STABILITY OF PATTERNS IN THE ABELIAN SANDPILE

WESLEY PEGDEN AND CHARLES K SMART

ABSTRACT. We show that the patterns in the Abelian sandpile are stable. The
proof combines the structure theory for the patterns with the regularity machinery
for non-divergence form elliptic equations. The stability results allows one to im-
prove weak-* convergence of the Abelian sandpile to pattern convergence for certain
classes of solutions.

1. INTRODUCTION

Consider the following discrete boundary value problem for a bounded open set
) C R? with the exterior ball condition. For each integer n > 0, let u, : Z* — Z be
the point-wise least function that satisfies

Au, <2 in Z?>Nnf)
(1) {

u, >0  in Z*\ nQ,

where Au(r) = 37 _ (u(y) — u(x)) is the Laplacian on Z?. Were it not for the
integer constraint on the range of u,, this would be the standard finite difference
approximation of the Poisson problem on 2. The integer constraint imposes a non-
linear structure that drastically changes the scaling limit. In particular, the Laplacian
Au, is not constant in general. For example, in the case where () is a unit square,
depicted in Figure 1, Au, a fractal structure reminiscent of a Sierpinski gasket. Upon
close inspection one finds that the triangular regions of this image, displayed in more
detail in Figure 2, are filled by periodic patterns.

FIGURE 1. Au, for Q = (0,1)% and n = 32,3%,35,3%. The colors blue,
cyan, yellow, red correspond to values -1,0,1, 2.

The functions u, arise naturally as toppling functions in the Abelian sandpile

model. Recall that given a configuration of chips on Z2, toppling a vertex distributes
1
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one chip from a vertex to each of its neighbors, while untoppling is the reverse oper-
ation. The solution in (1) is thus the minimum (i.e., maximally negative) sequence
of topplings inside Z* N n{Q which does not result in greater than 2 chips at any site.
In particular Au, + 1 is the unique recurrent configuration on Z2? N n) equivalent
by topplings to the all-1’s configuration in the square-lattice sandpile dynamics with
toppling cutoff 3 (see Section 2).

We know from [15] the quadratic rescalings

U () = n_Qun([nx])

converge uniformly as n — oo to the solution of a certain partial differential equation.
As a corollary, the rescaled Laplacians s, (z) = Au,([nz]) converge weakly-* in L>°((2)
as n — oo. That is, the average of 5, over any fixed ball converges as n — co. The
arguments establishing this are relatively soft and apply in great generality. In this
article we describe how, when u is sufficiently regular, the convergence of the 5, can
be improved.

To get an idea of what we aim to prove, consider Figure 2, which displays the
triangular patches of Figure 1 in greater detail. It appears that, once a patch is
formed, it is filled by a double periodic pattern, possibly with low dimensional defects.
This phenomenon has been known experimentally since at least the works of Ostojic
[14] and Dhar-Sadhu-Chandra [7]. The recent work of Kalinin-Shkolnikov [8] identifies
the defects, in a more restricted context, as tropical curves.

The shapes of the limiting patches are known in many cases. Exact solutions for
some other choices of domain are constructed by Levine and the authors [11]; the
key point is that the notion of convergence used in this previous work ignores small-
scale structure, and thus does not address the appearance of patterns. The ansatz of
Sportiello [17] can be used to adapt these methods to the square with cutoff 3, which
yields the continuum limit of the sandpile identity on the square. Meanwhile, work
of Levine and the authors [11] did classify the patterns which should appear in the
sandpile, in the course of characterizing the structure of the continuum limit of the
sandpile. To establish that the patterns themselves appear in the sandpile process, it
remains to show that this pattern classification is exhaustive, and that the patterns
actually appear where they are supposed to. In this manuscript we complete this
framework, and our results allow one to prove that the triangular patches are indeed
composed of periodic patterns, up to defects whose size we can control.

We describe our result for (1) with Q = (0, 1)?, leaving the more general results for
later. A doubly periodic pattern p : Z* — Z is said to R-match an image s : Z> — 7
at x € Z? if, for some y € 72,

s(x+2)=ply+2) forzecZ*N Bk,

where By is the Euclidean ball of radius R and center 0.

Theorem 1. Suppose Q = (0,1)2. There are disjoint open sets Q C Q and doubly
periodic patterns py, : Z> — 7 for each k > 1, and constants L > 1 and o, > 0 such
that the following hold for all n > 1:

(1) |2\ Ur<h<n| < n7°.
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FI1GURE 2. The patterns in the upper right corner of Au, for Q =
(0,1)* and n = 600. The colors blue, cyan, yellow, red correspond to
value —1, 0, 1, 2.

(2) Forall1 < r < n, the pattern py, r-matches the image Au, at a 1—LFn=0/4p1/2
fraction of points in nfly.

We expect that the exponents in this theorem, while effective, are suboptimal. In
simulations, the pattern defects appear to be one dimensional. This leads to the
following problem.

Open Problem 2. Improve the above estimate to a 1 — L¥n~'r fraction of points.

In fact, we expect that pattern convergence can be further improved in certain
settings. We see below that the points of the triangular patches in the continuum limit
of (1) are all triadic rationals. Moreover, when we select n = 3™, then the patterns
appear without any defects, as in Figure 1. We expect this is not a coincidence. These
so-called “perfect Sierpinski” sandpiles have been investigated by Sportiello [17] and
appear in many experiments [1-3,7].

Open Problem 3. Show that, when n is a power of three, the patterns in patches
larger than a constant size have no defects. Let’s discuss this wording.

Our proof has three main ingredients. First, we prove that the patterns in the
Abelian sandpile are in some sense stable. This is a consequence of the classifica-
tion theorem for the patterns and the growth lemma for elliptic equations in non-
divergence form. Second, we obtain a rate of convergence to the scaling limit of the
Abelian sandpile when the limit enjoys some additional regularity. This is essentially a
consequence of the Alexandroff-Bakelman-Pucci estimate for uniformly elliptic equa-
tions. Third, the limit of (1) when Q = (0,1)? has a piece-wise quadratic solution
that can be explicitly computed by our earlier work. The combination of these three
ingredients implies that the patterns appear as Figure 1 suggests.

The Matlab/Octave code used to compute the figures for this article is included in
the arXiv upload and may be freely used and modified.



4 WESLEY PEGDEN AND CHARLES K SMART

Acknowledgments. Both authors are partial supported by the National Science
Foundation and the Sloan Foundation. The second author wishes to thank Alden
Research Laboratory in Holden, Massachusetts, for their hospitality while some of
this work was completed.

2. PRELIMINARIES

2.1. Recurrent functions. We recall the notion of being a locally least solution of
the inequality in (1).

Definition 4. A function v : Z? — Z is recurrent in X C Z? if Av < 2 in X and

sup(v — w) < sup(v — w)
Y X\Y

holds whenever w : Z? — Z satisfies Aw < 2 in a finite Y C X.

With this terminology, u, is characterized by being recurrent in Z? N n{) and zero
outside. The word recurrent usually refers to a condition on configurations s : X — N
in the sandpile literature [13]. These notions are equivalent for configurations of the

form s = Awv. That is, v is a recurrent function if and only if Av is a recurrent
configuration.

2.2. Scaling limit. We recall that the scaling limit of the Abelian sandpile.
Proposition 5 ([15]). The rescaled solutions u, of (1) converge uniformly to the
unique solution u € C(R?) of

D?*u e ol inQ
(2) {

u=0 on R%\ Q,

where I' C R2X2 s the set of 2 x 2 real symmetric matriz A for which there is a

sym
function v : Z* — 7 satisfying
(3) v(z) > tx- Az +o(|z’) and Av(z) <2 for all x € 77,

and OT denotes the (topological) boundary of the set T C R%x2

sym*

The partial differential equation (2) is interpreted in the sense of viscosity. This
means that if a smooth test function ¢ € C°°(2) touches u from below or above at
x € Q, then the Hessian D?p(x) lies in T or the closure of its complement, respectively.
That this makes sense follows from standard viscosity solution theory, see for example
6], and the following basic properties of the set I'.

Proposition 6 ([15]). The following holds for all A, B € R?

sym”
(1) A el implies tr A < 2.
(2) tr A <1 implies A €T.
(3) A€l and B < A implies B € T".
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These basic properties tell us, among other things, that the differential inclusion
(2) is degenerate elliptic and that any solution @ satisfies the bounds

1<trD*u<?2

in the sense of viscosity. This implies enough a prior regularity that we have a unique
solution u € C**(Q) for all a € (0,1).

2.3. Notation. Our results make use of several arbitrary constants which we do not
bother to determine. We number these according to the result in which they are
defined; e.g., the constant Cy is defined in Proposition 8. In proofs, we allow Hardy
notation for constants, which means that the letter C' denotes a positive universal
constant that may differ in each instance. We let Dy : RY — R? and D?p : RY — RZx4

denote the gradient and hessian of a function ¢ € C?(R?). We let |z| denote the ¢
norm of a vector # € R? and |A| denote the £? operator norm of a matrix A € Ré*e,

2.4. Pattern classification. The main theorem from [12] states that I' is the closure
of its extremal points and that the set of extremal points has a special structure. We
recall the ingredients that we need.

Proposition 7 ([12]). If
't ={P el :thereis an e > 0 such that P — el < B € T implies B < P},
then A € T if and only if A = lim,_,o, A, for some A, < P, € I'".

For each P € T't, there is a recurrent o : Z? — Z witnessing P € I'. These functions
o, henceforth called odometers, enjoy a number of special properties. The most
important for us is that the Laplacians Ao are doubly periodic with nice structure.
Some of the patterns are on display in Figure 3. We exploit the structure of these
patterns to prove stability.

FIGURE 3. The Laplacian Ao for several P € I'". The colors blue,
cyan, yellow, and red correspond to values —1,0, 1, 2.

Proposition 8 ([12]). There is a universal constant Cs > 0 such that, for each
P cT'F, there are A,V € Z**3, T C Z2, and a function o : Z> — 7, henceforth called
an odometer function, such that the following hold.

(1) PV = A,

(2) 1 < |V|? < Cgdet(V), where |V is the £* operator norm of V,
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0 1 -1

(3) A'QV + VIQA =Q’, where Q =[] and Q' = [71 0 1 ],

1 -10

@ Ali] =v[i] =131

(5) o is recurrent and there is a quadratic polynomial q such that D*q = P, 0o —q
is VZ3-periodic, and |o — q| < Cs|V]?,

(6) Ao=20ndT ={x €T :y~x for somey € Z*\T}.

(7) If v ~y € Z?, then there is z € Z* such that x,y € T + V z.

(8) If z,w € Z* and (T + Vz) N (T + Vw) # 0 if and only if |z — w|; < 1.

This proposition implies that Ao is VZ3-periodic and that the set {Ao = 2} has a
unique infinite connected component. Moreover, there is a fundamental tile 7' C Z?
whose boundary is contained in {Ao = 2} and whose VZ3-translations cover Z? with
overlap exactly on the boundaries. This structure is apparent in the examples in
Figure 3.

2.5. Toppling cutoff. In (1) we've used the bound 2 on the right-hand side. In
the language of sandpile dynamics, this means that sites topple whenever there are
three or more particles at a vertex. We have also used this bound in the literature
review above, although the cited papers state their theorems with the bounds 3 or 1;
in particular, the paper [12] uses the bound 1 for its results. (In fact, the published
version of the paper [12] is inconsistent in its use of the cutoff, so that in a few places,
a value of 2 appears where 0 would be correct; this inconsistency has been corrected
in the arXiv version of the paper.) Translation between the conventions is perfomed
by observing that the quadratic polynomial

q(z) = 321 (21 + 1)

is integer-valued on Z?, satisfies Ag = 1, and has hessian D?q = [} 3]. Since, for any
a € Z, we have A(u+aq) = Au+a, we can shift the right-hand side by a constant by
adding the corresponding multiple of ¢. Our choice of 2 in this manuscript makes the
scaling limit of (1) have a particularly nice structure, and which makes the rigorous
determination of the scaling limit cleaner than it would be to confirm Sportiello’s
ansatz for the case where the cutoff is 3 [17].

Note that for the standard < 3 cutoff, our solutions u,, correspond via Au, + 1 to
the unique recurrent configuration equivalent to the all-ones configuration on Z?Nnf,
whereas the identity element is the unique recurrent configuration equivalent to the
all-zeros configuration.

3. PATTERN STABILITY

In this section we prove our main result, the stability of patterns. A translation of
the odometer o is any function of the form

ox)=olxr+y)+z-xz+w

for some v, z € Z? and w € Z. Note that 6 also satisfies Proposition 8. In particular,
we have the following.



STABILITY OF PATTERNS IN THE ABELIAN SANDPILE 7

Lemma 9. For any odometer o and translation o, we have
(4) o(z) = o(z) +b-z+r(z),
forbe Z? and r : Z* — 7 is a VZ3 periodic function. O

Throughout the remainder of this section, we fix choices of P, A, VT, o from Propo-
sition 8. The following theorem says that, when a recurrent function is close to o,
then it is equal to translations o of o in balls covering almost the whole domain. This
is pattern stability.

Theorem 10. There is a universal constant C1g > 0 such that if h > Chg, r > Cio|V|,
hr > Cypo|V 3, R > Ciohr, and v : Z? — Z is recurrent and satisfies |v — o] < h? in
Bg, then, for a (1 — CioR™rh)-fraction of points x in Br_,, there is a translation o,
of o such that v = 0, in B.(x).

We introduce the norms
|2y = V']
and
|z|y—1 = min{|y|; : Vy = z}.
We prove these norms are dual and comparable to Euclidean distance.

Lemma 11. For all x,y € Z2, we have

|z -y < zlv|yly—

and
Cg | < [V[z]y-1 < Cslal.

Proof. If f: R? — R? satisfies V f(z) = z and |z|y-1 = | f(2)]1, then
-yl =lz- Vi)l =V fy)l < [Vl fW)h = zlvylv-.
The latter two inequalities follow from 1 < |V|? < Cgdet(V). O

The “web of twos” provided by Proposition 8 allows us to show that, when two
recurrent function differs from o, then the difference must grow. This is a quantitative
form of the maximum principle.

Lemma 12. If v : Z* — 7Z is recurrent, xo ~ yo € Z*, v(xg) = o(xo), and v(yo) #
o(yo), then, for all k >0,

max o—v)(x) > k.
|$—I0|V71Sk+1( )( ) o

Proof. We inductively construct Ty, =T + V z;, such that

(1

(2
(3
(4

) Zo, Yo € T07

) 0 — v is not constant on Ty,

) |Zk+1 — Zk|1 < 1

) maxy, (0 —v) > maxg (0 —v).
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Since |z — xo|y-1 < 1 for all x € Ty, this implies the lemma.

The base case is immediate from the fact that every lattice edge is contained in a
single tile. For the induction step, we use the recurrence of o and v. In particular,
since T}, C Z? is finite, the difference o — v attains its extremal values in 7T} on the
boundary 0T}. Since o— v is not constant on T}, it is not constant on 97},. Therefore,
we may select x € 9T}, such that

H%F%X(O —v) = (0o—v)(x)

and
(0 —v)(x) > (0 —v)(y) for some y ~ .

Now, if (0 — v)(z) > (0 — v)(y) for all y ~ x, then, using from Proposition 8 that
Ao(x) = 2, we compute

—1> Ao —v)(x) = Ao(z) — Av(z) =2 — Av(x),

contradicting the recurrence of v. Thus we can find y ~  such that (o —v)(z) < (0o —
v)(y). Choose 2,41 € Z? such that |zpy1 — 2 < land 2,y € Tpyy =T + Vzppr. O

On the other hand, we can approximate any linear separation of odometers, showing
that the above lemma is nearly optimal.

Lemma 13. For any b € R?, there is a translation 6 of o such that
6(z) — o(x) = b- x| < Z|z|y—1 + 2C5|V > for x € Z°
Proof. For y, z € Z* to be determined, let
o(x) =o(r+y)+z-x—oy) +0(0).
Using the quadratic polynomial ¢ from Proposition 8, compute
6(2) = o) = b-2] = 2G|V < lafa +y) + =2 — aly) +a(0) — a(a) — b 2]
=|(Py+z-0b) -zl
< |Py+ z —bly|x|y-1.
We claim that we can choose vy, z € Z? such that
|Py+2—bly < 3.
Indeed, using Proposition 8, we compute
{(Vi(Py+2):y,2€Z*} ={Ay +V'z:y,2 € Z°}
D {(A'QV +V'QA)w : w € Z*}
D{Qw:w € Z%
={weZ: H] ~w = 0}.

Since Vb € {w € R?: [H -w = 0}, the result follows. O



STABILITY OF PATTERNS IN THE ABELIAN SANDPILE 9

We prove the main ingredient of Theorem 10 by combining the previous two lem-
mas. Recall that a function u : Z? — R touches another function v : Z? — R from
below in a set X C Z? at the point x € X if miny (v — u) = (v — u)(z) = 0.

Lemma 14. There is a universal constant C14 > 1 such that, if
(1) R > Cu|V]?,
(2) v:Z* — 7Z is recurrent in Bp,
(3) ¥(z) = o(x) — 3|VI*R™2|x — y|* + k for some k € Z,
(4) ¢ touches v from below at 0 in Bg,
then there is a translation o of o such that
V=0 in BC;}R
Proof. Using Lemma 13, we may choose a translation o of o such that
[(z) + VI R?|z)* — o(z)| < 2|z|y— 4+ 2Cs|V[*  for € Bp.

Next, since ¥ touches v from below at 0, we obtain

(5) 6(0) — v(0) > —2C5|V|?
and
(6) 8(x) — v(z) < (205 + V)|V]* + 2|z|y+  in Bp.

We show that, if C4 > 0 is a sufficiently large universal constant, then 6 — v is
constant in Bc;f r- Suppose not. Then there are x ~ y € Bc;f R With

(0 —v)(0) = (0 —v)(z) # (6 —v)(y).
Since z € Bcﬂl r we have from Lemma 11 that
|z -1 < CsCHV| TR,

By Lemma 11, Bg contains all points z with |z — z|y—1 < R|V|™HCg! — C:Cy). In
particular, by Lemma 12, there is a z € By such that

(7) (6—v)(2) > =G|V > + RIV| HCgt — CsC) — 1.
Combining (7) with (6), we obtain
(8) RIV[7H(Cs" = GsCyy) = G|V =1 < (Cs + DIV + lzlyr,

which is impossible for R > C’14|V|3 and C'y large relative to Ck.
O

We prove pattern stability by adapting the growth lemma for non-divergence form
elliptic equations, see for example [16]. The above lemma is used to show that the
“touching map” is almost injective.

Proof of Theorem 10. Our proof assumes
hr > Cu|V|®, h>2Cy, r>3|V], R>3hr+2Cyur
Step 1. We construct a touching map. For y € Br_4., consider the test function
py(@) = o(z) = IVI*r~*|z — y|*.
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Observe that
(v—py)(y) = (v—0)(y) < h?
and, for z € Bg \ Bsu(v),
(v—y)(2) = (v —0)(2) + 3|VI*r %z —y|* = =h* + §|V|*h* > In*.

We see that v— ¢, attains its minimum over By at some point z,, € B3y, (y). Assuming
hr > Cu|V]? and h > 2C14, and R > 3hr + 2Cr, we have that R — 3hr > 20,

and Lemma 14 gives a translation o, of o such that

)

v=o0, in By.(z,).

The map y — z, is the touching map.

Step 2. We know that v matched a translation of o in a small ball around every
point in the range of the touching map. If we knew the touching map was injective,
then the fraction of these good points would be |Bg_sn-|/|Br|. While injectivity
generally fails, we are able to show almost injectivity, in the following sense.

Claim: For every y € Br_sp,, there are sets y € T, C Bg and z, € S, C B(z,, |V])
such that |T,| < [S,| and S, NSy # (@ implies S, = S; and T, = Tj.

To prove this, observe first that, assuming r > 3|V/|,

|z, — 5] < 2|V implies o, = oy,
since Ba,(x,) N Ba, () contains four VZ?-equivalent (not collinear) points, which is
sufficient to determine an odometer translation uniquely.

Next, observe from Lemma 9 that for every yo € Bpran, there is a slope b € 72
such that, for all v,z € Z2,

(9) 0y (7) = py (@) = r(2) + b2+ 5[V e —y|*

Now let z,,, = argmin(o,, —¢, ), and let X be any tiling of Z? by the VZ3-translations
of a fundamental domain with diameter bounded by |V|. We define

Sy =X €T suchthat z,, € X,

Tyoy = {7: Zyo,j € Syo,y}-

Note that Sy, , and T}, , depend only on o, and ¢ (and not directly on y). Moreover,
since y — 2,,, commutes with VZ?-translation by (9), we have that no T,,, can
contain two VZ3-equivalent points, and thus that |T,, ,| < [Sy,,| = [V] for all yo, y.

Finally, since |z,, — z,,| < 2|V| implies o,, = 0,,, we see that |z,, — x,,| < 2|V|
implies Sy, , = Sy, and T}, , = T, ,. Letting S, =S, , and T, = T, ,,, we see that
Sy, NSy # 0 implies |y — g| < 2|V| and thus S, = S; and T, = T}, as required.

Step 3. Let Y € Bg_4,, be maximal subject to {S, : y € Y} being disjoint. By
the implication in the claim, we must have Bg_4,, € U{T, : y € Y}. We compute

’Uyey Sy’ 2 Z ‘Ty| > ’UyEyTy’ > ’BR#UWI'
yey

Finally, observe that at each point of z € U{S, : y € Y}, there is a translation
0, of o such that v = 6, in B,(x). The theorem now follows from the estimate

|BR—4hr|/|BR| > 1 —CR 'rh. ]
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4. EXPLICIT SOLUTION

In this section, we describe the solution of

{D%z € ol in (0,1)

(10) =0 on R*\ (0,1)*.

As one might expect from Figure 1, the solution is piecewise quadratic and satisfies
the stronger constraint D2 € I'". The algorithm described here is implemented in
the code attached to the arXiv upload.

Theorem 15 ([11,12]). There are disjoint open sets Qi C Q = (0,1)? and constants
L>1, 6 >0 such that the following hold.

(1) 35 || =19 and Q] < k7.

(2) D*u is constant in each Q. with value P, € T'F.

(3) The V), € Z2*3 corresponding to Py, via Proposition 8 satisfies |Vj| < LF.

(4) Forr >0, {z : B.(z) C Q. } > Q] — L|Q,|V/?r.

Since this result is essentially contained in [11] and [12], we omit the proofs, giving
only the explicit construction and a reminder of its properties. We construct a family
of super-solutions v, € C(R?) of (10) such that v, | @ uniformly as n — occ. Each
super-solution v,, is a piecewise quadratic function with finitely many pieces. The
measure of the pieces whose Hessians do not lie in I'" goes to zero as n — oco. The
Laplacians of the first eight super-solutions is displayed in Figure 4. The construction
is similar to that of a Sierpinski gasket, and the pieces are generated by an iterated
function system.

_ [
KKK

FIGURE 4. The Laplacian of the supersolution @, on (0,1)? for n =0,...,7

The solution is derived from the following data.
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Definition 16. Let z,,as, ws, by € C? for s € {1,2,3}< satisfy

1 0
0= |1+1i|, ap=|—1 ,zsk:QszS, ask:@szs, ws = Sz, and by = Sa,,
7 7
where
1 3 0 0 1 00 1 1+7 1—14
Q=-|14¢ 1—¢ 1 |, R=1(0 0 1|,andS==-|1—-4 1 1+14].
Sl1—i 1 1+ 010 14+i 1—4 1

The above iterated function system generates four families of triangles, which we
use to define linear maps by interpolation.

Definition 17. For z,a € C3, let L., be the linear interpolation of the map z; — a.
That is, L, , has domain

Az = {t12’1 + thg +t323 . tl,tg,tg Z 0 and tl + tQ + t3 = 1}
and satisfies

Lz7a(t12’1 + tQZQ + t323) = t1a1 + tQCLQ + t3a3.

Identifying C and R? in the usual way, L., is a map between triangles in R?. We
glue together the linear maps L, ,, and L, to construct the gradients of our super-
solutions. The complication is that the triangles A, and A, are not disjoint. As
we see in Figure 4, the domains of later maps intersect the earlier ones. We simply
allow the later maps to overwrite the earlier ones.

Definition 18. For integers n >k > —1, let G, : (0,1)* — R? satisfy
Gn—1(z) = [§ 1],
G () = L, .(zx) ifxe .Azs for s € {1,2,3}"
’ Gnn-1(z) otherwise,
and, for n > k > —1,
Ly, if £ € A, f 1,2, 3}k
G al) = () ifxe P, or s € { }
Gnr-1(x) otherwise.
For integers n > 0, let G, = Gy, 5,
It follows by induction that G, is continuous and the gradient of a supersolution:
Proposition 19 ([11]). Forn >0, there is a v, € C(R?) N C'((0,1)?) such that
U (21, T2) = Op(|71], |22]),
U, =0 onR?\(0,1)%
and
Do, (x) = G(x) + [§ 8]z for z € (0,1)?
Moreover, sup,, sup g 1y2 |Dvn| < oc.
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The above proposition implies that the gradients DL._,, and DL, ;, are symmetric
matrices. In fact, one can prove that

DL, ..+ [83] €Tl and DLy, +[§8] €T
Passing to the limit n — 0o, one obtains Theorem 15.

Remark 20. Observe that the intersection points of the pieces of the explicit solution
all have triadic rational coordinates. We expect this is connected to Problem 3.

5. QUANTITATIVE CONVERGENCE

In order to use Theorem 10 to prove appearance of patterns, we need a rate of con-
vergence. Throughout this section, fix a bounded convex set 2 C R? and functions
Uy : Z* — Z and u € C(R?) that solve (1) and (2), respectively. We know that rescal-
ings u,(z) = n%u,(nz) — u(zr) uniformly in z € R?* as n — oco. We quantify this
convergence using the additional regularity afforded by Theorem 15. The additional
regularity arrives in the form of local approximation by recurrent functions.

Definition 21. We say that u is e-approximated if ¢ € (0,1/2) and there is a constant
K > 1 such that the following holds for all n > 1: For a 1 — Kn™¢ fraction of points
r € Z> Nnf, there is a u : Z% — Z that is recurrent in B,1--(z) C nf) and satisfies
MaXyep ,_. (z) lu(y) — nu(n~ty)| < Kn?73.
Being e-approximated implies quantitative convergence of u,, to w.

Theorem 22. If u is e-approrimated, then there is an L > 0 such that

sup |un(z) — n?a(n~tz)| < Ln?—/8

x€Z2
holds for allm > 1.

A key ingredient of our proof of this theorem is a standard “doubling the variables”
result from viscosity solution theory. This is analogous to ideas used in the conver-
gence result of [5] for monotone difference approximations of fully nonlinear uniformly
elliptic equations. In place of d-viscosity solutions, we use [4, Lemma 6.1] as a natural
quantification of the Theorem on Sums [6] in the uniformly elliptic setting. In the
following lemma, we abuse notation and use the Laplacian both for functions on the
rescaled lattice n='Z? and the continuum R2.

Lemma 23. Suppose that
(1) Q C R? is open, bounded, and conver,
(2) u:n1Z? = R satisfies |[Au| < 1inn™'Z°NQ and u =0 in n~'Z>\ Q,
(3) v € C(R?) satisfies |Av| <1 inQ andv =0 in R?\ Q,
(4) max,-1z2(u —v) =€ > 0.
There is a § > 0 depending only on 2 such that, for all p,q € Bs., the function
®(z,y) = u(z) —v(y) —dela’| o e o —yl* —p-2—q-y

attains its mazimum over n~'Z? x R? at a point (x*,y*) such that Bs.(z*) C Q and
Bs:(y*) € Q. Moreover, the set of possible mazima (x*,y*) as the slopes (p,q) vary
covers a 0'°¢% fraction of (n"'Z* N Q) x Q.
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Proof. Step 1. Standard estimates for functions with bounded Laplacian (both dis-
crete and continuous) imply that @, and u are Lipschitz with a constant depending
only on the convex set ). Estimate

Up(x) —u(z) > O(z,2) > U,(x) —u(zr) — Coe
and, using the Lipschitz estimates,

O(z,y) < ®(x,2) + Clr —y| — 6 e —y|~
Thus, if max, , ®(x,y) = &(z*,y*), then

£ —Cbe < B(a*,y*) < e+ Coe — O5 e ™ —y .
In particular, if § > 0 is sufficiently small, then
|z* —y*| < Coe.

Using the boundary conditions in combination with the Lipschitz estimates, we see
that, provided 6 > 0 is sufficiently small, Bs.(z*) C Q and Bs.(y*) C €.

Step 2. The final measure-theoretic statement is an immediate consequence of the
fact that the touching map (p,q) — (2*,y*) has a 65~ *-Lipschitz inverse. This is a
consequence of the proof of [4, Lemma 6.1]. Here, one must substitute the discrete
Alexandroff-Bakelman-Pucci inequality [9, 10] since we have the discrete Laplacian.
The statement we obtain is that, if § > 0 is sufficiently small, (p;, ¢;) — (24, v;), and
(71, 91) = (22,92)| < 6%, then |(p1,q1) — (p2,¢2)| < de. The result now follows by a
covering argument. O

Proof of Theorem 22. Suppose u is e-approximated and K > 1 is the corresponding
constant. For L > 1 to be determined, suppose for contradiction that

= = —e/8
1{{1;@2)%(% u) > Ln~/°.

(The case of the other inequality is symmetric.) Apply Lemma 23 with u = u,,
v =1, and ¢ = Ln~*/%. As the slopes (p, ¢) vary, the maximum (z*,y*) of ® satisfies
Bgpn—<5(y*) C Q and the set of possible y* covers a L3§'%n~¢ fraction of n=1Z? N Q.
Thus, if L > 1 is large enough, we may choose (p, q) such that there is a function
w : Z* — 7 that is recurrent in B,1-- and satisfies maxyecp , . |w(y) —n?u(ny*+y)| <
Kn2-3e "
Consider
2 O+ z,y" +2) — (2", y") =
Up (2° + 2) — Up(2%) — U(y* + 2) — a(y*) — (20ex™ +p +q) - z — e|z)?,
which attains its maximum at 0. Let r € Z? denote the integer rounding of 2dex* +
p + q. Observe that
(20ex* +p+q) -z +0elz* > (K + 1)n*%  for |z| > n'™®,
provided that L > 1 is large enough. In particular,

2 U (2f+2) —w(z) —1r- 2
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attains a strict local maximum in B,;1--. This contradicts the maximum principle for
recurrent functions. 0
6. CONVERGENCE OF PATTERNS
We prove Theorem 1 by combining Theorem 10, Theorem 22, and Theorem 15.

Proof. First observe that Theorem 15 implies that @ is a-approximated for some
a > 0. Making a > 0 smaller, Theorem 22 implies

sup |@, — | < Cn*™®

from Theorem 22. Let us now consider what happens inside an individual piece (2.
For 1 <r < R < n, Theorem 15 implies that a

1—Cr *2n 'R

fraction of points = in n{) satisfy Br(x) C nf). There is an odometer oy, for Py, such
that

h? = max |u, — ox| < Cn*"*+ CR.
BRr(z)

Assuming r > CL¥ > C|V;|, Theorem 10 implies that Aoy r-matches Au, at a
1—CRrh
fraction of points in Bg(z). Assuming that r < n® and setting
R = nl=o/3k/6,1/3,
these together imply that w, r-matches Ao, at a
1 — CTfk/3n7a/3T1/3
fraction of points in n€. Replacing C7%/3 by a larger L*, we can remove the
restrictions on 7, as the estimate becomes trivial at the edges.
Assuming r > CL* > C|V,|, Theorem 10 implies that Aoy r-matches Au, at a
(1—-CR'rh)
fraction of points in Bg(x). In particular, u, r-matches Aoy at at least a
(1—-Cr "2 'R)2(1 — CR™'rh) > 1 - C(r7**n"'R + R™'rh)

fraction of points.
In particular, assuming r < n®/? and setting

R = nl=/Ark/Ap12

these together imply that u,, r-matches Ao, at a

1 — O k/Ap—a/4.1/2

fraction of points in n{2,. Replacing C7*/* by a larger L*, since in the regime r > n®
the claim is vacuous. 0J
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