed at recovering the optimal basis W and the sparse representation
Y = W ′c of the original images Y0 via solving

min
W,c:WW ′=I

‖W ′c− y0‖2F + µ‖Dc‖1,1, (P1)

where D is a diagonal matrix of nonnegative coefficients weights, typically exponentially increasing from one
group of coefficients that we would like to identify as a unified scale to another, as we comment on later. For the
convenience of the numerical approximation we introduce an auxiliary variable r and reformulate the problem
as

min
W,c,r

‖W ′c− y0‖2F + µ‖r‖1 +
ρ

2
‖Dc− r‖2F . (P2)

Since we initialize W as one of the wavelet bases, D can be chosen to be a matrix that makes ‖DW ′ · ‖1 =
‖ · ‖B1

1,1
.

M2. The second model we test is recovering the optimal basis W and the sparse representation Y of the
original images Y0 via solving

min
W,c:WW ′=I

‖W ′c− y0‖2F + µ‖Dc‖2,0, ‖Dc‖2,0 = ‖Dχ(c)‖2, (P3)

where χ(c) is a matrix with rows equal to the rows of the identity whenever the respective rows of c are non-
zero, and zero vectors otherwise. This imposes the restriction of an ‘hierarchical joint sparsity’, as the non-zero
coefficient rows are weighted in a predefined scaled manner; W ′c = y after reshaping delivers Y - the stack of
recovered images.

As before, we introduce an auxiliary r and reformulate the problem as

min
W,c,r

‖W ′c− y0‖2F + µ‖r‖2,0 +
ρ

2
‖Dc− r‖2F . (P4)

Let us notice that in the context of these models a meaningful recovery of the basis(transform) W is only
possible when q is comparable to N2 or q > N2. For instance, recovery of such a basis for the an entire RGB
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image (without splitting it into patches) is not plausible. Let us also remark that in the case of the image
stack Y0 being comprised of the image patches the recovered basis for the patches padded by zeros around each
respective patch forms a tight frame for the space of matrices of size of the original image. This was proven in,1

where the authors consider a similar model with unweighted joint sparsity constraint.

4. NUMERICAL IMPLEMENTATION AND RESULTS

4.1 Algorithms

The following algorithm implements the minimization posed in (P2) via ADMM with a proximal regularization
term for W . W0 = W and D are initialized as described above. y0 is the original stack of images reshaped as
vector columns and written as a matrix N2 × q, c0 is also a matrix N2 × q, columns of which are the respective
coefficients of decomposition of the columns of y0 via W0 and r0 = Dc0.

ck+1 = (IN2 + ρD2)−1(Wky0 + ρD′(rk − 1/ρλk))

rk+1 = shrink(Dck + ρ−1λk, µ/ρ), shrink(a, b) = sign(a)max(abs(a)− b, 0)

λk+1 = λk + ρ(Dck − rk)

yk = W ′ck

[U, S, V ] = SVD(cky
′
0 + βWk), Wk+1 = U(V ′)

Alternative algorithm implementations we tested did not include Lagrange multipliers, but included proximal
terms for all c and r, yielding similar results.

The following algorithm implements the minimization posed in (P4). W , D, y0 and c0 are initialized as in
the previous case.

ck+1 = (IN2 + ρD2)−1(Wky0 + ρD′rk)

yk = W ′ck

rk+1row#i = γi(Dck)row#i, where

γi =

{
1, if ‖(Dck)row#i‖22 > 2µρ
0, otherwise

[U, S, V ] = SVD(cky
′
0 + βWk), Wk+1 = U(V ′)

4.2 Numerical results: denoising

The major difference between models M1 and M2 lies in the sparsity requirements. While in both cases we are
looking for an optimal basis and associated representation, the weighted sparsity constraints incorporate different
underlying assumptions about the data. In M1 we are recovering the basis in which all the images in the set
are sparse in the weighted l1 sense. In M2, however, we require joint weighted l0 sparsity, thus enforcing the
supports of the coefficient vectors for images to coincide or significantly overlap.

Both models naturally fit into the context of denoising. We consider two examples - denoising a grayscale
image that contains large areas of repetitive texture and denoising a stack of hyperspectral images. The grayscale
image 256× 256 is split into q overlapping patches of smaller size N ×N , making sure that q > N2 and applying
both models gives meaningful basis recovery. Fig. 3 shows the results of applying M1 and M2 to denoise Barbara
image with original noise level at SNR = 20.62dB with N = 16, q = 1024 resulting in a denoised image with
SNR = 25.01dB and SNR = 24.58dB respectively. For comparison we also show the outputs of the respective
algorithms without the weighting.

To further explore the effectiveness of the proposed methods on multi-channel data with similarities between
channels we applied models M1 and M2 to the problem denoising of a hyperspectral stack. A subset of size
64× 64× 162 of the Urban hyperspectral set,1112 was picked, gaussian noise added to each band independently.
Denoising was applied to the sub-stacks of size 8× 8× 162, those were chosen with overlapping margins and the
results were averaged respectively.
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(a) (b) (c)
Figure 3. (a) Noisy image, SNR = 20.62dB, (b) recovery via M1 model, output SNR = 25.01dB, (c) recovery via M2
model, output SNR = 24.58dB

(a) (b)
Figure 4. (a) recovery via M1 model without the weights(D = I), output SNR = 23.69dB, (b) recovery via M2 model
without the weights(D = I), output SNR = 23.7dB

5. CONCLUSIONS AND FUTURE WORK

Smoothness or regularity and/or sparsity are the classical requirements we impose on the recovered signal in the
modern image processing world. However, in the presence of additional information, such as similarities between
multiple imaging data channels with a significant number of channels in relation to the image size, the notion of
joint sparsity arises as a new requirement and a numerical constraint. In our models we implement two scenarios
where we use updated versions of the joint sparsity constraint: weighted l1 relaxed group sparsity and weighted
joint sparsity. The former seems to perform better for the purposes of denoising in the context we presented,
which is relevant to the problem of careful initialization needed for non-convex methods involving the weighted
l0 norm.

In our future work we would like to investigate the possibility of formulating a non-smooth analogue of Besov
regularity for discrete data even when the basic building elements are not regular in the classical sense. We
would like to see if the results of the fitting procedure can yield conclusions about the input data - both in terms
of smoothness and relation between patches/bands/channels, as well as potential estimation of the intrinsic data
dimension.

We will further investigate the applicability of these methods in the context of data with a priori low intrinsic
dimension in the presence of high noise or altered via known lossy operators. As a high impact application
we would like to apply our model to recovering a basis inducing the hierarchical joint sparsity in an image
stack obtained within the MRF (magnetic resonance fingerprinting) context. The highly undersampled in the
Fourier domain images in this problem are highly correlated and thus fit our sparsity framework. We would
like to properly structure the lossy operators in the matrix form for the use as approximately linear transforms,
recovering a patch of a stack at a time in order to fulfill the requirement of the meaningful joint sparsity
requirement in the context of the optimal basis recovery.
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Figure 5. The first four images represent the basis elements that were assigned weight dii = 1, i = 1, . . . , 4, the next 12 -
weight dii = 2, i = 5, . . . , 16; and the following 48 (assigned the weight dii = 4, i = 17, . . . , 64) to illustrate the tendencies
further; the rest of the basis not shown.

(a) (b) (c) (d)
Figure 6. A band (the 7th band) from the hyperspectral stack (a) original image, (b) noisy image with SNR = 14.27dB,
(c)recovery via M1 model, output SNR = 22.14dB (d)recovery via M2 model, output SNR = 21.51dB
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(a) (b)
Figure 7. (a) comparison with unweighted l1 model (7− th band of the stack), recovered SNR = 17.25dB (b) comparison
with unweighted l1 model(7 − th band of the stack), recovered SNR = 18.25dB

(a)

(b)
Figure 8. Improvement in SNR per band: (a) the models with weighted coefficients: after applying M1 the average
increase in SNR is 7.764dB, after applying M2 the average increase in SNR is 7.013dB (b)similar models with unweighted
coefficients: unweighted l1 minimization leads to the SNR increase averaging 3.015dB, unweighted l0 minimization leads
to the SNR increase averaging 3.926dB
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