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Abstract. We give qualitative and quantitative improvements to theorems
which enable significance testing in Markov Chains, with a particular eye to-

ward the goal of enabling strong, interpretable, and statistically rigorous claims

of political gerrymandering. Our results can be used to demonstrate at a de-
sired significance level that a given Markov Chain state (e.g., a districting)

is extremely unusual (rather than just atypical) with respect to the fragility

of its characteristics in the chain. We also provide theorems specialized to
leverage quantitative improvements when there is a product structure in the

underlying probability space, as can occur due to geographical constraints on
districtings.

This note discusses improvements on a number of theorems for significance testing
in Markov Chains. The improvements to the theorem statements are both quali-
tative and quantitative to enable strong, easily interpretable statistical claims, and
include extensions to settings where more structural assumptions lead to dramatic
improvements in the bounds. This class of theorems is of particular interest be-
cause they do not assume that the chain has converged to equilibrium, which is of
practical importance since the mixing time of Markov chains used in applications
is frequently unknown.

The development of this class of algorithms and these particular extensions have
been directly motivated by a question of significant contemporary interest; detect-
ing and quantifying gerrymandering. The definiteness and correctness provided
by these theorems affords decision makers (e.g., in a legal setting) with an uncom-
monly rigorous approach to understanding whether a political districting is carefully
crafted for partisan advantage. These methods (and theorems) have been used suc-
cessfully by one of the authors in Gerrymandering court cases in Pennsylvania and
North Carolina.

The first technical part of this article gives new results along these lines, extend-
ing the work in [CFP] to allow separation of effect size from the quantification of
statistical significance. The second part, in Section 8, develops versions of some
of these results in a special setting with a particular structure on the probability
space motivated by recent legal proceedings. In particular, in balancing the federal
one-person-one-vote mandate with the “keep counties whole” prevision of the North
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Carolina Constitution, the North Carolina courts ruled in Stephenson v. Bartlett
that a particular algorithm should be used to “cluster” the counties into indepen-
dent county groups which are districted separately. This gives a product structure
to the underlying probability space which can be exploited in theorems designed to
take advantage of it.

In Section 1 we consider the technical background and past results necessary to
frame the new results of this paper; in Section 2 we discuss the practical challenges
which motivate the new theoretical framework we devlop in this paper. The new
results are stated and discussed in Section 3. Later sections prove the new theorems.

1. Background and previous results

Consider a reversible Markov Chain M whose state-space Σ is endowed with some
labeling ω : Σ → R, and for which π is a stationary distribution. M, π, ω, and a
fixed integer k determine a vector

pk0 , p
k
1 , . . . , p

k
k

where for each i, pki is the probability that for a k-step π-stationary trajectory
X0, . . . , Xk, the minimum ω value occurs atXi. In other words, pki is the probability
that if we choose X0 randomly from the stationary distribution π and take k steps
in M to obtain the the trajectory X0, X1, . . . , Xk, that we observe that ω(Xi) is
the minimum among ω(X0), . . . , ω(Xk). Note that if we adopted the convention
that we break ties among the values ω(X0), . . . , ω(Xk) randomly, we would have
that pk0 + · · ·+ pkk = 1, for any M, π, and k.

In the context of districting, M is generally a random walk on the space of possible
districtings of a state; for example, from one districting, we can randomly choose a
voting precinct on the boundary of two districts, and switch its district membership
if doing so does not violate constraints on contiguity, population deviation, etc (see
Figure 1 for an example of such a move). This transition rule defines a reversible
Markov chain on the state space consisting of all valid districtings of the state. The
label function ω could be, for example, the partisanship of any given districting—
which could be defined, for example, from simulated election results using historical
voting data. In this context, pk0 is the probability that if began from a random
districting of a state, and carried out a sequence of k random transitions, that the
initial districting in the sequence would be the most partisan districting observed
in the sequence.

At first glance, it might be natural to assume that we must have something like
pki ≈ 1

k+1 for all 0 ≤ i ≤ k. This would mean, for example, that if we generated
a sequence of 10,000 districtings, and the initial districting was the most partisan,
that it would be valid to conclude that the initial districting was not randomly
chosen from the stationary distribution, at a p value of p = .0001. But this is
actually quite far from the truth; [CFP] showed that for some M, π, k, we can have
pk0 as large as essentially 1√

2πk
.
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1 step

Figure 1. An example of a Markov chain transition for the
legislative districting of Wisconsin.

As shown in [CFP], this is essentially the worst possible behavior for pk0 . In par-
ticular, we can generalize the vector {pki } defined above as possible: let us define,
given M, π, k, and 0 ≤ ε ≤ 1, the vector

pk0,ε, p
k
1,ε, . . . , p

k
k,ε

where each pki,ε is the probability that ω(Xi) is among the smallest ε fraction of
values in the list ω(X0), . . . , ω(Xk). Then in [CFP] we proved:

Theorem 1.1. Given a reversible Markov chain M with stationary distribution π,
an ε > 0, k ≥ 0, and With pki,ε defined as above, we have that

pk0,ε ≤
√
2ε.

In particular, in the case of the first districting which is most partisan on a sequence
of 10, 000, this supports a p-value of p =

√
2/100 ≈ .014. Note that the example

from [CFP] realizing pk0 ≈ 1√
2πk

shows that this theorem is best possible, up to

constant factors.

As indicated by the example of making a sequence of random changes to a district-
ing, one important application of Theorem 1.1 is that it characterizes the statistical
significance associated to the result of the following natural test for gerrymandering
of political districtings:

Local Outlier Test

(1) Beginning from the districting being evaluated,
(2) Make a sequence of random changes to the districting, while preserving

some set of constraints imposed on the districtings.
(3) Evaluate the partisan properties of each districting encountered (e.g., by

simulating elections using past voting data).
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(4) Call the original districting “carefully crafted” or “gerrymandered” if the
overwhelming majority of districtings produced by making small random
changes are less partisan than the original districting.

Naturally, the test described above can be implemented so that it precisely satisfies
the hypotheses of Theorem 1.1. For this purpose, a (very large) set of comparison
districtings are defined, to which the districting being evaluated belongs. For exam-
ple, the comparison districtings may be the districtings built out of Census blocks
(or some other unit) which are contiguous, equal in population up to some specified
deviation, or include other constraints. A Markov chain M is defined on this set
of districtings, where transitions in the chain correspond to changes in districtings.
(For example, a transition may correspond to randomly changing the district as-
signment of a randomly chosen Census block which currently borders more than one
district, subject to the constraints imposed on the comparison set.) The “random
changes” from Step 2 will then be precisely governed by the transition probabilities
of the Markov chain M. By designing M so that the uniform distribution π on the
set of comparison districtings Σ is a stationary distribution for M, Theorem 1.1
gives an upper bound on the false-positive rate (in other words, global statistical
significance) for the “gerrymandered” declaration when it is made in Step 4.

Remark 1.2. Note that while a local outlier test can be used to give a statistical
significant finding of gerrymandering, it cannot be used alone to demonstrate rig-
orously that a districting is not gerrymandered. In particular, when a districting
does not seem gerrymandered to a local outlier test, it is quite possible that the
chain is simply not mixing well enough to explore the space of alternatives. The
theorems discussed in this paper give one-way guarantees: for example, observ-
ing outlier status confers a statistically significant finding of gerrymandering, but
failing to observe it is inconclusive, absent other evidence.

Apart from its application to gerrymandering, Theorem 1.1 has a simple informal
interpretation for the general behavior of reversible Markov chains, namely: typical
(i.e., stationary) states are unlikely to change in a consistent way under a sequence
of chain transitions, with a best-possible quantification of this fact (up to constant
factors).

Also, in the general setting of a reversible Markov chain, the theorem leads to
a simple quantitative procedure for asserting rigorously that σ0 is atypical with
respect to π without knowing the mixing time of M: simply observe a random
trajectory σ0 = X0, X1, X2 . . . , Xk from σ0 for any fixed k. If ω(σ0) is an ε-outlier

among ω(X0), . . . , ω(Xk), then this is statistically significant at
√
2ε against the

null hypothesis that σ0 ∼ π.

This quantitative test is potentially useful because
√
2ε converges quickly enough

to 0 as ε → 0; in particular, it is possible to obtain good statistical significance
from observations which can be made with reasonable computational resources. Of
course, faster convergence to 0 would be even better, but, as already noted, p ≈

√
ε

is roughly a best possible upper bound.
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On the other hand, it is possible to achieve better dependence on ε by changing
the parameters of the test. For example, we will prove the following theorem as a
stepping-stone to the main results of the present manuscript:

Theorem 1.3. Consider two independent trajectories Y0, . . . , Yk and Z0, . . . , Zk

in the reversible Markov Chain M (whose states have real-valued labels) from a
common starting point Y0 = Z0 = σ0. If we choose σ0 from a stationary distribution
π of M, then for any k we have that

Pr (ω(σ0) is an ε-outlier among ω(σ0), ω(Y1), . . . , ω(Yk), ω(Z1), . . . , ω(Zk)) < 2ε.

Note that due to the reversibility of the chain, Theorem 3.5 is equivalent to the
statement that the probabilities pki,ε always satisfy

(1) p2kk,ε < 2ε.

Remark 1.4. As in the case of Theorem 1.1, it seems like an interesting question
to investigate the tightness of the constant 2; we will see in Section 8 that there are
settings where the impact of this constant is inflated to have outsize-importance.
We point out here that at least for the case of k = 1, ε = 1/3, ρ2

1, 13
can be at least as

large as 1
2 , showing that the constant 2 in (3) cannot be replaced by a constant less

than 3
2 , in general. To see this, consider, for example, a bipartite complete graph

Kn,n, where the labels of the vertices of one side are 1, . . . , n and the other are
n+ 1, . . . , 2n. For the Markov chain given by the random walk on this undirected
graph, we have that ρ2

1, 13
= 1

2 . Note that for this example, it is still the case that

ρ2kk,ε → ε as k → ∞, leaving open the possibility that the 2 in (3) can be replaced
with an expression asymptotically equivalent to 1.

The informal interpretation of Theorem 3.5 is thus: typical (i.e., stationary) states
are unlikely to change in a consistent way under two sequences of chain transitions.

Unknown to the authors at the time of the publication of [CFP], a 1989 paper of
Besag and Clifford described a test related to that based on Theorem 3.5, which
has essentially a one-line proof, which we discuss in Section 5:

Theorem 1.5 (Besag and Clifford serial test). Fix any number k and suppose that
σ0 is chosen from a stationary distribution π, and that ξ is chosen uniformly in
{0, . . . , k}. Consider two independent trajectories Y0, Y1, . . . and Z0, Z1, . . . in the
reversible Markov Chain M (whose states have real-valued labels) from Y0 = Z0 =
σ0. If we choose σ0 from a stationary distribution π of M, then for any k we have
that

Pr (ω(σ0) is an ε-outlier among ω(σ0), ω(Y1), . . . , ω(Yξ), ω(Z1), . . . , ω(Zk−ξ)) ≤ ε.

Here, a real number a0 is an ε-outlier among a0, . . . , ak if

# {i ∈ {0, . . . , k} | ai ≤ a0} ≤ ε(k + 1).

In particular, the striking thing about Theorem 1.5 is that it achieves a best-possible
dependence on the parameter ε. (Notice that ε would be the correct value of the
probability if, for example, the Markov chain is simply a collection of independent
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Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

1 99.999994% 5 99.9999999964% 9 99.999997% 13 99.99984%
2 99.99999999963% 6 99.9999999988% 10 99.99999999909% 14 99.9999999986%
3 99.99999999981% 7 99.99999945% 11 99.9999999949% 15 99.9999948%
4 99.9999984% 8 99.999998% 12 99.9999982% 16 99.9999999973%

Table 1. Results of the analysis from [P] for the House districting
of North Carolina.

random samples.) The sacrifice is in Theorem 1.5’s slightly more complicated in-
tuitive interpretation, which would be: typical (i.e., stationary) states are unlikely
to change in a consistent way under two sequences of chain transitions of random
complementary lengths. Note that the pattern in these theorems is that the sim-
plicity of the intuitive interpretation of the theorem is sacrified for the quantitative
bounds offered; one goal of the present paper is prove theorems which avoid this
tradeoff.

2. The need for new statistical approaches

In late 2018, the nonprofit Common Cause filed a lawsuit in North Carolina superior
court challenging the state-level districting plans (for the North Carolina state
House and Senate districts). The third and fourth authors of this paper served
as expert witnesses in this case, which ultimately found the challenged districtings
to be unconstitutional partisan gerrymanders. In this section, we use some of the
findings from the fourth author’s expert report [P] in that case as motivation for
the need for the new theoretical results we advance in this paper.

One interesting feature of districting in North Carolina is the requirement (from
the state supreme court case Stephenson v. Bartlett) that districtings of that state
must respect particular groupings—county clusters—determined, essentially deter-
ministically, by a prescribed set of rules.

A complete districting of the state of North Carolina is thus composed of completely
separate, noninteracting districting problems in each county cluster. One practical
question of interest in Common Cause v. Lewis—separate from the question of
whether the challenged districtings were partisan gerrymanders— was the question
of which specific county clusters were gerrymandered in each (House and Senate)
districting.

The basic approach of the analysis used in [P] begins with an experiment in which
random changes are made to the actual, enacted districting of the state being
evaluated. For example, Table 1 (taken from [P]) shows the results of 16 such
experiments run on the North Carolina House districting:

Each number shows, as a percentage, the fraction of districtings encountered in
the sequence of random changes which were more Republican-favorable than the
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Figure 2. First: the challenged State House districting of North
Carolina, and three examples of maps encountered by a sequence
of random changes.

enacted plan. The particular choices of partisan metrics and voting data can be
found in [P]. (Figure 2 shows the inital map as well as three examples of maps
encountered in the first experiment.)

The percentages recorded in Table 1 show that the enacted House plan is an extreme
outlier among the plans generated by making small random changes to the enacted
plan. This already gives strong intuitive evidence that the enacted plan is extremely
carefully drawn to maximize partisan advantage: as soon as the lines of the map
are subjected to small random changes, the overwhelming fraction of encountered
maps are less advantageous to Republicans than the enacted plan.

But the next step of the analysis in [P] is the application of rigorous theorems to
establish statistical significance for the findings in Table 1. This is slightly subtle,
since, as we will see when setting up the technical details later, we do not make
the heuristic assumption that the randomly generated plans are uniform samples
from some set of possible maps; instead, we wish to make rigorous statistical claims
with respect to the actual experiment, a Markovian process of making a sequence
of random changes to the initial map.

The previous paper [CFP] also took this approach in an analysis of the Congres-
sional districting of Pennsylvania (which later formed the basis of expert testimony
in the League of Women Voters v. Pennsylvania case which challeneged the Con-
gressional districting there). The Theorem from [CFP] allows one to establish

statistical significance of p =
√
2ε when one finds that a 1− ε fraction of maps are

less advantageous to (say) the Republicans than the enacted map. For example, for
Run 1 in Table 1, ε = .00000006 and so p = .0003 is quite statisically significant,
against the null hypothesis of a randomly chosen districting.

But an important question in the Common Cause v. Lewis lawsuit was not simply
whether unconstitutional gerrymandering took place in the drawing of the North
Carolina plans, but in which county clusters it took place (so that districtings in
those clusters could be ordered redrawn). As an example we will consider the
county cluster consisting of Forsyth and Yadkin counties; the challenged map and
3 examples of maps encountered by the sequence of random changes are shown in
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Figure 3. First: the challenged State House districting within
the Forsyth-Yadkin county cluster, and three examples of maps
encountered by a sequence of random changes to this districting.

Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

Run Percentage of
comparison maps
less partisan than
enacted plan

1 99.945% 9 99.905% 17 99.87% 25 99.92%
2 99.76% 10 99.925% 18 99.84% 26 99.84%
3 99.87% 11 99.8% 19 99.929% 27 99.81%
4 99.86% 12 99.911% 20 99.73% 28 99.85%
5 99.77% 13 99.8% 21 99.88% 29 99.83%
6 99.89% 14 99.927% 22 99.906% 30 99.77%
7 99.91% 15 99.82% 23 99.8% 31 99.947%
8 99.79% 16 99.88% 24 99.88% 32 99.937%

Table 2. Results of the analysis from [P] for the House districting
of North Carolina in the Forsyth-Yadkin cluster.

Figure 3, while the table of results for this cluster are shown in Table 2. While Table
2 shows that the overwhelming fraction of maps encountered by making random
changes were less favorable to Republicans, ε values of around .002 in this case are
not small enough that

√
2ε would be statistically significant. In particular, even

if we applied a test like that given by Theorem 3.5 or Theorem 1.5, our level of
statistical confidence would be limited by the degree to which the districting in this
county cluster is an outlier.

Instead, we wish to decouple the statistical significance of our finding from the level
of outlier status we can report for the districting in this cluster; this is a major goal
of the approach we take in this note.

3. New results

One common feature of the tests based on Theorem 1.1 and 1.5 is the use of
randomness. In particular, the probability space at play in these theorems includes
both the random choice of σ0 assumed by the null hypothesis and the random steps
taken by the Markov chain from σ0. Thus the measures of “how (globally) unusual”
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σ0 is with respect to its performance in the local outlier test and “how sure” we are
that σ0 is unusual in this respect are intertwined in the final p-value. In particular,
the effect size and the statistical significance are not explicitly separated.

To further the goal of simplifying the interpretation of the results of these tests, our
approach in this note will also show that tests like these can be efficiently used in a
way which separates the measure of statistical significance from the question of the
magnitude of the effect. For example, our new results would allow one to capture
the outlier status of a cluster like Forsyth-Yadkin discussed in the previous section,
at a p-value which can be made arbitrarily small, independent of the observed ε
values.

To begin, let us recal the probabilities pk0,ε, . . . , p
k
k,ε defined previously, let us define

the ε-failure probability pk0,ε(σ0) to be the probability that on a trajectory σ0 =
X0, X1, . . . , Xk, ω(σ0) is among the smallest ε fraction of the list ω(X0), . . . , ω(Xk).
Now we make the following definition:

Definition 3.1. With respect to k, the state σ0 is an (ε, α)-outlier in M if, among
all states in M, pk0,ε(σ0) is in the largest α fraction of the values of pk0,ε(σ) over all
states σ ∈ M, weighted according to π.

In particular, being an (ε, α)-outlier measures the likelihood of σ0 to fail the local
outlier test, ranked against all other states σ ∼ π of the chain M. For example, fix
k = 109. If σ0 is a (10−6, 10−5)-outlier in M and π is the uniform distribution, this
means that among all states σ ∈ M, σ0 is more likely than all but a 10−5 fraction
of states to have an ω-value in the bottom 10−6 values ω(X0), ω(X1), . . . , ω(X109).
Note that the probability space underlying the “more likely” claim here just con-
cerns the choice of the random trajectory X1, . . . , X109 from M.

Note that whether σ0 is a (ε, α)-outlier is a deterministic question about the prop-
erties of σ0,M, and ω. Thus it is a deterministic measure (defined in terms of
certain probabilities) of the extent to which σ0 is unusual (globally, in all of M)
with respect to it’s local fragility in the chain.

The following theorem enables one to assert statistical significance for the property
of being an (ε, α)-outlier. In particular, while tests based on Theorems 1.1 and 1.5
take as their null hypothesis that σ0 ∼ π, the following theorem takes as its null
hypothesis merely that σ0 is not an (ε, α)-outlier.

Theorem 3.2. Consider m independent trajectories

T 1 =(X1
0 , X

1
1 , . . . , X

1
k),

...

T m =(Xm
0 , Xm

1 , . . . , Xm
k )

of length k in the reversible Markov Chain M (whose states have real-valued labels)
from a common starting point X1

0 = · · · = Xm
0 = σ0. Define the random variable ρ

to be the number of trajectories T i on which σ0 is an ε-outlier.
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If σ0 is not an (ε, α)-outlier, then

(2) Pr

(
ρ ≥ m

√
2ε
α + r

)
≤ e−min(r2

√
α/2ε/3m,r/3).

In particular, apart from separating measures of statistical significance from the
quantification of a local outlier, Theorem 3.2 connects the intuitive Local Outlier
Test tied to Theorem 1.1 (which motivates the definition of a (ε, α)-outlier) to the
better quantitative dependence on ε in Theorem 1.5.

To compare the quantitative performance of Theorem 3.2 to Theorems 1.1 and 1.5,
consider the case of a state σ0 for which a random trajectory σ0 = X0, X1, . . . , Xk is
likely (say with some constant probability p′) to find σ0 an ε′-outlier. For Theorem

1.1, significance at p ≈
√
2ε would be obtained1, while using Theorem 1.5, one

would hope to obtain significance of ≈ ε′. Applying Theorem 3.2, we would expect
to see ρ around m · p′. In particular, we could demonstrate that σ0 is an (ε′, α)
outlier for α = 3ε

(p′)2 (a linear dependence on ε) at a p-value which can be made

arbitrarily small (at an exponential rate) as we increase the number of observed
trajectories m. As we will see in Section 6, the exponential tail in (2) can be
replaced by a binomial tail. In particular, the following special case applies:

Theorem 3.3. With T 1, . . . , T m as in Theorem 3.2, we have that if σ0 is not an
(ε, α) outlier, then

Pr
(
σ0 an ε-outlier on all of T 1, . . . , T m

)
≤
(
2ε

α

)m/2

.

Theorem 3.3 also has advantages from the standpoint of avoiding the need to correct
for multiple hypothesis testing, as we discuss in Section 4.

Example 3.4. Based on the output in Table 2, we can apply Theorem 3.3 to report
that the enacted districting of the Forsyth-Yadkin cluster is an (α, ε)-outlier for
α = 00.9% and ε = 00.3%, at a statistical significance of p = .002. In other words,
among all possible districtings defined by the constraints imposed (not just those
encountered in the 32 runs), the enacted plan has a greater ε-failure probability
than 99.1% of districtings of the cluster, a finding we are confident in at a statistical
significance of p = .002.

To prove Theorem 3.2, we will prove the following, which has a quantitative depen-
dence on ε which is nearly as strong as in Theorem 1.5, while eliminating the need
for the random choice of ξ there.

Theorem 3.5. Consider two independent trajectories Y0, . . . , Yk and Z0, . . . , Zk

in the reversible Markov Chain M (whose states have real-valued labels) from a

1Multiple tests have limited utility here or with Theorem 1.5 since there is no independence

(the null hypothesis σ0 ∼ π is not being resampled). In particular, multiple runs might be done
merely until a trajectory is seen on which σ0 is indeed an ε′ outlier (requiring 1/p′ runs, on

average), in conjunction with multiple hypothesis testing.
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common starting point Y0 = Z0 = σ0. If we choose σ0 from a stationary distribution
π of M, then for any k we have that

Pr (ω(σ0) is an ε-outlier among ω(σ0), ω(Y1), . . . , ω(Yk), ω(Z1), . . . , ω(Zk)) < 2ε.

Note that Theorem 3.5 is equivalent to the statement that the probabilities pki,ε
always satisfy

(3) p2kk,ε < 2ε.

Remark 3.6. As in the case of Theorem 1.1, it seems like an interesting question
to investigate the tightness of the constant 2; we will see in Section 8 that there are
settings where the impact of this constant is inflated to have outsize-importance.
We point out here that at least for the case of k = 1, ε = 1/3, ρ2

1, 13
can be at least as

large as 1
2 , showing that the constant 2 in (3) cannot be replaced by a constant less

than 3
2 , in general. To see this, consider, for example, a bipartite complete graph

Kn,n, where the labels of the vertices of one side are 1, . . . , n and the other are
n+ 1, . . . , 2n. For the Markov chain given by the random walk on this undirected
graph, we have that ρ2

1, 13
= 1

2 . Note that for this example, it is still the case that

ρ2kk,ε → ε as k → ∞, leaving open the possibility that the 2 in (3) can be replaced
with an expression asymptotically equivalent to 1.

In the paper where Theorem 1.5 is proved, Besag and Clifford also describe a parallel
test, which we will discuss in Section 7. In particular, in Section 7 we will describe
a test which generalizes Besag and Clifford’s serial and parallel tests in a way which
could be useful in certain parallel regimes.

Finally, we consider an interesting case in the analysis of districtings that arises
when the districting problem can be decomposed into several non-interacting dis-
tricting problems, as is the case in North Carolina because of the county clusters. In
this case, the probability space of random districtings is really a product space, and
this structure can be exploited in a strong way for the statistical tests developed in
this manuscript. We develop results for this setting in Section 8.

The remaining sections of the paper are devoted to the proofs of the new results.

4. Multiple hypothesis considerations

When applying Theorem 3.2 directly, one cannot simply run m trajectories, observe
the list ε1, ε2, . . . , εm where each εi is the minimum εi for which σ0 is an εi-outlier
on T i, and then, post-hoc, freely choose the parameters α and ε in Theorem 3.2 to
achieve some desired trade-off between α and the significance p.

The problem, of course, is that in this case one is testing multiple hypotheses
(infinitely many in fact; one for each possible pair ε and α) which would require a
multiple hypothesis correction.
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One way to avoid this problem is to essentially do a form of cross validation, were
a few trajectories are run for the purposes of selecting suitable ε and α, and then
discarded from the set of trajectories from which we obtain significance.

A simpler approach, however, is to simply set the parameter ε = ε(t) as the tth-
smallest element of the list ε1, . . . , εm for some fixed value t. The case t = m, for
example, corresponds to taking ε as the maximum value, leading to the application
of Theorem 3.3.

The reasons this avoids the need for a multiple hypothesis correction is that we can
order our hypothesis events by containment. In particular, when we apply this test
with some value of t, we will always have ρ = t. Thus the significance obtained
will depend just on the parameter ε(t) returned by taking the t-th smallest εi and
on our choice of α (as opposed to say, the particular values of the other εi’s which
are not the t-th smallest). In particular, regardless of how we wish to trade-off the
values of α and p we can assert from our test, our optimum choice of α (for our
fixed choice of t) will depend just on the value ε(t). In particular, we can view α
as a function α(ε(t)), so that we when applying Theorem 3.2 with with ε = ε(t), we
are evaluating the single-parameter infinite family of hypotheses Hε(t),α(ε(t)), and
we do not require multiple hypothesis correction since the hypotheses are nested;
i.e., since

(4) ε(t) ≤ ε′(t) =⇒ Hε(t),α(ε(t)) ⊆ Hε′
(t)

,α(ε(t)).

Indeed, (4) implies that

Pr

⎛⎝ ⋃
ε(t)≤β

Hε(t),α(ε(t))

⎞⎠ = Pr(Hβ,α(β)),

which ensures that when applying Theorem 3.2 in this scenario, the probability of
returning a p-value ≤ p0 for any fixed value p0 will indeed be at most p0.

5. Proof background

We begin this section by giving the proof of Theorem 3.5. In doing so we will
introduce some notation that will be useful throughout the rest of this note. To
make things as accessible as possible, we give every detail of the proof.

In this manuscript, a Markov Chain M on Σ is specified by the transition proba-
bilities {πσ1,σ2

| σ1, σ2 ∈ Σ} of a chain. A trajectory of M is a sequence of random
variables X0, X1, . . . required to have the property that for each i and σ0, . . . , σi,
we have

(5) Pr (Xi = σi | Xi−1 = σi−1, Xi−2 = σi−2 . . . , X0 = σ0) = πσi,σi−1
.

In particular, the Markov property of the trajectory is that the conditioning on
Xi−2, Xi−3, . . . is irrelevant once we condition on the value of Xi−1. Recall that
π is a stationary distribution if X0 ∼ π implies that X1 ∼ π and thus also that
Xi ∼ π for all i ≥ 0; in this case we that the trajectory X0, X1, . . . is π-stationary.
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The Markov Chain M is reversible if any π-stationary trajectory X0, . . . , Xk is
equivalent in distribution to its reverse Xk, . . . , X0.

We say that aj is ℓ-small among a0, . . . , as if there are at most ℓ indices i ̸= j
among 0, . . . , s such that ai ≤ aj . The following simple definition is at the heart of
the proofs of Theorems 1.1, 3.5, 1.5.

Definition 5.1. Given a Markov Chain M with labels ω : Σ → R and stationary
distribution π, we define for each ℓ, j ≤ k a real number ρkj,ℓ, which is the probability

that for a π-stationary trajectory X0, X1, . . . , Xk, we have that ω(Xj) is ℓ-small
among ω(X0), . . . , ω(Xk).

Observe that (5) implies that all π-stationary trajectories of a fixed length are all
identical in distribution, and in particular, that the ρkj,ℓ’s are well-defined.

Next observe that if the sequence of random variables X0, X1, . . . is a π-stationary
trajectory for M, then so is any interval of it. For example,

(Xk−j , . . . , Xk, . . . , X2k−j)

is another stationary trajectory, and thus the probability that ω(Xk) is ℓ-small
among ω(Xk−j), . . . , ω(X2k−j) is equal to ρkj,ℓ. In particular, since

(ω(Xk) is ℓ-small among ω(Xk−j), . . . , ω(X2k−j))

follows from
(ω(Xk) is ℓ-small among ω(X0), . . . , ω(X2k))

for all j = 0, . . . , k, we have that

(6) ρ2kk,ℓ ≤ ρkj,ℓ.

We also have that
k∑

j=0

ρkj,ℓ ≤ ℓ + 1. Indeed, by linearity of expectation, this sum

is the expected number of indices j ∈ 0, . . . , k such that ω(Xj) is ℓ-small among
ω(X0), . . . , ω(Xk). Thus, averaging the left and right sides of (6) over j from 0 to
k, we obtain

(7) ρ2kk,ℓ ≤
ℓ+ 1

k + 1
< 2 · ℓ+ 1

2k + 1
.

Line (7) already gives the theorem, once we make the following trivial observation:

Observation 5.2. Under the hypotheses of Theorem 3.5, we have that

Yk, Yk−1, . . . , Y1, σ0, Z1, Z2, . . . , Zk

is a π-stationary trajectory.

This is an elementary consequence of the definitions, but since we will generalize
this statement in Section 7, we give all the details here:

Proof of Observation 5.2. Our hypothesis is that Y1, Y2, . . . , Yk and Z1, Z2, . . . , Zk

are independent trajectories from a common state Y0 = Z0 = σ0 chosen from the
stationary distribution π. Stationarity implies that

(Z0, Z1, . . . , Zk) ∼ (Xk, Xk+1, . . . , X2k).
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Similarly, stationarity and reversibility imply that

(Yk, Yk−1, . . . , Y0) ∼ (X0, X1, . . . , Xk).

Finally, our assumption that Y1, Y2, . . . and Z1, Z2, . . . are independent trajectories
from σ0 is equivalent to the condition that, for any s0, y1, z1, y2, z2, . . . , yk, zk ∈ Σ,
we have for all j ≥ 0 that

(8) Pr (Zj = zj | Zj−1 = zj−1, . . . , Z1 = z1, Z0 = Y0 = s0, Y1 = y1, . . . , Yk = yk)

= Pr (Zj = zj | Zj−1 = zj−1, . . . , Z1 = z1, Z0 = s0)

Of course, since M is a Markov Chain, this second probability is simply

Pr(Zj = zj | Zj−1 = zj−1) = Pr(Xk+j = zj | Xk+j−1 = zj−1).

In particular, by induction on j ≥ 1,

(Yk, Yk−1, . . . , Y0 = Z0, Z1, . . . , Zj) ∼ (X0, X1, . . . , Xk, Xk+1, . . . , Xk+j),

and in particular

(9) (Yk, . . . , σ0, . . . , Zk) ∼ (X0, . . . , Xk, . . . , X2k).

□

Pared down to its bare minimum, this proof of Theorem 3.5 works by using that
ρ2kk,ℓ is a lower bound on each ρkj,ℓ, and then applying the simple inequality

(10)

k∑
j=0

ρkj,ℓ ≤ ℓ+ 1.

The proof of Theorem 1.5 of Besag and Clifford is in some sense even simpler,
using only (10), despite the fact that Theorem 1.5 has better dependence on ε
(on the other hand, it is not directly applicable to (ε, α)-outliers in the way that
we will use Theorem 3.5). Recall from Definition 5.1 that the ρkj,ℓ’s are fixed real
numbers associated to a stationary Markov Chain. If ℓ, k are fixed and ξ is cho-
sen randomly from 0 to k, then the resulting ρkξ,ℓ is a random variable uniformly

distributed on the set of real numbers {ρk0,ℓ, ρk1,ℓ, . . . , ρkk,ℓ}. In particular, Theo-

rem 1.5 is proved by writing that the probability that ω(σ0) is ℓ-small among
ω(σ0), ω(Y1), . . . , ω(Yξ), ω(Z1), . . . , ω(Zk−ξ) is given by

1

k + 1

(
ρk0,ℓ + ρk1,ℓ + · · ·+ ρkk,ℓ

)
≤ ℓ+ 1

k + 1
,

where the inequality is from (10). Note that we are using an analog of Observation
5.2 to know that for any j, Yj , . . . , Y1, σ0, Z1, Zk−j is a π-stationary trajectory.

6. Global significance for local outliers

We now prove Theorem 3.2 from Theorem 3.5.
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Proof of Theorem 3.2. For a π-stationary trajectoryX0, · · · , Xk, let us define p
k
j,ε(σ)

to be the probability that ω(Xj) is in the bottom ε fraction of the values ω(X0), . . . , ω(Xk),
conditioned on the event that Xj = σ.

In particular, to prove Theorem 3.2, we will prove the following claim:
Claim: If σ0 is not an (ε, α)-outlier, then

(11) pk0,ε(σ0) ≤
√

2ε

α
.

Let us first see why the claim implies the theorem. Recall the random variable
ρ is the number of trajectories T i from σ0 on which σ0 is observed to be an ε-
outlier with respect to the labeling ω. The random variable ρ is thus a sum of m
independent Bernoulli random variables, which each take value 1 with probability

≤
√

2ε
α by the claim. In particular, by Chernoff’s bound, we have

(12) Pr

(
ρ ≥ (1 + δ)m

√
2ε
α

)
≤ e−min(δ,δ2)m

√
2ε
α /3,

giving the theorem. (Note the key point of the claim is that α is inside the square
root in (11), while a straightforward application of of Theorem 1.1 would give an
expression with α outside the square root.)

To prove (11), consider a π-stationary trajectory X0, . . . , Xk, . . . , X2k and con-
dition on the event that Xk = σ for some arbitrary σ ∈ Σ. Since M is re-
versible, we can view this trajectory as two independent trajectories Xk+1, . . . , X2k

and Xk−1, Xk−2, . . . , X0 both beginning from σ. In particular, letting A and B
be the events that ω(Xk) is an ε-outlier among the lists ω(X0), . . . , ω(Xk) and
ω(Xk), . . . , ω(X2k), respectively, we have that

(13) pk0,ε(σ)
2 = Pr(A ∩B) ≤ p2kk,ε(σ).

Now, the assumption that the given σ0 ∈ Σ is not an (ε, α)-outlier gives that for a
random σ ∼ π, we have that

(14) Pr
(
pk0,ε(σ) ≥ pk0,ε(σ0)

)
≥ α.

Line 13 gives that pk0,ε(σ)
2 ≤ p2kk,ε(σ), and Theorem 3.5 gives that p2kk,ε ≤ 2ε. Thus

taking expectations with respect to a random σ ∼ π, we obtain that

Eσ∼π

(
pk0,ε(σ)

2
)
≤ Eσ∼π

(
p2kk,ε(σ)

)
= p2kk,ε ≤ 2ε.

On the other hand, we can use (14) to write

Eσ∼π

(
pk0,ε(σ)

2
)
≥ α · pk0,ε(σ0)

2,

so that we have

pk0,ε(σ0)
2 ≤ 2ε

α
.

□

The following theorem is the analog of Theorem 3.2 obtained when one uses an
analog of Besag and Clifford’s Theorem 1.5 in place of 3.5 in the proof. This
version pays the price of using a random k instead of a fixed k for the notion of
an (ε, α)-outlier, but has the advantage that the constant 2 is eliminated from the
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bound. (Note that as in Theorem 3.2, the notion of (ε, α)-outlier used here is still
just defined with respect to a single path, although Theorem 1.5 depends on using
two independent trajectories.)

Theorem 6.1. Consider m independent trajectories

T 1 =(X1
0 , X

1
1 , . . . , X

1
k1
),

...

T m =(Xm
0 , Xm

1 , . . . , Xm
km

)

in the reversible Markov Chain M (whose states have real-valued labels) from a
common starting point X1

0 = · · · = Xm
0 = σ0, where each of the lengths ki are

independently drawn random numbers from a geometric distribution. Define the
random variable ρ to be the number of trajectories T i on which σ0 is an ε-outlier.

If σ0 is not an (ε, α)-outlier with respect to k drawn from the geometric distribution,
then

(15) Pr
(
ρ ≥ m

√
ε
α + r

)
≤ e−min(r2

√
α/ε/3m,r/3).

Again, there is an analogous version to Theorem 3.3, where 2ε is replaced by ε.

Proof of Theorem 6.1. For a π-stationary trajectory X0, · · · , Xk and a real number
µ, let us define pµ0,ε(σ) to be the probability that ω(Xj) is in the bottom ε fraction

of the values ω(X0), . . . , ω(Xk), conditioned on the event that X0 = σ, where the
length k is chosen from a geometric distribution with mean µ supported on 0,1,2,. . . ;
i.e., k = t with probability 1

µ+1 (1−
1

µ+1 )
t.

To prove Theorem 6.1, it suffices to prove that if σ0 is not an (ε, α)-outlier with
respect to k drawn from the geometric distribution with mean µ, then

(16) pµ0,ε(σ0) ≤
√

ε

α
.

To prove (16), suppose that k1 and k2 are independent random variables which are
are geometrically distributed with mean µ, and consider a π-stationary trajectory

X0, . . . , Xk1 , . . . , Xk1+k2

of random length k1+k2, and condition on the event thatXk1
= σ for some arbitrary

σ ∈ Σ. Since M is reversible, we can view this trajectory as two independent
trajectories Xk1

, Xk1+1, . . . , Xk1+k2
and Xk1

, Xk1−1, Xk1−2, . . . , X0 both beginning
from Xk1

= σ, of random lengths k2 and k1, respectively. In particular, letting A
and B be the events that ω(Xk1) is an ε-outlier among the lists ω(X0), . . . , ω(Xk1)
and ω(Xk1), . . . , ω(Xk1+k2), respectively, we have that

(17) pµ0,ε(σ)
2 = Pr(A ∩B)

≤ Pr
(
ω(Xk1

) is an ε-outlier among ω(X0), . . . , ω(Xk1+k2
) | Xk1

= σ
)
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where, in this last expression, k1 and k2 are random variables. Now, the assumption
that the given σ0 ∈ Σ is not an (ε, α)-outlier gives that for a random σ ∼ π, we
have that

(18) Pr
(
pµ0,ε(σ) ≥ pµ0,ε(σ0)

)
≥ α.

Thus we write

(19) α · pµ0,ε(σ0)
2 ≤ Eσ∼π

(
pµ0,ε(σ)

2
)

≤ Pr
(
ω(Xk1

) is an ε-outlier among ω(X0), . . . , ω(Xk1+k2
)
)
,

where the last inequality follows from line (17).

On the other hand, considering the righthand side of Line (19), we have that con-
ditioning on any value for the length ℓ = k1 + k2 of the trajectory, k1 is uniformly
distributed in the range {0, . . . , ℓ}. This is ensured by the geometric distribution,
simply because for any ℓ and any x ∈ (0, . . . , ℓ), we have that the probability

Pr
(
k1 = x AND k2 = ℓ−x

)
= 1

µ+1 (1−
1

µ+1 )
x 1
µ+1 (1−

1
µ+1 )

ℓ−x =
(

1
µ+1

)2 (
1− 1

µ+1

)ℓ
is independent of x. In particular, conditioning on any particular value for the
length ℓ = k1 + k2, we have that the probability that ω(Xk1

) is an ε-outlier on the
trajectory is at most ε, since Xk1

is a uniformly randomly chosen element of the
trajectory X0, . . . , Xk1+k2

; note that this part of the proof is exactly the same as
the proof of Theorem 1.5. In particular, for the righthand-side of line (19), we are
writing

(20) α · pµ0,ε(σ0)
2 ≤ Pr

(
ω(Xk1) is an ε-outlier among ω(X0), . . . , ω(Xk1+k2)

)
≤ max

ℓ
Pr
(
ω(Xk1) is an ε-outlier among ω(X0), . . . , ω(Xk1+k2)

⏐⏐k1 + k2 = ℓ
)

≤ ε.

This gives line (16) and completes the proof. □

We close this section by noting that in implementations where m is not enormous,
it may be sensible to use the exact binomial tail in place of the Chernoff bound in
(12). In particular, this gives the following versions:

Theorem 6.2. With ρ as in Theorem 3.2, we have that if σ0 is not an (ε, α)
outlier, then

(21) Pr (ρ ≥ K) ≤
m∑

k=K

(
m

k

)(
2ε

α

)k/2
(
1−

√
2ε

α

)m−k

.

Theorem 6.3. With ρ as in Theorem 6.1, we have that if σ0 is not an (ε, α)
outlier, then

(22) Pr (ρ ≥ K) ≤
m∑

k=K

(
m

k

)( ε
α

)k/2(
1−

√
ε

α

)m−k

.
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7. Generalizing the Besag and Clifford tests

Theorem 3.2 is attractive because it succeeds at separating statistical significance
from effect size, and at demonstrating statistical significance for an intuitively-
interpretable deterministic property of state in the Markov Chain. This is especially
important when public-policy decisions must be made by non-experts on the basis
of such tests.

In some cases, however, these may not be important goals. In particular, one may
simply desire a statistical test which is as effective as possible at disproving the null
hypothesis σ ∼ π. This is a task at which Besag and Clifford’s Theorem 1.5 excels.

In their paper, Besag and Clifford also prove the following result, to enable a test
designed to take efficient advantage of parallelism:

Theorem 7.1 (Besag and Clifford parallel test). Fix numbers k and m. Suppose
that σ0 is chosen from a stationary distribution π of the reversible Markov Chain
M, and suppose we sample a trajectory X1, X2, . . . , Xk from X0 = σ0, and then
branch to sample m − 1 trajectories Zs

1 , Z
s
2 , . . . , Z

s
k (2 ≤ s ≤ m) all from the state

Zs
0 = Xk. Then we have that

Pr
(
ω(σ0) is an ε-outlier among ω(σ0), ω(Z

2
k), ω(Z

3
k), . . . , ω(Z

m
k )
)
≤ ε.

Proof. For this theorem it suffices to observe that σ0, Z
2
k , . . . , Z

m
k are exchangable

random variables—that is, all permutations of the sequence σ0, Z
2
k , . . . , Z

m
k are

identical in distribution. This is because if σ0 is chosen from π and then the Zi
k’s

are chosen as above, the result is equivalent in distribution to the case where Xk is
chosen from π and then each Zi

k is chosen (independently) as the end of a trajectory
Xk, Z

i
1, . . . , Z

i
k, and σ0 = Yk is chosen (independently) as the end of a trajectory

Xk, Y1, . . . , Yk. Here we are using that reversibility implies that (Xk, Y1, . . . , Yk) is
identical in distribution to (σ0, X1, . . . , Xk). □

With an eye towards finding a common generalization of Besag and Clifford’s serial
and parallel tests, we define a Markov outlier test as a significance test with the
following general features:

• The test begins from a state σ0 of the Markov Chain which, under the null
hypothesis, is assumed to be stationary;

• random steps in the Markov chain are sampled from the initial state and/or
from subsequent states exposed by the test;

• the ranking of the initial state’s label is compared among the labels of some
(possibly all) of the visited states; it is an ε-outlier if it’s label is among
the bottom ε of the comparison labels. Some function ρ(ε) assigns valid
statistical significance to the test results, as in the above theorems.

In particular, such a test may consist of single or multiple trajectories, may branch
once or multiple times, etc. In this section, we prove the validity of a parallelizable
Markov outlier test with best possible function ρ(ε) = ε, but for which it is natural
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to expect the ε-power of the test—that is, its tendency to return small values of ε
when σ0 truly is an outlier—surpasses that of Theorems 1.5 and 7.1. In particular,
we prove the following theorem:

Theorem 7.2 (Star-split test). Fix numbers m and k. Suppose that σ0 is chosen
from a stationary distribution π of the reversible Markov Chain M, and suppose
that ξ is chosen randomly in {1, . . . , k}. Now sample trajectories X1, . . . , Xξ and
Y1, . . . , Yk−ξ from σ0, and then branch and sample m−1 trajectories Zs

1 , Z
s
2 , . . . , Z

s
k

(2 ≤ s ≤ m) all from the state Zs
0 = Xξ. Then we have that

Pr
(
ω(σ0) is an ε-outlier among ω(σ0), ω(X1) . . . , ω(Xξ−1),

ω(Y1), . . . , (Yk−ξ),

ω(Z2
1 ), . . . , ω(Z

2
k)

...

ω(Zm
k ), . . . , ω(Zm

k )
)
≤ ε.

In particular, note that the set of comparison random variables used consists of all
random variables exposed by the test except Xξ.

To compare Theorem 7.2 with Theorems 7.1 and 1.5, let us note that it is natural
to expect the ε-power of a Markov chain significance test to depend on:

(a) How many comparisons are generated by the test, and
(b) how far typical comparison states are from the state being tested, where we

measure distance to a comparison state by the number of Markov chain tran-
sitions which the test used to generate the comparison.

If unlimited parallelism is available, then the Besag/Clifford parallel test is essen-
tially optimal from these parameters, as it draws an unlimited number of samples,
whose distance from the initial state is whatever serial running time is used. Con-
versely, in a purely serial setting, the Besag/Clifford test is essentially optimal with
respect to these parameters.

But it is natural to expect that even when parallelism is available, the number n of
samples we desire will often be be significantly greater than the parallelism factor
ℓ available. In this case, the Besag/Clifford parallel test will use n comparisons at
distance d ≈ ℓt/n, where t is the serial time used by the test. In particular, the
typical distance to a comparison can be considerably less than t when ℓ compares
unfavorably with n.

On the other hand, Besag/Clifford serial test generates comparisons whose typical
distance is roughly t/2, but cannot make use of parallelism beyond ℓ = 2. For an
apples-to-apples comparison, it is natural to consider the case of carrying out their
serial test using only every dth state encountered as a comparison state for some
d. This is equivalent to applying the test to the dth-power of the Markov chain,
instead of applying it directly. (In practical applications, this is a sensible choice
when comparing the labels of states is expensive relative to the time required to
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carry out transitions of the chain.) Now if ℓ is a small constant, we see that with
t ·d steps, the BC parallel test can generate roughly n comparisons all at distance d
from the state being tested, the serial test could generate comparisons at distances
d, 2d, 3d, . . . , kd (measured in terms of transitions in M), where these distances
occur with multiplicity at most 2, and k = max(ξ, n − ξ) ≥ n/2. In particular,
the serial test generates a similar number of comparisons in this way but at much
greater distances from the state we are evaluating, making it more likely that we
are able to detect that the input state is an outlier.

Consider now the star-split test. Again, to facilitate comparison, we suppose the
test is being applied to the dth power of M. If serial time t ≈ sd is to be used, then
we will branch into ℓ−1 trajectories after ξ· Md chain, where ξ is randomly chosen
from {0, s

2}. Thus comparisons used lie at a set of distances d, 2d, . . . , (ξ + s
2 )d

similar to the case of the Besag/Clifford serial test above. But now the distances
d, 2d, . . . , (ξd − 1)d will have multiplicities at most 2 in the set of comparison dis-
tances, while the distances (ξ + 1)d, (ξ + 2)d, . . . , (ξ + s

2 )d all have multiplicity at
least ℓ − 1. In particular, the test allows us to make more comparisons to more
distance states, essentially by a factor of the parallelism factor being used. In par-
ticular, it is natural to expect performance to improve as ℓ increases. Moreover,
the star-split test is equivalent to the Besag/Clifford serial test for ℓ ≤ 2, and es-
sentially equivalent to their parallel test in the large ℓ limit. (To make this latter
correspondence exact, once can apply Theorem 7.2 to the dth power of a Markov
chain M, and take k = 1.)

We now turn to the task of proving Theorem 7.2. Unlike Theorems 1.1, 3.5, and
1.5, the comparison states used in Theorems 7.1 and 7.2 cannot be viewed as a
single trajectory in M. This motivates the natural generalization of the notion of
a π-stationary trajectory as follows:

Definition 7.3. Given a reversible Markov Chain M with stationary distribution
π and an undirected tree T , a π-stationary T -projection is a collection of random
variables {Xv}v∈T such that:

(i) for all v ∈ T , Xv ∼ π;
(ii) for any edge {u, v} in T , if we let Tu denote the vertex-set of the connected

component of u in T \ {u, v} and {σw}w∈T is an arbitrary collection of states,
then

Pr

(
Xv = σv

⏐⏐⏐⏐⏐ ⋀
w∈Tu

Xw = σw

)
= πσu,σv

.

In analogy to the case of π-stationary trajectories, Definition 7.3 easily gives the
following, by induction:

Observation 7.4. For fixed π and T , if {Xw}w∈T and {Yw}w∈T are both π-
stationary T -projections, then the two collections {Xw}w∈T and {Yw}w∈T are equiv-
alent in distribution. □

This enables the following natural analog of Definition 5.1:
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Definition 7.5. Given a Markov Chain M with labels ω : Σ → R and stationary
distribution π, we define for each ℓ, each undirected tree T , each vertex subset

S ⊂ T and each vertex v ∈ S a real number ρT,S
v,ℓ , which is the probability that

for a π-stationary T -projection {Xw}w∈T , we have that ω(Xv) is ℓ-small among
{ω(Xw)}w∈S .

Observe that as in (10) we have for any tree T and any vertex subset S of T , we
have that

(23)
∑
w∈S

ρT,S
w,ℓ ≤ ℓ+ 1.

The following Observation, applied recursively, gives the natural analog of Obser-
vation 5.2. Again the proof is an easy exercise in the definitions.

Observation 7.6. Suppose that T is an undirected tree, v is a leaf of T , T ′ = T \v,
and {Xw}w∈T ′ is a π-stationary T ′-projection. Suppose further that Xv is a random
variable such that for all {σw}w∈T we have that

(24) Pr

(
Xv = σv

⏐⏐⏐⏐⏐ ⋀
w∈T ′

(Xw = σw)

)
= πσu,σv

,

where u is the neighbor of v in T . Then {Xw}w∈T is a π-stationary T -projection.
□

We can rephrase the proof of Theorem 7.1 in this language. Let T be the tree
consisting of m paths of length k sharing a common endpoint and no other vertices,

and let S be the leaves of T . By symmetry, we have that ρT,S
w,ℓ is constant over w ∈ S.

On the other hand, Observation 7.6 gives that under the hypotheses of Theorem
7.1, σ0, X1, . . . , Xk, and the Zs

i ’s are a π-stationary T -projection, with obvious
assignments (e.g., σ0 corresponds to a leaf of T ; Xk corresponds to the center). In

particular, (23) implies that ρT,S
w,ℓ ≤ ℓ+1

n , which gives the theorem.

On the other hand, the definitions makes the following proof easy as well, using the
same simple idea as Besag and Clifford’s Theorem 1.5.

Proof of Theorem 7.2. Define T to be the undirected tree with vertex set {v0}∪{vsj |
1 ≤ s ≤ m, 1 ≤ j ≤ k}, with edges {v0, vs1} for each 1 ≤ s ≤ m and {vsj , vsj+1} for
each 1 ≤ s ≤ m, 1 ≤ j ≤ k− 1. Now we let S consist of all vertices of T except the
center v0, and let Sj denote the set of m vertices in S at distance j from v0. By

symmetry, we have that ρT,S
v,ℓ is constant in each Sj ; in particular, we have that

ρT,S
v1
j ,ℓ

=
1

n

m∑
s=1

ρT,S
vs
j ,ℓ

and together with (23) this gives that

(25)

k∑
j=1

ρT,S
v1
j ,ℓ

≤ ℓ+ 1

n
.
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Now if we let

Wv0 = Xk,

Wvs
j
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xξ−j s = 1, 1 ≤ j < ξ

σ0 s = 1, j = ξ

Yj−ξ s = 1, j > ξ

Zs
j 2 ≤ s ≤ m, 1 ≤ j ≤ k,

then {Ww}w∈T is a π-stationary T -projection under the hypotheses of Theorem 7.2,
by recursively applying Observation 7.6. Moreover, as ξ is chosen randomly among
{1, . . . , k}, the probability that ω(σ0) = ω(Wv1

ξ
) is ℓ-small among {ω(Ww)}w∈S is

given by
1

k

(
ρT,S
v1
1 ,ℓ

+ · · ·+ ρT,S
v1
k,ℓ

)
≤ ℓ+ 1

kn
,

where the inequality is from (25), giving the Theorem. □

8. The product space setting

The appeal of the theorems developed thus far in this paper is that they can be
applied to any reversible Markov chain without any knowledge of its structure.
However, there are some important cases where additional information about the
structure of the stationary distribution of a chain is available, and can be exploited
to enable more powerful statistical claims.

In this section, we consider the problem of evaluating claims of gerrymandering with
a Markov Chain where the probability distribution on districtings is known to have
a product structure imposed by geographical constraints. For example, the North
Carolina Supreme Court has ruled in Stephenson v. Bartlett that districtings of that
state must respect groupings of counties determined by a prescribed algorithm. In
particular a set of explicit rules (nearly) determine a partition of the counties of
North Carolina into county groupings whose populations are each close to an integer
multiple of an ideal district size (see [CHTHM] for recent results on these rules),
and then the districting of the state is comprised of independent districtings of each
of the county groupings.

In this way, the probability space of uniformly random districtings is a product
space, with a random districting of the whole state equivalent to collection of ran-
dom independent districtings of each of the separate county groupings. We wish
to exploit this structure for greater statistical power. In particular, running tra-
jectories of length k in each of d clusters generates a total of kd comparison maps
with only k · d total Markov chain steps. To take advantage of the potential power
of this enormous comparison set, we need theorems which allow us to compare a
given map not just to a trajectory of maps in a Markov chain (since the kd maps
do not form a trajectory) but to the product of trajectories. This is what we show
in this section.

Formally, in the product space setting, we have a collection M[d] of d Markov
Chains M1, . . . ,Md, each Mi on state space Σi (each corresponding to one county
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grouping in North Carolina, for example). We are given a label function ω : Σ[d] →
R, where here Σ[d] = Σ1 × · · · ×Σd. In the first theorem in this section, which is a
direct analog of the Besag and Clifford test, we consider a σ0 ∈ Σ[d] distributed as
σ0 ∼ π[d], where here π[d] indicates the product space of stationary distributions πi

of the Mi. (In the gerrymandering case, π[d] is a random map chosen by randomly
selecting a map for each separate county cluster.) In the tests discussed earlier in
this paper, a state σ0 ∼ M is evaluated by comparing a state σ0 to other states
on a trajectory containing σ0. In the product setting, we compare σ0 against a
product of one trajectory from each Mi.

In particular, given the collection M[d], a state σ0 = (σ1
0 , . . . , σ

d
0) ∈ Σ[d], and

j = (j1, . . . jd), k = (k1, . . . , kd), we define the trajectory product Xσ0,j,k which is
obtained by considering, for each i, a trajectory Xi

0, . . . , X
i
ki in Mi conditioned on

Xi
ji

= σi
0. Xσ0,j,k is simply the set of all d-tuples consisting of one element from

each such trajectory.

We define the stationary trajectory product Xπ[d],k, analogously, except that the

trajectories used are all stationary, instead of conditioning on Xi
ji
= σi

0.

Theorem 8.1. Given reversible Markov Chains M1,M2, . . . ,Md, fix any number
k and suppose that σ1

0 , . . . , σ
d
0 are chosen from stationary distributions π1, . . . , πd

of M1, . . . ,Md, and that ξ1, . . . , ξd are chosen uniformly and independently in
{0, . . . , k}. For each s = 1, . . . , d, consider two independent trajectories Y s

0 , Y
s
1 , . . .

and Zs
0 , Z

s
1 , . . . in the reversible Markov Chain Ms from Y s

0 = Zs
0 = σs

0. Let
ω : M1 × · · · × Md → R be a label function on the product space, write σ0 =
(σ1

0 , . . . , σ
d
0), and denote by Zσ0,k the (random) set of all vectors (a1, . . . , ad) such

that for each i, ai ∈
(
σi
0, Y

i
1 , . . . , Y

i
ξi
, Zi

1, . . . , Z
i
k−ξi

)
. Then we have that

(26) Pr (ω(σ0) is an ε-outlier among ω(x),x ∈ Zσ0,k) ≤ ε.

Proof. Like the proof of Theorem 1.5, this proof is very simple; it is just a matter of
digesting notation. First observe that Zσ0,k is simply a trajectory product Xσ0,ξ,k,
where where k = (k, . . . , k) and ξ is the random variable (ξ1, . . . , ξd).

In particular, under the hypothesis that σi
0 ∼ πi for all i, Zσ0,k is in fact a stationary

trajectory product Xπ[d],k, In particular, by the random, independent choice of the
ξi’s, the probability in (26) is equivalent to the probability that the label of a
random element of the a stationary trajectory product is among ε smallest labels
in the stationary trajectory product; this probability is at most ε. □

The following is an analog of Theorem 3.5 for the product space setting.

Theorem 8.2. Given reversible Markov Chains M1,M2, . . . ,Md, fix any number
k and suppose that σ1

0 , . . . , σ
d
0 are chosen from stationary distributions π1, . . . , πd

of M1, . . . ,Md. For each s = 1, . . . , d, consider two independent trajectories
Y s
0 , Y

s
1 , . . . and Zs

0 , Z
s
1 , . . . in the reversible Markov Chain Ms from Y s

0 = Zs
0 = σs

0.
Let ω : M1 × · · · × Md → R be a label function on the product space, write
σ0 = (σ1

0 , . . . , σ
d
0), and denote by Zσ0,k the (random) set of all vectors (a1, . . . , ad)
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such that for each i, ai ∈
(
σi
0, Y

i
1 , . . . , Y

i
k , Z

i
1, . . . , Z

i
k

)
. Then we have that

(27) Pr (ω(σ0) is an ε-outlier among ω(x),x ∈ Zσ0,k) ≤ 2d · ε.

Proof. First consider d independent stationary trajectories Xi
0, X

i
1, X

i
2, . . . for each

i = 1, . . . , d, and define Xπ,k to be the collection of all (k+1)d d-tuples (a1, . . . , ad)
where, for each i, ai ∈ {Xi

0, . . . , X
i
k}.

In analogy to Definition 5.1, we define ρkj,ℓ for j = (j1, j2, . . . , jk) to be the proba-

bility that for Xj = (X1
j1
, . . . , Xd

jd
) ∈ Xπ,k, we have that ω(Xj) is ℓ-small among

the ω-labels of all elements of Xπ,k.

Observe that for k = (k, . . . , k), we have in analogy to equation (6) that

(28) ρ2kk,ℓ ≤ ρkj,ℓ

for any j = (j1, . . . , jd). And of course we have that∑
j

ρkj,ℓ ≤ ℓ+ 1.

Thus averaging both sides of (28) gives that

(29) ρ2kk,ℓ ≤
ℓ+ 1

(k + 1)d
≤ 2d

ℓ+ 1

(2k + 1)d
.

Now observe that the the statement that

ω(σ0) is an ε-outlier among ω(x),x ∈ Zσ0,k

equivalent to the statement that

ω(σ0) is an ℓ-small among ω(x),x ∈ Zσ0,k

for ℓ = ε · (2k + 1)d − 1; thus (29) gives the theorem, since ρ2kk,ℓ is precisely the
probability that this second statement holds. □

The presence of the 2d in (27) is now potentially more annoying than the constant
2 in (3.5), and it is natural to ask whether it can be avoided. However, using the

example from Remark 3.6, it is easy to see that an exponential factor
(
3
2

)d
may

really be necessary, at least if k = 1. Whether such a factor can be avoided for
larger values of k is an interesting question. However, as we discuss below, this
seemingly large exponential penalty is actually likely dwarfed by the quantitative
benefits of the product setting, in many real-world cases.

8.1. Illustrative product examples. The fact the estimate in Theorem 8.1 looks
like original Theorem 1.5, hides the power in the product version. More misleading
is the fact that Theorem 8.2 has a 2d which seems to make the theorem degrade
with increasing d.

Let us begin by considering the simplest example we are looking for the single
extreme outlier across the entire product space. Let us further assume that this
global extreme is obtained by choosing each of the extreme element in each part of
the product space. An example of this comes for the Gerrymandering application



SEPARATING EFFECT FROM SIGNIFICANCE IN MARKOV CHAIN TESTS 25

where one is naturally interested in the seat count. Each of the product coordinates
represents the seats from a particular geographic region. In some states such as
North Carolina judicial rulings break the problem up into the product measure
required by Theorem 8.1 and Theorem 8.2 by stipulating that particular geographic
regions must be redistricted independently.

For illustrative purposes, lets assume that there are L different outcomes in each of
the d different factors of the product space. Hence the chance of getting the mini-
mum in any of the d different components is 1/L. However, getting the minimum in
the whole product space requires getting the minimum in each of the components
and so is 1/Ld. Hence is this setting one can take ϵ = 1/Ld in Theorem 8.1 and
Theorem 8.2. Thus even in Theorem 8.2 as long as L > 2, one has a significant
improvement as d grows.

Now lets consider a second slightly more complicated example which builds on the
proceeding one. Let us equip each Mi with a function ωi and decide that we are
interested in the event

(30) E(δ) =
{
{ξi}d1 :

d∑
i=1

ωi(ξi) ≤ δ
}
.

Then one can take

ϵ =
|E(δ)|
Ld

in Theorem 8.2 and 2d times this in Theorem 8.2, where |E(δ)| is simply the number
of elements in the set E(δ). This can lead to a significant improvement in the power
of the test in the product case over the general case when |E(δ)| grows slower than
Ld.

There remains the task of calculating |E(δ)|. In the gerrymandering examples we
have in mind, this can be done efficiently. When counting seat counts, the map ωi

is a many–to–one map with a range consisting of a few discrete values. This means
that one can tabulate exactly the number of samples which produce a given value
of ωi. Since we are typically interested extreme values of

ω(ξ) =

d∑
i=1

ωi(ξi) ,

there are often only a few partitions of each value of ω made from possible values
of ωi. When this true, the size of E can be calculated exactly efficiently.

For example, let us assume there are d geographical regions which each needs to
be divided into 4 districts. Furthermore each party always wins at least one seat
in each geographical region; hence, the only possible outcomes are 1, 2 or 3 seats
in each region for a given party. If ωi counts the number of seats for the party of
interest in geographic region i, let us suppose for concreteness that we want are
interested in δ = 2d. To calculate |E(δ)|, we need to only keep track of the number
of times 1, 2 or 3 seats is produced in each geographic region. We can then combine
these numbers by summing over all of the ways the numbers 1, 2 and 3 can add
numbers between d and 2d. (The smallest ω(ξ) can be given our assumptions is
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d.) This is a straightforward calculation for which there exist fast algorithms which
leverage the hierarchical structure. Namely, group each region with another and
calculate the combined possible seat counts and their frequencies. Continuing up
the tree recursively one can calculate |E(δ)| in only logarithmically many levels.

It is worth remarking, that not all statistics of interest fall as neatly into this frame-
work which enables simple and efficient computation. For instance, calculating the
ranked marginals used in [HSLGBRM] requires choosing some representation of the
histogram, such as a fixed binning, and would yield only approximate results.

8.2. Towards an (ε, α)-outlier theorem for product spaces. In general, the
cost of making a straightforward translation of Theorems 3.2 or 6.1 to the product-
space setting are surprisingly large: in both cases, the square root is replaced by a
2dth root, according to the natural generalization of the proofs of those theorems.

Accordingly, in this section we point out simply that by using a more complicated
definition of (ε, α)-outliers for the product space setting, an analog of Theorem 6.1
is then easy. In particular, let us define

(31) pkU,ε(σ0) := Pr
(
ω(σ0) an ε-outlier in Xσ0,j,k

)
,

where j = (j1, . . . , jd) is chosen randomly with respect to the uniform distributions
ji ∼ Unif[0, ki] (here k = (k1, . . . , kd)).

Now we define a state σ0 to be an (ε, α)-outlier with respect to a distribution k if
among all states in Σ[d], we have that pkU,ε(σ0) is in the the largest α fraction of

the values of pkU,ε(σ) over all states σ ∈ M[d], weighted according to π.

Theorem 8.3. We are given Markov Chains M1, . . . ,Md. Suppose that σ0 is not
an (ε, α)-outlier with respect to k. Then

pkU,ε(σ0) ≤
ε

α
.

Proof. This follows immediately from the definitions. From the definition of (ε, α)-
outlier given above for the product setting, we have that if σ0 is not an (ε, α)-outlier,
then for a random σ ∼ π,

Pr

(
pkU,ε(σ) ≥ pkU,ε(σ0)

)
≥ α.

Thus we can write

Eσ∼π p
k
U,ε(σ) ≥ α · pkU,ε(σ0).

And of course this expectation is just the probability that a random element of
Xπ,k is an ε-outlier on Xπ,k, which is at most ε. □

Of course this kind of trivial proof would be possible in the general non-product
space setting also, but the sacrifice is that (ε, α)-outliers cannot be defined with
respect to the endpoints of trajectories, which appears most natural. Whether
theorems analogous to 3.2 and 6.1 are possible in the product space setting without
an explosive dependence on the dimension d seems like a very interesting question.
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