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Abstract—Pansharpening is an important application in
remote sensing image processing. It can increase the spatial-
resolution of a multispectral image by fusing it with a high
spatial-resolution panchromatic image in the same scene, which
brings great favor for subsequent processing such as recog-
nition, detection, etc. In this paper, we propose a continuous
modeling and sparse optimization based method for the fusion
of a panchromatic image and a multispectral image. The pro-
posed model is mainly based on reproducing kernel Hilbert
space (RKHS) and approximated Heaviside function (AHF).
In addition, we also propose a Toeplitz sparse term for represent-
ing the correlation of adjacent bands. The model is convex and
solved by the alternating direction method of multipliers which
guarantees the convergence of the proposed method. Extensive
experiments on many real datasets collected by different sensors
demonstrate the effectiveness of the proposed technique as com-
pared with several state-of-the-art pansharpening approaches.

Index Terms—Pansharpening, remote sensing image, sparse
model, RKHS, Heaviside, Toeplitz sparsity, alternating direction
method of multipliers.

I. INTRODUCTION

PANSHARPENING refers to the fusion of a high
spatial-resolution panchromatic (PAN) image and a low

spatial-resolution multispectral (MS) image to recover a high
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spatial-resolution MS image. PAN and MS images are
acquired almost simultaneously by sensors mounted on many
optical satellites, such as IKONOS and QuickBird. Due to
physical constraints, the fusion of the PAN and MS products
represents the only viable solution to attain a high resolution
in both the spatial and spectral domains. The interest of the
scientific community in pansharpening can be attested from
the contest launched by the Data Fusion Committee of the
IEEE Geoscience and Remote Sensing Society in 2006 [1], [2]
and the review papers in [3] and [4]. Commercial products,
see for instance Google Earth, are exploiting pansharpened
images making pansharpening an important preliminary step
for several image analysis tasks, see e.g., change detection [5].
Most of the pansharpening papers in the literature are

based on paradigms such as component substitution (CS) and
Multiresolution analysis (MRA). The former relies upon the
substitution of a component of the image, after a spectral
transformation of the MS data, with the PAN image, see
e.g., the intensity-hue-saturation [6], the principal component
analysis [7], and the Gram-Schmidt (GS) spectral sharpen-
ing [8]. These methods first project the upsampled MS images
into a new space, then substitute the image components by
the image details of PAN image, and finally apply an inverse
projection to get the high spatial resolution pansharpened
image. CS methods have in general a low computational
burden, but the results can be affected by spectral distor-
tions. The MRA approach is based on the injection into the
MS image of spatial details (i.e., high spatial frequencies
not resolved in the MS image) that are obtained from the
PAN image, e.g., additive wavelet luminance proportional [9],
Laplacian pyramid [10], generalized Laplacian pyramid [11],
“à-trous” wavelet transform [12], and so on. In contrast to
CS techniques, MRA approaches mainly suffer from spatial
distortions while preserving spectral information well.
Besides CS and MRA based methods, variational regulariza-

tion based ones are also popular [13]–[27]. Ballester et al. [13]
proposed a variational regularization pansharpening method
based on two assumptions: one is that PAN image is the linear
combination of high spatial resolution multispectral bands and
the other one is that the PAN image could provide high spatial
resolution information for the multispectral image. However,
this method sometimes suffers from spectral distortion due
to the first unrealistic assumption [3]. To overcome this
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limitation, Möller et al. [14] combine wavelet based fusion
and the pansharpening. Jiang et al. [24] presented a sparsity-
promoting regularization model for pansharpening tasks,
in which a Hyper-Laplacian penalty1 using ℓ1/2 norm is
employed for spectral preservation. This non-convex model
can be efficiently solved by the alternating direction method
of multipliers (ADMM) approach. Pansharpening based on
unmixing turns out to be effective as well. Work in this
direction includes that of [28] and [29]. For instance,
Yokoya et al. [28] proposed an image fusion approach
from the perspective of coupled nonnegative matrix factoriza-
tion (CNMF) unmixing. This method can produce high-quality
fusion results, both spectrally and spatially.
Recently, convolutional neural networks (CNNs) based

methods have been proposed and show very powerful ability
for the pansharpening application, see e.g. [30]–[35]. These
CNNs models are generally based on the assumption which
the relationship between HR/LR multispectral image patches is
the same as that between the corresponding HR/LR panochro-
matic image patches. By this assumption, one can learn a
mapping through a neural network to finally determine the
pansharpened image. To the best of our knowledge, the first
work of using CNNs for pansharpening is proposed by
Huang et al. [30]. Afterwards, Masi et al. [31] adopt a simple
and effective three-layer architecture, which is recently pro-
posed for super-resolution [36], to pansharpening application.
This method can obtain the state-of-the-art pansharpening
performance. Yang et al. [34] present a deep network for
the pansharpening, which is called PanNet. This method
designs the PanNet architecture by incorporating domain-
specific knowledge, as well as mainly focuses on two impor-
tant issues, i.e., spectral and spatial preservation. In summary,
the CNNs based approaches have become a new trend in the
pansharpening problem, and shown the excellent fusion ability.
In this paper, we extend our previous work on single image

super-resolution [37] to pansharpening in a variational format.
In [37], the super-resolution problem was solved from an
intensity estimation perspective. It was assumed that the high-
resolution image is a discretization of an underlying image
intensity function defined on a continuous domain. Since an
image usually contains smooth components and discontin-
uous components such as edges. The intensity function is
assumed to be the sum of two functions, one describing
the continuous component and one describing the edges.
The smooth function is chosen from RKHS and the edge
function is represented using AHF. When extending the idea
to pansharpening, we model each band of the high resolution
multispectral image using a redundant basis with the help of
RKHS and AHF. Differences between coefficients of adjacent
bands are put in the minimization energy functional to enforce
correlation between adjacent bands, which results in a Toeplitz
sparse term. The proposed sparse model is mainly based on
three terms which are derived from RKHS, AHF and the
Toeplitz sparse term. We propose an ADMM-based algorithm
that is guaranteed to converge to solve the proposed model.
Moreover, to compensate for the errors coming from using a
not perfect basis and parameter selection, we also conduct an

1Which corresponds to ℓp -norm, 0 < p < 1.

outer iterative strategy to pick up more image details. Fur-
thermore, the proposed approach is positively compared with
several state-of-the-art pansharpening approaches using real
data acquired by different sensors such as Pléiades, IKONOS,
WorldView-2.
A preliminary version of this paper is just accepted by

IEEE ICIP2017 [38]. It is worth mentioning that this paper is
a significantly expanded version. First, we add more method-
ological details to illustrate the motivation, modeling and algo-
rithm of the proposed method. Second, we add one Toeplitz
sparse term to enforce the correlation between adjacent bands,
which can obtain more promising results, e.g., to the data
by IKONOS sensor. Third, more data by different sensors,
including four 4-bands and one 8-bands data, are employed for
experiments to verify the effectiveness of proposed method.
Finally, more discussions and comparisons from different
perspectives are given in the results section, which can also
demonstrate the effectiveness of our method.
The remainder of the paper is organized as follows. The

related work is introduced in Sect. II. The proposed approach
is detailed in Sect. III. Sect. IV is devoted to the description
of the experimental results. Finally, conclusions are drawn
in Sect. V.

II. REVIEW ON THE RELATED WORK

Deng et al. [37] proposed to use a continuous modeling
approach to enhance image spatial resolution from one low
spatial resolution grayscale image. Let f represent the inten-
sity function of the underlying image defined on a continuous
domain. Without loss of generality, we may assume f :
[0, 1] × [0, 1] −→ R. The low and high resolution digital
images are just discretization of f on some coarse and fine
grids of [0, 1]× [0, 1] respectively. We assume f can be well
represented as the sum of the smooth components and the edge
components. They model the intensity of the image of interest
as a function defined on a continuous domain, and assume the
intensity function f of an image can be well represented as
the sum of two functions: f = fs + fe where fs is the smooth
component lying in a space called Reproducible Kernel Hilbert
Space (RKHS); fe describes image edges at various locations
with different orientations represented by a group of redundant
approximated Heaviside functions.

A. Smooth Component

We adopt 2D thin-plate spline based RKHS for the smooth
component fs of a 2D image [39]. We first review its appli-
cation in the noise removal problem.
Let

g = f + η, (1)

where g is the observed noisy image, f = ( f (z1), f (z2), · · · ,
f (zn))T is the underlying clean digital image on the discretiza-
tion grids zi = (xi , yi ) ∈ [0, 1] × [0, 1], i = 1, 2, · · · , n,
η represents an additive noise.
In [39], an optimal estimate of f for spline smoothing

problems can be obtained by minimizing the following model

min
f

1
n

∫

"
(g − f )2 + λJm( f ), (2)
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where λ is the regularization parameter, g is the noisy function,
m is a parameter to control the total degree of polynomial, and
the penalty term is defined as follows

Jm( f ) =
m∑

ν=0

∫ +∞

−∞

∫ +∞

−∞
Cν
m

(
∂m f

∂xν∂ym−ν

)2

dxdy, (3)

From [39, Ch. 2], the null space of the penalty function
Jm( f ) is a M = Cd

d+m−1 dimensional space spanned by the
polynomials of degree no more than m−1. In the experiments,
we let d = 2 (for 2D image), m = 3, then M = Cd

d+m−1 = 6,
so the null space of the penalty function Jm( f ) can be
spanned by the following terms: φ1(x, y) = 1,φ2(x, y) =
x,φ3(x, y) = y,φ4(x, y) = xy,φ5(x, y) = x2,φ6(x, y)= y2.
Since these polynomials are smooth functions, we mainly use
them to describe the smooth components of an image. Duchon
(see [40]) has proved that if there exists {zi }ni=1 so that the least
squares regression on {φν}Mν=1 is unique, then the optimization
model (2) has a unique solution as follows

fλ(t) =
M∑

ν=1

dνφν(z)+
n∑

i=1

ci Em(z, zi ), (4)

where z = (x, y), Em(z, zi ) is a Green’s function for the
m-iterated Laplacian defined as:

Em(s, t) = Em(|s − t|) = θm,d |s − t|2m−d ln|s − t|,

where θm,d = (−1)d/2+m+1

22m−1πd/2(m−1)!(m−d/2)! (refer to the chapter 2
of [39] for more details).
The result fλ(t) from the denoising problem tends to be

smooth and we therefore define the smooth component as
fs := fλ. Notice that the polynomial functions in fs are
obviously smooth and one may understand the Em(s, t) part
as any smooth component that can not be described by those
polynomials.

B. Edge Component

A group of redundant AHFs is employed to represent the
edge function fe. The Heaviside function is defined as

φ(x) =
{
0, x < 0,
1, x ≥ 0.

(5)

It is singular at x = 0 and describes a jump at x = 0. We usu-
ally use its smooth approximation for practical problems.
Deng et al. [37] use the following smoothed version

ψ(x) = 1
2
+ 1

π
arctan(

x
ξ
), (6)

which approximates to φ(x) when ξ → 0 and ξ ∈ R
actually controls the smoothness. The edges in 2D images
can be expressed by the approximated Heaviside function
ψ((cos θ j , sin θ j ) · z + cρ) which represents an edge with θ j
elevation from the horizontal axis at location cρ . Refer to [37]
for details. In this work, we set ξ = 5× 10−3, and 45 angles,
i.e.,

θ j ∈ {2π/45, 4π/45, 6π/45, · · · , 88π/45, 2π},

while cρ ∈ {0, 1
n−1 ,

2
n−1 , · · · , 1}, n is the number of pixels

of low-resolution image, m = k · n where k is the number of
orientations {θ j }, i.e. k = 45.
Putting the smooth component and the edge component

together, we have the intensity function f (z)=∑M
ν=1 dνφν(z)+∑n

i=1 ci Em(z, zi )+
∑k

j=1
∑n

ρ=1 β jψ((cos θ j , sin θ j ) · z+ cρ)
with k orientations and n pixels. Therefore, the set {φν(z),
Em(z, zi ),ψ((cos θ j , sin θ j )·z+cρ)} forms a redundant “basis”
to represent the intensity function.
Let r ∈ Rn be the given vector-form low-resolution image

defined on a coarse grid, the corresponding discretization for
φν(·), Em(·),ψ(·) leads to matrices Tl ∈ Rn×M , Kl ∈ Rn×n

and "l ∈ Rn×m (m = k · n) which are obtained respectively
from the 2D thin-plate spline based RKHS and the AHF on
the coarse grid. Similarly, we can also get the matrices on a
finer grid, i.e., Th ∈ Rñ×M , Kh ∈ Rñ×n and "h ∈ Rñ×m

where ñ is the pixels number of high-resolution image and
ñ > n.
In [37], the intensity information of the given low-resolution

image defined on a coarser grid is used to estimate coefficients
d, c,β of the redundant “basis”:

min
d,c,β

1
2ñ

∥r−DB(Thd+Khc+-hβ)∥22 + λcTKlc+α∥β∥1,
(7)

where λ and α are two positive regularization parameters,
the first term is the fidelity term, the second term is to
regularize the coefficient c, and the coefficient β of AHF
redundant basis is considered as being sparse (using ℓ1 to
depict) since edges are pretty sparse in an image; D is a
downsampling operator and B is a blurring operator. To focus
on the main contribution of the proposed idea and to avoid
errors from the blurring operator, the authors in [37] assume
the deblurring is taken care of already and let B = I where
I is an identity matrix. The continuous modeling nature also
makes it convenient to remove the downsampling operator D
as downsampling of the high resolution image could be
considered as a discretization of the intensity function on a
coarser grid. Thus DB(Thd+Khc+-hβ) can be considered
as Tld+Klc + - lβ,

min
d,c,β

1
2n

∥r − (Tld+Klc+ - lβ)∥22 + λcTKlc + α∥β∥1. (8)

After gaining the coefficients d ∈ RM , c ∈ Rn and β ∈ Rm ,
it is easy to get the high-resolution image by h = Thd+Khc+
"hβ (vector form).2

Recently, remote sensing image processing has attracted the
more attentions in the community of image and signal process-
ing. Many related applications have been applied, see for
instance detection [41], [42], unmixing [43], destriping [44],
pansharpening [21], [23], [29], etc. The work is also focusing
on the remote sensing image application, i.e., pansharpening.
In what follows, we will show how to extend the single image
super-resolution idea to pansharpening problem of multispec-
tral images.

2Note that the model (8) is applied to image patches which can be viewed
as square images with significantly smaller sizes than the whole image, thus
for every patch, it has one set of d, c,β .
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III. THE PROPOSED MODEL AND ITS SOLUTION

A. Related Notations

Before introducing the proposed method, it is necessary to
state related notations along this paper.

• Low-resolution multispectral image (LRMS): MS ∈
Rm1×n1×N with N spectral images MSi ∈ Rm1×n1 ,
i = 1, 2, · · · , N .

• High-resolution multispectral image (HRMS): M̂S ∈
Rm2×n2×N with N spectral images M̂Si ∈ Rm2×n2 , i =
1, 2, · · · , N , where m2 = s ·m1, n2 = s ·n1 with the scale
factor s. In addition, M̃S ∈ Rm2×n2×N represents the
initial upscaled multispectral image, which is generally
formulated by the interpolation of MS.

• Panchromatic (PAN) image: P ∈ Rm2×n2 .
In our work, the proposed model mainly involves vector

forms, thus in the following context we denote the above
notations as vector ones, i.e., si ∈ Rm1 n1×1 (matrix form
MSi ), ŝi ∈ Rm2 n2×1 (matrix form M̂Si ), s̃i ∈ Rm2 n2×1

(matrix form M̃Si ) and p ∈ Rm2 n2×1 (matrix form P).
The main contributions of the proposed method are sum-

marized as follows:
• Extend the continuous modeling based single image
super-resolution method to pansharpening. To the best of
authors’ knowledge, it is probably the first continuous
modeling approach on pansharpening from the perspec-
tive of image super-resolution. It considers the similarity
between adjacent bands and thus helps improving the
spectral correlation.

• Most of the existing variational regularization pansharp-
ening approaches involve downsampling and blurring
operators, but the blur kernel is generally not accurately
available. Computations involving the two operators are
usually more complicated. The proposed method bypass
the two operators by continuous modeling as well as a
cheap preprocessing that somehow mimics the deblurring.

• We also propose an outer iterative scheme to pick up
more image details lost to imperfect basis and parameter
selection.

B. The Proposed Model

We extend the single image SR model (7) to the pan-
sharpening of multispectral images. The main differences
between single image SR and multispectral pansharpening are
two fold: 1) single image SR only has one low resolution
image as the input while pansharpening problems have two
inputs: the low resolution multi-spectral images and a high
resolution panchromatic image; 2) the goal of the single image
SR is to achieve high spatial resolution only as it doesn’t
involve spectral information while the pansharpening problem
needs to increase spatial resolution while reducing the spectral
distortion.
Next, we present the proposed model for the pansharpening

of multispectral image.
1) RKHS and Heaviside Based Sparse Term: A natural

extension of method (7) is to model each band of the
MS image by the same redundant basis explained in the

previous section but with different coefficients. Let di , ci ,
βi represent the coefficients for the i -th band. The first
energy term (denoted as Eng(1)) of our optimization model
is presented as follows

Eng(1) = 1
2Num

N∑

i=1

∥(Thdi +Khci + -hβi ) − s̃i∥22

+ µ

2

N∑

i=1

cTi K
lci +

λ1
2

N∑

i=1

∥βi∥1, (9)

where Num represents the total number of pixels in the high-
resolution multispectral (HRMS) image (i.e., m2 · n2 · N),
µ and λ1 are two positive regularization parameters, with
Th ∈ Rm2n2×M , Kh ∈ Rm2n2×m1n1 , -h ∈ Rm2n2×m , Kl ∈
Rm1n1×m1n1 , di ∈ RM×1, ci ∈ Rm1n1×1, βi ∈ Rm×1, i =
1, 2, · · · , N . In our work, we do not put blurring or down-
sampling operator into the modeling but use a fast component
substitution or MRA approach to reverse both the downsam-
pling and blurring operations to some extent and feed our
algorithm with this preliminary pansharpening result to further
improve the result. In this paper, we adopt a classical Gram-
Schmidt (GS) [8] method to obtain the initial multispectral
image s̃i ∈ Rm2 n2×1, aiming to roughly depict the blurring
and downsampling processes. It basically combines the low
resolution multispectral image s̃ and the panchromatic p for
a higher resolution image. Any other CS or MRA approach
could be used as well (see the discussion in the results section).
Note that the term (9) is different with the term in model (7)
mainly on two aspects: one is the summation over all bands,
and the other aspect is the difference about the downsampling
and blurring operators.
2) The Fidelity Term Between Panchromatic Image and

Multispectral Image: The panchromatic image p contains
spatial details. To use it to help increase the spatial reso-
lution, we adopt it using the fact that p can be viewed as
the weighted sum of the latent HRMS image, where the
weights ωi , i = 1, 2, · · · , N can be automatically estimated
by the linear regression between the known LRMS image
and the spatially degraded panchromatic image, e.g., [45].
Therefore, the fidelity term between panchromatic image and
multispectral image can be written as follows,

Eng(2) = ∥
N∑

i=1

ωi (Thdi +Khci + -hβi ) − p∥22, (10)

where Thdi + Khci + -hβi , i = 1, 2, · · · , N represents one
band of latent HRMS image.

a) The Toeplitz Sparsity: It is observed that there is sim-
ilarity between adjacent bands in the MS image. For instance,
even though the color looks different, adjacent bands repre-
sent same objects which should be characterized by similar
smoothness and edges across bands. Since we use a redundant
basis to represent each individual band, the similarity between
adjacent bands can be described by imposing similarity on the
coefficients. Therefore, we define the third term in our energy
function as

Eng(3) = ∥e∥1, (11)
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where

e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 − d2
c1 − c2
β1 − β2

...
dN−1 − dN
cN−1 − cN
βN−1 − βN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Toe

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
c1
β1
...
dN
cN
βN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

and Toe is a non-symmetic Toeplitz matrix Toe(s1, s2) ∈
R(M+m1n1+m)(N−1)×(M+m1n1+m)N with the vectors

s1 = (0, 0, · · · , 0, 0, 0, · · · , 0)T ∈ R(M+m1n1+m)(N−1)×1,

and

s2 = (1, 0, · · · , 0,−1, 0, · · · , 0) ∈ R1×(M+m1n1+m)N ,

where the value “−1” locates at the (M + m1n1 + m + 1)-th
location of s2.
We combine (9), (10) and (11) to formulate the final

pansharpening model,

min
ci ,di ,βi

1
2Num

N∑

i=1

∥(Thdi +Khci + -hβi ) − s̃i∥22

+ µ

2

N∑

i=1

cTi K
lci +

λ1
2

N∑

i=1

∥βi∥1 +
κ

2
||e||1

+ λ2
2

∥
N∑

i=1

ωi (Thdi +Khci + -hβi ) − p∥22, (13)

where µ, λ1,λ2 and κ are regularization parameters.
After computing the coefficients di , ci , βi , i = 1, 2, · · · , N ,

the final HRMS image can be estimated by ŝi = Thdi +
Khci + -hβi .

C. Rewrite the Model (13)

For computation convenience, we write (13) into a simpler
matrix-vector form as below:

min
x

1
2Num

∥y − Ax∥22 +
µ

2
∥Bx∥22 +

λ1
2

∥Cx∥1

+ λ2
2

∥Dx − p∥22 +
κ

2
∥Toex∥1, (14)

where

y = (̃sT1 , s̃
T
2 , · · · , s̃TN )T ∈ Rm2n2N×1,

x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
c1
β1
...
dN
cN
βN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(M+m1n1+m)N×1,

the diagonal block matrix

A = diag(E,E, · · · ,E) ∈ Rm2n2N×(M+m1n1+m)N , (15)

where E = (Th ,Kh,-h), and

B = diag(F,F, · · · ,F), (16)

where F = (O1, (Kl)1/2,O2) with zero matrices O1 ∈
Rm1n1×M and O2 ∈ Rm1n1×m .

C = diag(G,G, · · · ,G), (17)

where G = diag(O3,O4, I) with zero matrices O3 ∈ RM×M ,
O4 ∈ Rm1n1×m1n1 , and identity matrix I ∈ Rm×m .

D = (ω1Th,ω1Kh,ω1-
h, · · · ,ωNTh ,ωNKh,ωN-h),

(18)

where the matrix block (ωiTh ,ωiKh,ωi-h) will appear
N times, where i = 1, · · · , N .
After computing the coefficient x, it is easy to estimate the

final pansharpening image with vector form by

ŝ = Ax. (19)

D. The Solution of the Proposed Model

The proposed model (14) is a convex and nonsmooth ℓ1
optimization problem that can be solved using various methods
such as alternating direction method of multipliers (ADMM)
[46]–[48] and a primal-dual approach [49]. We adopt ADMM
here. By introducing two auxiliary variables u = Cx and w =
Toex, we get the following augmented Lagrangian problem

L(x,u,w,b1,b2) =
1

2Num
∥y − Ax∥22 +

µ

2
∥Bx∥22

+ λ2
2

∥Dx − p∥22 +
λ1
2

∥u∥1

+ η1
2

∥u − Cx + b1∥22 +
κ

2
∥w∥1

+ η2
2

∥w − Toex + b2∥22, (20)

where b1 and b2 are Lagrangian multipliers with proper size,
η1 and η2 are two positive parameters.
The problem of minimizing L(x,u,w,b1,b2) can be solved

by iteratively and alternatively solving the following three
simpler subproblems:
a) The x-subproblem is given as follows

min
x

1
2Num

∥y − Ax∥22 +
µ

2
∥Bx∥22 +

λ2
2

∥Dx − p∥22

+ η1
2

∥u − Cx + b1∥22 +
η2
2

∥w − Toex + b2∥22, (21)

which is a least squares problem and has the following closed-
form solution:

xk+1 = H−1zk , (22)

where

H = ATA+ µNumBTB+ λ2 NumDTD
+ η1 NumCTC+ η2 NumTT

oeToe, (23)

and

zk = AT y+ λ2 NumDT p+ η1 NumCT (uk + bk1)
+ η2 NumTT

oe(w
k + bk2). (24)
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Algorithm 1 The Solution of Model (14) by ADMM

Please note that the computation of (22) is done on patches
whose sizes are significantly smaller than the whole image,
thus computing xk+1 by using inverse is not a challenging
problem.
b) The u-subproblem is solved accurately by minimizing

the following problem:

min
u

λ1
2

∥u∥1 +
η1
2

∥u − Cx + b1∥22, (25)

which has a closed-form solution in terms of soft-
thresholding [50]:

uk+1 = shrink
(
Cxk+1 − bk1,

λ1
2η1

)
, (26)

where shrink(a, b) = sign(a)max(|a|− b, 0) and

sign(a) =

⎧
⎪⎨

⎪⎩

1, a > 0,
0, a = 0,
−1, a < 0.

c) Similarly, the w-subproblem is shown as follows

min
w

κ

2
∥w∥1 +

η2
2

∥w − Toex + b2∥22, (27)

and has the following closed form solution:

wk+1 = shrink
(
Toexk+1 − bk2,

κ

2η2

)
. (28)

d) Update the Lagrangian multipliers b1 and b2 by:

bk+1
1 = bk1 +

(
uk+1 − Cxk+1

)
,

bk+1
2 = bk2 +

(
wk+1 − Toexk+1

)
. (29)

In Algorithm 1, we list all steps of the ADMM algorithm
used to iteratively and alternatively solve (14).
Note that the convergence of Algorithm 1 for the separable

problem (20) is guaranteed by [51].
Although the proposed model (14) obtains competitive

results, due to errors in basis selection and computation, there

Algorithm 2 The Summarized Algorithm for the Proposed
Pansharpening Method

might still be errors in the result. The difference between
the given low spatial-resolution MS image (LRMS) and the
downgraded version of the computed high spatial-resolution
MS image still contains many important details, such as
edge information. Thus, inspired by the iterative regularization
methods [37], [52], we try to take this difference, as well
as with corresponding panchromatic image residual, into the
model (14) again to iteratively recover more spectral and
spatial details. In particular, the following Algorithm 2 is
summarized for the pansharpening problem.
In Algorithm 2, we propose an iterative algorithm based on

model (14) and Algorithm 1 for better performance. When
τ = 1, Algorithm 2 is the same as Algorithm 1. When
τ > 1, Algorithm 2 iteratively picks up more details which is
added to the final high-resolution image. Steps 2)-4) obtain a
preliminary high-resolution image and step 5) downgrades the
preliminary high-resolution image to a low-resolution. If the
preliminary image is already good enough, the downgraded
result should be close to the given low-resolution image.
Otherwise, differences, mainly details of images, will be
observed. Step 6) and 7) compute the difference and feed it
as input to Algorithm 1 to pick up more details in the next
iteration. The detailed picked up will be added to form the
final result.
In particular, if we start from the computed high-resolution

MS image and manually downgrade it, errors in the com-
puted high-resolution MS image will be reflected in a large
difference between this simulated low-resolution MS image
and given low-resolution MS image (LRMS). We propose to
pick up more image details from the difference (step 6 in
Algorithm 2). Accordingly, the residual of panchromatic image
can be estimated by the difference between the original
panchromatic image and the weighted sum of estimated
HRMS image (see step 7 in Algorithm 2). This iterative strat-
egy has been used by some image applications, e.g., natural
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image super-resolution [53], remote sensing image pansharp-
ening [54]. The final HRMS image ŝ f inal (vector form) is
generated by the sum of estimated HRMS images ŝ(k) on each
iterations.
Note that the “Downgrade” in step 5 of Algorithm 2 is

done through the following procedure: ŝ(k) is first filtered
by a Gaussian filter matched with the modulation transfer
function (MTF) of the MS sensor used to acquire the image
and is then downscaled to the size of s by downsampling
strategy. Furthermore, we take GS method [8] as the initial
guess method in the step 2 of Algorithm 2. For simplicity
purpose, we set the outer layer iteration number τ to be 5.
More iterations might lead to slightly better results but cause a
greater computation burden. One can also make it automatic by
stopping the outer layer loop when the relative error between
two adjacent iterations is small.
Algorithm 2 can be applied on the whole image or image

patches. In our experiments, we only apply the algorithm
to image patches to reduce computation time and storage.
In particular, the inverse of H in (22) can be efficiently
computed for patches. In our work, we set patch size to be
6 × 6 with 3 pixels overlap between patches.
In what follows, we will compare the proposed approach

with some competitive methods.

IV. RESULTS AND DISCUSSIONS

In this section, we compare the proposed method with
extensive pansharpening methods on different datasets, i.e.,
Pléiades, Toulouse, China and Rio, acquired by three different
sensors: Pléiades, IKONOS and WorldView-2. Note that, due
to the space limit, we have to move the results of 8 bands
WorldView-2 data (Rio) to supplementary materials, please
find it. We utilize various panchromatic images and multispec-
tral images with different sizes in our experiments. The scale
factors are all set as 4 in all experiments. The number of bands
is 4 for Pléiades, Toulouse and China datasets (i.e., N = 4)
and 8 for Rio dataset (i.e., N = 8). The experiments are
implemented in MATLAB(R2013b) on a computer of 16Gb
RAM and Intel(R) Core(TM) i5-4590 CPU: @3.30 GHz
3.30 GHz.
For the parameters in the proposed method, we empirically

set λ1 = 2.4 × 10−6, λ2 = 1.2 × 10−5, µ = 1.2 × 10−7,
η1 = 2.4 × 10−7, η2 = 2.4 × 10−5, κ = 2.4 × 10−5,
the outer layer iteration number τ = 5 for all experiments.
Note that, fine tuning of parameters for different datasets may
lead to better results, but we unify the parameter selection to
illustrate the stability of the proposed method. More discussion
on the selection of parameters can be found at the part D
of this section. For the weights ωi in model (13), we take
an automatic approach which has been presented in [45]
to estimate them. This approach estimates the weights by
a linear regression between the multispectral image and the
spatially degraded panchromatic image. Moreover, we employ
some standard indexes to estimate the performance of dif-
ferent methods, i.e., Q [55], Q4 [56], Q8 [57], SAM [58],
ERGAS [59] and SCC (i.e., spatial correlation coefficient).
In particular, the ideal values for Q, Q4, Q8 and SCC are 1
whereas the ideal values for ERGAS and SAM are 0.

A. Dataset

In our experiments, we utilize different datasets to
evaluate the performance of different methods. These
datasets are all common and publicly available, including:
a) Pléiades1 dataset (4 bands)3 which is kindly made avail-
able by CNES for the 2006 contest [1]. For this dataset,
the high-resolution panchromatic image is simulated only
by the average of green and red bands, i.e., thus holding
the weights ω = [0, 0.5, 0.5, 0] on Blue, Green, Red and
Near-Infrared (NIR) Channel, respectively. The low-resolution
multispectral bands with spatial resolution of four times
lower than that of the panchromatic (i.e., LRMS image) are
simulated according to the Walds protocol, namely by MTF
filtering and decimation. The radiometric resolution is 11-bits.
b) Pléiades2 dataset (4 bands). Different with (a), the high-
resolution panchromatic image for the second Pléiades dataset
(i.e., Pléiades2) is obtained as follows: 1) averaging the
green and red channels; 2) applying the nominal MTF of the
panchromatic camera; 3) resampling the outcome to 80 cm;
4) adding the instrument noise; and 5) recovering the ideal
image by means of inverse filtering and wavelet denoising. The
weights are unknown in this case, thus we here estimate the
weights by the linear regression of the multispectral image and
the spatially degraded panchromatic image [45]. c) Toulouse
dataset (4 bands) which is acquired on the urban area of
Toulouse by the IKONOS sensor, in France, on May 15, 2000.
For this dataset, the weights are also acquired automatically
by the same way as (b). d) China dataset (4 bands) 4 which
is acquired by the IKONOS sensor represents a mountainous
and vegetated area of the Sichuan region in China. Besides,
the weights are also obtained by the same way as (b).
Readers can find more details about these datasets from the
literature [4].

B. Algorithms

• EXP: MS image interpolation, using a polynomial kernel
with 23 coefficients [11].

• PCA: Principal Component Analysis [7].
• IHS: Generalized version of the Intensity-Hue-Saturation
(GIHS) image fusion [60].

• Brovey: Brovey transform [61].
• BDSD: Band-Dependent Spatial-Detail with local para-
meter estimation [62].

• GS: Gram Schmidt (Mode 1) [8].
• PRACS: Partial Replacement Adaptive Component Sub-
stitution [63].

• HPF: High-Pass Filtering with 5 × 5 box filter for 1 : 4
fusion [6].

• SFIM: Smoothing Filter-based Intensity Modula-
tion [64], [65].

• Indusion: Decimated Wavelet Transform using an additive
injection model [66].

• ATWT: Additive a Trous Wavelet Transform with unitary
injection model [67].

3http://openremotesensing.net/knowledgebase/a-critical-comparison-among-
pansharpening-algorithms/
4http://glcf.umiacs.umd.edu
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Fig. 1. Visual results of Pléiades2 dataset. Readers are recommended to zoom in all figures for better visibility.

TABLE I

QUANTITATIVE RESULTS FOR 4 BANDS PLÉIADES1
DATASET. (BOLD: BEST; UNDERLINE: SECOND

BEST, ITALIC: THIRD BEST)

• AWLP: Additive Wavelet Luminance Proportional [9],
a generalization of AWL [68] to more than three bands.

• ATWT-M2: A Trous Wavelet Transform using the
Model 2 proposed in [69].

TABLE II

QUANTITATIVE RESULTS FOR 4 BANDS PLÉIADES2 DATASET

• ATWT-M3: A Trous Wavelet Transform using the
Model 3 proposed in [69].

• MTF-GLP: Generalized Laplacian Pyramid (GLP) [11]
with MTF-matched filter [70] with unitary injection
model [67].
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Fig. 2. Visual results of Toulouse dataset.

• MTF-GLP-HPM: GLP with MTF-matched filter [70] and
multiplicative injection model [67].

• MTF-GLP-HPM-PP: GLP with MTF-matched filter [70],
multiplicative injection model and Post-Processing [71].

• MTF-GLP-CBD: GLP with MTF-matched filter [70] and
regression based injection model [1], [11].

• CNMF: Coupled nonnegative matrix factorization
method [28].

• RKHSPan: The proposed RKHS and Heaviside based
pansharpening method.

Note that the source codes of all comparing methods can
be found from the website.5

C. The Results on Different Datasets

1) Pléiades Dataset: In this subsection, we compare our
method with several methods on the two Pléiades datasets,
i.e., Pléiades1 and Pléiades2. From Tab. I, we see that the
proposed method obtains the best quantitative performance on
the Pléiades1 dataset than other comparing methods which
include extensive CS-based methods, MRA-based methods
and CNMF method. For the Pléiades2 dataset, it is clear that
the proposed method also outperforms other all comparing

5http://openremotesensing.net/kb/codes/pansharpening/

methods on all evaluation indexes, i.e., Q4, Q, SAM, ERGAS
and SCC, see Tab. II. Furthermore, the proposed method
also obtains the best visual performance and holds more
spatial details than other comparing methods, see Fig. 1.6

In particular, the weights are automatically estimated as
[0.1015, 0.4225, 0.4586, 0.0069] via the strategy mentioned
before. CS-based methods, e.g., PCA and GS, drop spectral
information significantly while keeping spatial information
well. Moreover, MRA-based methods, e.g., AWLP, do not
perform excellently on preserving spatial details but keeping
spectral information well. Our method not only recovers more
spatial details significantly due to the sharp AHF and the
iterative algorithm, but also resists the spectral distortion
effectively.
2) Toulouse Dataset: For Toulouse dataset, Fig. 2 shows

that our method holds more spatial image details than others,
as well as keep better spectral performance. In Tab. III,
the proposed method ranks the second best on Q4, Q and
ERGAS indexes among 20 comparing methods, while
the method BDSD has the best quantitative performance.

6Note that, to save space, we only show the visual results of some
representative and competitive methods in our experiments.
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Fig. 3. Visual results of China dataset.

TABLE III

QUANTITATIVE RESULTS FOR 4 BANDS TOULOUSE DATASET

In particular, the estimated weights are [0.0930, 0.1188,
0.3514, 0.4224] fo
3) China Dataset: For China dataset, the proposed method

still performs competitively and its weights are estimated as
[0.1595, 0.3443, 0.4430, 0.0437]. From Tab. IV, we can see

TABLE IV

QUANTITATIVE RESULTS FOR 4 BANDS CHINA DATASET

that our method obtains the best performance on the overall
quality index Q4, which takes into account of both radiometric
and spectral distortions, and also on the Q index, the second
best SAM and ERGAS indexes. The visual performance shown
in Fig. 3 also demonstrates the superior of the given method.
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Fig. 4. Intensity difference to ground-truth v.s. the number of pixels on each
bands (Blue, Green, Red, NIR) on Pléiades1 dataset for GS, AWLP, CNMF
and our method. The range of intensity difference to ground-truth is shown
in Tab. VI. Please see pdf file for better color visibility.

It is worth mentioning that each of the five metrics has a
specific meaning. For instance, SCC only measures the spatial
enhancement while SAM measures spectral distortion. Q4 is
the unique one that measures both spatial and spectral distor-
tions. According to this metric, the results of the proposed
method are the best almost everywhere (3 out of 4). The
only exception is the Toulouse dataset, where our approach is
ranked in the second place only after the state-of-the-art BDSD
approach, which usually works really fine when we have urban
scenarios acquired by 4-bands sensors like IKONOS. The
difference between the two Q4âŁ™s is 0.0009 which indicates
the two approaches get practically the same performance.
Thus, our approach can be considered as the best because
it is able to adapt to all data without tuning parameters.

D. More Discussions

• The influence of using different initial pre-processing
methods: Tab. V shows the results by different initial
methods (i.e., step 2 of Algorithm 2), it is clear that
taking GS method as the initial approach obtains the
best results. Thus, we choose GS method as the initial
method in the paper. A more sophisticated initialization
probably would lead to a slightly better final result but
we have preferred to keep the proposed method simple,
since we would like to focus on the methodological
aspects of this contribution rather that with the fine tuning
driven by specific data or application. Generally speaking,
a rough initial guess does not always produce a low
quality outcome of the proposed approach. The proposed
Algorithm 2 actually has a self-correction scheme that can
absorb some errors introduced in the initial. When there
is error, it will be reflected in the difference between the
degraded preliminary high-resolution image and the low-
resolution input. The iterative scheme in Algorithm 2 will
correct accordingly.

• Intensity difference to ground-truth: From Fig. 4,
the proposed method is more consistent with the true
green and red bands (sharper shape), while AWLP method

Fig. 5. The influence of different parameters to the proposed method.
Although the selected parameters in the work are not always the best ones for
all indexes (Q4: red; SAM: pink; ERGAS: blue), they can get the competitive
results by fully considering the balance of computation and performance.
Note that for better comparisons, here we deal with the obtained indexes by
(index − mean(index))/std(index) where mean and std represent the mean
value and standard deviation, respectively.

Fig. 6. The estimated components by the proposed method on Pléi-
ades2 dataset. The values are normalized to [0, 1]. For the convenience
of computing, we only conduct our method on the top-left part with size
60 × 60 × 4. (a) The estimated image by our method; (b) Thdi ; (c) Khci ;
(d) -hβi , i = 1, 2, 3, 4. For better visibility, we add 0.1 intensity
to (c) and (d).

obtains better performance on blue and NIR bands. How-
ever, the range of intensity difference to ground-truth for
AWLP method is larger than our approach on blue and
NIR bands (see Tab. VI), thus this may result in the worse
quantitative performance than our method.

• The influence of related parameters: In Fig. 5, we take
the Pléiades2 dataset to exhibit the performance with
varying parameters. For the convenience of computing,
we only take the top-left part with size 128×128×4 for
the test. In addition, for better comparisons, here we scale
the obtained indexes by (index−mean(index))/std(index)
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Fig. 7. Difference maps of some representative methods in Fig. 1 (RGB channels are chosen to be 3 (red), 2 (green), and 1 (blue), respectively): (a) PCA;
(b) GS; (c) AWLP; (d) MTF-GLP; (e) Proposed. For better visibility, we add 0.3 to the difference maps which are normalized to [0, 1].

TABLE V

TAKING DIFFERENT METHODS AS INITIAL APPROACHES
ON THE PLÉIADES1 DATASET. (BOLD: BEST)

TABLE VI

THE RANGE OF INTENSITY DIFFERENCE TO
GROUND-TRUTH, E.G., [MIN, MAX].

where mean and std represent the mean value and
standard deviation, respectively. In particular, we fix all
parameters suggested in this section except the parameter
we want to test, aiming to independently evaluate the
parameter sensitivity. From Fig. 5 (a) - (c), we know
that the quantitative results (i.e., Q4, SAM and ERGAS)
only have slight changes around our suggested parameters
λ2, η1 and η2, which demonstrates the stability of our
method to parameters. In addition, when λ1, µ and κ
changing, the quantitative results are almost not affected,
here we do not present the results of them for the goal of
saving space. For Fig. 5 (d), the results with increasing
iterations are exhibited. When the iteration number is 1
(i.e., the model (13)), it performs worse, whereas when
the iteration number increases, we can get better results.
Although we can get the best quantitative result by the
maximum iteration, it is quite expensive. To balance the
computation and performance, we finally set 5 iterations
in this study. Fig. 5 (e) presents the results with different
patch size, which indicates the suggested patch size per-
forms competitively for all indexes. Fig. 5 (f) presents the
results when setting different patch overlaps. Similar as
Fig. 5 (d), although it can get the best quantitative results
by the maximum overlap, it is quite time consuming.
We therefore finally choose the overlap 3.

• The estimated components by the proposed method:
In Fig. 6, we show the estimated components by the
proposed method. From the figure, it is clear that Thdi ,
i = 1, 2, 3, 4, which is derived from the polynomials
of RKHS, depicts the primary image information but
without sharp image edge, see Fig. 6 (b). -hβi which
is from AHFs mainly represents the sharp image edges,
see Fig. 6 (d). Moreover, Khci that is derived from
high-order term of RKHS describes some high-frequency
image information, see Fig. 6 (c).

• The comparisons of difference maps: Fig. 7 reports the
difference maps on Pléiades2 dataset for some representa-
tive methods. These difference maps are obtained by the
corresponding errors on red, blue and green channels. The
darker image shows the better details preserving, thus our
method significantly performs better than other methods
from this figure.

V. CONCLUSIONS

In this paper we presented a variational pansharpening
technique based on the image super-resolution method of
Deng et al. [37]. The novelty of the proposed pansharpening
approach is in the representation of the pansharpened image
as a continuous function in which image edges are modeled
as approximated Heaviside functions and are considered to
appear sparsely in the spatial domain. Considering the cor-
relation of adjacent bands, we designed a Toeplitz sparse
term to attain more spectral information. Experiments were
conducted in order to prove the effectiveness of the proposed
technique against state-of-the-art methods belonging to both
the Component Substitution and MultiResolution Analysis
approaches [4]. Many acknowledged datasets acquired by
different sensors, including Pléiades, IKONOS, WorldView-2,
were considered for the tests. The quantitative and visual
results showed that the proposed technique outperformed refer-
ence pansharpening techniques in terms of spatial and spectral
fidelity with the reference image. As future developments we
plan to make full use of the toeplitz sparsity by making spectral
analysis and extend the proposed technique to hyperspectral
image pansharpening.
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