
J. Calder, A. Yezzi Res Math Sci (2019) 6:35
https://doi.org/10.1007/s40687-019-0197-x

RESEARCH

PDE acceleration: a convergence rate
analysis and applications to obstacle
problems
Jeff Calder1* and Anthony Yezzi2

*Correspondence:
jcalder@umn.edu
1School of Mathematics,
University of Minnesota,
Minneapolis, USA
Full list of author information is
available at the end of the article
Jeff Calder was supported of
NSF-DMS Grant 1713691.
Anthony Yezzi was supported by
NSF-CCF Grant 1526848 and ARO
W911NF-18-1-0281.
Source code: https://github.
com/jwcalder/MinimalSurfaces

Abstract

This paper provides a rigorous convergence rate and complexity analysis for a recently
introduced framework, called PDE acceleration, for solving problems in the calculus of
variations and explores applications to obstacle problems. PDE acceleration grew out of
a variational interpretation of momentummethods, such as Nesterov’s accelerated
gradient method and Polyak’s heavy ball method, that views acceleration methods as
equations of motion for a generalized Lagrangian action. Its application to convex
variational problems yields equations of motion in the form of a damped nonlinear
wave equation rather than nonlinear diffusion arising from gradient descent. These
accelerated PDEs can be efficiently solved with simple explicit finite difference schemes
where acceleration is realized by an improvement in the CFL condition from dt ∼ dx2

for diffusion equations to dt ∼ dx for wave equations. In this paper, we prove a linear
convergence rate for PDE acceleration for strongly convex problems, provide a
complexity analysis of the discrete scheme, and show how to optimally select the
damping parameter for linear problems. We then apply PDE acceleration to solve
minimal surface obstacle problems, including double obstacles with forcing, and
stochastic homogenization problems with obstacles, obtaining state-of-the-art
computational results.

Keywords: Accelerated gradient descent, Nesterov acceleration, Primal–dual
methods, Minimal surfaces, Stochastic homogenization, Nonlinear wave equations

Mathematics Subject Classification: 65M06, 35Q93, 65K10, 49K20

1 Introduction
Optimization is one of the most prominent computational problems in science and engi-
neering. For large-scale problems, which are common in machine learning, second-order
methods, such as Newton’s method, are intractable, and first-order optimization algo-
rithms are themethod of choice [9]. One of the oldest first-order algorithms for optimiza-
tion is gradient descent

xk+1 = xk − α∇f (xk). (1)

Gradient descent converges reliably for convex problems, and versions of gradient descent
(such as stochastic gradient descent) are state of the art in modern large-scale machine
learning problems [9].

123

© Springer Nature Switzerland AG 2019.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-019-0197-x&domain=pdf
https://github.com/jwcalder/MinimalSurfaces
https://github.com/jwcalder/MinimalSurfaces

35 Page 2 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

While gradient descent is a reliable first-order method, for many problems it is very
slow to converge. This has led to the development of accelerated versions of gradient
descent that incorporate some form of momentum. One example is Polyak’s heavy ball
method [27]

xk+1 = xk − α∇f (xk) + β(xk − xk−1). (2)

The term β(xk − xk−1) is referred to as momentum and acts to accelerate convergence.
Polyak’s heavy ball method is simply a discretization of the second-order ODE

ẍ + aẋ = −∇f (x), (3)

which corresponds to the equations of motion for a body in a potential field. This contin-
uum version is also called heavy ball with friction and was studied by Attouch, Goudou,
and Redont [3] and also by Goudou and Munier [16]. Another example of a momentum
descent algorithm is Nesterov’s famous accelerated gradient descent [26], one form of
which is

xk+1 = yk − α∇f (yk), yk+1 = xk+1 + k − 1
k + 2

(xk+1 − xk). (4)

Nesterov’s accelerated gradient descent contains an initial step of gradient descent and
then a second momentum step that averages the new update with the previous iterate.
Nesterov [26] proved that the method converges (for strongly convex problems) at a rate
of O(1/t2) after t steps, which is optimal for first-order methods.
Many variants of Nesterov acceleration have been proposed over the years, and the

methods are very popular in machine learning [35,42], due to both the acceleration in
convex problems and the ability to avoid local minima in nonconvex problems. Recent
work has begun to shed light on the fundamental nature of acceleration in optimization.
Su, Boyd, and Candes [32] showed that Nesterov acceleration is a discretization of the
second-order ODE

ẍ + 3
t
ẋ = −∇f (x). (5)

ThisODEhas been termed continuous-timeNesterov [40]. Since the friction coefficient 3/t
vanishes as t → ∞, many implementations of the algorithm involve restarting, whereby
time is reset to t = 0 whenever the system appears underdamped [40].Wibisono,Wilson,
and Jordan [42] went further, showing that all Nesterov-type accelerated descentmethods
can be realized as discretizations of equations of motion in a generalized Lagrangian
sense. In doing so, they offer a highly insightful and useful variational characterization of
accelerated gradient descent.
Following their Lagrangian formulation, Yezzi and Sundaramoorthi [44] developed an

accelerated PDE framework for solving active contour models in image segmentation,
which are notorious for local minima. In a parallel work, Sundaramoorthi and Yezzi [33]
(see also [34]) applied the same ideas to flows of diffeomorphisms, which have applications
in computer vision, such as optical flow problems. This PDE acceleration framework was
further developed by Benyamin, Calder, Sundaramoorthi, and Yezzi [8] in the context of
calculus of variations problems defined for functions onRn, including stability analysis for
various explicit and semi-implicit discretization schemes, where they illustrated several
examples in image processing such as total variation (TV) and Beltrami regularization.
They drew special attention to a general class of regularized optimization problems where
the accelerated PDE takes the form a damped nonlinear wave equation (generalizing (3)

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 3 of 30 35

and (5)), and the acceleration is realized as an improvement in the CFL condition from
dt ∼ dx2 for diffusion equations (or standard gradient descent), to dt ∼ dx for wave
equations. We also mention that there have been some recent approaches to acceler-
ation in image processing, which involve solving PDEs arising from variational prob-
lems [5,17,18,41]. Since these methods are not derived from a variational (Lagrangian)
perspective, the methods do not descend on an energy and lack convergence guarantees
and convergence rates. Finally, we mention an interesting recent work [29] that con-
siders acceleration-type schemes for nonlinear elliptic equations that do not arise from
variational formulations. The authors of [29] formulate their schemes to blend together
acceleration and gradient descent in such a way that the iterates satisfy a comparison
principle, which is then used to prove convergence to steady state. While the application
is not variational, the authors observe acceleration similar to the variational setting.
This paper has several contributions. First, we analyze PDE acceleration and prove

convergence with a linear rate for strongly convex problems. Using the convergence rate,
we show that the computational complexity of PDE acceleration is O(mn+1) for solving a
PDE in dimension n on a grid with m points along each coordinate axis (in other words,
O(N (n+1)/n) where N = mn is the number of grid points). This is the same complexity
as the conjugate gradient method for linear problems [23]. Second, we provide a linear
analysis of PDE acceleration and show how to optimally select the damping coefficient via
the solution of an eigenvalue problem. As a toy example, we study the Dirichlet problem
and show that PDE acceleration compares favorably to preconditioned conjugate gradient
and MINRES methods [23]. In contrast to other indirect methods, the PDE acceleration
method is very simple to implement with explicit or semi-implicit Euler discretizations
of the wave equation (discussed extensively in [8]) and extends directly to nonlinear
problems.
Finally, we apply the PDE acceleration method to efficiently solve minimal surface

obstacle problems [12,39,49]. Solving obstacle problems requires resolving a free bound-
ary, which makes efficient solutions challenging to obtain. Many algorithms have been
proposed for solving classes of obstacle problems; a short list includes penalty meth-
ods [11,30,38], splitting and projection algorithms [24,46], free boundary formula-
tions [10,22,25], Lagrange multipliers [19,20], domain decomposition [4], and multigrid
methods [21,36]. Of particular interest is a recent primal–dual approach to obstacle prob-
lem proposed by Zosso et al. [49], which has some flavor of a momentum-based descent
algorithm. The authors of [49] show that their primal–dual approach for obstacle prob-
lems is significantly faster than existing approaches. As an independent contribution, we
make an improvement to the primal–dual algorithm, allowing it to work for nonlinear
minimal surface problems, and we compare the method to PDE acceleration. We find
PDE acceleration is approximately 10× faster in terms of computation time in C code for
most experiments, with the difference attributed to the non-explicit dual update in [49].
We also compare against the L1-penalty method of Tran et al. [38], which we find is
significantly slower than both primal–dual and PDE acceleration for nonlinear obstacle
problems.
We mention that, at the discrete level, PDE acceleration resembles other momentum-

based algorithms, such as the heavy ball method or Nesterov acceleration [26,27]. The
results in this paper show that there are significant advantages to formulating a general
continuum PDE acceleration framework. First, by performing the convergence rate anal-

35 Page 4 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

ysis at the PDE level, we get a mesh-free convergence rate and the number of iterations to
converge depends solely on the CFL time step restriction. Second, the parameters in the
model—the friction coefficient and time step—can now be chosen optimally from PDE
considerations and donot requiremanual fine-tuning. In particular, the optimal choice for
the damping/friction coefficient can be derived from an eigenvalue problem (see Sect. 2.3),
while the largest stable time step is determined from the CFL condition [23].

1.1 Outline

This paper is organized as follows. In Sect. 2, we review (for the case of functions defined
over Rn) and slightly generalize the PDE acceleration framework, prove a linear conver-
gence rate, and analyze the complexity of PDE acceleration. In particular, in Sect. 2.3 we
show how to select the damping coefficient optimally for linear problems. In Sect. 3, we
study the Dirichlet problem as a toy example and explore connections to primal–dual
algorithms. In Sect. 4, we show how to apply PDE acceleration to nonlinear obstacle prob-
lems, and describe our improved version of the primal–dual method from [49]. Finally, in
Sect. 5 we give results of numerical simulations comparing PDE acceleration to primal–
dual and L1-penalty methods for several different obstacle problems, including double
obstacle problems with forcing and stochastic homogenization problems with obstacles.

2 PDE acceleration framework
We review here the PDE acceleration framework for solving unconstrained problems in
the calculus of variations for functions over Rn, as originally presented in [8]. Consider
the general unconstrained calculus of variations problem

min
u∈A E[u] :=

∫
Ω

L(x, u,∇u) dx, (6)

where Ω ⊂ R
n and A = g + H1

0 (Ω) or A = H1(Ω). We write L = L(x, z, p) and
write ∇xL, Lz , and ∇pL for the partial derivatives of L in each variable. There is no loss
of generality in considering the unconstrained problem since we will handle constraints
(such as obstacles) later with an L2-penalty term (see Sect. 4.1). We define the generalized
action integral

J [u] =
∫ t1

t0
k(t) (K [u] − b(t)E[u]) dt, (7)

where u = u(x, t), k(t), b(t) are time-dependent weights and K [u] is the analog of kinetic
energy, which we take to be

K [u] = 1
2

∫
Ω

ρ(x, u,∇u)u2t dx, (8)

where ρ : Ω × R × R
n → R+ is a mass density that may depend on u and ∇u. The

action J is a Lagrangian action with kinetic energy K and potential energy E. We note that
the time-dependent weight k(t) is necessary to ensure dissipation of energy (in particular
dissipation of the objective E; see Lemma 1). Regarding the mass density, often one may
take ρ = ρ(x) or ρ = 1. The more general setting may be useful, for example, in level
set problems like image segmentation, where the object of interest is really the zero
level set of u, and the kinetic energy of the zero level set can be obtained by selecting
ρ(x, z, p) = δ(z)/|p|.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 5 of 30 35

The descent equations for the PDE accelerationmethod are exactly the Euler–Lagrange
equations for J , i.e., the equations of motion, which we derive now. Let us write

∇E[u] := Lz(x, u,∇u) − div
(∇pL(x, u,∇u)

)
(9)

and

∇K [u] := 1
2
u2t ρz(x, u,∇u) − 1

2
div

(
u2t ∇pρ(x, u,∇u)

)
(10)

for the Euler–Lagrange equation for E and for K . We recall that ∇E can be interpreted as
the gradient of E in the sense that

d
dε

∣∣∣
ε=0

E[u + εv] =
∫

Ω

∇E[u] v dx (11)

for all v smooth with compact support in Ω . Using this identity, a variation on J yields

d
dε

∣∣∣
ε=0

J [u + εv] =
∫ t1

t0

∫
Ω

k(t)ρutvt + k(t)∇K [u] v − k(t)b(t)∇E[u] v dx,

=
∫ t1

t0

∫
Ω

(
− d
dt

(k(t)ρut) + k(t)∇K [u] − k(t)b(t)∇E[u]
)
v dx,

for v ∈ C∞
c (Ω × (t0, t1)). Therefore, the equations of motion are

d
dt

(ρut) + a(t)ρut = ∇K [u] − b(t)∇E[u], (12)

where a(t) = k ′(t)/k(t). The nonlinear wave equation (12) is the descent equation for PDE
acceleration, and the minimizer of E is obtained by solving the equation for some initial
conditions u(x, 0) and ut (x, 0), and sending t → ∞. The boundary condition depends on
the choice ofA—we have either u = g or ∇pL ·n = 0 on ∂Ω , where n is the unit outward
normal to ∂Ω . Of course, we can also consider problemswithmixed boundary conditions.
Notice in the equations of motion (12) the gradient −∇E is now a forcing term in a

damped wave equation, so it contributes to a change in velocity at each time step. The
reader should contrast this with gradient descent

ut = −∇E[u],

where the gradient is exactly the velocity term, which can change instantaneously.
In special cases, we can recover continuum versions of Polyak’s heavy ball method and

Nesterov acceleration. For example, if we take ρ = 1 and a(t) and b(t) to be constants,
we get the PDE continuum version of the heavy ball with friction (3), and for a(t) = 3/t,
ρ = 1, and b(t) = 1, we get the continuum version of Nesterov acceleration.

2.1 Convergence rate

We prove in this section a convergence rate for the solution u of the equations of
motion (12) to the steady-state solution u∗ of

∇E[u∗] = 0 in Ω , (13)

subject to the Dirichlet condition u∗ = g or the Neumann-type condition ∇pL · n = 0
on ∂Ω . We assume throughout this section that Ω is open and bounded with Lipschitz
boundary ∂Ω .
We first establish monotonicity of total energy.

35 Page 6 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

Lemma 1 (Energy monotonicity) Assume a(t), b(t) ≥ 0 and let u satisfy (12). Suppose
either u(x, t) = g(x) or ∇pL(x, u,∇u) · n = 0 = ∇pρ(x, u,∇u) · n on ∂Ω . Then

d
dt

(K [u] + b(t)E[u]) = −2a(t)K [u] + b′(t)E[u]. (14)

Proof First note that

d
dt

E[u] = d
dε

∣∣∣
ε=0

E[u + εut] =
∫

Ω

∇E[u]ut dx +
∫

∂Ω

ut∇pL(x, u,∇u) · n dS.

Due to the boundary condition, either ut = 0 or ∇pL(x, u,∇u) · n = 0 on ∂Ω . Therefore

d
dt

E[u] =
∫

Ω

∇E[u]ut dx. (15)

Similarly, we have

d
dt

K [u] =
∫

Ω

ρututt + ∇K [u]ut dx. (16)

Using the equations of motion (12), we also have

d
dt

K [u] = 1
2

∫
Ω

ρututt + ut
d
dt

(ρut) dx

= 1
2

∫
Ω

ρututt + ∇K [u]ut dx − 1
2

∫
Ω

b(t)∇E[u]ut + a(t)ρu2t dx

= 1
2
d
dt

K [u] − 1
2
b(t)

d
dt

E[u] − a(t)K [u],

where we used (15) and (16) in the last line. It follows that

d
dt

K [u] + b(t)
d
dt

E[u] = −2a(t)K [u].

The proof is completed by adding b′(t)E[u] to both sides. ��

Remark 1 If b′(t) ≤ 0 andE[u] ≥ 0, then the total energyK [u]+b(t)E[u] ismonotonically
decreasing at a rate controlled by the damping coefficient a(t). In particular, we have

d
dt

(K [u] + b(t)E[u]) ≤ −2a(t)K [u]. (17)

We now prove a linear convergence rate in the special case that ρ, a, and b are constants,
E has the form

E[u] =
∫

Ω

Φ(x,∇u) + Ψ (x, u) dx, (18)

andu andu∗ satisfy theDirichlet conditionu = g = u∗ on ∂Ω .Weassume thatΦ ,Ψ ∈ C2,
Φ = Φ(x, p) is convex in p, Ψ = Ψ (x, z) is convex in z, and for all p ∈ R

n, x ∈ Ω , and
z ∈ R

θ I ≤ ∇2
pΦ(x, p) ≤ θ−1I (19)

and

Ψzz(x, z) ≤ μ (20)

for some θ ,μ > 0.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 7 of 30 35

Remark 2 If there existsM > 0 such that |∇u∗| ≤ M, where u∗ solves (13), then we can
relax (19) to the condition that ∇2

pΦ > 0 (that is, Φ is strictly convex in p). Indeed, define

Φ(x, p) := Φ(x, p)ϕ(p) + K max{|p| − M, 0}2, (21)

where K > 0 and ϕ ∈ C∞ is a bump function with 0 ≤ ϕ ≤ 1, ϕ(p) = 1 for |p| ≤ 2M, and
ϕ(p) = 0 for |p| ≥ 4M. Clearly, Φ(x, p) satisfies (19) for some θ > 0 when |p| ≥ 4M, and
by choosing K large enough, the strict convexity of Φ and compactness of Ω × B(0, 2M)
allow us to extend condition (19) to all (x, p) ∈ Ω × R

n. Now let E be the energy in (18)
with Φ in place of Φ . Since |∇u∗| ≤ M and Φ(x, p) = Φ(x, p) for all |p| ≤ M, we see
that ∇E(u∗) = 0; that is, u∗ is the unique solution of ∇E = 0 as well. We can use E in
place of E in PDE acceleration to ensure (19) holds while obtaining the same steady-state
solution (though the dynamics can be different). This is mainly a theoretical concern, and
not something we do in practical applications.
We note that for minimal surface obstacle problems, the gradients of solutions are

Hölder continuous (e.g., u∗ ∈ C1,α) [12], and hence, we can always find such anM.

From now on, we write ∇2 in place of ∇2
p .

We now prove the following linear convergence rate.

Theorem 1 (Convergence rate)Let u satisfy (12). Assume (18), (19), and (20) hold, u = u∗

on ∂Ω , a(t) = a > 0 is constant and b(t) ≡ 1 and ρ ≡ 1. Then, there exists C > 0
depending on a, θ , u(x, 0), and ut (x, 0) such that

‖u − u∗‖2H1(Ω) ≤ C exp (−βt) , (22)

where

β = a
√
c2 + 4λθ − ac
2
√

λθ + a
with c = a + μ

a
+ 2λ

a
(θ−1 − θ), (23)

and λ > 0 is the Poincaré constant for Ω .

Proof We use energy methods. Since u solves (12), we have

utt + aut + ∇E[u] − ∇E[u∗] = 0.

Multiply both sides by w := u − u∗ and integrate over Ω to find∫
Ω

wttw + awtw + (∇E[u] − ∇E[u∗])(u − u∗) dx = 0.

Integrating by parts, we have
∫

Ω

(∇E[u] − ∇E[u∗])(u − u∗) dx

=
∫

Ω

(∇Φ(∇u) − ∇Φ(∇u∗)) · (∇u − ∇u∗) + (Ψz(x, u) − Ψz(x, u∗))(u − u∗) dx.

Since Ψ is convex in z and Φ is strongly convex (by (19)) we deduce∫
Ω

(∇E[u] − ∇E[u∗])(u − u∗) dx ≥ θ

∫
Ω

|∇w|2 dx.

It follows that∫
Ω

wttw + awtw + θ |∇w|2 dx ≤ 0,

35 Page 8 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

and so
d
dt

∫
Ω

1
2
a2w2 + awwt dx ≤

∫
Ω

aw2
t − aθ |∇w|2 dx = 2aK [w] − aθ

∫
Ω

|∇w|2 dx.
(24)

This leads us to define the energy

e(t) :=
∫

Ω

1
2
a2w2 + awwt dx + 2(K [u] + E[u] − E[u∗]). (25)

Note first that

e(t) =
∫

Ω

1
2
(aw + wt)2 + 1

2
w2
t dx + 2(E[u] − E[u∗]) ≥ 0,

so e is a valid energy. Using Lemma 1 and (24), we have

ė(t) ≤ 2aK [w] − 4aK [w] − aθ
∫

Ω

|∇w|2 dx = −a
∫

Ω

θ |∇w|2 + w2
t dx. (26)

Now, we compute

E[u] − E[u∗] =
∫ 1

0

d
dt

E[u∗ + t(u − u∗)] dt

=
∫ 1

0

∫ s

0

d2

dt2
E[u∗ + t(u − u∗)] dt ds

=
∫ 1

0

∫ s

0

∫
Ω

n∑
i,j=1

Φpipj (∇u∗ + t(∇u − ∇u∗))(uxi − u∗
xi)(uxj − u∗

xj)

+ Ψzz(x, u∗ + t(u − u∗))(u − u∗)2 dx dt ds

≤
∫ 1

0

∫ s

0

∫
Ω

θ−1|∇w|2 + μw2 dx dt ds

= 1
2

∫
Ω

θ−1|∇w|2 + μw2 dx,

where the last inequality used (19). Combining this with the Poincaré inequality
λ

∫
Ω
w2 dx ≤ ∫

Ω
|∇w|2 dx, we have

e(t) ≤ 1
2

∫
Ω

(a2 + aε + μ)w2 + aε−1w2
t dx + 2(K [u] + E[u] − E[u∗])

≤
∫

Ω

[1
2 (a

2 + aε + μ)λ−1 + θ−1] |∇w|2 + 1
2

(
2 + aε−1)w2

t dx.

Now, there is a unique value of ε > 0 such that

1
2 (a

2 + aε + μ)λ−1 + θ−1 = θ

2
(2 + aε−1). (27)

Selecting this value for ε, we have by (26) that

e(t) ≤ 1
2
(2 + aε−1)

∫
Ω

θ |∇w|2 + w2
t dx ≤ −

(
1
a

+ 1
2ε

)
ė(t).

Therefore,

ė(t) ≤ −2aε
2ε + a

e(t),

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 9 of 30 35

from which it follows that

e(t) ≤ e(0) exp
(−2aε
2ε + a

t
)
. (28)

All that remains is to compute ε. Note that (27) is equivalent to

ε2 +
(
a + μ

a
+ 2λ

a
(θ−1 − θ)

)
ε − θλ = 0,

and hence

2ε =
√
c2 + 4λθ − c ≤ 2

√
λθ ,

where

c = a + μ

a
+ 2λ

a
(θ−1 − θ).

��

Remark 3 The energy estimates obtained in the proof of Theorem 1 establish uniqueness
of solutions to (12) with values in H1(Ω) and Dirichlet boundary conditions. We expect
that existence of solutions follows from combining these energy estimates with a standard
Galerkin approximation [15]. Such a result is outside the scope of this paper, and we leave
it to future work.

Remark 4 Instead of formulating PDE acceleration at the continuum level and then dis-
cretizing the descent equations to compute the solution, it is possible to formulate PDE
acceleration entirely in the discrete-space setting, by starting with a discretization of E[u].
Then, the resulting descent equations become a discretization of (12) that is discrete in
space and continuous in time, provided the discrete divergence is defined as the exact
numerical adjoint of the discrete gradient (e.g., forward differences for the gradient and
backward differences for the divergence, as we use in Sect. 5). We expect the proof of
Theorem 1 to extend, with minor modifications, in this situation.

2.2 Computational complexity

Theorem 1 allows us to analyze the computational complexity of PDE acceleration. Sup-
pose our domain is the unit box [0, 1]2 and we discretize the problem on an m × m grid
with uniform spacing dx = 1/m. Since we can discretize the wave equation (12) with
a time step dt = O(dx) = O(1/m) while satisfying the CFL condition, the number of
iterations required to converge to within a tolerance of ε > 0 in the H1 norm satisfies

k ≤ cβ−1m log(Cε−1). (29)

Using an explicit time stepping scheme, each iteration has complexity O(m2); hence, the
computational complexity for 2D problems is

2D complexity = O(β−1m3 log(ε−1)). (30)

A similar computation for 3D problems on am × m × m grid yields a complexity of

3D complexity = O(β−1m4 log(ε−1)). (31)

If we write the complexity in terms of the number of unknowns, which is N = m2 in
2D and N = m3 in 3D, then the complexity is O(N 3/2) for 2D problems and O(N 4/3)

35 Page 10 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

for 3D problems. For linear problems, this complexity is similar to conjugate gradient
methods [23].
We remark that the discussion above does not consider numerical discretization errors

that can accumulate over iterations, and should be viewed as a heuristic to motivate the
convergence rate results we present in Sect. 5. However, we can easily do a rough analysis
of the discretization errors. If we discretize the wave equation with a first order in time
and second order in space discretization, then the numerical errors will accumulate to
O(kdx3) after k iterations, provided the solution is smooth. Combining this with (22) from
Theorem 1, we have

‖ukdx,dt − u∗‖2L2(Ω) ≤ C
(
exp (−βkdt) + k2dx6

)
,

where ukdx,dt denotes the numerical solution on a grid with spacing (dx, dt) after k steps,
extended to Ω in any natural way (e.g., say, piecewise constant). Setting exp (−βkdt) =
dx6 and using the stability condition dt = c dx, we find that

‖ukdx,dt − u∗‖L2(Ω) ≤ Cβ−1dx2 log(m), (32)

after k = O(β−1m log(m)) iterations, where we recall m = 1/dx. We can compare this
to (29), which arrives at a similar estimate for the number of iterations k without consid-
ering discretization errors. We also point out that (32) is a convergence rate to the true
solution u∗ of the continuum problem, and not a convergence rate to the solution of a dis-
cretized energy as one would normally see in convergence rates for discrete optimization
problems.

2.3 Optimal damping for linear problems

While Theorem 1 provides a convergence rate for the PDE acceleration method, it does
not indicate how to optimally select the damping parameter a to achieve the optimal
rate. Here, we consider the selection of a for linear problems. For nonlinear problems, we
propose to linearize and apply the analysis described below.
Let L be a uniformly elliptic second-order partial differential operator in divergence

form, that is,

Lu = −
n∑

i,j=1
(aijuxi)xj , (33)

where A(x) := (aij(x))ij ∈ C∞(Ω), and there exists θ > 0 such that A(x) ≥ θ I for all x.
We consider the PDE acceleration method for solving the Dirichlet problem{

Lu∗ + cu∗ = f in Ω ,

u∗ = g on ∂Ω ,
(34)

where c ≥ 0. The equations of motion with constant a(t) = a and b(t) = b are⎧⎪⎪⎨
⎪⎪⎩

utt + aut + bLu + bcu = f in Ω × (0,∞),

u = g on ∂Ω × (0,∞),

u = u0 on Ω × {t = 0}.
(35)

Let w(x, t) = u(x, t) − u∗(x). Then, w satisfies⎧⎪⎪⎨
⎪⎪⎩

wtt + awt + bLw + bcw = 0 in Ω × (0,∞),

w = 0 on ∂Ω × (0,∞),

w = u0 on Ω × {t = 0}.
(36)

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 11 of 30 35

We can expand the solution w in a Fourier series

w(x, t) =
∞∑
k=1

dk (t)vk , (37)

where v1, v2, . . . is an orthonormal basis for L2(Ω) consisting of Dirichlet eigenfunctions
of L with corresponding eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .
That is, the function vk (x) satisfies{

Lvk = λkvk in Ω

vk = 0 on ∂Ω .
(38)

Substituting (37) into (36), we find that

d′′
k (t) + ad′

k (t) + b(λk + c)dk (t) = 0.

The general solution is

dk (t) = Aerk,1t + Berk,2t ,

where

rk,1 = −a
2

+ 1
2
√
a2 − 4b(λk + c) and rk,2 = −a

2
− 1

2
√
a2 − 4b(λk + c).

Hence, the optimal decay rate is of the form e−at/2 provided that

a2 − 4b(λk + c) ≤ 0 for all k ≥ 1.

This leads to the optimal choice for the damping coefficient

a = 2
√
b(λ1 + c). (39)

With this choice of damping, we have the convergence rate

|u(x, t) − u∗(x)| ≤ C exp
(
−

√
b(λ1 + c) t

)
, (40)

for some constant C > 0 depending on the initial condition u0.
We note that when L is degenerate, so λ1 = 0, the convergence rate is

|u(x, t) − u∗(x)| ≤ C exp
(
−√

bc t
)
, (41)

with the optimal choice a = 2
√
bc. In particular, if c = 0 then the method does not

converge, since there are undamped Fourier modes.

3 Dirichlet problem
As an illustrative example, we consider the Dirichlet problem

min
{
1
2

∫
Ω

|∇u|2 dx : u ∈ H1(Ω) and u = g on ∂Ω

}
. (42)

Gradient descent corresponds to solving the heat equation⎧⎪⎪⎨
⎪⎪⎩

ut − Δu = 0 in Ω × (0,∞),

u = g on ∂Ω × (0,∞),

u = u0 on Ω × {t = 0},
(43)

35 Page 12 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

while PDE acceleration corresponds to solving the damped wave equation⎧⎪⎪⎨
⎪⎪⎩

utt + aut − bΔu = 0 in Ω × (0,∞),

u = g on ∂Ω × (0,∞),

u = u0 on Ω × {t = 0}.
(44)

For concreteness, we consider the domainΩ := [0, 1]2. Here, the first Dirichlet eigenvalue
is λ1 = π2, and hence the optimal choice of the damping coefficient from (39) is

a = 2π
√
b.

With this choice of a, the accelerated PDE method converges to the solution of the
Dirichlet problem (42) at a rate of exp(−bπ t). There are no parameters to select in the
heat equation (43). It is possible to show with a Fourier expansion that the solution of
the heat equation (43) converges to the solution of the Dirichlet problem (42) at a rate of
exp(−π2t). So far there is not much difference between the two equations—part of the
difference comes from numerical stiffness, as explained below.

3.1 Runtime comparisons

To solve both equations, we use the standard discretizations

ut ≈ un+1
ij − unij

dt
, utt ≈ un+1

ij − 2unij + un−1
ij

dt2
, and

Δu ≈ uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4unij
dx2

,

and explicit forward time stepping. The CFL condition for the damped wave equation is

dt ≤ dx√
2b

.

By (40), the error decays like exp(−2π
√
bt). Therefore, to solve the problem to within a

tolerance of ε we need k iterations, where k satisfies

ε = C exp
(
−2π

√
bkdt

)
= C exp

(
−√

2πkdx
)
.

Hence, we need

k = 1√
2πdx

log(Cε−1)

iterations. Note this is independent of b. Additionally, if we saturate the CFL condition
and set dt = dx/

√
2b, then b does not even appear in the numerical discretization of (44).

We contrast this with the heat equation (43), where the CFL condition is dt ≤ dx2/4.
Here, we need

k = 4
π2dx2

log(Cε−1)

iterations for convergence. Table 1 shows a comparison of the performance of PDE
acceleration, gradient descent, and the primal–dual algorithm from [49] for solving the
Dirichlet problem on various grid sizes. We used the boundary condition g(x1, x2) =
sin(2πx21) + sin(2πx22) and ran each algorithm until the finite difference scheme was sat-
isfied with an error of less than dx2. The initial conditions for both algorithms were
u(x, 0) = g(x). For the primal–dual algorithm [49], we set r1 = 4π2r2, which is prov-
ably optimal using similar methods as in Sect. 2.3. We see that PDE acceleration is more

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 13 of 30 35

Table 1 Comparison of PDE acceleration, primal–dual, and gradient descent for solving
the Dirichlet problem

Mesh Our method Primal–dual [49] Gradient descent

Time (s) Iterations Time (s) Iterations Time (s) Iterations

642 0.012 399 0.02 592 0.148 8404

1282 0.05 869 0.11 1384 2.4 3872

2562 0.38 1898 1.0 3027 40 174,569

5122 4.8 4114 13.1 6831 1032 774,606

10242 41 8813 115 14,674 23,391 3,399,275

Runtimes are for C code

than twice as fast as primal–dual, while both significantly outperform standard gradient
descent.Wemention that ourmethod converges to engineering precision very quickly (in
about one fifth of the iteration count displayed in Table 1), while themajority of iterations
are taken to resolve the solution up to theO(dx2) error (for the 1024×1024 grid, the error
tolerance is dx2 ≈ 10−6).
Of course, we do not recommend using PDE acceleration or primal–dual methods for

solving linear Poisson problems. In the linear setting, there are faster algorithms available.
For comparison,we show inTable 2 the runtimes for incompleteCholesky preconditioned
conjugate gradient and MINRES, Gauss–Seidel with successive overrelaxation, Matlab
backslash, and the multigrid method with V-cycles. We see that PDE acceleration is
comparable to preconditioned MINRES and conjugate gradient, while Matlab backslash
(Cholesky factorization and triangular solve) and multigrid are significantly faster. We
did not compare against FFTmethods since they are specific to constant coefficient linear
problems,which is rather restrictive, andwould be comparable tomultigrid and backslash.
Wemention that for general linear PDE, multigrid is normally much faster thanMatlab

backslash. The 2D Poisson equation is a special case where the linear system has a sim-
ple banded structure and direct solvers are highly efficient and comparable to multigrid.
Moving to 3D problems, one would expect multigrid to outperform backslash. Further-
more, our implementation of multigrid with V-cycles may not be optimal and further
improvements could be possible. We emphasize that the Dirichlet problem is simply a
toy illustrative example of PDE acceleration compared to gradient descent, and it is out-
side the scope of this paper to provide a thorough comparison to all linear solvers (e.g.,
other preconditioners, different multigrid cycling, etc.). Our real interest is in nonlinear
problems with constraints. The linear methods that we compared against here do not
extend directly to nonlinear problems, much less to obstacle constrained problems. The
PDE acceleration method is formulated in the general nonlinear case and is provably
convergent with the same rate for nonlinear problems. In practice, we usually see similar
computation times for nonlinear problems (see Sect. 5).

3.2 Initial condition

We mention that the choice of initial condition can affect the computation time. If the
initial condition does not continuously attain the boundary data, then fixing the boundary
data on the first time step transfers a large amount of kinetic energy into the system
that takes longer to dissipate. See Fig. 1 for a depiction of the kinetic, potential, and total
energy for initial conditions u(x, 0) = g(x) and u(x, 0) = 0. The rate of convergence is not
affected; it is just the constant in front, which corresponds to the initial energy, that is

35 Page 14 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

Table 2 Runtimes in seconds for incomplete Cholesky preconditioned conjugate
gradient, MINRES, Gauss–Seidel with successive overrelaxation, Matlab backslash, and
V-cycle multigrid for solving the Dirichlet problem

Mesh PCG MINRES Gauss–Seidel Backlash Multigrid

Time Iter. Time Iter. Time Iter. Time Time

642 0.027 56 0.028 54 0.017 197 0.013 0.036

1282 0.08 120 0.093 114 0.08 432 0.037 0.048

2562 0.67 251 0.78 240 0.72 1020 0.12 0.13

5122 7.9 523 9.4 500 6.1 2046 0.61 0.55

10242 69 1089 81 1044 50 4100 3 2.6

The Gauss–Seidel method was implemented in C, while the other algorithms were implemented in Matlab

0 100 200 300 400 500 600 700

Iterations

0

5

10

15

20

25

E
ne

rg
y

Kinetic
Potential
Total

a u(x, 0) = g(x)

0 10 20 30 40 50 60 70 80

Iterations

0

200

400

600

800

1000

1200

1400

1600

E
ne

rg
y

Kinetic
Potential
Total

b u(x, 0) = 0

Fig. 1 Comparison of energy dynamics for different initial conditions for solving the Dirichlet problem on a
512 × 512 grid. When the initial condition does not continuously attain the boundary data, a nearly infinite
amount of kinetic energy is transferred into the system at the first time step when the boundary conditions
are set. This takes longer to dissipate and slows convergence

larger in this case. For example, in the simulation above, if we start from u(x, 0) = 0 on
the 512 × 512 grid, the computation takes 5529 iterations, or about roughly 1.4× more
iterations compared to the initial condition u(x, 0) = g(x).
This minor issue can be easily fixed in one of two ways. First, we can, if possible, choose

an initial condition that continuously attains the boundary data. A second solution is
to start from any arbitrary initial condition and then change the boundary conditions
gradually, instead of instantaneously. This can be done by gradient descent on the energy

I(u) = 1
2

∫
∂Ω

(u − g)2 dS.

That is, on the boundary we solve the ordinary differential equation

ut = g − u.

Both solutions give similar improvements in the speed of convergence in our simulations.
To keep the algorithm simple, we chose not to implement either of these fixes in the rest
of the paper. There are many other tricks that one can play with to speed up convergence,
such as increasing the damping factor a as a function of time, or incorporating multigrid
methods. We leave investigations along these lines to future work.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 15 of 30 35

3.3 Connection to primal–dual methods

In the context of the Dirichlet problem, there is a close connection between primal–
dual methods [49], and PDE acceleration. This was explored briefly in [49], where it
was observed that their primal–dual algorithm for solving the Dirichlet problem can be
interpreted as a numerical scheme for a damped wave equation. We go further here, and
give a PDE interpretation of primal–dual methods and show exactly how they are related
to PDE acceleration for the Dirichlet problem.
We recall that the convex dual, or Legendre–Fenchel transform, of a functionΦ : Rn →

R is

Φ∗(p) = max
x∈Rn

{x · p − Φ(x)}. (45)

IfΦ is convex, thenby convexdualitywehaveΦ∗∗ := (Φ∗)∗ = Φ .WeassumeΦ : Rn → R

is convex and consider for simplicity the problem

min
u

∫
Ω

Φ(∇u) dx, (46)

subject to a Dirichlet boundary condition u = g . A primal–dual algorithm for solving (46)
expresses Φ through its convex dual Φ∗ giving the initially more looking complicated
formation

min
u

max
p

∫
Ω

p · ∇u − Φ∗(p) dx. (47)

Here, u : Ω → R is the primal variable and p : Ω → R
n is the dual variable. Given

p · n = 0 on ∂Ω , we can integrate by parts to express the problem as

min
u

max
p

∫
Ω

−u div(p) − Φ∗(p) dx. (48)

The primal–dual algorithm in [49] solves (47) by alternating proximal updates on p and u
until convergence (see Sect. 4.2). In the continuum, this is equivalent to jointly performing
gradient descent on u and gradient ascent on p, which corresponds to the coupled PDEs{

pt = a(t)(∇u − ∇Φ∗(p)),
ut = div(p).

(49)

The factor a(t) is the ratio of the time steps between the proximal updates on u and p in the
primal–dual algorithm; in the notation of [49], a = r1/r2. To the best of our knowledge,
this PDE interpretation of primal–dual algorithms is a new observation. In particular, we
use this observation to optimally set ratio r1/r2 for the primal–dual method in Sect. 4.2.
For the Dirichlet problem, Φ(p) = Φ∗(p) = 1

2 |p|2 and (49) becomes
{
pt = a(t)(∇u − p),

ut = div(p).
(50)

In this case, we can eliminate the dual variable and we obtain the damped wave equation

utt + a(t)ut − a(t)Δu = 0. (51)

Contrasting this with (44), we see the key difference between primal–dual and PDE accel-
erationmethods is that primal–dual methods are unable to adjust the damping coefficient
a(t) independently of other terms in the PDE.
This explicit connection between primal–dual and PDE acceleration seems to be a

coincidence for the Dirichlet problem and does not hold in any other case that we are

35 Page 16 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

aware of. In particular, it seems necessary that ∇Φ∗(p) is linear in p in order to convert
the system (49) into a scalar wave equation in u. We can eliminate the primal variable by
differentiating the equation for pt in (50) to obtain

ptt +
(
aDF (p) + a′(t)

a(t)

)
pt = a(t)∇div(p), (52)

where F (p) := ∇Φ∗(p). However, this is no longer a wave equation.

4 Obstacle problems
Consider the standard obstacle problem

min
u∈A E[u] =

∫
Ω

Φ(x,∇u) dx, (53)

where

A = {
u ∈ H1(Ω) : u ≥ ϕ in Ω and u = g on ∂Ω

}
, (54)

and the obstacle ϕ satisfies ϕ ≤ g on ∂Ω . We recall that the solution u of the obstacle
problem (53) satisfies the boundary value problem

{
max{−∇E[u],ϕ − u} = 0 in Ω ,

u = g on ∂Ω .
(55)

This is a classical fact; we sketch the formal argument for completeness. If v ∈ C∞(Ω) is
nonnegative, then for any ε ≥ 0 we have u + εv ∈ A and hence

E[u + εv] − E[u] ≥ 0.

Dividing by ε and sending ε → 0+ yields∫
Ω

∇E[u]v dx = d
dε

∣∣∣
ε=0

E[u + εv] ≥ 0 (56)

for all nonnegative v. Hence,∇E[u] ≥ 0 inΩ . Furthermore, on any ball B(x, r) ⊂ Ω where
u > ϕ, we can relax the nonnegativity constraint on v and still ensure u+εv ∈ A for small
ε > 0. It follows that ∇E[u] = 0 on the set {u > ϕ}, which establishes (55). We note that
solutions of (55) are properly interpreted in the viscosity sense [7,14].

4.1 PDE acceleration

We now show how to apply PDE acceleration to the obstacle problem (53). For the
moment, we consider the L2-penalized formulation

min
u∈H1(Ω)

{∫
Ω

Φ(x,∇u) + μ

2
(ϕ − u)2+ dx : u = g on ∂Ω

}
. (57)

Theorem 1 guarantees that PDE acceleration will converge with a linear rate for any
finiteμ > 0. However, we need to sendμ → ∞ to recover the solution of the constrained
problem (53).Wewill see, however, that the accelerated PDEmethod for (57) is insensitive
to the choice of μ, and can be easily solved for μ > 0 large, and in numerics, we send
μ → ∞ and obtain a very simple scheme for solving (53). We explain in more detail
below.
The PDE-accelerated equations of motion (12) for the penalized problem (57) are

utt + aut = −∇E[u] + μ(ϕ − u)+, (58)

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 17 of 30 35

subject to the Dirichlet condition u = g on ∂Ω , where

∇E[u] = div
(∇pΦ(x,∇u)

)
.

We now discretize in time using the standard finite differences

ut ≈ un+1 − un

dt
and utt ≈ un+1 − 2un + un−1

dt2
.

The important point now is that we handle the penalty term implicitly. The discrete in
time scheme becomes

(1 + adt)un+1 − μdt2(ϕ − un+1)+ = (2 + adt)un − un−1 − dt2∇E[u]. (59)

Since the left-hand side is strictly increasing in un+1, there is a unique solution of (59).
We can compute the solution explicitly as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v = (2 + adt)un − un−1 − dt2∇E[u]
1 + adt

,

w = (2 + adt)un − un−1 − dt2∇E[u] + μdt2ϕ
1 + adt + μdt2

,

un+1(x) =
⎧⎨
⎩
v(x), if v(x) ≥ ϕ(x),

w(x), otherwise.

(60)

The scheme is simple to implement, and the CFL condition is dictated solely by the
discretization of ∇E[u] and is independent of the penalty μ. In practice, we find the
algorithm is completely insensitive to the choice ofμ and runs efficiently for, say,μ > 1010.
Instead of choosing a very large value for μ, we can in fact send μ → ∞ in scheme (60).

Indeed, the only place μ appears is in the update for w, and taking the limit as μ → ∞,
we find that w = ϕ. Hence, we obtain the simpler scheme

⎧⎪⎨
⎪⎩

v = (2 + adt)un − un−1 − dt2∇E[u]
1 + adt

un+1(x) = max{v(x),ϕ(x)}
(61)

as the limit of (60) as μ → ∞. In our simulations, we use scheme (61), since it is simpler
andmore intuitive, but the results are identical, up tomachineprecision, using scheme (60)
with μ = 1010. We use finite differences to discretize ∇E[u] in this paper—in particular,
we discretize the gradient and divergence separately, using forward differences for∇u and
backward differences for the divergence.We set the damping parameter to be the optimal
value a = 2π from the linear analysis in Sect. 2.3. We run the iterations (61) until

|max{−∇E[un],ϕ − un}| ≤ dx‖ϕ‖L∞ (62)

at all grid points.
We should note there is nothing specific about finite difference schemes in this accel-

erated framework; one could just as easily use finite elements, spectral methods, or any
other numerical PDEmethod. Once a discretization is settled on, the time step restriction
on dt follows from the CFL condition, which is straightforward to derive (see Sect. 5).

4.2 Primal–dual algorithms

Recently in [49], a primal–dual algorithm was proposed for obstacle problems, and it was
shown to be several orders of magnitude faster than existing state-of-the-art methods.

35 Page 18 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

We compare PDE acceleration against an improved version of the primal–dual algorithm
from [49], which is described below.
The primal–dual algorithm solves the minimal surface obstacle problem

min
u∈A

∫
Ω

√
1 + |∇u|2 dx, (63)

following roughly the outline in Sect. 3.3. We compute the convex dual of Φ(x) =√
1 + |x|2 to be

Φ∗(p) =
⎧⎨
⎩

−√
1 − |p|2, if |p| ≤ 1,

∞, if |p| > 1.
(64)

The primal–dual algorithm from [49] for solving (63) solves the equivalent primal–dual
formulation

min
u≥ϕ

max|p|≤1

∫
Ω

p · ∇u +
√
1 − |p|2 dx

by alternatively updating the primal variable u and the dual variable p with proximal
updates. The full algorithm is given below.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pn+1(x) = arg min|p|≤1

{
−∇un(x) · p −

√
1 − |p|2 + 1

2r1
|p − pn(x)|2

}
,

un+1 = max{ϕ, un + r2div(pn+1)},
un+1 = 2un+1 − un.

(65)

The final step is an overrelaxation, and we set the Dirichlet condition u = g on ∂Ω at each
step. If the problem is discretized on a grid with spacing dx, then the method converges
for any choices of r1, r2 with r1r2 ≤ dx2/6 [49]. In fact, as noticed in Sect. 3.3, the ratio
r1/r2 plays the role of the damping parameter a in PDE acceleration (61), allowing us to
set r1/r2 = 4π2, which is optimal for Ω = [0, 1]n via the linear analysis in Sect. 2.3.
While the update in the dual variable p(x) is pointwise, it is not an explicit update and

involves solving a constrained convex optimization problem. We contrast this with the
PDE acceleration update (61) which is simple and explicit. In [49], the authors propose
to solve the dual problem with iteratively re-weighted least squares (IRLS), that is, they
define ψ0 = pn(x) and iteratively solve

ψk+1 = arg min|ψ |≤1

{
−∇un(x) · ψ + 1

2
|ψ |2 − 1√
1 − |ψk |2 + 1

2r1
|ψ − pn(x)|2

}
, (66)

setting pn+1(x) = limk→∞ ψk . Actually, in [49] the factor of 1
2 in front of the term

|ψ |2−1√
1−|ψk |2 is missing; this is required to ensure that if the iterations converge, then the

fixed point satisfies the correct optimality conditions for the original dual problem. It is
claimed in [48,49] that the IRLS iterations converge for r1 sufficiently small. However,
inspecting the proof in [48, Lemma 4.4] it appears the restriction on r1 is impractical for
dx � 1. In practice, we find that for dx � 1 the IRLS iterations drift outside of the unit
ball |ψk | ≤ 1 after only a few iterations, in which case (66) is not well defined and the
iterations cannot continue. Simple fixes that we tried, such as projecting back onto the
unit ball, were found to not be useful. We note we observed failure of the IRLS iterations
even for small values of r1.1

1Even if the IRLS iterations were to converge for extremely small r1 > 0, the performance of the primal–dual method
is highly sensitive to the ratio r1/r2 , and convergence of the primal–dual iterations is extremely slow for very small or
very large r1 .

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 19 of 30 35

We propose another method for solving the dual problem that is robust and works for
any value of r1 and dx. We describe our method below. For convenience, let us define

F (p) = −∇u(x) · p −
√
1 − |p|2 + 1

2r1
|p − pn(x)|2.

We also compute

∇F (p) = − 1
r1
(pn(x) + r1∇u(x)) + p√

1 − |p|2 + 1
r1
p. (67)

Then, the dual problem is pn+1(x) = arg min|p|≤1 F (p). We first note that since F ((1 −
ε)p) < F (p) for any pwith |p| = 1 and ε > 0 sufficiently small, wemust have |pn+1(x)| < 1,
and so ∇F (pn+1(x)) = 0. For any η with η · pn+1(x) = 0, we have

0 = η · r1∇F (pn+1(x)) = −(pn(x) + r1∇u(x)) · η.
Therefore, pn+1(x) = αq(x) for some α ∈ (−1, 1), where

q(x) =
⎧⎨
⎩

pn(x)+r1∇u(x)
|pn(x)+r1∇u(x)| , if pn(x) + r1∇u(x) �= 0,

0, otherwise.
(68)

The value of α ∈ (−1, 1) is the unique root of the function
f (α) := q(x) · r1∇F (αq(x)) = α + r1α√

1 − α2
− |pn + r1∇u(x)|. (69)

Since F is strictly convex, f is strictly increasing in α, and so we can compute the root of
f with a simple bisection search. Inspecting (69), we see that α ∈ [0,min{1, N }], where
N = |pn + r1∇u(x)|. For α is this range, we can perform some algebraic manipulations on
f to see that we can instead bisect on the function

g(α) = r21α
2 − (1 − α2)(α − N)2,

which does not involve the costly square root operation. The method is guaranteed to
converge, and the accuracy is directly related to the number of bisection iterations, that
is,

Bisection search error ≤ 1
2k+1 ,

where k is the number of bisections.
We emphasize that the IRLS method proposed in [49] does not converge for any of

the simulations presented in Sect. 5. Thus, the new bisection method is required to allow
comparisons against the primal–dual algorithm for the nonlinear minimal surface prob-
lem.
In our implementation of the primal–dual method, we use forward differences for ∇u

and backward differences for the divergence, as in [49].We set the ratio r1/r2 = 4π2 based
onanoptimal linear analysis as in Sect. 2.3, alongwith theCFLcondition r1r2 ≤ dx2/6 [49].
We choose the number of bisection iterations so that the dual problem is solved to an
accuracy of εdx2, where ε is the accuracy to which we wish to solve the obstacle problem.
This requires around 30 iterations formost of our simulations.We run the algorithm until
the residual condition (62) is satisfied.

5 Experiments
We give here some applications of the PDE accelerationmethod for solving various obsta-
cle problems. All algorithms, including our improved primal–dual method and the L1-
penalty method [38], were implemented in C and run on a laptop with a 64-bit 2.20GHz
CPU. The code for all simulations is available on GitHub: https://github.com/jwcalder/
MinimalSurfaces.

https://github.com/jwcalder/MinimalSurfaces
https://github.com/jwcalder/MinimalSurfaces

35 Page 20 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

0.025

0.05

0.045

0.04

0.035

0.03

0.02

0.015

0.01

0.005

0
1

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

0.25

0.2

0.15

0.1

0.05

0
1

1
0.8

0.6
0.4

0.2
00

0.2

0.4

0.6

0.8

0.15

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.1

0.05

0
1

a b

c d

Fig. 2 Minimal surfaces for obstacle ϕ1 computed with PDE acceleration on a 64 × 64 grid

5.1 Minimal surface obstacle problems

We first consider the constrained minimal surface problem

min
{∫

Ω

√
1 + |∇u|2 dx : u ∈ H1

0 (Ω) and u ≥ ϕ

}
. (70)

Here, ϕ : Ω → R is the obstacle and Ω = [0, 1]2. We solve the problem with the PDE
acceleration scheme (61) using the implementation described in Sect. 4.1. Here,

∇E[u] = −div
(

∇u√
1 + |∇u|2

)
,

and the CFL condition dictates that dt < dx/
√
2. We set dt = 0.8dx/

√
2.

The first obstacle we consider is from [49] and is given by

ϕ1(x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5 for |x1 − 0.6| + |x2 − 0.6| < 0.04,

4.5 for (x1 − 0.6)2 + (x2 − 0.25)2 < 0.001,

4.5 for x2 = 0.57 and 0.075 < x1 < 0.13,

0 otherwise.

(71)

Figure 2 shows the obstacle ϕ := ϕ1/100, and the minimal surfaces computed with the
PDE acceleration algorithm forϕ := ϕ1/100,ϕ := ϕ1/20, andϕ := ϕ1/10. Figure 2b shows

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 21 of 30 35

Fig. 3 Comparison of a the true minimal surface for ϕ1 and b the solution of the linearized problem, which is
presented incorrectly in [49, Figure 3d] as the true solution of the nonlinear minimal surface problem on a
64 × 64 grid

a short obstacle with small deflections, and the solution in this case is well approximated
by the linearized minimal surface problem

min
{∫

Ω

1
2
|∇u|2 dx : u ∈ H1

0 (Ω) and u ≥ ϕ

}
. (72)

The obstacles in Fig. 2c, d are significantly taller and the true minimal surfaces are not
well captured by linearization. In particular, the minimal surface for ϕ := ϕ1 is nearly
identically zero, which we show in Fig. 3a.
We remark that this is in contrast to previous work (see [49, Fig. 3(d)]), which reported

that the minimal surface for ϕ1 resembles Fig. 2b (the minimal surface for ϕ1/100). We
show the true minimal surface for ϕ1, computed by our algorithm, in Fig. 3a, and the
solution of the linearized minimal surface equation in Fig. 3b, which agrees very closely
by eye with [49, Fig. 3(d)], suggesting that [49] are in fact solving the linearized minimal
surface problem, and not the true nonlinear minimal surface problem. We suspect this is
due to the authors of [49] mistakenly taking dx = 1 in their code, which has the effect of
drastically reducing the height of the obstacles and putting one in the linear setting. Since
the nonlinear minimal surface equation is not homogeneous in the gradient, one cannot
scale away the spatial resolution as can be done for the linearized equation.
It is easy to see that Fig. 3b cannot be the true minimal surface for ϕ1 by computing

the surface area of the solutions: Our solution in Fig. 3a has surface area 3.9855, while the
surface area of Fig. 3b is 8.5105. The obstacle itself has surface area 4.1691. All computa-
tions are on the same 64× 64 grid. We can also compute true surface area of the obstacle
ϕ1 in the continuum analytically. The obstacles are a square, circle, and a line segment.
The square has side lengths � = √

0.042 + 0.042 ≈ 0.0566, so perimeter is approximately
0.2263. The height of the square is 5, so the surface area contributed by the obstacle
would be S1 := 1.1315. The circle has radius r = √

0.001 ≈ 0.0316, and so perimeter is
2πr ≈ 0.1987. The height of the circle is 4.5, so it contributes surface area S2 := 0.8942.
Finally, the line segment has width 0.055 and height 4.5, so the surface area contribution
is S3 := 0.2475. The surface area of the solution is then

Surface area = 1 + S1 + S2 + S3 = 3.2732.

35 Page 22 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

Table 3 Runtimes in seconds and number of iterations for the PDE-accelerated solver,
primal–dual method [49], and L1 penalty method [38] for solving the nonlinear minimal
surface obstacle problemwith obstacle ϕ1

Mesh Obstacle ϕ := ϕ1/50

Our method Primal–dual [49] L1 penalty [38]

Time Iter. Time Iter. Time Inner (outer) iter.

64 × 64 0.023 360 0.186 370 0.4 7254 (2380)

128 × 128 0.144 823 1.76 870 5.6 29,284 (10,340)

256 × 256 1.22 1863 18 2070

512 × 512 12 4135 163 4390

1024 × 1024 107 9074 1650 10,210

Complexity 1.54 0.58 1.64 0.60 1.9 0.93

The complexity is measured as a function of the number of grid points used in the discretization

We note there is a large discrepancy between the analytic surface area of the obstacle
(3.2723) and the computedarea (4.1691) on the64×64 grid.The reason for this is that finite
difference discretizations of surface area for discontinuous functions are not consistent.
This phenomenon is well known in the finite-element community, where pathological
examples such as the Schwarz lantern [31] demonstrate the care one must take with
numerical discretizationsof surfaces and surface area toobtain consistent approximations.
We give a simple example of this non-consistency in “Appendix.”
We now compare runtimes and iteration counts for our PDE acceleration method

against the primal–dual method [49] with our improved bisection method for solving the
dual problem presented in Sect. 4.2, and against the L1-penalty method from [38]. Table 3
shows the comparison of the runtimes for the obstacle ϕ := ϕ1/50. Our method is more
than 10× faster than primal–dual in terms of CPU time, while both algorithms have
similar iteration counts. The difference is that the PDE acceleration updates are explicit,
while the dual update for the primal–dual algorithm is implicit and involves solving a
nonlinear optimization problem. We note both algorithms converge to a surface that
looks to the eye similar to the minimal surface in about half of the iterations reported, and
the final iterations are used to resolve the accuracy to the desired tolerance. For the L1-
penaltymethod, we used parameters λ = 100,μ = 500, L = 2/dx2, and dt = 1/4L, which
gave the best performance over the parameters we tried, and we report both the inner
and outer iteration counts for completeness. Each inner iteration has similar complexity
to a PDE acceleration iteration. The L1-penalty method did not converge to our strict
stopping condition (62) for grids of size 256× 256 or larger. (We stopped the experiment
at 18min and 1million iterations on the 256 × 256 grid.)
Our stopping condition (62) is standard in rigorous scientific computing and is simply

asking that all methods solve the same problem to the same accuracy. It is also common
to use the difference between subsequent iterates as a stopping condition; however, this
can have a different meaning for each algorithm and does not provide any guarantee
that the algorithms are solving the correct problem (e.g., one can reduce the time step to
encourage “faster” convergence). To be complete, we include in Table 4 a comparison of
PDE acceleration, primal–dual, and the L1-penalty method for the stopping condition

‖un+1 − un‖L∞ ≤ Cdx2, (73)

for a constant C , which is the same condition used in [38]. We took C = 1/100, since for
any larger value of C , the L1-penalty method stopped at a surface that was clearly by eye

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 23 of 30 35

Table 4 Runtimes in the same setting as Table 3, except with the relaxed stopping
condition ‖un+1 − un‖L∞ ≤ dx2/100

Mesh Obstacle ϕ := ϕ1/50

Our method Primal–dual [49] L1 penalty [38]

Time Iter. Time Iter. Time Inner (outer) iter.

64 × 64 0.014 288 0.23 294 0.23 4969 (206)

128 × 128 0.1 618 2.4 684 2.94 18,228 (385)

256 × 256 0.9 1323 23.6 1556 50.9 70,177 (1221)

Complexity 1.5 0.55 1.67 0.6 1.95 0.96 (0.64)

In all other experiments, we use the stopping condition (62)

very far from the trueminimal surface.We only computed the table up to a 256×256 grid,
since the L1-penalty method did not converge in a reasonable amount of time for larger
grids. We see that PDE acceleration and primal–dual have similar complexity, though
PDE acceleration is roughly ten times faster, and the L1-penalty method is an order of
magnitude slower.
Table 3 (and all future tables) also shows computational complexity, which is computed

as the exponent p > 0 for which the curve Np most closely fits the CPU time or iteration
count, where N is the number of grid points used in the discretization. We see the com-
plexity of PDE acceleration is p ≈ 1.55, which agrees with the discussion in Sect. 2.2 for 2D
problems. The primal–dual method has slightly worse complexity (p ≈ 1.65), and the L1

penalty method has complexity p ≈ 2. We note that complexity for the primal–dual and
L1-penalty methods are different than those reported in [49] and [38], respectively. The
reason for this is that [49] and [38] report complexity for the linearized minimal surface
problem, and in particular, do not report runtimes or complexity for nonlinear problems.
For the linearized minimal surface problem, the L1-penalty method is reported in [38]
to have nearly linear complexity in the number of grid points, which is faster than both
primal–dual and our PDE acceleration. Our experiments show that while the L1-penalty
method is very fast for linear problems, it is not well suited for nonlinear minimal surface
problems.
Let us explain briefly why the nonlinear minimal surface problem is more compu-

tationally complex to solve via L1-penalty and primal–dual methods. The L1-penalty
method [38] for linear problems involves solving a linear Poisson equation at each outer
iteration, which can be done in linear time with multigrid methods, for example, while
for nonlinear problems the outer iteration involves solving a nonlinear minimal sur-
face problem, which is more expensive. Interestingly, the authors of [38] use Nesterov
acceleration to solve the nonlinear problem at each outer iteration. However, the use of
Nesterov acceleration does not employ our optimal damping parameter from Sect. 3, and
the momentum is reset at each outer iteration, which we find inhibits the acceleration
obtained frommomentummethods. Regarding the primal–dual method [49], when solv-
ing the linearized problemone can use a handful of IRLS steps to solve the dual problem, as
described in [49]. However, for nonlinear problems the IRLSmethod fails to converge and
our new bisectionmethod (see Sect. 4.2) is required, which requires approximately 30–50
iterations. This makes the dual problem more expensive to solve for nonlinear minimal
surface problems and explains the difference between computation time for linear and
nonlinear problems. To be clear, the IRLS method is unusable for nonlinear problems,

35 Page 24 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

0
1

0.1

0.2

0.3

0.8

0.4

1

0.5

0.9

0.6

0.6 0.8

0.7

0.7

0.8

0.6

0.9

0.4 0.5

1

0.4
0.30.2 0.2

0.10 0

0
1

0.1

0.2

0.3

0.8

0.4

1

0.5

0.9

0.6

0.6 0.8

0.7

0.7

0.8

0.6

0.9

0.4 0.5

1

0.4
0.30.2 0.2

0.10 0

a b

Fig. 4 Minimal surface for the obstacle ϕ2 computed with PDE acceleration on a 64 × 64 grid

Table 5 Runtimes in seconds and number of iterations for the PDE-accelerated solver,
primal–dual method [49], and L1 penalty method [38] for solving the nonlinear minimal
surface obstacle problemwith obstacle ϕ2

Mesh Obstacle ϕ := ϕ2

Our method Primal–dual [49] L1 penalty [38]

Time Iter. Time Iter. Time Inner (outer) iter.

64 × 64 0.012 300 0.182 330 0.31 7065 (60)

128 × 128 0.138 704 1.82 780 3.4 19,712 (70)

256 × 256 1.08 1620 17.8 1720 39.8 58,788 (170)

512 × 512 10.2 3642 180 4320 551.1 199,323 (470)

1024 × 1024 95.1 8117 1880 9710 8401 660,908 (1030)

Complexity 1.61 0.59 1.66 0.61 1.84 0.82 (0.55)

since it returns complex numbers after a few iterations, so it does not even provide an
approximate solution to the problem.
The second obstacle we consider is

ϕ2(x) =
√
(1 − |x − P|2/0.09)+ +

√
(1 − |x − Q|2/0.0025)+, (74)

where P = (0.55, 0.5) andQ = (0.1, 0.5). Figure 4 shows the obstacle andminimal surface.
The runtimes for the PDE acceleration, primal–dual, and the L1-penaltymethod are given
in Table 5. We again see that PDE acceleration is approximately 10× faster in terms of
CPU time, and the L1-penalty method is an order of magnitude slower.

5.2 Double obstacle with forcing

Here,we consider thedouble obstacle problemwith forcing from [49] (originally from [39];
see also [4] for double obstacle problems). The nonlinear version of the problem is given
by

min
{∫

Ω

√
1 + |∇u|2 − uv dx : u ∈ H1

0 (Ω) and ψ ≥ u ≥ ϕ

}
. (75)

Scheme (61) is simple to modify for the double obstacle problem by setting un+1 =
max{min{v,ψ},ϕ} at each iteration.We test PDE acceleration on the elasto-plastic torsion
problem, originally from [39]. In this setting, Ω = [0, 1]2, ϕ3(x) = −dist(x, ∂Ω), ψ3(x) =

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 25 of 30 35

Table 6 Runtimes in seconds for the PDE-accelerated solver compared to the primal–dual
method from [49] for the linear and nonlinear minimal surface double obstacle problem
with forcing (the elasto-plastic torsion problem)

Mesh Linear double obstacle problem Nonlinear double obstacle problem

Our method Primal–dual [49] Our method Primal–dual [49]

Time Iter. Time Iter. Time Iter. Time Iter.

642 0.012 378 0.01 356 0.016 382 0.156 360

1282 0.1 835 0.086 814 0.133 862 1.59 810

2562 0.69 1807 0.785 1884 1.23 1937 15.2 1810

5122 5 3937 7.56 4092 11.9 4297 143 4050

10242 62.9 8459 81.7 9113 108 9409 1.540 9000

Comp. 1.52 0.56 1.62 0.58 1.6 0.58 1.65 0.58

0.2, u = 0 on ∂Ω , and the force v is given by

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

300, if x ∈ S := {|x1 − x2| ≤ 0.1 and x1 ≤ 0.3},
−70ex2g(x), if s /∈ S and x1 ≤ 1 − x2,

15ex2g(x), if s /∈ S and x1 > 1 − x2,

(76)

where

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6x1, if 0 ≤ x1 ≤ 1/6,

2(1 − 3x1), if 1/6 < x1 ≤ 1/3,

6(x1 − 1/3), if 1/3 < x1 ≤ 1/2,

2(1 − 3(x1 − 1/3)), if 1/2 < x1 ≤ 2/3,

6(x1 − 2/3), if 2/3 < x1 ≤ 5/6,

2(1 − 3(x1 − 2/3)), if 5/6 < x1 ≤ 1.

(77)

We then set ϕ := ϕ3/10, ψ = ψ3/10 and v := v3/10 to get similar results to [49] where
the linearization is studied. For comparison with [49], we also consider the linear double
obstacle problem

min
{∫

Ω

1
2
|∇u|2 − uv dx : u ∈ H1

0 (Ω) and ψ ≥ u ≥ ϕ

}
. (78)

We report the CPU runtimes and iteration counts for the PDE acceleration method
and the improved primal–dual method for both the linear and nonlinear double obstacle
problems in Table 6. We see that for the nonlinear problem, PDE acceleration is again
roughly 10× faster than primal–dual, while only 2x faster for the linear obstacle problem.
The difference is that the dual update is explicit for linear problems, which leads to a
substantial acceleration. Figure 5 shows the computed membrane on a 64 × 64 grid, and
the double obstacle contact regions computed on a 512× 512 grid. These agree well with
the results in [49, Fig. 5].

5.3 Stochastic homogenization with obstacles

We consider the stochastic obstacle problem

min
u∈H1

0 (Ω)

{∫
Ω

1
2
|A(x

ε
)∇u|2 − fu dx : u ≥ ϕ in Ω

}
, (79)

where A(x) is sampled from a Zd-stationary probability measure with unit range depen-
dence. We consider here a random checkerboard, where we let (b(z))z∈Z2 be independent

35 Page 26 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

-0.05
1

-0.04

-0.03

0.8

-0.02

1
0.9

-0.01

0.6 0.8

0

0.7

0.01

0.60.4 0.5

0.02

0.4
0.30.2

0.2
0.1

0 0

a b

Fig. 5 Depiction of the computed membrane and contact regions for the double obstacle with forcing
example from [49]. The contact regions were computed on a 512 × 512 grid

Table 7 Runtimes for the PDE-accelerated solver on the stochastic homogenization
obstacle problemwith damping parameters a = 2π, 6π, 9π

Damping a = 2π a = 6π a = 9π

Checkerboard Mesh Time (s) Iter. Time (s) Iter. Time (s) Iter.

16 × 16 642 0.037 1665 0.012 572 0.012 569

32 × 32 1282 0.315 3924 0.115 1340 0.12 1469

64 × 64 2562 3.35 8919 1.16 3087 1.34 3588

128 × 128 5122 31.2 20,224 9.91 6908 10.7 7482

256 × 256 10242 339 45,003 109 15,197 118 16,425

Complexity 1.65 0.59 1.64 0.59 1.65 0.6

random variables such that

P(b(z) = 1) = P(b(z) = 9) = 1
2
,

and setA(x) = b(z) for x ∈ z+[0, 1)2.We also set f = 1. By theDynkin formula [2, Ex. 2.3],
solutions of (79) converge almost surely to solutions of the homogenized problem

min
u∈H1

0 (Ω)

{∫
Ω

1
2
|3∇u|2 − u dx : u ≥ ϕ in Ω

}
, (80)

as ε → 0+. Experiments with this example (without the obstacle) are also presented in [1].
We ran some experiments using the PDE acceleration method for solving this stochas-

tic obstacle problem. Table 7 shows the runtimes for different values of the damping
parameter a. Figure 6 shows a random checkerboard, the solution of the stochastic obsta-
cle problem (79), and the solution of the homogenized problem (80). We mention that
knowledge of the effective (homogenized) equation (80) can help in selecting the optimal
damping parameter for the stochastic problem (79). Indeed, by (39) the optimal damping
for the homogenized equation (without the obstacle) is a = 2

√
3π , which is larger than

the damping a = 2π we have been using in this paper so far. However, since the dis-
cussion in Sect. 2.3 does not consider the obstacle, the true optimal damping parameter
will depend on the smallest eigenvalue of the effective operator on the domain {u > ϕ},
which is initially unknown. Since this domain is strictly smaller than Ω , monotonicity of
eigenvalues implies that the optimal damping is larger than our computed a = 2

√
3π .

We find (see Table 7) that a = 6π is close to optimal for this problem.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 27 of 30 35

50

100

150

200

250

300

350

400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b

c d

Fig. 6 Solution and contours of the stochastic obstacle problem (79) and the effective equation (80)

6 Conclusion
We studied the recently introduced variational framework, called PDE acceleration, for
applying accelerated gradient descent (ormomentumdescent) to problems in the calculus
of variations. For a large class of convex optimization problems, the descent equations for
PDE acceleration correspond to a nonlinear damped wave equation, which can be solved
by a simple explicit forwardEuler scheme.The acceleration is realized as a relaxation of the
CFL condition for awave equation (dt ∼ dx) compared to a diffusion equation (dt ∼ dx2).
Weproved convergencewith a linear rate for this class of accelerated PDEs and applied the
method to minimal surface obstacle problems, including a double obstacle problem with
forcing and a stochastic homogenization problem with obstacle constraint. In every case,
PDE acceleration is faster than existing state-of-the-art methods for nonlinear minimal
surface problems.
We mention briefly some ideas for future work. First, we use the damping parameter

a = 2π throughout the whole paper, which is surely not optimal for every problem. We
can achieve faster convergence for many experiments in the paper by hand tuning the
damping. The difficulty in selecting the optimal damping is that it depends on the first
Dirichlet eigenvalue (in the linear case) on the free boundary domain {u > ϕ}, which is a

35 Page 28 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

priori unknown. A way to improve performance could be to compute the solution first on
a coarse grid, and then estimate the optimal damping from the computed free boundary
and use the optimal damping parameter when solving the equation on a finer mesh.
There are other natural ways to speed up convergence, such as considering a multigrid

approach, or varying the damping parameter over time. The damping parameter controls
the damping profile in the frequency domain; larger choices of the damping parameter
give preference to damping higher frequencies at the expense of leaving lower frequencies
underdamped. This is reminiscent of how the choice of grid resolution affects the damping
inmultigridmethods, and a smart choice of a schedule for varying the damping parameter
may result in a significant speedup.
Finally, themethodshere arenot restricted to second-order equations andcanbe applied

almost directly to higher-order equations, such as the fourth-order PDEs that have proven
popular in image processing [37,45,47]. In this case, PDE acceleration will relax the very
stiff CFL condition (dt ∼ dx4) for fourth-order equations to dt ∼ dx2. It is also possible
to make other choices for the kinetic energy, which would lead to other flows that may be
of interest. (However, due to Ostrogradsky instability [43], the kinetic energy should only
containfirst derivatives ofu in time.) Problems in the calculus of variations arise in virtually
all fields of science and engineering and include problems like image segmentation and
noise removal [13,28], minimal surfaces [12], and materials science [6], among many
others. The results of this paper suggest that PDE acceleration can be a useful tool for
solving many of these other problems, and we intend to pursue such applications, and
others, in future work.

Author details
1School of Mathematics, University of Minnesota, Minneapolis, USA, 2School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA.

A Note on finite difference approximations to surface area
We give an example here to show that finite difference approximations to the surface area
of discontinuous functions are not, in general, consistent. Define ϕ : [0, 1]2 → R by

ϕ(x) =
⎧⎨
⎩
1, if 2x1 − x2 ≥ 0,

0, otherwise.

The surface area of the graph of ϕ is 1 +
√
5
2 , the quantity

√
5
2 being the length of the line

segment 2x1 − x2 = 0 contained in the box [0, 1]2. Consider anm × m grid with spacing
h = 1/m > 0, and discrete surface area

Sm := 1
m2

m−1∑
i,j=1

√
1 + |∇ϕi,j|2, (81)

where

|∇ϕi,j|2 = (ϕ(hi + h, hj) − ϕ(ih, jh))2

h2
+ (ϕ(hi, hj + h) − ϕ(hi, hj))2

h2
.

Suppose m is even. Then, there are exactly 3
2m − 1 grid points for which |∇ϕi,j|2 �= 0.

These are all the grid points (i, j) that intersect the boundary 2i − j = 0, and their two
northern neighbors (i, j + 1) and (i, j + 2). For all of these grid points, |∇ϕi,j|2 = 1

h2 = m2.
Therefore,

Sm = 1
m2 (m

2 − 3
2m + 1) + 1

m2 (
3
2m − 1)

√
1 + m2.

J. Calder, A. Yezzi Res Math Sci (2019) 6:35 Page 29 of 30 35

Asm → ∞, we have Sm → 1+ 3
2 = 2.5, which is not the correct surface area of 1+

√
5
2 ≈

2.118. It is easy to check numerically, by computing Sm via (81), that S104 = 2.4997.
Pathological examples like this are well known in the finite-element community and are
similar to the famous Schwarz lantern [31].

Received: 7 March 2019 Accepted: 11 October 2019 Published online: 31 October 2019

References
1. Armstrong, S., Hannukainen, A., Kuusi, T., Mourrat, J.C.: An iterativemethod for elliptic problemswith rapidly oscillating

coefficients. arXiv:1803.03551 (2018)
2. Armstrong, S., Kuusi, T., Mourrat, J.C.: Quantitative stochastic homogenization and large-scale regularity.

arXiv:1705.05300 (2017)
3. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method, I. The continuous dynamical system: global

exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system.
Commun. Contemp. Math. 2(01), 1–34 (2000)

4. Badea, L., Tai, X.C., Wang, J.: Convergence rate analysis of a multiplicative Schwarz method for variational inequalities.
SIAM J. Numer. Anal. 41(3), 1052–1073 (2003)

5. Bähr, M., Breuß, M., Wunderlich, R.: Fast explicit diffusion for long-time integration of parabolic problems. In: AIP
Conference Proceedings, vol. 1863, p. 410002. AIP Publishing (2017)

6. Ball, J.M.: The calculus of variations and materials science. Q. Appl. Math. 56(4), 719–740 (1998)
7. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations.

Springer, Berlin (2008)
8. Benyamin, M., Calder, J., Sundaramoorthi, G., Yezzi, A.: Accelerated variational PDEs for efficient solution of regularized

inversion problems. J. Math. Imaging Vis. (2019). https://doi.org/10.1007/s10851-019-00910-2
9. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp.

177–186. Springer, Berlin (2010)
10. Braess, D., Carstensen, C., Hoppe, R.H.: Convergence analysis of a conforming adaptive finite element method for an

obstacle problem. Numer. Math. 107(3), 455–471 (2007)
11. Brezis, H., Sibony, M.: Méthodes d’approximation et d’itération pour les opérateurs monotones. Arch. Ration. Mech.

Anal. 28(1), 59–82 (1968)
12. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)
13. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
14. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull.

Am. Math. Soc. 27(1), 1–67 (1992)
15. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. AMS, Providence (2002)
16. Goudou, X., Munier, J.: The gradient and heavy ball with friction dynamical systems: the quasiconvex case. Math.

Program. 116(1–2), 173–191 (2009)
17. Grewenig, S.: FSI schemes: fast semi-iterative solvers for PDEs and optimisation methods. In: Pattern Recognition:

38th German Conference, GCPR 2016, Hannover, Germany, September 12–15, 2016, Proceedings, vol. 9796, p. 91.
Springer, Berlin (2016)

18. Hafner, D., Ochs, P., Weickert, J., Reißel, M., Grewenig, S.: FSI schemes: fast semi-iterative solvers for PDEs and optimi-
sation methods. In: German Conference on Pattern Recognition, pp. 91–102. Springer, Berlin (2016)

19. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J.
Optim. 13(3), 865–888 (2002)

20. Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality
approach and its efficient numerical solution. SIAM J. Optim. 21(2), 491–516 (2011)

21. Hoppe, R.H.: Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24(5), 1046–1065 (1987)
22. Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2(04),

483–487 (1992)
23. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-

Dependent Problems, vol. 98. SIAM, Philadelphia (2007)
24. Lions, P.L., Mercier, B.: Splitting algorithms for the sumof two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979

(1979)
25. Majava, K., Tai, X.C.: A level set method for solving free boundary problems associated with obstacles. Int. J. Numer.

Anal. Model 1(2), 157–171 (2004)
26. Nesterov, Y.: A method of solving a convex programming problemwith convergence rate o (1/k2). Soviet Math. Dokl.

27, 372–376 (1983)
27. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys.

4(5), 1–17 (1964)
28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268

(1992)
29. Schaeffer, H., Hou, T.Y.: An accelerated method for nonlinear elliptic pde. J. Sci. Comput. 69(2), 556–580 (2016)
30. Scholz, R.: Numerical solution of the obstacle problem by the penalty method. Computing 32(4), 297–306 (1984)
31. Schwarz, H.A.: Sur une définition erronée de l’aire d’une surface courbe. Gesammelte Math. Abh. 1, 309–311 (1890)
32. Su, W., Boyd, S., Candes, E.: A differential equation for modeling Nesterov’s accelerated gradient method: Theory and

insights. In: Advances in Neural Information Processing Systems 27 (NIPS 2014), pp. 2510–2518 (2014)

http://arxiv.org/abs/1803.03551
http://arxiv.org/abs/1705.05300
https://doi.org/10.1007/s10851-019-00910-2

35 Page 30 of 30 J. Calder, A. Yezzi ResMath Sci (2019) 6:35

33. Sundaramoorthi, G., Yezzi, A.: Accelerated optimization in the PDE framework: formulations for the manifold of
diffeomorphisms. arXiv:1804.02307 (2018)

34. Sundaramoorthi, G., Yezzi, A.: Variational PDE’s for acceleration on manifolds and applications to diffeomorphisms. In:
Advances in Neural Information Processing Systems 31 (NIPS 2018) (2018)

35. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In:
International Conference on Machine Learning, pp. 1139–1147 (2013)

36. Tai, X.C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities.
Numer. Math. 93(4), 755–786 (2003)

37. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM
J. Imaging Sci. 4(1), 313–344 (2011)

38. Tran, G., Schaeffer, H., Feldman, W.M., Osher, S.J.: An L1 penalty method for general obstacle problems. SIAM J. Appl.
Math. 75(4), 1424–1444 (2015)

39. Wang, F., Cheng, X.L.: An algorithm for solving the double obstacle problems. Appl. Math. Comput. 201(1–2), 221–228
(2008)

40. Ward, C., Whitaker, N., Kevrekidis, I., Kevrekidis, P.: A toolkit for steady states of nonlinear wave equations: continuous
time Nesterov and exponential time differencing schemes. arXiv:1710.05047 (2017)

41. Weickert, J., Grewenig, S., Schroers, C., Bruhn, A.: Cyclic schemes for PDE-based image analysis. Int. J. Comput. Vis.
118(3), 275–299 (2016)

42. Wibisono, A., Wilson, A.C., Jordan, M.I.: A variational perspective on accelerated methods in optimization. Proc. Natl.
Acad. Sci. 113(47), E7351–E7358 (2016)

43. Woodard, R.P.: The theorem of Ostrogradsky. arXiv:1506.02210 (2015)
44. Yezzi, A., Sundaramoorthi, G.: Accelerated optimization in the PDE framework: formulations for the active contour

case. arXiv:1711.09867 (2017)
45. You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10),

1723–1730 (2000)
46. Zhang, Y.: Multilevel projection algorithm for solving obstacle problems. Comput. Math. Appl. 41(12), 1505–1513

(2001)
47. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imaging Sci. 5(1), 1–32 (2012)
48. Zosso, D., Osting, B.: Aminimal surface criterion for graph partitioning. Inverse Probl. Imaging 10(4), 1149–1180 (2016)
49. Zosso, D., Osting, B., Xia, M.M., Osher, S.J.: An efficient primal-dual method for the obstacle problem. J. Sci. Comput.

73(1), 416–437 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1804.02307
http://arxiv.org/abs/1710.05047
http://arxiv.org/abs/1506.02210
http://arxiv.org/abs/1711.09867

	PDE acceleration: a convergence rate analysis and applications to obstacle problems
	Abstract
	1 Introduction
	1.1 Outline

	2 PDE acceleration framework
	2.1 Convergence rate
	2.2 Computational complexity
	2.3 Optimal damping for linear problems

	3 Dirichlet problem
	3.1 Runtime comparisons
	3.2 Initial condition
	3.3 Connection to primal–dual methods

	4 Obstacle problems
	4.1 PDE acceleration
	4.2 Primal–dual algorithms

	5 Experiments
	5.1 Minimal surface obstacle problems
	5.2 Double obstacle with forcing
	5.3 Stochastic homogenization with obstacles

	6 Conclusion
	A Note on finite difference approximations to surface area
	References

