Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Probing the B- &_C-rings of the antimalarial tetrahydro-β-carboline MMV008138 for steric and conformational constraints

Leave this area blank for abstract info.

Sha Ding, Maryam Ghavami, Joshua H. Butler, Emilio F. Merino, Carla Slebodnick, Maria B. Cassera and Paul R. Carlier

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com

Probing the B- & C-rings of the antimalarial tetrahydro-β-carboline MMV008138 for steric and conformational constraints

Sha Ding^a, Maryam Ghavami^a, Joshua H. Butler^b, Emilio F. Merino^b, Carla Slebodnick^a, Maria B. Cassera^b, and Paul R. Carlier^a,*

- ^a Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
- ^b Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, 120 Green Street, Athens, Georgia 30602, United States

ARTICLE INFO

ABSTRACT

Article history:
Received
Revised
Accepted
Available online

Keywords: Malaria Plasmodium MEP pathway PfIspD The antimalarial candidate MMV008138 (1a) is of particular interest because its target enzyme (IspD) is absent in human. To achieve higher potency, and to probe for steric demand, a series of analogs of 1a were prepared that featured methyl-substitution of the B- and C-rings, as well as ring-chain transformations. X-ray crystallography, NMR spectroscopy and calculation were used to study the effects of these modifications on the conformation of the C-ring and orientation of the D-ring. Unfortunately, all the B- and C-ring analogs explored lost *in vitro* antimalarial activity. The possible role of steric effects and conformational changes on target engagement are discussed.

Malaria was estimated to be responsible for 405,000 deaths worldwide in 2018. Many prevention methods and drug treatment protocols are available, but emerging resistance to artemisinin and its partner drugs is of great concern. Thus there is a pressing need to develop antimalarials that possess new mechanisms of action.² Malaria is caused by *Plasmodium* parasites, of which P. falciparum is the most prevalent, accounting for more than 96% of the malaria cases worldwide.1 Plasmodium sp. contain a relict organelle termed the apicoplast, which is responsible for the biosynthesis of the critical isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP).3 Whereas Plasmodium sp. synthesize these compounds via the methylerythritol phosphate (MEP) pathway, the mevalonate pathway is used to synthesize them in humans.³ This biochemical divergence commends the MEP pathway as a target for antimalarial drug development, since inhibitors of MEP target enzymes would not adversely affect IPP biosynthesis in humans.

Our initial work in this area⁵ identified MMV008138 as a MEP pathway inhibitor, by performing a phenotypic screen of the 400-compound Malaria Box⁶ with the IPP rescue protocol.³ MMV008138 is a tetrahydro- β -carboline, and differentially-functionalized examples of this scaffold are found in a number of other antimalarials,⁷ and compounds directed towards other indications.⁸ Subsequent resistance selection studies by Wu et al. demonstrated that 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (IspD, E.C.2.7.7.60), the third enzyme in the MEP pathway, is the target of MMV008138.⁹ Initially, the

	X	Growth EC ₅₀ (nM)	PflspD IC ₅₀ (nM)
1a	2', 4'-Cl ₂	250 ± 70	44±15
1b	H É	>10,000	>5,000
1c	2'-CI	$3,280 \pm 990$	~1,000
1d	4'-CI	$1,170 \pm 60$	510 ± 90
1e	2'-Cl, 4'-Me	410 ± 40	82 ± 10
1f	2'-Me, 4'-Cl	700 ± 90	260 ± 50
1g	2'-Cl, 4'-Br	320 ± 60	34 ± 11
1ĥ	2', 4'-Me ₂	~10,000	~1,000

Figure 1. Lead compound **1a** and tight D-ring SAR. Note that the X=2'-Br, 4'-Cl and X=2'-Cl, 4'-F analogs are also potent in both assays. ¹⁰

absolute configuration of MMV008138 was unknown, since it was not disclosed in the Malaria Box; subsequently three independent investigations $^{9\text{-}11}$ demonstrated that the active stereoisomer is (1*R*, 3*S*)-configured, as depicted in **1a** in Figure 1. Kinetic studies established that **1a** competes with cytidine triphosphate (CTP) in its IspD-catalyzed reaction with 2-C-methyl-D-erythritol-4-phosphate. 11

A collection of D-ring analogs of **1a** was prepared by the Pictet-Spengler (PS) reaction of L-Trp-OMe·HCl with various benzaldehydes, separation of diastereomers, and hydrolysis.¹⁰

Examination of these analogs in both *in vitro* growth inhibition (SYBR Green) and *P. falciparum* IspD (*Pf*IspD) inhibition assays show a very close correlation between growth inhibition (EC₅₀) and target engagement (IC₅₀). These data also demonstrate a very tight SAR on the D-ring. At least one halogen is required on the 2'- or 4'- position to retain potency in both assays, as shown in Figure 1; substitution at other D-ring positions is not tolerated. It thus appears that the D-ring of **1a** binds within a snug, well-defined pocket of *Pf*IspD. In the absence of an X-ray structure for this species of IspD, ¹² we have speculated that halogen-bonding contributes to the affinity of **1a** for its target.

Scheme 1. Synthesis of C1-Me analogs of 1a.

i) Free base with NaHCO₃; Ti(OⁱPr)₄, 70 °C, 16 h; 0 to 70 °C, TFA/TFAA (100 equiv, 1 equiv); NaHCO₃. ii) Amberlyst hydroxide, THF/MeOH/H₂O, r.t., 16 h; AcOH/H₂O.

iii) Free base with NaHCO₃; Ti(OⁱPr)₄, 70 °C, 16 h; cool to 0 °C, TFA/TFAA (100 equiv, 1 equiv); NaHCO₃.

Since the in vitro potency of 1a was not improved by modulation of the D-ring, we sought to probe the steric requirements for binding around the B- and C-rings, in the hope of identifying more potent analogs. Previously we disclosed analogs **6b** and **6d** (Scheme 1). 10b which feature methyl substitution at C1. but with non-optimal substitution of the D-ring (X = H(6b), X =4'-Cl (6d)). We attributed the low growth inhibition potency of these compounds to the absence of 2',4'-dichloro substitution. Synthesis of such C1-Me analogs of 1a requires PS reaction of L-Trp-OMe·HCl 2 with acetophenones 3, which are significantly less electrophilic than benzaldehydes. Thus, the ester precursors to 6b and 6d were prepared by PS reaction with acetophenones 3b and 3d, according to Horiguchi's protocol: 14 ketimine formation in neat Ti(OiPr)4, followed by treatment with TFA and TFAA, all at 70 °C. As we noted in our earlier publication, ^{10b} application of the Horiguchi protocol to *ortho*-substituted acetophenones 3a and 3c did not give the expected products. However, we subsequently found that if ketimine formation was followed by treatment with TFA/TFAA at 0 °C to room temperature, the desired trans-esters 5a and 5c could be isolated in 20% and 17% yield respectively esters result from Ti(OⁱPr)₄-mediated transesterification). As detailed by Horiguchi, 14 the trans-relative configuration of 5a and 5c was established by the absence of an NOE correlation between H3 and the C1-methyl; this correlation is visible in the corresponding cis-isomers 4a and 4c (Supplementary Material, Figures S2-S3). Hydrolysis of 5a and 5c afforded the desired amino acids 6a and 6c.

Unfortunately, the presence of a 2'-Cl substituent in the D-ring of these C1-methyl analogs did not restore antimalarial activity (Table 1, entries 6, 8). Compared to our lead ${\bf 1a}$ (EC₅₀ = 250 ± 70 nM), C1-methyl analog ${\bf 6a}$ shows no growth inhibition at 10,000 nM. Similarly, the weakly potent 2'-Cl substituted ${\bf 1c}$ (EC₅₀ = $3,280 \pm 990$ nM) loses all growth inhibition potency upon C1-methylation (${\bf 6c}$, no growth inhibition at 10,000 nM). Since the

Table 1. *P. falciparum* growth inhibition by **1a-d**, **f**, and indicated B- and C-ring analogs.

Entry	Compound	Dd2 strain <i>P. falciparum</i> Growth EC ₅₀ (nM)
1	1a	$250\pm70^{a,c}$
2	1b	>10,000ª
3	1c	$3,280 \pm 990^{a, d}$
4	1d	$1,170 \pm 60^{a, e}$
5	1f	$700\pm90^{a,c}$
6	6a	>10,000
7	6b	>10,000 ^b
8	6c	>10,000
9	6d	>10,000 ^b
10	8a	190 ± 30^a
11	12f	>10,000
12	12i	>10,000
13	16a	65% inhibition at $10~\mu M$
14	(±)-20a	>10,000
15	24a	~8,000
16	25a	>10,000
17	26a	>10,000

 aReported previously. $^{10a\,b}Reported$ previously. $^{10b\,c}100\%$ rescued by 200 μM IPP @ 10 μM . $^d60\%$ rescued by 200 μM IPP @ 10 μM . $^c50\%$ rescued by 200 μM IPP @ 10 μM . $^f100\%$ rescued by 200 μM IPP @ 2.5 μM .

mere addition of a methyl group at C1 should not drastically affect permeability or transport of these compounds, we conclude that the loss of growth inhibition potency is due to reduced affinity for PfIspD, the target of **1a** (and its potent analogs, cf. Figure 1). In particular, it appears that either there is no room in the PfIspD binding pocket for a methyl group at C1, or that the C1-methyl in **6a** induces a conformational change that disfavors binding. We were fortunate to obtain a crystal of **7a** (Figure 2), the methyl amide derivative of **6a**, and to compare it to **8a**, the methyl amide analog of **1a**, which we previously crystallized. Since **8a** is equipotent (Dd2 strain growth EC₅₀ = 190 ± 30 nM) with **1a**, comparison of the conformations of **7a** and **8a** could be informative.

Figure 2. A. Comparison of τ (R-C1-C1'-C2') dihedral angles in **7a** and **8a**. B) PyMOL¹⁵ overlay of X-ray structures of **7a** (cyan: carbon; blue: nitrogen; green: chlorine) and **8a** (red). A thermal ellipsoid depiction of **7a** is provided in the Supporting Information, Figure S1).

As can be seen in Figure 2, the tetrahydropyridine C-rings of $\bf 7a$ and $\bf 8a$ adopt very similar conformations, featuring a pseudoequatorial C(O)NHMe group and an apparent electrostatic interaction between the amide NH and the tetrahydropyridine

nitrogen N2 (Figure 2). There are 4 molecules of **7a** in the unit cell, and the average RMSD of the 6 C-ring atoms of them from **8a** is 0.041 Å (individual values 0.030, 0.033, 0.046, 0.057 respectively). However, steric strain between the C1-Me and the C2'-Cl in **7a** causes the D-ring to adopt a different orientation. We define τ as the dihedral angle between the C1 substituent (CH₃ for **7a**, H for **8a**), C1, C1', and C2'. For **7a** (C1-Me), the average τ value is -63.6° (individual values -59.15°, -62.29°, -64.00°, and -68.91°, respectively), whereas the τ value in **8a** (C1-H) is nearly 30° smaller, at -36.5°.

Scheme 2. Synthesis of spiro-fused analogs 12f, 12i.

Given the extreme sensitivity of growth and PfIspD inhibition to substitution of the D-ring (see Table 1), it is possible that this dihedral angle change alone, apart from the added steric bulk at C1, could be deleterious to potency. To enforce a smaller τ dihedral angle, we thus proposed to connect C1 and C2′ with an ethylene bridge as shown in **12f** and **12i** (Scheme 2), imparting a cipargamin^{7b}-like spiro-fusion. Compound **12f** would thus be a conformationally-constrained mimic of 2′-Me,4′-Cl-substituted **1f**, which has significant potency (EC₅₀ = 700 ± 90 nM). The ketone PS reaction between L-Trp-OMe·HCl **2** and indanones **9f/9i** was performed according to the original Horiguchi protocol;¹⁴ diastereomer separation gave esters **11f** and **11i**, which mimic the *trans*-orientation of **5a-d**. The *trans*-configuration of **11f** and *cis*-configuration of **10f** was confirmed via 1D NOE experiments (Figure 3).

Figure 3. 1D NOE observed in 10f and 11f.

Irradiating C3-H revealed NOE to C7'-H for the *trans*-isomer **11f**, but not for the *cis*-isomer **10f**. When one of the diastereotopic C2'-H is irradiated in **11f**, NOE to the N9-H is seen. In contrast, irradiation of one of the diastereotopic C2'-H in the *cis*-isomer **10f** transfers NOE to C3-H (Supplementary Material, Figures S4-S7). Interestingly, ¹H NMR analysis of **11f**, **11i** and their *cis*-diastereomers (**10f**, **10i**) demonstrated one large and one small coupling constant of H3 to the H4 protons, indicating a near antiperiplanar relationship of H3 and H4β. Thus, regardless of *cis*-or *trans*-orientation, the 3-CO₂ Pr group is pseudoequatorial, and

H3 is pseudoaxial. The trans-esters 11f and 11i were then hydrolyzed to give the desired spiro-fused analogs 12f and 12i. Unfortunately, neither compound was potent for growth inhibition (Table 1, entries 11-12). Compound **12f** (EC₅₀ > 10,000 nM) differs from 1f (EC₅₀ = 700 ± 90 nM) by substitution of the C2'-CH₃ group with an ethylene bridge to C1. Molecular mechanicsbased conformational analysis 16, 17 of the methyl amide of 11f (11f NHMe), demonstrates that the spiro-ring fusion generates two conformer ensembles defined by narrow ranges in the τ dihedral angle (here C2'-C1-C7a'-C3a', Figure 3). One ensemble (13 conformers) features $\tau = -19 \pm 1^{\circ}$, more similar to that of 8a ($\tau = -19 \pm 1^{\circ}$) 36.5°) than of **7a** ($\tau = -63.8^{\circ}$). The other ensemble (16 conformers) features $\tau = +17 \pm 2^{\circ}$. Since the lowest energy conformers in each ensemble are similar in energy (Supplementary Material, Table S1), both conformers are expected to be populated, and be available to bind PfIspD. Thus, unless the τ dihedral angle exhibited by 8a (and presumably 1a) precisely matches the steric requirement of PfIspD, it seems most likely that the low potency of spiro-fused analog 12f, is due to steric bulk at the C1 position, as we concluded for C1-Me analogs 6a and 6c.

Scheme 3. Synthesis of 16a, (\pm) -20a, and 24a.

- i) 2,4-dichlorobenzaldehyde, $\mathrm{CH_2Cl_2}$, 4 Å molecular sieves, 24 h; TFA (2 equiv), r.t., 48 h; NaHCO_3:
- ii) Amberlyst hydroxide, THF/MeOH/H₂O, r.t., 16 h; AcOH/H₂O.
- iii) Separate diastereomeraiv) SOCl₂, MeOH, reflux.
- v) Amberlyst hydroxide, THF/MeOH/H₂O, μ v, 130 °C, 40 min; AcOH/H₂O.

To probe the effect of substitution at other positions, we prepared analogs featuring methylation at N2, C3, and N9 (Scheme 3). Since we have shown that antimalarial potency of 1a and analogs requires trans-(1R,3S)-configuration, 10 we took special pains to ensure that we had isolated the correct stereoisomer in each case. The N2-Me analog 16a was prepared from PS reaction of N_{α} -methyl-L-tryptophan methyl ester 13 and 2,4-dichlorobenzaldehyde 3a. The PS adduct 14a was isolated as an inseparable mixture of diastereomeric methyl esters, hydrolyzed, and separated by reverse phase prep-HPLC into the cis-isomer 15a and the trans-isomer 16a. The relative configuration of these isomers was assigned on the basis of the H3-H4α and H3-H4β coupling constants (${}^{3}J_{34\alpha}$ and ${}^{3}J_{34\beta}$). As Van Linn et. al have shown for 1,2,3-trisubstituted PS adducts, 1,3-transconfigured compounds have ${}^3J_{34\alpha} \approx {}^3J_{34\beta} = 4.4-4.9$ Hz.¹⁸ In contrast, 1,3-cis-configured-1,2,3-trisubstituted PS adducts have differentiated values for these coupling constants (${}^{3}J_{34\alpha} = 3.8-5.2$ Hz and ${}^{3}J_{34\beta} = 6.5-8.0 \text{ Hz}$).

The racemic C3-Me analog (\pm) -20a was prepared from α -methyl-DL-tryptophan (\pm) -17. Esterification with SOCl₂/MeOH followed by PS reaction with 2,4-dichlorobenzaldehyde 3a gave *cis*-ester (\pm) -18a and *trans*-ester (\pm) -19a; the relative configuration of these compounds was established by 1D NOE experiments (Figure 4). Irradiating the C3-Me in (\pm) -18a shows NOE to H1, but no such NOE is seen on irradiation of the C3-Me in (\pm) -19a. In addition, irradiation of the C3-Me (\pm) -18a shows NOE signal to H4 α , but not H4 β . In contrast, irradiation of the C3- Me in (\pm) -19a

Figure 4. Assignment of relative configuration in (\pm) -18a/ (\pm) -19a and 22a/23a by 1D NOE.

shows NOE to both H4 α and H4 β (Supplementary Material, Figures S8-S9). Hydrolysis of the *trans*-ester (\pm)-**19a** was again accomplished with the catch and release protocol, ¹⁹ but required elevated temperature, possibly due to steric hindrance caused by the C3-Me.

The N9-Me analog **24a** was prepared by esterification of 1-MeL-tryptophan **28**, PS reaction with 2,4-dichlorobenzaldehyde **3a**, separation of diastereomers **22a** and **23a**, and hydrolysis of **23a**. (Scheme 3). The relative configuration of the diastereomeric estere **22a** and **23a** was again assigned by 1D NOE spectroscopy. Irradiating H3 of the *cis*-isomer **22a** shows an NOE signal to H1, but this correlation is not seen in *trans*-isomer **23a** (Figure 4). In addition, irradiation of H3 in **23a** shows NOE signals to both H4 α and H4 β , indicating the 3-CO₂Me group is pseudoaxial orientation. For **22a** a strong correlation of H3 to H4 α is observed, as shown in Figure 4 (Supplementary Material, Figures S11-S12).

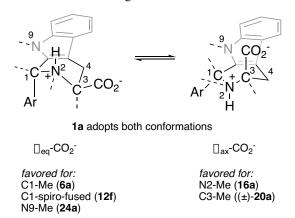

As can be seen in Table 1, methyl substitution at N2, C3 and N9 (compounds 16a, (\pm) -20a and 24a, respectively) unfortunately abrogates P. falciparum growth inhibition (EC₅₀ ≥ 8,000 nM, entries 13-15). As we concluded for methylation at C1 (e.g. 6a, entry 6), we consider it unlikely that addition of a methyl group would significantly impact permeability or transport, and we conclude that these modifications reduce affinity for PfIspD. Again, steric hindrance to binding caused by methylation at N2, C3 and N9 may be responsible. However, since studies of the stereoisomers^{9-10,11} and C3-variants¹⁰ of **1a** indicate that interaction of the 3-CO₂ group with PfIspD is important for affinity, we thought it is important to rule out less direct explanations for the low potency of these compounds. In particular, we sought to determine whether substitution at C1, N2, C3, and N9 could strongly bias a pseudoequatorial- (ψ_{eq} -) or pseudoaxial- (ψ_{ax} -) orientation of the 3-CO₂ group in the tetrahydropyridine ring.

Table 2. Predominant orientation of the $3\text{-}CO_2$ group in **1a** and analogs, as judged by ¹H NMR spectroscopic coupling constants ³ J_{34} and NOE.

		12f					
Entry	Cpd	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^9	$^{3}J_{34}^{a}$ (Hz)	3- CO ₂ -
1	1a	Н	Н	Н	Н	8.5, 5.5	ψeq & Ψax
2	6a	CH ₃	Н	Н	Н	12.0, 5.1	ψ_{eq}
3	12f	na	na	na	na	11.7, 5.0	ψ_{eq}
4	24a	Н	Н	Н	CH ₃	10.3, 4.9	ψ_{eq}
5	16a	Н	CH ₃	Н	Н	5.0, 5.0	ψ_{ax}
6	(±)- 20a	Н	Н	CH ₃	Н	NOE ^b	ψ_{ax}

 a ^{1}H NMR spectra measured in CD₃OD. $^{b}Predominant$ conformation determined by ^{1}H - ^{1}H NOE experiments, since $R^{3} = CH_{3}$, see text.

Thus, for **1a**, **6a**, **12f**, **16a** and **24a**, we examined ${}^{1}H^{-1}H$ coupling constants between H3 and H4 α , and between H3 and H4 β (Table 2). Since (\pm)-**20a** lacks a proton at C3, we used NOE to deduce the preferred orientation of the 3-CO₂-group, as was done for the methyl ester precursor (\pm)-**19a** (Figure 4). Due to reasons of solubility, these experiments were carried out in CD₃OD; we do recognize that the conformational thermodynamics could vary somewhat in water. However as described in the supporting information (Supplementary Material, Section F), in large part the conformer preferences seen comport with the principles of maximizing ψ_{eq} -substitution, and relief of torsional strain. These effects are summarized in Figure 5.

Figure 5. Effects of C1-, N2, C3- and N9 substitution on the preferred conformation of the tetrahydropyridine C-ring of **1a**.

Thus, as anticipated, substitution at C1, N2, C3, and N9 does affect the preferred conformations of these analogs of **1a**. However, since neither enforced ψ_{eq} -CO₂ -orientation (e.g. **6a**, **12f**, **24a**) nor enforced ψ_{ax} -3-CO₂ -orientation (e.g. **16a**, (\pm) -**20a**)

conferred potency, it appears that the low potency of these compounds is indeed steric in origin.

Finally, in addition to installing substituents on the B- and C-rings, we also investigated the shifted C-ring analog **25a** and the open C-ring analog **26a** (Scheme 4). The reductive amination of L-Trp-OMe·HCl **2** with **3a** and sodium cyanoborohydride gives intermediate **27a**. Subsequent treatment of **27a** with dimethoxymethane and TFA followed by hydrolysis affords the shifted C-ring analog **25a**; hydrolysis of **27a** gives open C-ring analog **26a**. Unfortunately, neither **25a** nor **26a** was potent for growth inhibition of *P. falciparum* (Table 1).

Scheme 4. Synthesis of shifted and open C-ring analogs of 1a.

- i) 2,4-dichlorobenzaldehyde, (1.05 equiv), CH₂Cl₂, DIPEA, 4 Å molecular sieves, 24 h; 0 °C, NaBH₃CN.
- ii) CH₂(OMe)₂, TFA, CH₂Cl₂, reflux.
- iii) Amberlyst hydroxide, THF/MeOH/H₂O, r.t., 16 h; AcOH/H₂O.

To conclude, placement of a methyl group on the B-ring (N9, e.g. 24a), C-ring (C1: 6a; N2: 16a; C3: (±)-20a) and installation of a spiro-fusion between the C- and D-rings (e.g. 12f) all drastically reduced in vitro antimalarial potency. In addition to the obvious consequence of increased steric bulk at these positions, these modifications also affected the preferred ψ_{eq} - or ψ_{ax} orientation of the C3-CO₂ group in the tetrahydropyridine C-ring (Table 2), and the orientation of the D-ring (Figure 2 and text). Lastly, shifted and open C-ring analogs of 1a (25a and 26a, respectively) were found to lack in vitro activity. These structural modifications of 1a and 1f are not expected to significantly impact permeation or transport, since they comprise formal addition of a CH₂ unit (e.g. 6d, 12f, 12i, 16a, 24a), isomerization (25a), or addition of H_2 (26a). We conclude therefore that the loss of P. falciparum growth inhibition potency is due to lack of target engagement. In particular, we propose that the binding pocket of PfIspD features very close contact with the B- and C-rings of 1a, as we had proposed earlier for the D-ring. 10b Whether this close contact also extends to all positions of the A-ring of 1a, and whether A-ring modifications could improve potency, work is in progress, and will be reported in due course.

Funding Sources

Funding from the National Institute of Allergy and Infectious Disease (AI128362 to P.R.C. and M.B.C.; AI108819 to M.B.C.; T32-AI060546 to J.H.B) is gratefully acknowledged. X-ray crystallographic work was supported by the National Science Foundation under CHE-1726077.

References and notes

- World Malaria Report 2019. The World Health Organization, available at https://www.who.int/publications-detail/world-malaria-report-2019, last accessed 5/20/20.
- Wells, T. N. C.; van Huijsduijnen, R. H.; Van Voorhis, W. C. Nat. Rev. Drug. Discov. 2015, 14, 424.
- 3. Yeh, E.; DeRisi, J. L. *PLoS. Biol.* **2011**, *9*, e1001138.
- Hale, I.; O'Neill, P. M.; Berry, N. G.; Odom, A.; Sharma, R. *MedChemComm* 2012, 3, 418.
- 5. Bowman, J. D.; Merino, E. F.; Brooks, C. F.; Striepen, B.; Carlier, P. R.; Cassera, M. B. *Antimicrob. Agents Chemother.* **2014**, *58*, 811.
- 6. Spangenberg, T.; Burrows, J. N.; Kowalczyk, P.; McDonald, S.; Wells, T. N. C.; Willis, P. *PLOS One* **2013**, 8, e62906.
- 7. (a) Gupta, L.; Srivastava, K.; Singh, S.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2008, 18, 3306; (b) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; González-Páez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175; (c) Davis, R. A.; Duffy, S.; Avery, V. M.; Camp, D.; Hooper, J. N. A.; Quinn, R. J. Tetrahedron Lett. 2010, 51, 583; (d) Beghyn, T. B.; Charton, J.; Leroux, F.; Laconde, G.; Bourin, A.; Cos, P.; Maes, L.; Deprez, B. J. Med. Chem. 2011, 54, 3222; (e) Gellis, A.; Dumètre, A.; Lanzada, G.; Hutter, S.; Ollivier, E.; Vanelle, P.; Azas, N. Biomedicine & Pharmacotherapy 2012, 66, 339; (f) Sharma, B.; Kaur, S.; Legac, J.; Rosenthal, P. J.; Kumar, V. Bioorg. Med. Chem. Lett. 2020, 30, 126810.
- 8. (a) Laine, A. E.; Lood, C.; Koskinen, A. M. P. Molecules 2014, 19, 1544; (b) Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.-C.; Coste, H.; Linget, J. M.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. J. Med. Chem. 2003, 46, 4533; (c) De Savi, C.; Bradbury, R. H.; Rabow, A. A.; Norman, R. A.; de Almeida, C.; Andrews, D. M.; Ballard, P.; Buttar, D.; Callis, R. J.; Currie, G. S.; Curwen, J. O.; Davies, C. D.; Donald, C. S.; Feron, L. J. L.; Gingell, H.; Glossop, S. C.; Hayter, B. R.; Hussain, S.; Karoutchi, G.; Lamont, S. G.; MacFaul, P.; Moss, T. A.; Pearson, S. E.; Tonge, M.; Walker, G. E.; Weir, H. M.; Wilson, Z. J. Med. Chem. 2015, 58, 8128; (d) Singh, R.; Jaisingh, A.; Maurya, I. K.; Salunke, D. B. Bioorg. Med. Chem. Lett. 2020, 30, 126869
- 9. Wu, W.; Herrera, Z.; Ebert, D.; Baska, K.; Cho, S. H.; DeRisi, J. L.; Yeh, E. Antimicrob. Agents. Chemother. 2015, 59, 356.
- (a) Yao, Z.-K.; Krai, P. M.; Merino, E. F.; Simpson, M. E.; Slebodnick, C.; Cassera, M. B.; Carlier, P. R. *Bioorg. Med. Chem. Lett.* 2015, 25, 1515; (b) Ghavami, M.; Merino, E. F.; Yao, Z.-K.; Elahi, R.; Simpson, M. E.; Fernández-Murga, M. L.; Butler, J. H.; Casasanta, M. A.; Krai, P. M.; Totrov, M. M.; Slade, D. J.; Carlier, P. R.; Cassera, M. B. *ACS Infect. Dis.* 2018, 4, 549.
- Imlay, L. S.; Armstrong, C. M.; Masters, M. C.; Li, T.;
 Price, K. E.; Edwards, R., L.; Mann, K. M.; Li, L. X.;
 Stallings, C. L.; Berry, N. G.; O'Neill, P. M.; Odom, A. R.
 ACS Infect. Dis. 2015, 1, 157.
- 12. Note that several species of IspD (including *Escherichia coli* and *Arabidopsis thaliana*) have yielded high resolution X-ray structures. However, *Pf*IspD features several long and apparently unstructured insertions not present in such crystallized IspDs, and **1a** does not potently inhibit any of these enzymes (ref. 9). Therefore, we do not consider it prudent to carry out docking studies of the compounds

- described in this paper with *Pf*IspD homology models based on these crystallized IspDs.
- Scholfield, M. R.; Zanden, C. M. V.; Carter, M.; Ho, P. S. *Protein. Sci.* 2013, 22, 139.
- Horiguchi, Y.; Nakamura, M.; Saitoh, T.; Sano, T. *Chem. Pharm. Bull.* 2003, 51, 1368.
- The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.
- (a) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; 16. Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio Jr, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; Van Voorhis, T.; Hung Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett, A. C.; Subotnik, J. E.; Lee Woodcock Iii, H.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer Iii, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys 2006, 8, 3172; (b) Halgren, T. A. J. Comput. Chem. 1996, 17, 490.
- 17. Spartan'18; Wavefunction, Inc., Irvine, CA, 2014
- 18. Van Linn, M. L.; Cook, J. M. J. Org. Chem. 2010, 75, 3587.
- 19. Morwick, T. M. J. Comb. Chem. 2006, 8, 649.

Supplementary Material

This information is available free of charge on the Elsevier Publications website, and includes: synthetic procedures and analytical data for all new compounds; NOE spectra; X-ray crystallographic data for **7a**; MMFF94 conformer distribution of **11f** NHMe; *in vitro P. falciparum* growth inhibition assay procedures (PDF).

Corresponding Author

*Email: <u>pcarlier@vt.edu</u>, +1-540-231-9219.

Author Contributions

P.R.C., S.D., and M.G. designed analogs of **1a**, and S.D. and M.G. synthesized them. J.H.B., E.F.M., and M.B.C. developed and performed the *in vitro* assays. C.S. performed X-ray crystallography. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Declaration of Competing Interest

The authors declare no competing interest.

Abbreviations

PS, Pictet-Spengler; MEP, methylerythritol phosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; *Pf*, *Plasmodium falciparum*; RMSD, root-mean-square deviation.