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Abstract

Suppose we choose N points uniformly randomly from a convex body in d dimensions.
How large must N be, asymptotically with respect to d, so that the convex hull of the points
is nearly as large as the convex body itself? It was shown by Dyer-Fiiredi-McDiarmid that
exponentially many samples suffice when the convex body is the hypercube, and by Pivovarov
that the Euclidean ball demands roughly d%/? samples. We show that when the convex body
is the simplex, exponentially many samples suffice; this then implies the same result for any
convex simplicial polytope with at most exponentially many faces.
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1 Introduction

Consider sampling random points qi,qs,... uniformly and independently from a convex body
X C R4 We are interested in the asymptotics of the random variable Vy y given by the volume
of the convex hull of qi,...,qu. In particular, how large does N have to be to ensure that w.h.p.!
the volume of the convex hull of q1,...,qu is a significant fraction of the volume of X7

This problem is well-understood when X is a product space (i.e., a hypercube) or a Euclidean ball.
In the case where X is the hypercube [0,1]¢, the coordinates of the q; are independent uniform
random variables in [0, 1], and Dyer, Fiiredi, and McDiarmid [5] proved:
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Theorem 1.1 (Dyer, Fiiredi, McDiarmid, 1992). If X is the hypercube [0,1]%, A = eJo (= wrr) du
2.14, and € > 0, then as d — oo we have that

In particular, an exponential number of sample points suffice to capture the volume of the hypercube
with the convex hull of the sample (and they even determine the correct base of the exponent).
This was generalized in 2009 by Gatzouras and Giannopoulos in [6] to the case of random points
with i.i.d. coordinates which instead of uniform are drawn from any even, compactly supported
distribution, satisfying certain mild conditions.

On the other hand, if X is the Euclidean ball, Pivovarov proved in [9] that the threshold is super-

exponential.

Theorem 1.2 (Pivovarov, 2007). If X is the unit Eulidean ball in R?, X = {x € R, Z?:l z? <1},
and € > 0, then as d — oo we have that

EVx 0 if N=N(d) <ds1-9),
Vol(X) 1 if N=N(d) > dz(+o),

For results concerning a more general rotationally symmetric model of the so-called B-polytopes
(also exhibiting super-exponential thresholds), see the recent papers [1, 2]. For general bounds on
N concerning arbitrary log-concave and k-concave distributions see [3].

We analyze the case where X is a convex simplicial polytope, that is a polytope whose facets are
all simplices. In particular, we prove:

Theorem 1.3. Suppose that q1,qs, ... is a sequence of points chosen independently and uniformly
from X, where X C R% is a convex simplicial polytope with m facets. Let Qj = Qj,a € Q be the
convex hull of {qi,...,q;}. There are positive universal constants cy,Co such that for all large

enough d, if N > C§ - m, then Vol(Qn) > (1 — e~coVa)Yol(X).

Since any convex simplicial polytope with m faces can be partitioned into at most m simplices,
which are all affine equivalent, it suffices to prove Theorem 1.3 in the case where X is a simplex.
In particular, we let 24 denote the standard embedding of the (d — 1)-dimensional simplex in
d-dimensional space:

Qd:{XZOZﬂﬁl—‘rl‘z—‘r-“—l—xd:l}.

The heart of our results is thus the following:

Theorem 1.4. Suppose that q1,q2,... is a sequence of points chosen independently and uniformly
from Q = Qq, and let Q; = Qj,.a C Q be the conver hull of {q1,...,q;}. There are positive constants

co, Co such that for all large enough d, if N > Cg, then EVol(Qy) > (1 — e‘cO‘/E)Vol(Q).

Remark 1.5. By the Borel-Cantelli lemma, it follows that if we take a sequence of instances
01,Qa, ..., then Vol(Qn q)/Vol(2q) — 1 as d — oo with probability 1.

Remark 1.6. For clarity, we do not try to optimize any constants in our proofs. We get the
theorem with ¢y = % and Cy = 300.

The following lower bound shows an exponential dependence is necessary:



Theorem 1.7. Under the assumptions of Theorem 1.4, for every e > 0, if N < eV=9)  then

WEVOI(QN) — 0 as d — oo, where v = 0.577... is the Euler-Mascheroni constant.

A similar lower bound with a worse constant follows from Theorem 1 in [3]. To prove Theorem 1.7,
we use the approach from [5]. We conjecture that the value of the constant e” is sharp (the method
from [5] yields sharp results in the independent case as well as rotationally symmetric ones — see
[1, 2, 5, 9] — where the dependence between components is mild, as in the case of a simplex). For
the upper bound, we follow a different strategy, which is summarized at the beginning of the next
section.

The rest of the paper comprises two sections devoted to the proofs of Theorems 1.4 and 1.7.

2 Proof of the upper bound: Theorem 1.4

For the sake of clarity we begin by sketching the structure of the whole proof. For i =1,...,d we
define the a-caps C;(«) of the simplex to be the sets

Cila):=Qn{x|x; >1—a}. (1)

Note that they are disjoint as long as a < 3 and the volume Vol(Cj(«)) of Cj(a) is precisely
a?=1.Vol(Q). In particular, when examining the sequence {q;}, we expect to see a point in Cj, (c)
every (i)d*1 steps. And for a a constant, after exponentially many steps, we can collect points
from each cap C;(a). A routine calculation shows that the expected measure of the convex hull of
a random set of d points with one from each C;(«) is exponentially small compared with §2, though
it is not a priori clear how much overlap to expect from multiple such random simplices. The basic
strategy of the proof is to define a large set Q(e,~) C Q, and then show that for any fized x € Q(e, ),
the point x is very likely to lie in the convex hull of some simplex with one point p¥ in each in
cap C;(a), where all the the points p¥, py,...,p} occur among the first Cg terms of the sequence
d1,92, .- .. We do this by showing (in Lemma 2.5) that every exponentially many steps, one obtains
not only a point p¥ which lies in the cap C;(«), but one which is similar to x with respect to it’s
proximity to a lower dimensional face close to x—this provides points which give a good chance
of containing x in the convex hull reasonably quickly. (The fact that the points p¥ are large in
coordinate 7 let us view them as a diagonally dominant matrix, which we exploit to show that x is
likely to lie in their convex hull.) Linearity of expectation will then show that the measure of the
uncovered part of Q(e,~) is very small, and Markov’s inequality can then give a w.h.p statement
as in the theorem. In particular, although x lying in the convex hull of {qi,...,qn} is of course
equivalent to x lying in some simplex S, with vertices in {qi,...,qn}, it is perhaps surprising
that we prove the theorem by actually identifying S,, rather than, say, considering whether x is

separated from the convex hull by a hyperplane.

2.1 The exponential model

A basic tool we use is the standard fact that the coordinate vector of a uniformly random point in
the simplex ) can be simply described using independent exponentials, as encapsulated in the first
part of the following Lemma:

Lemma 2.1. If we generate a random point q € §) by generating the coordinates g; as

R 2)

YT E Y E,



where the E;’s are independent, mean 1 exponentials, then q is uniform in . Moreover, if we

generate points p; (i =1,...,d) by generating the coordinates as
ak; ; L
Pij = ’ Jor i #j 3
Y Yk Bkt aB )
2
2E; :
pii=(1-a) (4)

+ )
Dok Bk + B

where the E; ;s are independent mean-1 exponentials, then each p; is uniform in the cap Ci(a).

Proof. The statement about q is well-known and follows from the fact that the coordinate vector
of a random point in  has the same distribution as the vector of d gaps among d — 1 independent
uniforms in [0, 1], and that these gaps are distributed as exponentials with a conditioned sum (see
e.g., [4], Ch 5, Theorems 2.1 and 2.2).

Consider now a point p; € © which is uniform except that we condition that it lies in C;(«). Then
for any Borel subset B of C;(a), we have

P(p; € B) = Vol(B N Ci(a)) Vol(B)

Vol(Ci(a)) — Vol(Cy(a))’

so p; is uniform on C;(c). Thus, in view of (1) and (2), the coordinates p; ; of p; are distributed
as

d
E; ; -
2 conditioned on  E;; > (1 — «) ZEW' (5)

pi’jNEiJ“r""f’Ei,d

j=1
for independent mean-1 exponentials E; ;. Note that after solving for E;;, this conditioning is
equivalent to conditioning on

(1-a) Zj;ﬁi Ei;

e
Note that for an exponential random variable X, by the memoryless property, X conditioned on
X > a has the same distribution as X + a. Thus rather than condition in (5), thanks to the
independence of E; ; and {E; ;};.j+i, we could have instead replaced E;; in that expression with a

i >

random variable E; generated as

~ 1l -« - 'Ei 1
EZ‘ _ ( )ZJ;&'L sJ + Ei,i,
(%

and (3) and (4) follow by substitution. O

We will also use the following result of Janson, which gives concentration for sums of exponentials:

Lemma 2.2 (Janson [7]). Let Wi, Wy, ..., W,, be independent exponentials with means a%,z =

1,2,...,m. Let a, =min}", a; and let W = Wy +Wo+-- -+ Wy, and p =EW) = >, ai Then,
for any A <1,
P(W < \p) < e~ @#A=1=logd), ©)

2.2 The large typical set

Recall that our proof works by defining a large set of “typical” points in €2, and then showing that
any such point is very unlikely to be still uncovered after exponentially many steps.



To define and work with the appropriate typical set, we will be interested in the magnitudes of
the smallest coordinates of points x in the set. (Roughly speaking, the typical set Q(e,~y) defined
below is one where none of smallest coordinates are much too small.) For this purpose, we make
the following definitions:

Definition 1. Given a point x € Q, r«(i) is the integer giving the ranking of x; among the coordi-
nates T, ...,xq of X, where ties are broken arbitrarily. More precisely, r< : {1,...,d} = {1,...,d}
is any fized bijection such that r«(i) < r«(j) implies x; < x;.

Definition 2. Given a point x € Q, ix is the integer j € {1,...,d} such that i = rx(j).

In other words, if (z7,...,z};) is the nondecreasing rearrangement of x = (x1,...,24), that is
o} < ... <a, then (z,)f, = ()l

We now define our typical set as follows:

d2’

where the coordinates of the vector € are defined in terms of a constant ¢ > 0 and by

__ et 1<i<Va,
t g, i>/d.

Lemma 2.3. For every v < 1, there is a positive constant ¢, such that for every 0 < e < % and d
large enough, we have

Q(s,w):{er:xi 1<z<’ydandm1x_;dz>7d} (7

l©e,7) - ova
ol >1l—e a4 (8)

Proof. Let x be a random vector uniform on (2. In view of Lemma 2.1 and (2), the vector (z;, )% ; =
(x7)L, of the order statistics of x has the same distribution as the vector of the order statistics of
i.i.d. mean one exponentials normalised by their sum. We recall the following classical result.

Theorem 2.4 (Theorem 2.3, Chapter 5, [4]). Let Ey, ..., E, be independent mean one exponential
random variables and let Ey < Eg) < ... < E,) be their order statistics, that is a nondecreasing

rearrangement of the sequence Ey, ..., E,. Then the vector (Eqy,. .., Eqy)) has the same distribution
as the vector B B 5 5 5

71,71+ 2 ’”"714,...4»7” )

n-on n—2 n 1

These give that (x; )% ; has the same distribution as the vector

d
(E(d)+E(d1)+~~~+E(di+1)>
d . . )
Zj:] JE(®j) i1
where the F(j)’s are independent exponentials with rate j, that is the jE(j) are independent mean
one exponentials. Thus,

VOWWP((I dQ,v1<z<7d) (2> 2. V7d<z<d)>

vol(Q)
Y
—P((.ﬁu dz, V1 <’L<’yd> (x(l_rdeJrl)w > 2d)>

>1-%"p (x < Z;) - P (SC(deH)z < Qld) :

i<~d

(9)

| \/

| \/



We estimate these probabilities using Janson’s inequality (6). First define the event
d
o 8d
U= ZJE(J) >
j=1
By (6), applied with W; = jE(j), a1 =...=as =1, p=d,a. =1, A = %

IP’(U) < e—d(g—l—logg) < e~ /10

Now consider the events

5d
Set
!
wi=EEWd)+Ed-1)+---E(d—i+1))= Z -
j=d—it+1

Lower-bounding all the terms by the last one é, we have

Qul =

i =

By (6),

P (Ui) < exp {— =i+ 1)i(1'65id_ 1 —log(1.6¢;)) } .

Since u — 1 — logu > —% logu for u < 0.2, we get for ¢ < vd, as long as 1.6e < 0.2,
P (U;) < (1.6e;)1=7)/2,
Thus,
P (z < Z;) <PU;)+P(U) < (1.6e;) 102 4 o=0:1d

and
Z P (x“ < i;;) < Z (1.6e~ V) I=—i/2 4 Z (1.66)1=/2 4 de=01d — =V,
i<vd i<vd Vid<i<~d
Similarly, for i = [yd] + 1, we get p; > £ >, so

P (x(hdm)x < %) <P(E@d)+...+ E(d—i+1)<08y)+P(U)

< e~ (d=i+1)7(08-1-10g0.8) 4 —0.1d

< @ 0-02d(1=7)y 4 =d/10,

Putting these bounds together finishes the proof.



2.3 A lightly conditioned candidate simplex

We now fix an arbitrary x € €(g,~), and consider choosing a p; randomly from C;(«), for some
i €{1,...,d}, using Lemma 2.1. To use p; as the vertex of a candidate simplex to contain x, we
hope to find that

€iJ
* = 2d2
runs over the smallest «d coordinates of x; recall that jx denotes the coordinate of the jth smallest
component of x. Indeed, we will later argue that conditioning on this event for every ¢, the random
points p1, ..., pqg would have a reasonable chance of containing x in their convex hull. The follow-
ing lemma shows that we can ensure that (10) is not too unlikely to be satisfied, without much
conditioning on the random variables E; ;. for j > ~yd.

Dij <z, /2, where j=1,2,...,7d (10)

Lemma 2.5. Let v < ¢ and 2ey < 5a. Let x € Q(e,7) and let p; be chosen randomly from Ci(c)
for some fized i € {1,...,d}, as in Lemma 2.1. Then for the event

Bix= { > Eix> 4;} (11)

and an event A; x depending only on the E; ; for which r«(j) < vd (and so independent of B; x),
we have ) "
ey —d —107%d
P > ( ) CP(Biy)>1— : 12
(Aix) 2 3 (52) e, BB 21— (12
and
CLx ) Bfojv4LXa

where C; x is the event that

. . €
V(1< j < 9d, Gx #0) Pije < 55
Proof. We have
alﬂ i €'j
Cix = LS < 237 V1<j<Ad,jx
’ {O‘Ei,i“‘Zk;eiEi,k_MQ’ DR 7&2}
€5
D4 aBi, <ok Y Eig V1< <qdjx#i
k#i,jx
9. i
D{OZEi,jx<€fi‘], V1<j<’yd,jx7éi}ﬂ ZE,JXZ5 ;
j>~d
Jx 74

The second event in the last line is B; x, and we define A; x to be the first event in the last
line. We have the claimed probability bound on B; x from Lemma 2.2. Indeed, for the mean
p=E> isriE;ij,, we have o1 > (1 —~)d, so (6) gives

JxFl

ZE,JXS*d <P ZEJXSE)(%_)M SeXP{—ﬂ(af_v)—l_lOgaliv))}

Jj>~d j>~d
Jx;él Jx;éz
4 4
<exp{—d 1—x ( —1—log>}
ST 50— )



and for v < &, we have (1 —7) (ﬁ —1—log ﬁ) > 1074

For Ay, we compute

for 2ev < ba, since 1 — et >ph— % > % for b < 1. Thus we have

[ya)! (vd/e) ™t v\ e L Ev N\
A T e o> M Levd s (21 .
PlAix) 2 (5ad)7d 1<!'_<[vd = (bad)rd (6 ) R (560() ©

JxFl

O

As a consequence of Lemma 2.5, we will have that if we sample exponentially many points in
Ci(a), we will with probability at least 1 — e~? have at least one one point p; for which the
corresponding event A; x occurs. In particular, we will with probability at least 1 — de~? have
one such point p; for each i = 1,...,d. Furthermore, with probability 1 — de_m%d7 we have that
all the corresponding events B; x occur. These points p1,...,pq form the vertices of a candidate

simplex; note that the Lemma gives us that these points p; satisfy p; j, < 5”2";;" for all 1 < jx < ~d,
j # 4. In the next section, we show that they are not too unlikely to contain the fixed vertex
x € Q(e,7). In particular, this will mean that after collecting exponentially many such simplices
(in time exponential(d) - N = exponential(d)), the probability that x is not covered by any such

simplex will be exponentially small.

2.4 Enclosing a fixed x € Q(e, )

In this section we show that for any fixed x € Q(e, ), it is only exponentially unlikely to be contained
in a simplex whose vertices p;, ¢ = 1,2,...,d are each chosen randomly from the corresponding set
Cl(a)

In particular, our goal in this section is to prove:

Lemma 2.6. Let v < é and 2ey < 5. Fiz x € Q(e,7) and suppose that for each i = 1,...,d,
the point p; is chosen randomly from C;(c). Let A;x be the events from Lemma 2.5 and let
Ax = Niey Aix. Then

P (x € conv{py,...,pa} | Ax) > d4,

where



We define the matrix P = p;; whose rows are the random points p;, and write P = D + R where
D is the diagonal of P, and M = D~1R.

We will apply Gershgorin’s Circle Theorem to this matrix M:

Theorem 2.7 (Gershgorin). Suppose M = [m;;] is a real or complex d x d matriz where for each
1=1,...,d, R; = Z#i |mij| is the sum of the absolute values of the non-diagonal entries of the ith
row, and the ith Gershgorin disc D; is the disc of radius R; centered at m;;. Then every eigenvalue
of M lies in one of the Gershgorin discs (and, applying this to MT, the same applies where we
define the Gershgorin discs with respect to the columns). O

In particular, we use it to prove the following:

Lemma 2.8. We have that

Pl= (i(—l)’w’f) D (13)

k=0

Proof. Observe that if the sum in (13) converges, then we can write

Pl=Z+D'R)'D! = (i(—l)k(p—ln)’f) D! = (i(—l)’wlk> DL (14)

k=0 k=0

Thus it remains just to prove that the sum converges. Recall first from the definition of C;(a) in
(1) that diagonal entries of P are all at least 1 — a, while the sum of each row is 1. In particular,
Gershgorin’s Circle Theorem implies the eigenvalues of M have absolute value at most 2, which
is less than 1 assuming a < %

Next we argue that M is a.s. diagonalizeable. This is the case if the discriminant of the characteristic
polynomial of M is nonzero. This discriminant is a polynomial expression involving only products
of the off-diagonal entries of M; in particular, it is nonzero with probability 1.

Thus finally we write M = QAQ~! and M* = QAFQ~'. This converges exponentially fast,
confirming convergence of the sum and thus the lemma. O

We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. As the p; lie in general position, we can always write the given x (uniquely)
as a linear combination

X =AMp1+ -+ AaPd;

our goal is to show that given (), A; x, there is probability at least ¢? for some ¢ > 0 that the \; are
all nonnegative. Observe that these coefficients are determined as

A=xP L

From (13), we can write



which is nonnegative so long as x(I — M) is, since M has only nonnegative entries.

Note that the jth coordinate y; of the product y = x(I — M) is given by

yi==z;— Y D;lpijzi. (16)
Qi

Thus
]P’(xEconv{pl,...,pd} ‘ Ax) EP(yj >0:Vy Sd’ Ax).

Recall from Lemma 2.5 the events B; x which are all independent of the events A; x. Let Bx =

ﬂle B; x. Each of the values of j corresponding to small coordinates of x—that is the j for which
rx(j) < yd—must satisfy y; > 0 if Ax N Bx occurs. Indeed, from Lemma 2.5, we know that for all
i # j we have p; ; < x;/2 in this case, and so in particular we have that

_ xj T
Yj :xj—ZDi,ilpi’jxi ij—ijle ij— — >0 (17)
— 2(1 — o) &~ 2(1 — «)
i#] i#]
(by (4), we have D; ; > 1 — «). This shows that
P(y; >0:Vj <d| Ax) >P((y; > 0:Vj <d) N By | Ax)
=P ((y; = 0:Vj <ds.t. re(j) >vd) N By | Ax).

It therefore remains to handle the case of r«(j) > 7d. On the event By, for ¢ # j, we have
pi; < 52F; ; (recall (3)), thus, bounding D;il < 11 < 2 (see (22)) and using that z; > % for j
such that r«(j) > ~vd, we obtain (by using the first equality in (17)) that

P((y; = 0:Vj <d,re(j) > vd) N Bx | Ax)
Y . .
>P Z#E”xl < B (Vi <d st r<(j) >vd | NBx ‘ Ax
ey

By a simple inequality P(AN B) > P(A) — P(B°),

P(y; >0:Vj<d | A) >P Zmeig%:ngds.t.rx(j)>7d]Ax —P(BS | A)
ey

The fact that the E; ; for j with r¢(j) > ~d are not conditioned by Ax, Markov’s inequality and
independence yield

P By < % D V) <d st r(f) > vd | Ax
IR

Y 50é (1—’y)d
=P Y Bgm< L Vi Sdstor(i) > vd ) 2 <1 _ > _
iiF£]
The independence of By and Ay, a simple union bound and (12) yield

P (BS | Ax) = P(BS) < de 1074,

10



Altogether,

5a (1—v)d 4
P (x S conv{pl, . ,pd} ’ Ax) > (1 — ’y) — de~107"d (18)

2.5 Covering most of the simplex in exponentially many steps

We are now ready to combine the ingredients to prove the main theorem.

Proof of Theorem 1.4. Recall that we draw N random points qi,qq,...,qy independently and
uniformly from the simplex 2 and @Qn denotes their convex hull. First, note that by Fubini’s
theorem, we have

EVol(Qn) = ]E/Q lizeqyydr = /Q}P’(x €Qn)dx > /Q P(z € Qn) dz, (19)

(&,7)

where (e, ) is the typical set defined in (7). Fix « € Q(e,7). By Lemma 2.6, we will have a good
lower bound on P (x € Qn), provided we know that among the q; there are d points, one from each
cap C;(a) which moreover fulfill the events Ay. To use that, we condition on all possibilities for
the q; and then argue that the majority of the possibilities are good, provided N is large enough.
Formally, given two sequences | = (I1,...,Ix) € {0,1,...,d}" and 0 = (6;,...,0n) € {0, 1}, we
define the event

d
o= ﬂ {if l; =0, then ¢; ¢ U Ci(a); if I; > 0, then ¢; € Cj; ()
J<N i=1

and g; satisfies A;; x if and only if §; = 1}

which tells us which among the points q; fall in the caps and among those which satisfy A; . Let
Good be the set of those pairs of sequences (I, ) for which there are 1 < j; < ... < jg < N such
that {l;,,..., 5y} ={1,...,d} and 0;, = ... =6,, = 1. Then,

PreQn)=Y P@cQn|&0)P(Es)> >, PecQn|&o)P(E).
1,0 (1,0)€Good

For (I,0) € Good, by Lemma 2.6, we have P(x € Qn | £,9) > 04, so it remains to estimate
Z(l,O)EGood]P(glvg)‘ Fix i € {1,...,d} and let S; be the number of points among the q; which
are in C;(«) and satisfy A; x. We have,

> P(&e) =P (Si>0: Vi<d)
(1,0)eGood
By independence,
N
P(Si=0) = (1-P(Aix)P(a € Cila) )

where P (A; x) is taken with respect to the uniform probability on C;(«). Therefore, by (12) and a

union bound,

N

1/ey\"d _4 4

P Ss1_4ad.l1-2 (7) dyd=1]

Z (5179)_1 d <1 d \Bea e "«
(1,0)€Good

11



Thus,

1 /ey N\ _4 4o
P(xEQN)25d~<1d~exp{N~d(5;y) e 4at 1}) (20)
Set v = % and then choose o to be a small enough constant such that
(1=v)d
5q = (1 - 50‘) —de 10N 5 1070 (21)
Y

Choose € < é (allowing the use of Lemma 2.3 later) such that 2ey < 5o (allowing the use of Lemma
2.5). Then we take N = Cf with C; large enough so that the exponential term in (20) satisfies

Lrey N\ 4 g
d-exp{—N-d(M) e ‘a

1 _
P(x € Qn) > 56_10 ‘d,

IN

1
5"

We then have

Then, by independence, we get

2(1
1 - 1 _
Pz € Quay)>1—-P(z ¢ QN)Cg >1- (1 - 56_10 4d) >1—exp {—26_10 ta, Zd} >1—e %
Finally, thanks to (19) and Lemma 2.3,
EVol(Qgay) > Vol((e,7))(1 — ™) > 1 — eV,

for a positive universal constant cg. O

Remark 2.9. All of these inequalities hold with
y==, a=-—, e=—-, (C; =150 (22)

(provided d is large enough). Moreover, for the constant c, in Lemma 2.3, we can take ¢y = %.
These justify Remark 1.6.

3 Proof of the lower bound: Theorem 1.7

Since the quantity ——is— Vol(Qy) is affine invariant, we can work with the standard orthogonal
Vol(Q4)

simplex Sy in R? instead of Qg,
d
Sqa=A{z € RY, zq,...,2q > O,in <1},
i=1
which will be more convenient here. The following fundamental lemma from [5] is a starting point.

Lemma 3.1 ([5]). Suppose qi,qs,... are i.i.d. copies of a continuous random vector q in R?.
Define a random polytope Qn = conv{di,...,dn} and consider the function § = & defined by

&(z) =inf{P(q € H), H half-space containing x}, z € RY. (23)
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Then for every subset A of R%, we have

EVol(Qn) < Vol(A) + N - (SXP f) -Vol(A°N{xz € R, &(z) >0} (24)

EVol(Qx) > vol(A) (1 9 (g ) (1 - n}‘fg) Nd) . (25)

We will only need the first part of Lemma 3.1, that is (24), which will be applied to sets of the form
A={z e R4 &(x) > A}, the (convex) level sets of the function ¢. To get an upper bound on the
volume of such sets, we shall use a standard lemma concerning the Legendre transform Ay of the
log-moment generating function Aq of q,

Ag(z) = log Ee(®™) and Ay (z) = sup {(0,7) — Aq(0)} .
OcRd

Lemma 3.2. For every a > 0, we have

{z eRY, &(x) > e} C {w eRY, Aj(2) <a}. (26)

Proof. Plainly, for the infimum in the definition (23) of {4(x), it is enough to take half-spaces for
which z is on the boundary, that is

ala) = jnf P((a—2,6) > 0), (27)

where (u,v) = Y, w;v; is the standard scalar product in R?. By Chebyshev’s inequality for the
exponential funciton,
P((q—z,0) >0) < e OO,

Consequently, £q(z) < e~ ha(@) -

The next lemma is a crucial bound on the moment generating function A4 for q uniform on the
simplex Sy.

Lemma 3.3. Let q be a random vector uniform on Sq. For every 6 € (—oo,d)? and d > 7, we have
<
Felf@ < ¢ )
© = 1;[1 1-6,/d

Proof. We have,
1
Eel?9) = / e 0i%i gy = d!/ e 0i%i gy
Vol(Sq) Js, {(2€(0,00), Y z:<1}

A change of variables z; = y;/d and a simple pointwise estimate 1 < e~ % valid on the domain
of the integration yield

Eel0q) < d!d*d/ e 0iyi/d d=30 Yidy
{yE(0,00)d, Zybﬁd}

< d!dided/ 627(179i/d)yidy
(0,00)¢

<

— (e T — 2
( ¢ )H 1—0;/d
=1
Finally, d! < v2rdd%e~deta. For d > 7, we have v2rde™a < d. O

13



Proof of Theorem 1.7. Fix ¢ > 0. Let N < (=% and o = v — /2. Let ¢ be the function from
(23) defined for a random vector q uniformly distributed on Sy. Setting Qn = conv{qy,...,qn},
where q1,qg, ... are i.i.d. copies of q and using (24) with A = {x € Sy, q(z) > e}, we get

Evol(Qn) vol(A) —ed/2
vol(Sy) = vol(Sq) e

By (26), 4
vol(Sy)

By Lemma 3.3, we obtain

d d
1 .
A*(z) > sup {(0,x>—log| | Wl_logd} —logd + E sup {9 xz+10g( 9(;)}
i=1 ¢

0€(—o0,d)? = 6:<d

=P (¢(q) > e ) <P(A*(q) < ad).

—logd + Z Y(x;d)

i=1

where
P(t)=t—1-1logt, t>0.

As a result, for d large enough,

d
P(A*(q) < ad) < ( D b(gid) < a+ logd> <P <2Z¢ (q:d) <~ — 4>
=1 =1

(here the q = (¢1,..-,q4), so the ¢; are the components of q). To finish the proof, it remains to
argue that the rlght hand side is 0(1). We use the fact that q has the same distribution as the
vector (%, e, Ya), where Z =Y, +---+ Yy +W and Yy,...,Yy, W are i.i.d. exponential random
variables with parameter 1 (which can be deduced e.g. from (2) of Lemma 2.1). For § € (0,1) (to

be chosen later), we write

(e <r-9) 2 (o) -3
gP( <d};)

+IE”(Z<( —8)d) +P(Z

<y—S Ze((1-d)d,(1+ 5)d)>
> (1+9)d).

The last two probabilities are exponentially small (which can be argued in a number of ways, e.g.
using Lemma 2.2, Bernstein’s inequality, or estimates for the incomplete gamma function). To
handle the first probability, we decompose v as follows

Y(t) = P1(t) + ¥a(t),

where 1)1 (t) = 1)(t)1(0,11(t) is nonincreasing and s (t) = ¥(t)1(1,00)(t) is nondecreasing. Having this
monotonicity, if Z € ((1 —8)d, (14 6)d), we get ¢ (d%) Uy ( ) + Yo (1+5) Thus, setting

sy =wn (155) 40 (155)
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we obtain

P(il;w(d?)m—jm((l—é) (14 o) > (Zf v—)

It remains to find the mean of f(Y7) and use the law of large numbers. We have,

00 1-6 (eS)
IEf(Yl):/O f(t)e’tdt:/o ¢<1f6> etdt+/l+61/)<1j_6) e~tdt

=(1-9) /01 Y(t)e tedtdt 4+ (1 +0) /100 Y(t)e te Ot

> (1—6) 1¢(t)etdt+/oo1/)(t)et(1 sty

oo 1 [es)
= “tdt —§ ~'d “tdt ) .
/0 w(t)e"dt (/0 w(t)e t+/1 b(t)te t)
- S _
/0 Y(t)e tdt = /0 e 'logtdt =~

(which was derived by Euler — see (2.2.8) in the survey [8]) and

1 o]
/ w(t)e*tdwr/ Y(t)te tdt < 1,
0 1

Ef(Y1) >~ —d.

Since

we can conclude that

Choosing, say § = g, we thus get

(Zf <’y€> (;i <1EfY1)8>

and by the (weak) law of large numbers, the right hand side converges to 0 as d — co. O
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