J. Calder, A. Yezzi Res Math Sci (2019) 6:35

® Research in

https://doi.org/10.1007/540687-019-0197-x

the Mathematical Sciences

RESEARCH

®

Check for

PDE acceleration: a convergence rate
analysis and applications to obstacle

problems

Jeff Calder' and Anthony Yezzi®

“Correspondence:
jcalder@umn.edu

'School of Mathematics,
University of Minnesota,
Minneapolis, USA

Full list of author information is
available at the end of the article
Jeff Calder was supported of
NSF-DMS Grant 1713691.
Anthony Yezzi was supported by
NSF-CCF Grant 1526848 and ARO
WOTTINF-18-1-0281.

Source code: https://github.
com/jwcalder/MinimalSurfaces

@ Springer

Abstract

This paper provides a rigorous convergence rate and complexity analysis for a recently
introduced framework, called PDE acceleration, for solving problems in the calculus of
variations and explores applications to obstacle problems. PDE acceleration grew out of
a variational interpretation of momentum methods, such as Nesterov's accelerated
gradient method and Polyak’s heavy ball method, that views acceleration methods as
equations of motion for a generalized Lagrangian action. Its application to convex
variational problems yields equations of motion in the form of a damped nonlinear
wave equation rather than nonlinear diffusion arising from gradient descent. These
accelerated PDEs can be efficiently solved with simple explicit finite difference schemes
where acceleration is realized by an improvement in the CFL condition from dt ~ dx?
for diffusion equations to dt ~ dx for wave equations. In this paper, we prove a linear
convergence rate for PDE acceleration for strongly convex problems, provide a
complexity analysis of the discrete scheme, and show how to optimally select the
damping parameter for linear problems. We then apply PDE acceleration to solve
minimal surface obstacle problems, including double obstacles with forcing, and
stochastic homogenization problems with obstacles, obtaining state-of-the-art
computational results.

Keywords: Accelerated gradient descent, Nesterov acceleration, Primal-dual
methods, Minimal surfaces, Stochastic homogenization, Nonlinear wave equations

Mathematics Subject Classification: 65M06, 35Q93, 65K10, 49K20

1 Introduction

Optimization is one of the most prominent computational problems in science and engi-
neering. For large-scale problems, which are common in machine learning, second-order
methods, such as Newton’s method, are intractable, and first-order optimization algo-
rithms are the method of choice [9]. One of the oldest first-order algorithms for optimiza-

tion is gradient descent
X1 = X — aVf (). 1)

Gradient descent converges reliably for convex problems, and versions of gradient descent
(such as stochastic gradient descent) are state of the art in modern large-scale machine

learning problems [9].

© Springer Nature Switzerland AG 2019.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-019-0197-x&domain=pdf
https://github.com/jwcalder/MinimalSurfaces
https://github.com/jwcalder/MinimalSurfaces

35 Page2of30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

While gradient descent is a reliable first-order method, for many problems it is very
slow to converge. This has led to the development of accelerated versions of gradient
descent that incorporate some form of momentum. One example is Polyak’s heavy ball
method [27]

X1 = xx — a V() + Bk — xk—1). (2)

The term B(x; — x¢_1) is referred to as momentum and acts to accelerate convergence.
Polyak’s heavy ball method is simply a discretization of the second-order ODE

¥+ ax = —Vf(x), (3)

which corresponds to the equations of motion for a body in a potential field. This contin-
uum version is also called heavy ball with friction and was studied by Attouch, Goudou,
and Redont [3] and also by Goudou and Munier [16]. Another example of a momentum
descent algorithm is Nesterov’s famous accelerated gradient descent [26], one form of
which is

et = I = @Vf k) Yirr = Seer + 7 (e — %), (4)
Nesterov’s accelerated gradient descent contains an initial step of gradient descent and
then a second momentum step that averages the new update with the previous iterate.
Nesterov [26] proved that the method converges (for strongly convex problems) at a rate
of O(1/t?) after t steps, which is optimal for first-order methods.

Many variants of Nesterov acceleration have been proposed over the years, and the
methods are very popular in machine learning [35,42], due to both the acceleration in
convex problems and the ability to avoid local minima in nonconvex problems. Recent
work has begun to shed light on the fundamental nature of acceleration in optimization.
Su, Boyd, and Candes [32] showed that Nesterov acceleration is a discretization of the

second-order ODE
3
X+ ;x = —Vf(x). (5)

This ODE has been termed continuous-time Nesterov [40]. Since the friction coefficient 3/¢
vanishes as ¢ — 0o, many implementations of the algorithm involve restarting, whereby
time is reset to ¢ = 0 whenever the system appears underdamped [40]. Wibisono, Wilson,
and Jordan [42] went further, showing that all Nesterov-type accelerated descent methods
can be realized as discretizations of equations of motion in a generalized Lagrangian
sense. In doing so, they offer a highly insightful and useful variational characterization of
accelerated gradient descent.

Following their Lagrangian formulation, Yezzi and Sundaramoorthi [44] developed an
accelerated PDE framework for solving active contour models in image segmentation,
which are notorious for local minima. In a parallel work, Sundaramoorthi and Yezzi [33]
(see also [34]) applied the same ideas to flows of diffeomorphisms, which have applications
in computer vision, such as optical flow problems. This PDE acceleration framework was
further developed by Benyamin, Calder, Sundaramoorthi, and Yezzi [8] in the context of
calculus of variations problems defined for functions on R”, including stability analysis for
various explicit and semi-implicit discretization schemes, where they illustrated several
examples in image processing such as total variation (TV) and Beltrami regularization.
They drew special attention to a general class of regularized optimization problems where
the accelerated PDE takes the form a damped nonlinear wave equation (generalizing (3)

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page30of30 35

and (5)), and the acceleration is realized as an improvement in the CFL condition from
dt ~ dx? for diffusion equations (or standard gradient descent), to d¢ ~ dx for wave
equations. We also mention that there have been some recent approaches to acceler-
ation in image processing, which involve solving PDEs arising from variational prob-
lems [5,17,18,41]. Since these methods are not derived from a variational (Lagrangian)
perspective, the methods do not descend on an energy and lack convergence guarantees
and convergence rates. Finally, we mention an interesting recent work [29] that con-
siders acceleration-type schemes for nonlinear elliptic equations that do not arise from
variational formulations. The authors of [29] formulate their schemes to blend together
acceleration and gradient descent in such a way that the iterates satisfy a comparison
principle, which is then used to prove convergence to steady state. While the application
is not variational, the authors observe acceleration similar to the variational setting.

This paper has several contributions. First, we analyze PDE acceleration and prove
convergence with a linear rate for strongly convex problems. Using the convergence rate,
we show that the computational complexity of PDE acceleration is O(m" 1) for solving a
PDE in dimension # on a grid with m points along each coordinate axis (in other words,
ON+1/n) where N = m" is the number of grid points). This is the same complexity
as the conjugate gradient method for linear problems [23]. Second, we provide a linear
analysis of PDE acceleration and show how to optimally select the damping coefficient via
the solution of an eigenvalue problem. As a toy example, we study the Dirichlet problem
and show that PDE acceleration compares favorably to preconditioned conjugate gradient
and MINRES methods [23]. In contrast to other indirect methods, the PDE acceleration
method is very simple to implement with explicit or semi-implicit Euler discretizations
of the wave equation (discussed extensively in [8]) and extends directly to nonlinear
problems.

Finally, we apply the PDE acceleration method to efficiently solve minimal surface
obstacle problems [12,39,49]. Solving obstacle problems requires resolving a free bound-
ary, which makes efficient solutions challenging to obtain. Many algorithms have been
proposed for solving classes of obstacle problems; a short list includes penalty meth-
ods [11,30,38], splitting and projection algorithms [24,46], free boundary formula-
tions [10,22,25], Lagrange multipliers [19,20], domain decomposition [4], and multigrid
methods [21,36]. Of particular interest is a recent primal—-dual approach to obstacle prob-
lem proposed by Zosso et al. [49], which has some flavor of a momentum-based descent
algorithm. The authors of [49] show that their primal-dual approach for obstacle prob-
lems is significantly faster than existing approaches. As an independent contribution, we
make an improvement to the primal—dual algorithm, allowing it to work for nonlinear
minimal surface problems, and we compare the method to PDE acceleration. We find
PDE acceleration is approximately 10 x faster in terms of computation time in C code for
most experiments, with the difference attributed to the non-explicit dual update in [49].
We also compare against the L!-penalty method of Tran et al. [38], which we find is
significantly slower than both primal-dual and PDE acceleration for nonlinear obstacle
problems.

We mention that, at the discrete level, PDE acceleration resembles other momentum-
based algorithms, such as the heavy ball method or Nesterov acceleration [26,27]. The
results in this paper show that there are significant advantages to formulating a general
continuum PDE acceleration framework. First, by performing the convergence rate anal-

35 Page4of30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

ysis at the PDE level, we get a mesh-free convergence rate and the number of iterations to
converge depends solely on the CFL time step restriction. Second, the parameters in the
model—the friction coefficient and time step—can now be chosen optimally from PDE
considerations and do not require manual fine-tuning. In particular, the optimal choice for
the damping/friction coefficient can be derived from an eigenvalue problem (see Sect. 2.3),
while the largest stable time step is determined from the CFL condition [23].

1.1 Outline

This paper is organized as follows. In Sect. 2, we review (for the case of functions defined
over R”) and slightly generalize the PDE acceleration framework, prove a linear conver-
gence rate, and analyze the complexity of PDE acceleration. In particular, in Sect. 2.3 we
show how to select the damping coefficient optimally for linear problems. In Sect. 3, we
study the Dirichlet problem as a toy example and explore connections to primal—dual
algorithms. In Sect. 4, we show how to apply PDE acceleration to nonlinear obstacle prob-
lems, and describe our improved version of the primal-dual method from [49]. Finally, in
Sect. 5 we give results of numerical simulations comparing PDE acceleration to primal—
dual and L!-penalty methods for several different obstacle problems, including double
obstacle problems with forcing and stochastic homogenization problems with obstacles.

2 PDE acceleration framework

We review here the PDE acceleration framework for solving unconstrained problems in
the calculus of variations for functions over R”, as originally presented in [8]. Consider
the general unconstrained calculus of variations problem

22}41 Elu] := /;ZL(x, u, Vu) dx, (6)

where 2 C R" and A = g + H&(Q) or A = HY(R2). We write L = L(x,z p) and
write ViL, L,, and V,L for the partial derivatives of L in each variable. There is no loss
of generality in considering the unconstrained problem since we will handle constraints
(such as obstacles) later with an L?-penalty term (see Sect. 4.1). We define the generalized
action integral

t
Ju) = f k(o) (K (] — b(©)E[u]) ds, @)
7

0

where u = u(x, t), k(t), b(t) are time-dependent weights and K [«] is the analog of kinetic
energy, which we take to be

Klu] = %‘/;Zp(x, u, Vu)u? dx, (8)

where p : 2 x R x R” — Ry is a mass density that may depend on u and Vu. The
action / is a Lagrangian action with kinetic energy K and potential energy E. We note that
the time-dependent weight k(t) is necessary to ensure dissipation of energy (in particular
dissipation of the objective E; see Lemma 1). Regarding the mass density, often one may
take p = p(x) or p = 1. The more general setting may be useful, for example, in level
set problems like image segmentation, where the object of interest is really the zero
level set of u, and the kinetic energy of the zero level set can be obtained by selecting

px z p) = 8(z)/Ip|.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page50f30 35

The descent equations for the PDE acceleration method are exactly the Euler—Lagrange
equations for /, i.e., the equations of motion, which we derive now. Let us write

VE[u] := L,(x, u, Vu) — div (VPL(x, u, Vu)) 9)
and
Ly Lo (9
VK(u] = Sl 2% u, Vi) — Edlv (47 Vpp(x, 1, Vir)) (10)

for the Euler—Lagrange equation for E and for K. We recall that VE can be interpreted as
the gradient of E in the sense that

d
s 820E[u+sv] :/QVE[u]vdx (11)

for all v smooth with compact support in §2. Using this identity, a variation on J yields

de

Ju+ev] = /tl /Q k(t)pusve + k(6)VK[u]v — k(t)b(t)VE[u] v dx,
to

e=0

= /tlf (_i (k(&)pue) + k() VK [u] —k(t)b(t)VE[u]> v,
n Jo \ df

for v e C°(£2 X (to, t1)). Therefore, the equations of motion are
% (pur) + a(t) puy = VK[u] — b(t)VE[ul, (12)
where a(t) = k'(t)/k(t). The nonlinear wave equation (12) is the descent equation for PDE
acceleration, and the minimizer of E is obtained by solving the equation for some initial
conditions u(x, 0) and u;(x, 0), and sending t — oo. The boundary condition depends on
the choice of A—we have either # = g or V,L - n = 0 on 32, where n is the unit outward
normal to d2. Of course, we can also consider problems with mixed boundary conditions.
Notice in the equations of motion (12) the gradient —VE is now a forcing term in a
damped wave equation, so it contributes to a change in velocity at each time step. The
reader should contrast this with gradient descent

u; = —VE[u,

where the gradient is exactly the velocity term, which can change instantaneously.

In special cases, we can recover continuum versions of Polyak’s heavy ball method and
Nesterov acceleration. For example, if we take p = 1 and a(¢) and b(¢) to be constants,
we get the PDE continuum version of the heavy ball with friction (3), and for a(¢) = 3/t,
p =1, and b(t) = 1, we get the continuum version of Nesterov acceleration.

2.1 Convergence rate
We prove in this section a convergence rate for the solution u of the equations of
motion (12) to the steady-state solution #* of

VE[u*] =0 in £, (13)

subject to the Dirichlet condition #* = g or the Neumann-type condition V,L - n = 0
on 9£2. We assume throughout this section that 2 is open and bounded with Lipschitz
boundary 0£2.

We first establish monotonicity of total energy.

35 Page60of30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

Lemma 1 (Energy monotonicity) Assume a(t), b(t) > 0 and let u satisfy (12). Suppose
either u(x, t) = g(x) or VyL(x, u, Vu) - m = 0 = Vyp(x, 4, Vir) - n on 382. Then
d

3 (KTl + bOE[) = ~2a()K [u] + b ()EL) (14)

Proof First note that

dp= 4
T 4

Elu+ cuy] = / VE[ulu; dx + / usVpL(x, u, Vu) - ndS.
=0 Q 382

&€

Due to the boundary condition, either #; = 0 or V,L(x, 4, Vi) - n = 0 on 9£2. Therefore

d
—E[u] = / VE[u]u; dx. (15)
de Q

Similarly, we have
iI([u] = / pusty + VK [uluy dx. (16)
det Q

Using the equations of motion (12), we also have

d 1 d
—Klu] = 3 /Q puruy + Mta(ﬁut)dx

1
/ put + VK [uluy dx — - f b(t)VE[ulu; + a(t)pu? dx
2 2

N = N =

d 1 d
d_tK[u] — Eb(t)aE[u] — a(t)K[u],

where we used (15) and (16) in the last line. It follows that

d d
a[([u] + b(t)aE[u] = —2a(t)K[u].

The proof is completed by adding &’ (¢)E[u] to both sides. O

Remark 1 1fb'(t) < 0and E[u] > 0, then the total energy K [u]+b(¢)E[u] is monotonically

decreasing at a rate controlled by the damping coefficient a(t). In particular, we have
d

” (K [u] + b(t)E[u]) < —2a(t)K [u]. (17)

We now prove a linear convergence rate in the special case that p, a, and b are constants,
E has the form

Elu] = /Q D(x, Vi) + ¥ (x u)dx, (18)

and uand u* satisfy the Dirichlet condition # = g = u* on 3£2. Weassume that &, ¥ € C?,
® = P(x,p) is convex in p, ¥ = W(x,z) is convex in z, and for all p € R”, x € £2, and

zeR

01 <Vyd(x,p) <671 (19)
and

V(% 2) < (20)

for some 6, u > 0.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page70of30 35

Remark 2 1f there exists M > 0 such that |Vu*| < M, where u* solves (13), then we can
relax (19) to the condition that Vjcb > 0 (that is, @ is strictly convex in p). Indeed, define

D (%, p) = (% p)p(p) + K max{|p| — M, 0}, (1)

where K > 0and ¢ € C* is a bump function with 0 < ¢ < 1, ¢(p) = 1 for |p| < 2M, and
@(p) = 0 for |p| > 4M. Clearly, ® (x, p) satisfies (19) for some 6 > 0 when |p| > 4M, and
by choosing K large enough, the strict convexity of @ and compactness of £2 x B(0, 2M)
allow us to extend condition (19) to all (x, p) € 22 x R”. Now let E be the energy in (18)
with @ in place of ®. Since |Vu*| < M and ®(x, p) = @ (x, p) for all |p| < M, we see
that VE(u*) = 0; that is, #* is the unique solution of VE = 0 as well. We can use E in
place of E in PDE acceleration to ensure (19) holds while obtaining the same steady-state
solution (though the dynamics can be different). This is mainly a theoretical concern, and
not something we do in practical applications.

We note that for minimal surface obstacle problems, the gradients of solutions are
Holder continuous (e.g., u* € C*®) [12], and hence, we can always find such an M.

From now on, we write V? in place of Vj.
We now prove the following linear convergence rate.

Theorem 1 (Convergence rate) Let u satisfy (12). Assume (18), (19), and (20) hold, u = u*
on 082, a(t) = a > 0 is constant and b(t) = 1 and p = 1. Then, there exists C > 0
depending on a, 0, u(x, 0), and u;(x, 0) such that

lu — u* I3y < Cexp (=Pt), (22)

where
_ av'c? +4x6 — ac
 2/M0+a

and). > 0 is the Poincaré constant for 2.

2
withec=a+ 2 + 220671~ 0), 23)
a a

Proof We use energy methods. Since u solves (12), we have
ug + auy + VE[u] — VE[u™] = 0.

Multiply both sides by w := u — u* and integrate over £2 to find
/ wugw + awsw + (VE[u] — VE[u*) (u — u™)dx = 0.
2

Integrating by parts, we have
/ (VE[u] — VE[u*])(u — u™) dx
2
= / (VO (Vu) — VO (Vu™®)) - (Vu — Vu™) + (W, (%, u) — Wy, u™))(u — u™*) do.
I?)

Since ¥ is convex in z and @ is strongly convex (by (19)) we deduce

/ (VE[u] — VE[u*])(u — u*) dx > ef [Vw|? dx.
22 22
It follows that

/ WuW + awew + 9|VW|2 dx <0,
Q

35 Page8of30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

and so

:t la w? + aww, dx < /Qawt2 — af|Vw|? dx = 2aK[w] — ab /Q |Vw|? d.

(24)

This leads us to define the energy

e(t) = /Q %oﬁw? + aww; dx + 2(K [u] + E[u] — E[u*]). (25)
Note first that

e(t) = /Q %(aw +w)? + %wf dx 4 2(E[u] — E[u*]) = 0,
so e is a valid energy. Using Lemma 1 and (24), we have

e(t) < 2aK[w] — 4aK[w] — ab /Q IVw|? dx = —a/g 0|Vw|? + wy 2 dx. (26)

Now, we compute

1
Elu] — E[u™] —/ diE[u 4+ t(u — u™)]de

/ / E[u +t(u — u*)] dtds

f / / Z Dpipy (Vit* + £(Vit = Vi) (aaz, — 4,) (1 — 185)

ij=1
+ W ut + tu —) — u)? dededs

/ / / Lvw? + uw? dxde ds

= —/ Lvw)? + uw? dy,
2/

where the last inequality used (19). Combining this with the Poincaré inequality
A fow?dx < [|Vw|* dx, we have

e(t) < 1/(42+ae+u)w2+ag—1 w? dx + 2(K [u] + E[u] — E[u*])
2Ja

1
= ./ [3@® +ae+ Wit +071] IVw|* + 3 (2 +ae™!) w; dx.
2

Now, there is a unique value of ¢ > 0 such that
0
Ha*+ae+pr Tt +071 = 5(2+a8*1). (27)

Selecting this value for ¢, we have by (26) that
1 -1 2 2 1 1Y,
e(t) < =2+ae™h | o|VwP+wlide < — =+ —)e@).
2 2 a 2¢
Therefore,

—2ae
2¢e +a

e(t) < e(t),

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page90f30 35

from which it follows that

e(t) < e(0) exp (2;24‘_’2 t> . (28)

All that remains is to compute . Note that (27) is equivalent to

2A
82+<61+E+—(9_1—9)>8—9K=O,
a a

and hence
26 =/ c2 + 410 — c < 24/16,

where

2)
c:a—i—ﬁ—i——(G*l—G).
a a

[}

Remark 3 The energy estimates obtained in the proof of Theorem 1 establish uniqueness
of solutions to (12) with values in H1(£2) and Dirichlet boundary conditions. We expect
that existence of solutions follows from combining these energy estimates with a standard
Galerkin approximation [15]. Such a result is outside the scope of this paper, and we leave
it to future work.

Remark 4 Instead of formulating PDE acceleration at the continuum level and then dis-
cretizing the descent equations to compute the solution, it is possible to formulate PDE
acceleration entirely in the discrete-space setting, by starting with a discretization of E[u].
Then, the resulting descent equations become a discretization of (12) that is discrete in
space and continuous in time, provided the discrete divergence is defined as the exact
numerical adjoint of the discrete gradient (e.g., forward differences for the gradient and
backward differences for the divergence, as we use in Sect. 5). We expect the proof of
Theorem 1 to extend, with minor modifications, in this situation.

2.2 Computational complexity

Theorem 1 allows us to analyze the computational complexity of PDE acceleration. Sup-
pose our domain is the unit box [0, 1]> and we discretize the problem on an m x m grid
with uniform spacing dx = 1/m. Since we can discretize the wave equation (12) with
a time step d¢ = O(dx) = O(1/m) while satisfying the CFL condition, the number of
iterations required to converge to within a tolerance of ¢ > 0 in the H! norm satisfies

k < cBimlog(Ce™h). (29)

Using an explicit time stepping scheme, each iteration has complexity O(#2); hence, the
computational complexity for 2D problems is

2D complexity = o 'm? log(s_l)). (30)
A similar computation for 3D problems on a m x m x m grid yields a complexity of
3D complexity = o tm* log(s_l)). (31)

If we write the complexity in terms of the number of unknowns, which is N = m? in
2D and N = 3 in 3D, then the complexity is O(N>/?) for 2D problems and O(N*/3)

35 Page100f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

for 3D problems. For linear problems, this complexity is similar to conjugate gradient
methods [23].

We remark that the discussion above does not consider numerical discretization errors
that can accumulate over iterations, and should be viewed as a heuristic to motivate the
convergence rate results we present in Sect. 5. However, we can easily do a rough analysis
of the discretization errors. If we discretize the wave equation with a first order in time
and second order in space discretization, then the numerical errors will accumulate to
O(kdx?) after k iterations, provided the solution is smooth. Combining this with (22) from
Theorem 1, we have

I4gege =2y = € (exp (—Bkde) + k2dx6>,

where u’c‘l +d: denotes the numerical solution on a grid with spacing (dx, d) after k steps,
extended to £2 in any natural way (e.g., say, piecewise constant). Setting exp (—pBkd¢t) =
dx® and using the stability condition d¢ = ¢ dx, we find that

Ik, g0 — ¥l 22y < CB~ dx? log(m), (32)

after k = O(B~'mlog(m)) iterations, where we recall m = 1/dx. We can compare this
to (29), which arrives at a similar estimate for the number of iterations k without consid-
ering discretization errors. We also point out that (32) is a convergence rate to the true
solution #* of the continuum problem, and not a convergence rate to the solution of a dis-
cretized energy as one would normally see in convergence rates for discrete optimization

problems.

2.3 Optimal damping for linear problems
While Theorem 1 provides a convergence rate for the PDE acceleration method, it does
not indicate how to optimally select the damping parameter a to achieve the optimal
rate. Here, we consider the selection of « for linear problems. For nonlinear problems, we
propose to linearize and apply the analysis described below.

Let L be a uniformly elliptic second-order partial differential operator in divergence

form, that is,
n

Lu=— Z(aijuxi)xj, (33)
ij=1
where A(x) := (ai/(x))ij € C*®(£2), and there exists & > 0 such that A(x) > 01 for all x.
We consider the PDE acceleration method for solving the Dirichlet problem
Lu*+cu* =f ing2,
(34)
=g ondf,
where ¢ > 0. The equations of motion with constant a(¢) = a and b(¢) = b are
ug +auy +bLu+bcu =f in £2 x (0, 00),
u=g ondf2 x (0,00), (35)
u=uy onsf x{t=0}L
Let w(x, t) = u(x, t) — u*(x). Then, w satisfies
Wy +awy +bLw +bcw =0 in £2 x (0, 00),
w=0 ondf2 x (0,00), (36)

w=ug onf2 x {t =0}

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page110f30 35

We can expand the solution w in a Fourier series
o0
wx t) = di(t)vie (37)
k=1
where v1, vy, .. . is an orthonormal basis for L?(§2) consisting of Dirichlet eigenfunctions
of L with corresponding eigenvalues
O0<A <Ay <Az=<---.
That is, the function vy (x) satisfies

Lvg = Agvg in £2
vie=0 on 452.

(38)

Substituting (37) into (36), we find that
dy (t) + ad) (t) + b(h + c)di(t) = 0.
The general solution is
di(t) = Ae'*1? Be'®2t,

where

1 1
rmz—z—k— a’ —4b(h; +c¢) and rm:—;—l——\/az—élb()\k—{—c).

22 2

Hence, the optimal decay rate is of the form e~%/? provided that

a’> —4b(Ap +¢) <0 forallk > 1.
This leads to the optimal choice for the damping coefficient

a= %/W. (39)
With this choice of damping, we have the convergence rate

lu(x, t) — u*(x)| < Cexp (—\/b()q +¢) t), (40)

for some constant C > 0 depending on the initial condition .
We note that when L is degenerate, so 11 = 0, the convergence rate is

lu(x,) — u*(x)] < Cexp (—«/&t), (41)
with the optimal choice @ = 2+v/be. In particular, if ¢ = 0 then the method does not

converge, since there are undamped Fourier modes.

3 Dirichlet problem

As an illustrative example, we consider the Dirichlet problem
1
min{if [Vu|> dx : ueHl(.Q)andu:gona.Q}. (42)
2

Gradient descent corresponds to solving the heat equation
ur — Au=0 in £ x (0, 00),
u=g onds2 x(0,00), (43)

u=uyg onf x{t=0}

35 Page 120f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

while PDE acceleration corresponds to solving the damped wave equation
Uy +auy —bAu=0 in 2 x (0, 00),
u=g ondsf2 x (0,00) (44)
u=uy onf x{t=0}L

For concreteness, we consider the domain £2 := [0, 1]2. Here, the first Dirichlet eigenvalue
is .1 = 2, and hence the optimal choice of the damping coefficient from (39) is

a= Zn«/z.

With this choice of a, the accelerated PDE method converges to the solution of the
Dirichlet problem (42) at a rate of exp(—br¢). There are no parameters to select in the
heat equation (43). It is possible to show with a Fourier expansion that the solution of
the heat equation (43) converges to the solution of the Dirichlet problem (42) at a rate of
exp(—m2t). So far there is not much difference between the two equations—part of the
difference comes from numerical stiffness, as explained below.

3.1 Runtime comparisons

To solve both equations, we use the standard discretizations

n+l _ n n+1l n n—1
L~ Ui Ui o Ui 2ui]. + U nd
e e TS)
n n n n n
Uiyt iyt oy —Aug
Ay ~ 3 ,
dux
and explicit forward time stepping. The CFL condition for the damped wave equation is
dux
dt < —.
2b

By (40), the error decays like exp(—27 V/bt). Therefore, to solve the problem to within a
tolerance of ¢ we need k iterations, where k satisfies

e = Cexp (—27{\/Ekdt> = Cexp (—x@nkdx).

Hence, we need
1

V2mdx

iterations. Note this is independent of b. Additionally, if we saturate the CFL condition

k =

log(Ce™1)

and set dt = dx/+/2b, then b does not even appear in the numerical discretization of (44).
We contrast this with the heat equation (43), where the CFL condition is d¢ < dx?/4.
Here, we need

k log(Cs_l)

T 72da?
iterations for convergence. Table 1 shows a comparison of the performance of PDE
acceleration, gradient descent, and the primal—-dual algorithm from [49] for solving the
Dirichlet problem on various grid sizes. We used the boundary condition g(x1, x2) =
sin(2nx%) + sin(2nx§) and ran each algorithm until the finite difference scheme was sat-
isfied with an error of less than dx?. The initial conditions for both algorithms were
u(x,0) = g(x). For the primal—dual algorithm [49], we set r; = 47%ry, which is prov-
ably optimal using similar methods as in Sect. 2.3. We see that PDE acceleration is more

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page130f30 35

Table 1 Comparison of PDE acceleration, primal-dual, and gradient descent for solving
the Dirichlet problem

Mesh Our method Primal-dual [49] Gradient descent

Time (s) [terations Time (s) [terations Time (s) [terations
642 0.012 399 0.02 592 0.148 8404
1282 0.05 869 0.11 1384 24 3872
2562 038 1898 1.0 3027 40 174,569
5122 48 4114 13.1 6831 1032 774,606
10242 41 8813 115 14,674 23,391 3,399,275

Runtimes are for C code

than twice as fast as primal—dual, while both significantly outperform standard gradient
descent. We mention that our method converges to engineering precision very quickly (in
about one fifth of the iteration count displayed in Table 1), while the majority of iterations
are taken to resolve the solution up to the O(dx?) error (for the 1024 x 1024 grid, the error
tolerance is dx? ~ 107°).

Of course, we do not recommend using PDE acceleration or primal-dual methods for
solving linear Poisson problems. In the linear setting, there are faster algorithms available.
For comparison, we show in Table 2 the runtimes for incomplete Cholesky preconditioned
conjugate gradient and MINRES, Gauss—Seidel with successive overrelaxation, Matlab
backslash, and the multigrid method with V-cycles. We see that PDE acceleration is
comparable to preconditioned MINRES and conjugate gradient, while Matlab backslash
(Cholesky factorization and triangular solve) and multigrid are significantly faster. We
did not compare against FFT methods since they are specific to constant coefficient linear
problems, which is rather restrictive, and would be comparable to multigrid and backslash.

We mention that for general linear PDE, multigrid is normally much faster than Matlab
backslash. The 2D Poisson equation is a special case where the linear system has a sim-
ple banded structure and direct solvers are highly efficient and comparable to multigrid.
Moving to 3D problems, one would expect multigrid to outperform backslash. Further-
more, our implementation of multigrid with V-cycles may not be optimal and further
improvements could be possible. We emphasize that the Dirichlet problem is simply a
toy illustrative example of PDE acceleration compared to gradient descent, and it is out-
side the scope of this paper to provide a thorough comparison to all linear solvers (e.g.,
other preconditioners, different multigrid cycling, etc.). Our real interest is in nonlinear
problems with constraints. The linear methods that we compared against here do not
extend directly to nonlinear problems, much less to obstacle constrained problems. The
PDE acceleration method is formulated in the general nonlinear case and is provably
convergent with the same rate for nonlinear problems. In practice, we usually see similar
computation times for nonlinear problems (see Sect. 5).

3.2 Initial condition

We mention that the choice of initial condition can affect the computation time. If the
initial condition does not continuously attain the boundary data, then fixing the boundary
data on the first time step transfers a large amount of kinetic energy into the system
that takes longer to dissipate. See Fig. 1 for a depiction of the kinetic, potential, and total
energy for initial conditions u(x, 0) = g(x) and u(x, 0) = 0. The rate of convergence is not
affected; it is just the constant in front, which corresponds to the initial energy, that is

35 Page140f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

Table 2 Runtimes in seconds for incomplete Cholesky preconditioned conjugate
gradient, MINRES, Gauss-Seidel with successive overrelaxation, Matlab backslash, and
V-cycle multigrid for solving the Dirichlet problem

Mesh PCG MINRES Gauss—Seidel Backlash Multigrid
Time Iter. Time Iter. Time Iter. Time Time
642 0.027 56 0.028 54 0.017 197 0.013 0.036
1282 0.08 120 0.093 114 0.08 432 0.037 0.048
2562 0.67 251 0.78 240 0.72 1020 0.12 0.13
5122 79 523 94 500 6.1 2046 061 0.55
10242 69 1089 81 1044 50 4100 3 2.6

The Gauss-Seidel method was implemented in C, while the other algorithms were implemented in Matlab

A]
2510 Kinetic i Kinetic
\ ~ — -Potential 1600 1 ~ = -Potential | |
\ Total i Total
1 1400 f;
200 1 :
\ 1200
' 1
\ L
> 151 1 > 1000 F1
3) 3
o ' 2 :
i AY w 8oor!
~
10 ~ao
__________ 600 -
400 -
5L
200 [
0 . . n 0 |
0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70 80
Iterations Iterations
a u(z,0) =g(x) b u(z,0)=0

Fig. 1 Comparison of energy dynamics for different initial conditions for solving the Dirichlet problem on a
512 x 512 grid. When the initial condition does not continuously attain the boundary data, a nearly infinite

amount of kinetic energy is transferred into the system at the first time step when the boundary conditions

are set. This takes longer to dissipate and slows convergence

larger in this case. For example, in the simulation above, if we start from u(x, 0) = 0 on
the 512 x 512 grid, the computation takes 5529 iterations, or about roughly 1.4 x more
iterations compared to the initial condition u(x, 0) = g(x).

This minor issue can be easily fixed in one of two ways. First, we can, if possible, choose
an initial condition that continuously attains the boundary data. A second solution is
to start from any arbitrary initial condition and then change the boundary conditions
gradually, instead of instantaneously. This can be done by gradient descent on the energy

I(u) = %/m(u —g)%ds.

That is, on the boundary we solve the ordinary differential equation
ur=g — u.

Both solutions give similar improvements in the speed of convergence in our simulations.
To keep the algorithm simple, we chose not to implement either of these fixes in the rest
of the paper. There are many other tricks that one can play with to speed up convergence,
such as increasing the damping factor a as a function of time, or incorporating multigrid
methods. We leave investigations along these lines to future work.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page150f30 35

3.3 Connection to primal-dual methods
In the context of the Dirichlet problem, there is a close connection between primal—
dual methods [49], and PDE acceleration. This was explored briefly in [49], where it
was observed that their primal—dual algorithm for solving the Dirichlet problem can be
interpreted as a numerical scheme for a damped wave equation. We go further here, and
give a PDE interpretation of primal-dual methods and show exactly how they are related
to PDE acceleration for the Dirichlet problem.

We recall that the convex dual, or Legendre—Fenchel transform, of a function @ : R” —
Ris

D*(p) = maxx - p — @)} (45)

If @ is convex, then by convex duality we have @** := (@*)* = @. Weassume @ : R” — R

is convex and consider for simplicity the problem
min / @ (Vu)dx, (46)
u Je

subject to a Dirichlet boundary condition # = g. A primal—dual algorithm for solving (46)
expresses @ through its convex dual @* giving the initially more looking complicated
formation

min max/ p-Vu— d*(p)dx. (47)
u p Jo

Here, u : 2 — R is the primal variable and p : 2 — R” is the dual variable. Given
p-n=0on ds2, we can integrate by parts to express the problem as

min max / —udiv(p) — *(p) du. (48)
u p Jo

The primal—dual algorithm in [49] solves (47) by alternating proximal updates on p and u
until convergence (see Sect. 4.2). In the continuum, this is equivalent to jointly performing
gradient descent on « and gradient ascent on p, which corresponds to the coupled PDEs

pr = at)(Vu — VO (p)),
Ur = le(p)

The factor a(t) is the ratio of the time steps between the proximal updates on # and p in the

(49)

primal—dual algorithm; in the notation of [49], a = r1/ra. To the best of our knowledge,

this PDE interpretation of primal—dual algorithms is a new observation. In particular, we

use this observation to optimally set ratio r1 /r; for the primal-dual method in Sect. 4.2.
For the Dirichlet problem, ®(p) = ®*(p) = %|p|2 and (49) becomes

pr = a(t)(Vu — p),
uy = div(p).

In this case, we can eliminate the dual variable and we obtain the damped wave equation

(50)

Uy + a(t)u; — a(t)Au = 0. (51)

Contrasting this with (44), we see the key difference between primal—-dual and PDE accel-
eration methods is that primal-dual methods are unable to adjust the damping coefficient
a(t) independently of other terms in the PDE.

This explicit connection between primal-dual and PDE acceleration seems to be a
coincidence for the Dirichlet problem and does not hold in any other case that we are

35 Page160f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

aware of. In particular, it seems necessary that V@*(p) is linear in p in order to convert
the system (49) into a scalar wave equation in #. We can eliminate the primal variable by
differentiating the equation for p; in (50) to obtain

a'(t)
at)

Pu + (aDF(p) +) pr = a(t)Vdiv(p), (52)

where F(p) := V@*(p). However, this is no longer a wave equation.

4 Obstacle problems
Consider the standard obstacle problem

min E[u] =/ @ (x, Vu) dx, (53)
uceA Q

where
A={ueH (2): u>¢in2andu=gond2}, (54)

and the obstacle ¢ satisfies ¢ < g on 9£2. We recall that the solution « of the obstacle
problem (53) satisfies the boundary value problem

{ max{—VE([u],¢ —u} =0 in£, (55)

u=g onas.

This is a classical fact; we sketch the formal argument for completeness. If v € C®(£2) is

nonnegative, then for any ¢ > 0 we have u + ¢v € A and hence
Elu+ ev] — E[u] = 0.

Dividing by ¢ and sending ¢ — 0" yields

f VE[u]lvdx = i Elu+evl>0 (56)
o d

& le=0
for all nonnegative v. Hence, VE[u] > 01in £2. Furthermore, on any ball B(x, r) C §2 where
u > @, we can relax the nonnegativity constraint on v and still ensure # +¢v € A for small
e > 0. It follows that VE[u] = 0 on the set {u# > ¢}, which establishes (55). We note that
solutions of (55) are properly interpreted in the viscosity sense [7,14].

4.1 PDE acceleration
We now show how to apply PDE acceleration to the obstacle problem (53). For the
moment, we consider the L2 -penalized formulation

min {f @(x,Vu)—l—ﬁ(go—u)idx : u:gonaﬂ}. (57)
ueH(2) | Jo 2

Theorem 1 guarantees that PDE acceleration will converge with a linear rate for any
finite 4 > 0. However, we need to send ;© — 00 to recover the solution of the constrained
problem (53). We will see, however, that the accelerated PDE method for (57) is insensitive
to the choice of i, and can be easily solved for ; > 0 large, and in numerics, we send
u — oo and obtain a very simple scheme for solving (53). We explain in more detail
below.

The PDE-accelerated equations of motion (12) for the penalized problem (57) are

Ut =+ auy — —VE[M] + //L((p — M)+; (58)

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page170of30 35

subject to the Dirichlet condition # = g on 92, where
VE[u] = div (V,®(x, Vu)).
We now discretize in time using the standard finite differences

un—i—l —uy" Mn+l —2u" + un—l
ur~ ——— and Uy ~ .

de de?

The important point now is that we handle the penalty term implicitly. The discrete in

time scheme becomes

(1 + adt)u™t — udt*(p — "™, = @+ adt)u” — "t — dE2VE[u). (59)
Since the left-hand side is strictly increasing in #”*!, there is a unique solution of (59).
We can compute the solution explicitly as follows:

(2 + adt)u” — w1 — A2 VE[u]

>

14 adt
_ (24ad))u” —u"! — de*VE[u] 4 pdi?e
- 14 adt 4+ pde2 ’ (60)

() = v(x), ifvix) = o(x),

w(x), otherwise.

The scheme is simple to implement, and the CFL condition is dictated solely by the
discretization of VE[u] and is independent of the penalty u. In practice, we find the
algorithm is completely insensitive to the choice of i and runs efficiently for, say, . > 10,

Instead of choosing a very large value for 1, we can in fact send & — 00 in scheme (60).
Indeed, the only place p appears is in the update for w, and taking the limit as 4 — oo,
we find that w = ¢. Hence, we obtain the simpler scheme

@+ adt)u” — u'! — dt?VE[u]
' 1+ adt (61)
w1 (x) = max(v(x), ¢ (x)}

as the limit of (60) as © — o0. In our simulations, we use scheme (61), since it is simpler
and more intuitive, but the results are identical, up to machine precision, using scheme (60)
with & = 100, We use finite differences to discretize VE[u] in this paper—in particular,
we discretize the gradient and divergence separately, using forward differences for Vu and
backward differences for the divergence. We set the damping parameter to be the optimal
value a = 27 from the linear analysis in Sect. 2.3. We run the iterations (61) until

| max{—VE[u"], p — u"}| < dxllp]|L> (62)

at all grid points.

We should note there is nothing specific about finite difference schemes in this accel-
erated framework; one could just as easily use finite elements, spectral methods, or any
other numerical PDE method. Once a discretization is settled on, the time step restriction
on dt follows from the CFL condition, which is straightforward to derive (see Sect. 5).

4.2 Primal-dual algorithms
Recently in [49], a primal—dual algorithm was proposed for obstacle problems, and it was
shown to be several orders of magnitude faster than existing state-of-the-art methods.

35 Page180f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

We compare PDE acceleration against an improved version of the primal—dual algorithm
from [49], which is described below.
The primal—dual algorithm solves the minimal surface obstacle problem
min/ V1+|Vul?dx, (63)
ucA 0
following roughly the outline in Sect. 3.3. We compute the convex dual of @(x) =

V14 |x|% to be

0, ifp| > 1.

(64)

The primal—dual algorithm from [49] for solving (63) solves the equivalent primal—dual

formulation

minmax/ p-Vu+,/1—|p|>dx
uzy¢ p|<1 Jgo

by alternatively updating the primal variable # and the dual variable p with proximal
updates. The full algorithm is given below.

1
+1/ . — 2
P (%) = argmin, {—Vu”(x) p—y/1-Ip*+ 2—rllp Pl }

" = max{g, u" + rdiv(p")},

ﬁ”+1 — 2un+1 —u"

(65)

The final step is an overrelaxation, and we set the Dirichlet condition # = g on 92 at each
step. If the problem is discretized on a grid with spacing dx, then the method converges
for any choices of r1, ry with r175 < dx?/6 [49]. In fact, as noticed in Sect. 3.3, the ratio
r1/ra plays the role of the damping parameter a in PDE acceleration (61), allowing us to
set 71 /ry = 472, which is optimal for £2 = [0, 1]” via the linear analysis in Sect. 2.3.
While the update in the dual variable p(x) is pointwise, it is not an explicit update and
involves solving a constrained convex optimization problem. We contrast this with the
PDE acceleration update (61) which is simple and explicit. In [49], the authors propose
to solve the dual problem with iteratively re-weighted least squares (IRLS), that is, they

define ¥° = p"(x) and iteratively solve
. _ 1 |y)?2-1 1
k+1 _ 2
YT = argming o) —Va'@) - ¥+ 21— [yhp T,V P@EL (69
setting p" T (x) = limy_, vk, Actually, in [49] the factor of % in front of the term
ly[>~1
1=y

fixed point satisfies the correct optimality conditions for the original dual problem. It is

is missing; this is required to ensure that if the iterations converge, then the

claimed in [48,49] that the IRLS iterations converge for ri sufficiently small. However,
inspecting the proof in [48, Lemma 4.4] it appears the restriction on ry is impractical for
dx <« 1. In practice, we find that for dx < 1 the IRLS iterations drift outside of the unit
ball %] < 1 after only a few iterations, in which case (66) is not well defined and the
iterations cannot continue. Simple fixes that we tried, such as projecting back onto the
unit ball, were found to not be useful. We note we observed failure of the IRLS iterations
even for small values of ;.1

Even if the IRLS iterations were to converge for extremely small r; > 0, the performance of the primal—-dual method
is highly sensitive to the ratio r1 /r, and convergence of the primal—dual iterations is extremely slow for very small or
very large r1.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page190f30 35

We propose another method for solving the dual problem that is robust and works for
any value of r1 and dx. We describe our method below. For convenience, let us define

1
F(p) = —Viu(x) - p — m—k 2_1”1|p _p”l(x)|2.

We also compute
1 p 1
VE(p) = ——(p"(x) + 1 Vi(x)) + —— + —p. (67)
(p ” (p 1 e P
Then, the dual problem is p""1(x) = arg minlpl51 F(p). We first note that since F((1 —
e)p) < F(p) forany pwith |p| = 1and & > 0 sufficiently small, we must have [p"+1(x)| < 1,

and so VF(p"*1(x)) = 0. For any 5 with 1 - p"T1(x) = 0, we have
0=n-rnVFE"'(x) = —("®) + r Vi) - .
Therefore, p"*1(x) = aq(x) for some o € (—1, 1), where

PP+ Vakx) .eon —
g(x) = | POV if p"(x) + 1 Vu(x) # 0, (68)

0, otherwise.
The value of @ € (—1, 1) is the unique root of the function

fl@) == q(x) - VF(aq(x) = a + J% — P+ nVER). (69)

Since F is strictly convex, f is strictly increasing in «, and so we can compute the root of
f with a simple bisection search. Inspecting (69), we see that « € [0, min{1, N}], where
N = |p" + r1Vi(x)|. For « is this range, we can perform some algebraic manipulations on
f to see that we can instead bisect on the function

gla) =rja® = (1 —a®)(@ — N)?,
which does not involve the costly square root operation. The method is guaranteed to
converge, and the accuracy is directly related to the number of bisection iterations, that
is,

Bisection search error < W’
where k is the number of bisections.

We emphasize that the IRLS method proposed in [49] does not converge for any of
the simulations presented in Sect. 5. Thus, the new bisection method is required to allow
comparisons against the primal—dual algorithm for the nonlinear minimal surface prob-
lem.

In our implementation of the primal-dual method, we use forward differences for Vu
and backward differences for the divergence, as in [49]. We set the ratio r; /7y = 472 based
onan optimallinear analysis as in Sect. 2.3, along with the CFL conditionr;ry < dx? /6 [49].
We choose the number of bisection iterations so that the dual problem is solved to an
accuracy of edx?, where ¢ is the accuracy to which we wish to solve the obstacle problem.
This requires around 30 iterations for most of our simulations. We run the algorithm until
the residual condition (62) is satisfied.

5 Experiments
We give here some applications of the PDE acceleration method for solving various obsta-
cle problems. All algorithms, including our improved primal—dual method and the L!-
penalty method [38], were implemented in C and run on a laptop with a 64-bit 2.20GHz
CPU. The code for all simulations is available on GitHub: https://github.com/jwcalder/
MinimalSurfaces.

https://github.com/jwcalder/MinimalSurfaces
https://github.com/jwcalder/MinimalSurfaces

35 Page200f30

J. Calder, A. Yezzi Res Math Sci (2019) 6:35

02

01

il " XXX
% /' I
s

4
47 ";l','f,'

06

02

¢ Minimal surface ¢ := ¢1/50

Fig.2 Minimal surfaces for obstacle ¢ computed with PDE acceleration on a 64 x 64 grid

& 0.05.
0.045 0.045
0.04
0035
003 ‘l ‘ \
0.025 \\\ ‘ “\\
002 “ “ \
0015 ‘ N i \\
l N AN
SIS \
001 | ' “\“‘ AT
i i
0 N A SSSEECE s
! %I////I/I'[%W‘:Wﬁ“:‘“‘:“:‘:“:“\\ T
4 " (O et
06 U0 0sl%s S ST 08
0 ,,/I[I;,',';;';Zé:{fz 3 “:\\:::“‘“‘“‘““ 06
02 &

d Minimal surface ¢ := ¢1/10

5.1 Minimal surface obstacle problems

We first consider the constrained minimal surface problem

min /\/1+|Vu|2dx cueHy(R2)andu>g}.
fo)

(70)

Here, ¢ : 2 — R is the obstacle and £2 = [0, 1]2. We solve the problem with the PDE
acceleration scheme (61) using the implementation described in Sect. 4.1. Here,

Vu
V1+|Vul?

and the CFL condition dictates that dt < dx/+/2. We set dt = 0.8dx/+/2.
The first obstacle we consider is from [49] and is given by

VE[u] = —div

5 for &1 — 0.6] + |y — 0.6] < 0.04,
4.5 for (x; — 0.6)% + (xo — 0.25)> < 0.001,
p1(x1,%2) =
4.5 forxy = 0.57 and 0.075 < x1 < 0.13,
0 otherwise.

(71)

Figure 2 shows the obstacle ¢ := ¢;/100, and the minimal surfaces computed with the

PDE acceleration algorithm for ¢ :

01/100, ¢ := ¢1/20,and ¢ :

¢1/10. Figure 2b shows

J. Calder, A. Yezzi Res Math Sci (2019) 6:35

o l“\\
vi
’ ‘ "4":"';:':.2“\\&‘
AN N
! | R ORI
"“0‘.““ ORI
0 R I
N i 'N“o’o‘u'» ST
1 O elesessses SIS TN
I INRRsssss RS
s e S AR
IIIIIIII/"'I,"I::':,‘:.": 55 I 1

! AN s
““\“““‘““\‘\}\‘R\‘R‘“““‘

0.5

s Sttt
L5555 N
5% SRR

a True minimal surface b Solution of linearized problem

Fig.3 Comparison of a the true minimal surface for ¢ and b the solution of the linearized problem, which is
presented incorrectly in [49, Figure 3d] as the true solution of the nonlinear minimal surface problem on a
64 x 64 grid

a short obstacle with small deflections, and the solution in this case is well approximated
by the linearized minimal surface problem

1
min{/ §|Vu|2dx T u eH&(.Q)andu > go}. (72)
2

The obstacles in Fig. 2¢, d are significantly taller and the true minimal surfaces are not
well captured by linearization. In particular, the minimal surface for ¢ := ¢ is nearly
identically zero, which we show in Fig. 3a.

We remark that this is in contrast to previous work (see [49, Fig. 3(d)]), which reported
that the minimal surface for ¢; resembles Fig. 2b (the minimal surface for ¢;,/100). We
show the true minimal surface for ¢;, computed by our algorithm, in Fig. 3a, and the
solution of the linearized minimal surface equation in Fig. 3b, which agrees very closely
by eye with [49, Fig. 3(d)], suggesting that [49] are in fact solving the linearized minimal
surface problem, and not the true nonlinear minimal surface problem. We suspect this is
due to the authors of [49] mistakenly taking dx = 1 in their code, which has the effect of
drastically reducing the height of the obstacles and putting one in the linear setting. Since
the nonlinear minimal surface equation is not homogeneous in the gradient, one cannot
scale away the spatial resolution as can be done for the linearized equation.

It is easy to see that Fig. 3b cannot be the true minimal surface for ¢; by computing
the surface area of the solutions: Our solution in Fig. 3a has surface area 3.9855, while the
surface area of Fig. 3b is 8.5105. The obstacle itself has surface area 4.1691. All computa-
tions are on the same 64 x 64 grid. We can also compute true surface area of the obstacle
¢1 in the continuum analytically. The obstacles are a square, circle, and a line segment.
The square has side lengths £ = 1/0.042 4 0.042 =~ 0.0566, so perimeter is approximately
0.2263. The height of the square is 5, so the surface area contributed by the obstacle
would be S := 1.1315. The circle has radius » = +/0.001 & 0.0316, and so perimeter is
2rr = 0.1987. The height of the circle is 4.5, so it contributes surface area Sy := 0.8942.
Finally, the line segment has width 0.055 and height 4.5, so the surface area contribution
is S3 := 0.2475. The surface area of the solution is then

Surface area = 1+ S; + Sy + S3 = 3.2732.

Page 21 0f30 35

35 Page220f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

Table 3 Runtimes in seconds and number of iterations for the PDE-accelerated solver,
primal-dual method [49], and L penalty method [38] for solving the nonlinear minimal
surface obstacle problem with obstacle ¢,

Mesh Obstacle ¢ .= ¢1/50
Our method Primal-dual [49] L' penalty [38]
Time [ter. Time Iter. Time Inner (outer) iter.
64 x 64 0.023 360 0.186 370 04 7254 (2380)
128 x 128 0.144 823 1.76 870 5.6 29,284 (10,340)
256 x 256 1.22 1863 18 2070
512 x 512 12 4135 163 4390
1024 x 1024 107 9074 1650 10,210
Complexity 1.54 0.58 1.64 0.60 19 0.93

The complexity is measured as a function of the number of grid points used in the discretization

We note there is a large discrepancy between the analytic surface area of the obstacle
(3.2723) and the computed area (4.1691) on the 64 x 64 grid. The reason for this is that finite
difference discretizations of surface area for discontinuous functions are not consistent.
This phenomenon is well known in the finite-element community, where pathological
examples such as the Schwarz lantern [31] demonstrate the care one must take with
numerical discretizations of surfaces and surface area to obtain consistent approximations.
We give a simple example of this non-consistency in “Appendix.”

We now compare runtimes and iteration counts for our PDE acceleration method
against the primal-dual method [49] with our improved bisection method for solving the
dual problem presented in Sect. 4.2, and against the L!-penalty method from [38]. Table 3
shows the comparison of the runtimes for the obstacle ¢ := ¢;/50. Our method is more
than 10 x faster than primal-dual in terms of CPU time, while both algorithms have
similar iteration counts. The difference is that the PDE acceleration updates are explicit,
while the dual update for the primal—dual algorithm is implicit and involves solving a
nonlinear optimization problem. We note both algorithms converge to a surface that
looks to the eye similar to the minimal surface in about half of the iterations reported, and
the final iterations are used to resolve the accuracy to the desired tolerance. For the L!-
penalty method, we used parameters A = 100, u = 500, L = 2/dx?, and d¢ = 1/4L, which
gave the best performance over the parameters we tried, and we report both the inner
and outer iteration counts for completeness. Each inner iteration has similar complexity
to a PDE acceleration iteration. The L!-penalty method did not converge to our strict
stopping condition (62) for grids of size 256 x 256 or larger. (We stopped the experiment
at 18 min and 1 million iterations on the 256 x 256 grid.)

Our stopping condition (62) is standard in rigorous scientific computing and is simply
asking that all methods solve the same problem to the same accuracy. It is also common
to use the difference between subsequent iterates as a stopping condition; however, this
can have a different meaning for each algorithm and does not provide any guarantee
that the algorithms are solving the correct problem (e.g., one can reduce the time step to
encourage “faster” convergence). To be complete, we include in Table 4 a comparison of
PDE acceleration, primal—dual, and the L!-penalty method for the stopping condition

"t — 4|10 < Cdi?, (73)

for a constant C, which is the same condition used in [38]. We took C = 1/100, since for
any larger value of C, the L!-penalty method stopped at a surface that was clearly by eye

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page230f30 35

Table 4 Runtimes in the same setting as Table 3, except with the relaxed stopping
condition ||u"t! — u" ||~ < dx?/100

Mesh Obstacle ¢ := ¢7/50

Our method Primal—-dual [49] L' penalty [38]

Time [ter. Time [ter. Time Inner (outer) iter.
64 x 64 0.014 288 0.23 294 0.23 4969 (206)
128 x 128 0.1 618 24 684 294 18,228 (385)
256 x 256 0.9 1323 236 1556 509 70,177 (1221)
Complexity 15 0.55 1.67 0.6 1.95 0.96 (0.64)

In all other experiments, we use the stopping condition (62)

very far from the true minimal surface. We only computed the table up to a 256 x 256 grid,
since the L!-penalty method did not converge in a reasonable amount of time for larger
grids. We see that PDE acceleration and primal—dual have similar complexity, though
PDE acceleration is roughly ten times faster, and the L!-penalty method is an order of
magnitude slower.

Table 3 (and all future tables) also shows computational complexity, which is computed
as the exponent p > 0 for which the curve N?” most closely fits the CPU time or iteration
count, where N is the number of grid points used in the discretization. We see the com-
plexity of PDE acceleration is p & 1.55, which agrees with the discussion in Sect. 2.2 for 2D
problems. The primal—dual method has slightly worse complexity (»p ~ 1.65), and the L!
penalty method has complexity p & 2. We note that complexity for the primal-dual and
Ll—penalty methods are different than those reported in [49] and [38], respectively. The
reason for this is that [49] and [38] report complexity for the linearized minimal surface
problem, and in particular, do not report runtimes or complexity for nonlinear problems.
For the linearized minimal surface problem, the L!-penalty method is reported in [38]
to have nearly linear complexity in the number of grid points, which is faster than both
primal—dual and our PDE acceleration. Our experiments show that while the L!-penalty
method is very fast for linear problems, it is not well suited for nonlinear minimal surface
problems.

Let us explain briefly why the nonlinear minimal surface problem is more compu-
tationally complex to solve via L!'-penalty and primal-dual methods. The L!-penalty
method [38] for linear problems involves solving a linear Poisson equation at each outer
iteration, which can be done in linear time with multigrid methods, for example, while
for nonlinear problems the outer iteration involves solving a nonlinear minimal sur-
face problem, which is more expensive. Interestingly, the authors of [38] use Nesterov
acceleration to solve the nonlinear problem at each outer iteration. However, the use of
Nesterov acceleration does not employ our optimal damping parameter from Sect. 3, and
the momentum is reset at each outer iteration, which we find inhibits the acceleration
obtained from momentum methods. Regarding the primal-dual method [49], when solv-
ing the linearized problem one can use a handful of IRLS steps to solve the dual problem, as
described in [49]. However, for nonlinear problems the IRLS method fails to converge and
our new bisection method (see Sect. 4.2) is required, which requires approximately 30-50
iterations. This makes the dual problem more expensive to solve for nonlinear minimal
surface problems and explains the difference between computation time for linear and
nonlinear problems. To be clear, the IRLS method is unusable for nonlinear problems,

35 Page240f30

J. Calder, A. Yezzi Res Math Sci (2019) 6:35

[N OGO
os TN 0 e HTIIN
TN I
; I . AN
o | o ST
: T : o

a Obstacle 2 b Minimal surface for p2

Fig.4 Minimal surface for the obstacle ¢, computed with PDE acceleration on a 64 x 64 grid

Table 5 Runtimes in seconds and number of iterations for the PDE-accelerated solver,

primal-dual method [49], and L' penalty method [38] for solving the nonlinear minimal
surface obstacle problem with obstacle ¢,

Mesh Obstacle ¢ = ¢

Our method Primal-dual [49] 1" penalty [38]

Time [ter. Time [ter. Time Inner (outer) iter.
64 x 64 0.012 300 0.182 330 0.31 7065 (60)
128 x 128 0.138 704 1.82 780 34 19,712 (70)
256 x 256 1.08 1620 17.8 1720 398 58,788 (170)
512 x 512 10.2 3642 180 4320 551.1 199,323 (470)
1024 x 1024 95.1 8117 1880 9710 8401 660,908 (1030)
Complexity 161 0.59 1.66 061 1.84 0.82 (0.55)

since it returns complex numbers after a few iterations, so it does not even provide an

approximate solution to the problem.
The second obstacle we consider is

e2(5) = \(1 = Ix = PI2/0.09); + /(1 — [x — Q2/00025).,,

(74)

where P = (0.55, 0.5) and Q = (0.1, 0.5). Figure 4 shows the obstacle and minimal surface.
The runtimes for the PDE acceleration, primal—dual, and the L!-penalty method are given
in Table 5. We again see that PDE acceleration is approximately 10 x faster in terms of
CPU time, and the L!-penalty method is an order of magnitude slower.

5.2 Double obstacle with forcing

Here, we consider the double obstacle problem with forcing from [49] (originally from [39];
see also [4] for double obstacle problems). The nonlinear version of the problem is given

by

min{/ V14 |Vul2 —uvdx : u e Hy(2) and ¢ zuz(p}. (75)
o)

Scheme (61) is simple to modify for the double obstacle problem by setting u"*! =
max{min{v, ¥}, ¢} at each iteration. We test PDE acceleration on the elasto-plastic torsion
problem, originally from [39]. In this setting, $2 = [0, 1]2, g3(x) = —dist(x, 52), ¥3(x) =

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page250f30 35

Table 6 Runtimes in seconds for the PDE-accelerated solver compared to the primal-dual
method from [49] for the linear and nonlinear minimal surface double obstacle problem
with forcing (the elasto-plastic torsion problem)

Mesh Linear double obstacle problem Nonlinear double obstacle problem
Our method Primal-dual [49] Our method Primal—-dual [49]
Time Iter. Time Iter. Time Iter. Time Iter.
642 0.012 378 0.01 356 0.016 382 0.156 360
1282 0.1 835 0.086 814 0.133 862 1.59 810
2567 0.69 1807 0.785 1884 123 1937 15.2 1810
5122 5 3937 7.56 4092 1.9 4297 143 4050
10242 629 8459 81.7 9113 108 9409 1.540 9000
Comp. 1.52 0.56 1.62 0.58 1.6 0.58 1.65 0.58

0.2, u = 0 on 32, and the force v is given by

300, ifx €S :={lx1 —x3] <0.1andx; < 0.3},

v(x) = 1 —70e*2g(x), ifs ¢ Sandx; <1 —xy, (76)
15e*2g(x), ifs¢ Sandx; > 1 —xy,

where

6x1, if0<x; <1/6,
2(1 — 3x1), if1/6 <x < 1/3,

o) = 6(x; —1/3), if1/3 <x; <1/2, 77)
21— 3(x1 — 1/3)), if1/2 <x <2/3,
6(x1 — 2/3), if2/3 < x <5/6,

2(1 — 3(x; —2/3)), if5/6 <x <1

We then set ¢ := ¢3/10, ¥ = v¥3/10 and v := v3/10 to get similar results to [49] where
the linearization is studied. For comparison with [49], we also consider the linear double
obstacle problem

1
min{/ §|Vu|2—uvdx : ueH&(Q)andl/f > uz(p}. (78)
Q

We report the CPU runtimes and iteration counts for the PDE acceleration method
and the improved primal—dual method for both the linear and nonlinear double obstacle
problems in Table 6. We see that for the nonlinear problem, PDE acceleration is again
roughly 10 x faster than primal—dual, while only 2x faster for the linear obstacle problem.
The difference is that the dual update is explicit for linear problems, which leads to a
substantial acceleration. Figure 5 shows the computed membrane on a 64 x 64 grid, and
the double obstacle contact regions computed on a 512 x 512 grid. These agree well with
the results in [49, Fig. 5].

5.3 Stochastic homogenization with obstacles
We consider the stochastic obstacle problem

1
min {/ “JAG)Vul®> — fudx : u> goin.Q}, (79)
ueH (2) /2 2

where A(x) is sampled from a Z%-stationary probability measure with unit range depen-
dence. We consider here a random checkerboard, where we let (b(z)),.72 be independent

35 Page260f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

7555
50K
/f;;’ll'l'

,,:,'c,: "

(XK
’:{‘:’ X
X

A
X 5

X B
R

OSBRI
e
i

i

a Membrane (64 x 64 grid) b Double obstacle contact regions

Fig.5 Depiction of the computed membrane and contact regions for the double obstacle with forcing
example from [49]. The contact regions were computed ona 512 x 512 grid

Table 7 Runtimes for the PDE-accelerated solver on the stochastic homogenization
obstacle problem with damping parameters a = 2x, 67, 97

Damping a=2m a=6én a=9m
Checkerboard Mesh Time (s) Iter. Time (s) Iter. Time (s) Iter.
16 x 16 642 0.037 1665 0012 572 0012 569
32 x 32 1282 0315 3924 0.115 1340 0.12 1469
64 x 64 2562 335 8919 1.16 3087 134 3588
128 x 128 5122 312 20,224 991 6908 10.7 7482
256 x 256 10242 339 45,003 109 15,197 18 16,425
Complexity 1.65 0.59 1.64 0.59 1.65 0.6

random variables such that

and set A(x) = b(z) forx € z+[0,1)2. Wealso set f = 1. By the Dynkin formula [2, Ex. 2.3],
solutions of (79) converge almost surely to solutions of the homogenized problem

min {/ l|3Vu|2—udx:uzmnsz}, (80)
ueH (2) /2 2
ase& — 0. Experiments with this example (without the obstacle) are also presented in [1].
We ran some experiments using the PDE acceleration method for solving this stochas-
tic obstacle problem. Table 7 shows the runtimes for different values of the damping
parameter a. Figure 6 shows a random checkerboard, the solution of the stochastic obsta-
cle problem (79), and the solution of the homogenized problem (80). We mention that
knowledge of the effective (homogenized) equation (80) can help in selecting the optimal
damping parameter for the stochastic problem (79). Indeed, by (39) the optimal damping
for the homogenized equation (without the obstacle) is @ = 2+/37, which is larger than
the damping a = 27 we have been using in this paper so far. However, since the dis-
cussion in Sect. 2.3 does not consider the obstacle, the true optimal damping parameter
will depend on the smallest eigenvalue of the effective operator on the domain {u# > ¢},
which is initially unknown. Since this domain is strictly smaller than £2, monotonicity of
eigenvalues implies that the optimal damping is larger than our computed @ = 2+/37.
We find (see Table 7) that a = 67 is close to optimal for this problem.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 27 of30 35

"l"ol \

":'o ot " /I"‘.zf:““\ \
"'*w:‘.‘:f"v:o:o:wtn'o"\‘ i
RS
M I
T

’“ s 0 “
,0:""“"7:’:0::'
,' “ ‘M 0 "‘\’Ot\t“"

i)
"’ '4" .’:’o‘o‘o‘!,‘t :‘0‘:“\8‘\‘\‘\
”II "0 e '",',:‘ N a:\ :3‘ ‘\\“ ’&“
I;,,,, ., ::«o,, 00 \\ ‘\ “{}\\\\\
//; ‘:"w\\u. i
'I"'/// : o w“ ‘:““ ““ \\ W

I/,

b Solution of (79)

¢ Contours of solution of (79) d Contours of solution of (80)

Fig. 6 Solution and contours of the stochastic obstacle problem (79) and the effective equation (80)

6 Conclusion

We studied the recently introduced variational framework, called PDE acceleration, for
applying accelerated gradient descent (or momentum descent) to problems in the calculus
of variations. For a large class of convex optimization problems, the descent equations for
PDE acceleration correspond to a nonlinear damped wave equation, which can be solved
by a simple explicit forward Euler scheme. The acceleration is realized as a relaxation of the
CFL condition for a wave equation (dt ~ dx) compared to a diffusion equation (dt ~ dx?).
We proved convergence with a linear rate for this class of accelerated PDEs and applied the
method to minimal surface obstacle problems, including a double obstacle problem with
forcing and a stochastic homogenization problem with obstacle constraint. In every case,
PDE acceleration is faster than existing state-of-the-art methods for nonlinear minimal
surface problems.

We mention briefly some ideas for future work. First, we use the damping parameter
a = 2 throughout the whole paper, which is surely not optimal for every problem. We
can achieve faster convergence for many experiments in the paper by hand tuning the
damping. The difficulty in selecting the optimal damping is that it depends on the first
Dirichlet eigenvalue (in the linear case) on the free boundary domain {# > ¢}, which is a

35 Page280f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

priori unknown. A way to improve performance could be to compute the solution first on
a coarse grid, and then estimate the optimal damping from the computed free boundary
and use the optimal damping parameter when solving the equation on a finer mesh.

There are other natural ways to speed up convergence, such as considering a multigrid
approach, or varying the damping parameter over time. The damping parameter controls
the damping profile in the frequency domain; larger choices of the damping parameter
give preference to damping higher frequencies at the expense of leaving lower frequencies
underdamped. This is reminiscent of how the choice of grid resolution affects the damping
in multigrid methods, and a smart choice of a schedule for varying the damping parameter
may result in a significant speedup.

Finally, the methods here are not restricted to second-order equations and can be applied
almost directly to higher-order equations, such as the fourth-order PDEs that have proven
popular in image processing [37,45,47]. In this case, PDE acceleration will relax the very
stiff CFL condition (d¢ ~ dx*) for fourth-order equations to d¢ ~ dx?. It is also possible
to make other choices for the kinetic energy, which would lead to other flows that may be
of interest. (However, due to Ostrogradsky instability [43], the kinetic energy should only
contain first derivatives of # in time.) Problems in the calculus of variations arise in virtually
all fields of science and engineering and include problems like image segmentation and
noise removal [13,28], minimal surfaces [12], and materials science [6], among many
others. The results of this paper suggest that PDE acceleration can be a useful tool for
solving many of these other problems, and we intend to pursue such applications, and
others, in future work.

Author details
'School of Mathematics, University of Minnesota, Minneapolis, USA, ?School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA.

A Note on finite difference approximations to surface area
We give an example here to show that finite difference approximations to the surface area
of discontinuous functions are not, in general, consistent. Define ¢ : [0, 1]> — R by

1, if2x; —xp >0,

p(x) =

0, otherwise.
The surface area of the graph of ¢ is 1 + ‘/Tg, the quantity % being the length of the line
segment 2x; — xp = 0 contained in the box [0, 1]%. Consider an m x m grid with spacing
h = 1/m > 0, and discrete surface area

1 m—1 S
Smi=—3 D 1+ Vel (81)

ij=1
where
o (@i + b bj) — @(ih, jh))* | (p(hi, hj + h) — @(hi, hj))*
"= 3 + 5 :
h h
Suppose m is even. Then, there are exactly %m — 1 grid points for which |V<p,-,j|2 # 0.

Vo,

These are all the grid points (i, j) that intersect the boundary 2i — j = 0, and their two

northern neighbors (i, j + 1) and (i, j + 2). For all of these grid points, [V¢;;|? = hiz = m>.

Therefore,

1 1
S = W(m2 —3m+1)+ ﬁ(%m — DV1+ m2

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page290of30 35

RN
2
2.118. It is easy to check numerically, by computing S, via (81), that S}« = 2.4997.

Asm — oo,wehaveS,, — 1+ % = 2.5, which is not the correct surface area of 1 +

Pathological examples like this are well known in the finite-element community and are
similar to the famous Schwarz lantern [31].

Received: 7 March 2019 Accepted: 11 October 2019 Published online: 31 October 2019

References

1. Armstrong, S, Hannukainen, A, Kuusi, T., Mourrat, J.C.: An iterative method for elliptic problems with rapidly oscillating
coefficients. arXiv:1803.03551 (2018)

2. Armstrong, S, Kuusi, T, Mourrat, J.C: Quantitative stochastic homogenization and large-scale regularity.
arXiv:1705.05300 (2017)

3. Attouch, H, Goudou, X, Redont, P.: The heavy ball with friction method, I. The continuous dynamical system: global
exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system.
Commun. Contemp. Math. 2(01), 1-34 (2000)

4. Badea, L, Tai, X.C, Wang, J.. Convergence rate analysis of a multiplicative Schwarz method for variational inequalities.
SIAM J. Numer. Anal. 41(3), 1052-1073 (2003)

5. Béhr, M, Breul3, M., Wunderlich, R.: Fast explicit diffusion for long-time integration of parabolic problems. In: AIP
Conference Proceedings, vol. 1863, p. 410002. AIP Publishing (2017)

6. Ball, JM.: The calculus of variations and materials science. Q. Appl. Math. 56(4), 719-740 (1998)

7. Bardi, M., Capuzzo-Dolcetta, I: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations.
Springer, Berlin (2008)

8. Benyamin, M, Calder, J,, Sundaramoorthi, G,, Yezzi, A:: Accelerated variational PDEs for efficient solution of regularized
inversion problems. J. Math. Imaging Vis. (2019). https://doi.org/10.1007/5s10851-019-00910-2

9. Bottou, L. Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT'2010, pp.
177-186. Springer, Berlin (2010)

10. Braess, D, Carstensen, C, Hoppe, R.H.: Convergence analysis of a conforming adaptive finite element method for an
obstacle problem. Numer. Math. 107(3), 455-471 (2007)

11. Brezis, H, Sibony, M.: Méthodes d'approximation et d'itération pour les opérateurs monotones. Arch. Ration. Mech.
Anal. 28(1), 59-82 (1968)

12. Caffarelli, LA.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4-5), 383-402 (1998)

13. Chan, T.F, Vese, LA. Active contours without edges. IEEE Trans. Image Process. 10(2), 266-277 (2001)

14. Crandall, M.G,, Ishii, H., Lions, P.L: User's guide to viscosity solutions of second order partial differential equations. Bull.
Am. Math. Soc. 27(1), 1-67 (1992)

15. Evans, L. Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. AMS, Providence (2002)

16. Goudou, X., Munier, J.: The gradient and heavy ball with friction dynamical systems: the quasiconvex case. Math.
Program. 116(1-2), 173-191 (2009)

17. Grewenig, S.: FSI schemes: fast semi-iterative solvers for PDEs and optimisation methods. In: Pattern Recognition:
38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings, vol. 9796, p. 91.
Springer, Berlin (2016)

18. Hafner, D., Ochs, P., Weickert, J., Rei3el, M., Grewenig, S.: FSI schemes: fast semi-iterative solvers for PDEs and optimi-
sation methods. In: German Conference on Pattern Recognition, pp. 91-102. Springer, Berlin (2016)

19. Hintermdiller, M., Ito, K, Kunisch, K: The primal-dual active set strategy as a semismooth Newton method. SIAM J.
Optim. 13(3), 865-888 (2002)

20. Hintermuller, M., Kovtunenko, V.A, Kunisch, K: Obstacle problems with cohesion: a hemivariational inequality
approach and its efficient numerical solution. SIAM J. Optim. 21(2), 491-516 (2011)

21. Hoppe, RH.: Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24(5), 1046-1065 (1987)

22. Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2(04),
483-487 (1992)

23. LeVeque, RJ. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-
Dependent Problems, vol. 98. SIAM, Philadelphia (2007)

24. Lions, P.L, Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964-979
(1979)

25. Majava, K, Tai, X.C.: A level set method for solving free boundary problems associated with obstacles. Int. J. Numer.
Anal. Model 1(2), 157-171 (2004)

26. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Math. DokI.
27,372-376(1983)

27. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys.
4(5), 1-17 (1964)

28. Rudin, LI, Osher, S, Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259-268
(1992)

29. Schaeffer, H., Hou, T.Y.: An accelerated method for nonlinear elliptic pde. J. Sci. Comput. 69(2), 556-580 (2016)

30. Scholz, R:: Numerical solution of the obstacle problem by the penalty method. Computing 32(4), 297-306 (1984)

31. Schwarz, H.A. Sur une définition erronée de l'aire d'une surface courbe. Gesammelte Math. Abh. 1,309-311 (1890)

32, Su,W, Boyd, S, Candes, E.: A differential equation for modeling Nesterov's accelerated gradient method: Theory and
insights. In: Advances in Neural Information Processing Systems 27 (NIPS 2014), pp. 2510-2518 (2014)

http://arxiv.org/abs/1803.03551
http://arxiv.org/abs/1705.05300
https://doi.org/10.1007/s10851-019-00910-2

35 Page300f30 J. Calder, A. Yezzi Res Math Sci (2019) 6:35

33. Sundaramoorthi, G, Yezzi, A.: Accelerated optimization in the PDE framework: formulations for the manifold of
diffeomorphisms. arXiv:1804.02307 (2018)

34, Sundaramoorthi, G, Yezzi, A.: Variational PDE's for acceleration on manifolds and applications to diffeomorphisms. In:
Advances in Neural Information Processing Systems 31 (NIPS 2018) (2018)

35. Sutskever, |, Martens, J,, Dahl, G, Hinton, G.: On the importance of initialization and momentum in deep learning. In:
International Conference on Machine Learning, pp. 1139-1147 (2013)

36. Tai, X.C: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities.
Numer. Math. 93(4), 755-786 (2003)

37. Tai, X.C, Hahn, J, Chung, G.J.: A fast algorithm for Euler's elastica model using augmented Lagrangian method. SIAM
J.Imaging Sci. 4(1), 313-344 (2011)

38. Tran, G, Schaeffer, H.,, Feldman, W.M,, Osher, S.J.: An L1 penalty method for general obstacle problems. SIAM J. Appl.
Math. 75(4), 1424-1444 (2015)

39. Wang, F., Cheng, X.L.: An algorithm for solving the double obstacle problems. Appl. Math. Comput. 201(1-2), 221-228
(2008)

40. Ward, C, Whitaker, N., Kevrekidis, I., Kevrekidis, P.: A toolkit for steady states of nonlinear wave equations: continuous
time Nesterov and exponential time differencing schemes. arXiv:1710.05047 (2017)

41. Weickert, J,, Grewenig, S., Schroers, C,, Bruhn, A.: Cyclic schemes for PDE-based image analysis. Int. J. Comput. Vis.
118(3), 275-299 (2016)

42. Wibisono, A, Wilson, A.C, Jordan, M.I: A variational perspective on accelerated methods in optimization. Proc. Natl.
Acad. Sci. 113(47), E7351-E7358 (2016)

43, Woodard, R.P.: The theorem of Ostrogradsky. arXiv:1506.02210 (2015)

44. Yezzi, A, Sundaramoorthi, G.: Accelerated optimization in the PDE framework: formulations for the active contour
case. arxXiv:1711.09867 (2017)

45. You, Y.L, Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10),
1723-1730 (2000)

46. Zhang, Y.: Multilevel projection algorithm for solving obstacle problems. Comput. Math. Appl. 41(12), 1505-1513
(2001)

47. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imaging Sci. 5(1), 1-32 (2012)

48. Z0sso, D, Osting, B.: A minimal surface criterion for graph partitioning. Inverse Probl. Imaging 10(4), 1149-1180 (2016)

49, Zosso, D, Osting, B, Xia, M\M,, Osher, S.J.: An efficient primal-dual method for the obstacle problem. J. Sci. Comput.
73(1),416-437 (2017)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1804.02307
http://arxiv.org/abs/1710.05047
http://arxiv.org/abs/1506.02210
http://arxiv.org/abs/1711.09867

	PDE acceleration: a convergence rate analysis and applications to obstacle problems
	Abstract
	1 Introduction
	1.1 Outline

	2 PDE acceleration framework
	2.1 Convergence rate
	2.2 Computational complexity
	2.3 Optimal damping for linear problems

	3 Dirichlet problem
	3.1 Runtime comparisons
	3.2 Initial condition
	3.3 Connection to primal–dual methods

	4 Obstacle problems
	4.1 PDE acceleration
	4.2 Primal–dual algorithms

	5 Experiments
	5.1 Minimal surface obstacle problems
	5.2 Double obstacle with forcing
	5.3 Stochastic homogenization with obstacles

	6 Conclusion
	A Note on finite difference approximations to surface area
	References

