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Abstract

We study random multidimensional assignment problems where the costs decompose
into the sum of independent random variables. In particular, in three dimensions, we
assume that the costs W; ;1 satisfy W; ;. = a;; + b; ,, + c; 1, where the a; ;,b; 1, c; 1 are
independent uniform [0, 1] random variables. Our objective is to minimize the total cost
and we show that w.h.p. a simple greedy algorithm is a (3 4+ o(1))-approximation. This
is in contrast to the case where the W; ; are independent exponential rate 1 random
variables. Here all that is known is an n°)-approximation, due to Frieze and Sorkin.

1 Introduction

The (planar) three dimensional assignment problem is a natural generalisation of the classical
assignment problem. As an optimization problem it can be expressed as follows: we are given
real values W, ;. for 4, j, k € [n] and we are asked to

n
Minimize {Z Wi o)) © 0, T are permutations of [n]} )

i=1
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This is an NP-hard problem and occurs for example as a practical problem [3]. In this paper
we study the following simple greedy heuristic:

Algorithm 1 GREEDY(m)

: Let B:=C:=n], and T := 0.

cfori=1,...,mdo

Let W, j, =min{W, ; : j' € B,k € C}.

Add (i, 4, k) to T and remove j from B and k from C.

: Return the set of triples in 7" as a partial assignment.

: Complete the assignment with one of the remaining (n — m)!? possibilities.

Several authors have considered the average case where the W, ;; are random variables.
Kravtsov [4] considered the case where the W, are chosen randomly from [1, M] where
M = n® for some a < 1. Here the minimum is at least n and it is not difficult to show (see
Section 4 that with the choice of m = n—logn that w.h.p. (i) GREEDY(m) runs in polynomial
time and (ii) it outputs a solution of value n + o(n). In this case Step 6 can be completed via
the choice of an arbitrary completion.

It is more difficult to analyse the case where M >> n and the case where the W, are
independent exponential rate 1 random variables is (essentially) a scaled version of such a
case. This case was considered by Frieze and Sorkin [2] and they proved the following theorem.

Theorem 1 (Frieze and Sorkin). Suppose that the W, ;. are independent EXP(1) random
variables and that Z, denote the value of the optimum. Then (a) + < E(Z,) = O (10%) and
(b) there is a polynomial time algorithm that w.h.p. finds a solution of value ﬁ

A recent result of Frankston, Kahn, Narayana and Park [1] shows that E(Z,) = O (). This
is where the problem stands for such W; ;; and here we consider the case where

Wik =aij+bigx+cjr 1 <i,5,k<n, (1)
where the a;;, b; k, ¢; x are independent uniform [0, 1] random variables.

We note that the problem considered in [3] was of the form given in (1). We will prove the
following theorem.

Theorem 2. There exists an explicitly defined constant c; such that (a) E(Z,) > cin'/?® and
(b) GREEDY (n — n'/*) finds a solution of expected value at most (3 + o(1))c;n/3. In this case
Step 6 can be completed by choosing an arbitrary completion.

Before giving a proper proof, we give a heuristic argument for (a). Fix ¢ and consider W ; .
For W; i to be of order n™® say we need each of 3 uniform [0, 1] variables a; ;, b; s, ¢;x to be
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of order n=®. This happens with probability O(n~
gives the largest value for a. Summing over ¢ gives (a).

3¢) and there are n? choices and 3o = 2

We discuss the rigorous proof of Theorem 2 in Section 2 and in Section 3 we consider the
extension to higher dimensions.

1.1 Preliminaries

We sometimes refer to the Hoeffding bounds for the S = S1+55+. . .+Sn where 57, Ss, ..., Sy €
[0, 1] are independent and E(S;) + E(S3) + -+ - + E(Sy) = Nu:

Pr(|S — Nu| > eNp) < 2e=Nw/3, (2)

We say that a sequence of events &, occur quite surely if Pr(=&,) = O(n=%) for any constant
K > 0.

2 Proof of Theorem 2

We begin by analysing the distribution of the smallest weight element in IT; = {i} x [n]>.

2.1 Weights in a fixed plane

In the following we are considering the set of triples (7, j, k) where i is fixed. Then a;, by, ¢;x
stand for a; j, b, and c; . Let

W, = min{a; + b, + ¢ : a;, bk, ¢k, J, k € [n] are independent uniform [0, 1] random variables} .

Lemma 3. E(W,) ~ c;n~%3, where ¢; = 6'/3T'(3/4), where T' denotes Euler’s Gamma func-
tion.

Proof. Let

. L L
L:logn’J:{jCLJSW}7KI{kkaW}7

: L
X—{(],k)EJXK:cj,kSW}. (3)



Now |J|,|K| are both distributed as the Binomial B(n, L/n??) and so it follows from (2) that
Loy 3,
|J|, | K| € §Ln ,§Ln q.s. (4)

Conditional on the sizes of J, K we have |X| is distributed as B(|.J| - |K|, L/n?3). Tt follows
from (2) with e = 6/7 and (4) that

e o) srsoom 022 £)2)

2,.2/3
+Pr (B (9L - i) > 10L3) < e U (5)

4 ' n?/3
Thus let £, denote the event that | X| € [%3, 1OL3]7 which from (5) occurs q.s.

Let &y denote the event that the edges in X almost form a matching. By this we mean
that the graph induced by X consists of a matching M plus at most 4 extra edges Y. Then,
because

E(W,) = E(W, | Ex)Pr(En) + E(W, | 2Ex)Pr(—=En),

we see that
E(W, | Eu)Pr(Ey) < EW,) < EW, | Eyn) + 3Pr(=Ey), (6)

where we use the fact that W, < 3, always.

We first deal with Pr(—=&y,) by showing that.

L15
Let
L
P= s

Condition on J, K satisfying (4). Let I'x be the bipartite graph induced by X and note that
it is distributed as the binomial random graph G| k| p-

Claim 1. The following holds with probability 1 — O(L*®/n): (i) T'x has no connected compo-
nent with 4 or more edges and (ii) I'x has at most one component with 3 edges and (ii1) T'x
has at most 2 components with 2 edges.

Proof of claim: Let K = |J| + |K]|.

me-of((5) () -o(55) o (£)



e =0 ((5)) o () -0 )
Pr(~(iii)) = O <(([3()p2)3> ~0 (Ljfg) ~0 (%5) .

End of proof of claim.

Now given &), we let Wn denote the minimum weight in M where the weight of edge (j, k) € X
is given by a; + by + ¢jr. We see that W, is the minimum of |M| independent copies of
U = (Uy 4+ Uy + Us)p where Uy, Uy, Us are independent uniform [0, 1].

Thus

Lu]
6(u) = Pr(U > pu) = 1 — éZ(—nk (2) (1 — k).

k=0
It follows that

3
B(W, | &, &, |M]) = p/ Pr(W, > up | £1., Ear, |M])du
u=0

=p 3 ()™ du

u=0

:p([1+[2+13), (8)

where, with a@ = 2/3, we have

I = /io (1 - %)W du ()
I Y

L—Oé
= [ exp{—IMI /5 O(IM[u) } -+ Ofe ML)

=0

1 L 3 —3a
(o)) [ e o
u=0

1 > —|M|u3/6
:<1+O(ﬁ)>/uzoel ‘ /du

2(1+O(L—3a)) > —-2/3 —=x
- 62/3|M|1/3 /xzox 1Be~%dy
(6'31(4/3) + O(L~3))
‘M’l/:’)




To rewrite (10) we have used 1 — 2 = e=**9@*) to handle the first integral and have bounded
the second one by (1 — L™®)(1 — L™3/6)IMl < L7 IMI/6 Now because ¢(u) dereases
monotonically with u we have

2 | M| 3 [ M|
I, = /u:1 gb(u)'M‘du < (g) and I3 = /u:2 ¢(u)|M|du < <g> )

ey (11)

Thus,
E(Wn | L, Enr, | M) =

Integrating |M| from (11) we obtain
E(V, | £,8u) = (6/°0(4/3) + O(L)) x B((Bin(J] - |K],p) — O) ) x p.  (12)

Given &, we see that the binomial is q.s. much greater than 4. Now, for binomial parameters
N, q such that Nq large, we have, from (2), that for ¢ > 0,

E((Bin(N,q) — O(1))"/3) = Z @[) ¢*(1— N "k —0(1)*

- Z (]Z>qk<1—q>m<k—0<1>>1/3+2e62Nq/3

(14+€)Ngq

(o) e (-

k=(1—¢)Ngq
1+0 Nq)’l) g2
- (]\;5)1/3 +O0(e =N, (13)
It then follows from (12) that
— 61/31(4/3)p
~ 14
P 60 ) = T TRT "

Arguing as for (13) and using the independence and concentration of |.J|,|K| around Ln'/?,

we see that

1
(] 17D)Y?

1 6Y°I(4/3)
(Ln1/3)2 n2/3
(15)
We now have to deal with the at most 4 edges in Y, since W,, = min {I//V\n, A } where 7
is the minimum of at most 4 copies of (U; + Us + Us)p, where Uy, Us, Uz are i.i.d. UJ0,1].
Clearly E(W,,) < E(Wn) and we need to argue that it is not much smaller. So, let A =

E(W, | &) ~ 6'30(4/3)p**E ( |5M> ~ 61/°T(4/3)p*3
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{W.<pL712 < Z}. Now we have Pr(A) = 1 = O(L"Y?) and E(W,,) > E(W, | A)Pr(A)
and so we only have to verify now that E(/I/I?n | A) is asymptotically equal to E(W\n) Let
L= {Wn < pLil/z} and B = {p[ﬁl/2 < Z}. Now because /Wn and Z are independent, we
have, given |M|,

BT 1) = e [ P (e W< 2 )

PI'(A) -0
1 pL—l/Z . L /
— PriW, >u¢ —Pr(W, > pL™"?)) Pr(B)du =
Pr(L)Pr(B) /u:o ( r{W = “} r(Wozp )> r(B)du
1 pL—1/2 L p /Wn L—1/2
= — / Pr(W, > u)du — pL~Y/? r</\ e ) (16)
Pr(W, < pL=1/2) Ju=o Pr(W, < pL-1/2)
Now "
Pr(W, > pL~"/?) = <1 - —(L1/2)3> < e IMILTO/6
n 6 — .
Furthermore,

. w3\ M

and so integral in the first term of (16) is at least

L-1/2 3\ M|
U
D / (1 - —) du.
p=0 6

—~ L—1/2 u3 | M| e
EW,| A > (1- 0(1))p/ (1 _ E) du — e—MIL7/%/6

p=0

Thus

and we can proceed as for our estimation of the first integral in (10), this time taking o = 1/2.

The lemma now follows after applying (6) and (7). O

This proves Part (a) of Theorem 2, since clearly, E(Z,) > nE(W,,).

2.2 Analysis of Greedy

Let now W,, denote the the weight of the triple (i, j, k) added in the mth round of greedy.
Lemma 4. If m <n —n'/* then

E(W,,) < ci(n—m+1)72/3, (17)
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Proof. We let J,,, K, be as defined in (3), where we replace n in the definition by v, =

n—m+ 1. We keep L as logn though and replace p by p,, = % The values ay, j, bk

are independent of the first m — 1 rounds of GREEDY. Now |J|,,|K,,| are distributed as
Bin(vm, Lum™"®) and equation (2) implies that (4) holds q.s. with n replaced by vy,. Next
define X,, iteratively via X, = () and

. L
Xm = {(]ak) € (Jm X Km)\ U Xla Cjk S %}

l<m

We will show below that

Pr<

Observe that ¢;, for (j,k) € X,, is unconditioned by the history of GREEDY to this point. In-
deed, we will not have needed to expose its value in order to compute the sequence Wy, Wo, .. .|
Wi—1. But if (18) holds then the analysis of Section 2.1 implies that

(Jm x K) 0 | X0

l<m

> 400Ly3,{3> = o(n73). (18)

E(W,,) ~ c1v,2/3.
Indeed, going back to (12) we
replace E(Bin(|J| - |K|,p)™"?) by E(Bin(|Jp| - | K| — 400LvY/3 p,.))~3)
and continue as before.

It remains to verify (18). Thus let Y, = (Jm x K;) NU,.,, Xi and Z = |Y,,|. Now the
sequence of choices Jy, Ky, ¢ < m are independent and then for (z,y) € J,, x K, and £ < m
we have

Pr((z,y) € Jy x Ky | (¢,2,y) not added to T" in Step 4) <
Pr((x,y) € Jo x Ky) v,

Pr((4.7,y) not added fo T i Step 4) ~ 1= o( 3 )
It follows (using (4)) that
m—1 1
E(Z) < 4Ly 7 < 13L21/3. (20)
(=1 ¢

Unfortunately, this is not good enough to prove (18). Instead, suppose that S = {(z;,y;),7 € [s]} C
JIm X K, where s = O(1) and S is a matching. Then,

Pr(SCY,) < ) Pr (ﬂ {(we,0) € Xit}> =

i1 << t=1



Z HPr ((mt,yt) € X, h {(zr,y,) € XZ'T}> < | Z H((l +0(1))V;4/3>

i1 <o t=1 =1 iy <oy t=1
S m S
1 1 4
SI_I ol )4/3 < ( 1/3)
= (n—1+1) (n—m)

Thus,

_ 10L3 4 \° 40eL3\° _
Pr(3 matching S, [S|=s| (4)) < < ) (m) < (W) = o(n™) (21)

S

if s = 8. Finally observe that if the maximum size of § = s < 8 and |J,|, [ K| < 10Lvp!
then |Y,,| < s(|Jm| + [ Kn]) < 10sLvp and the condition in (18) holds. O

Given Lemma 4 we see that the expected cost of the assignment produced by GREEDY is at
most

n—nl/4
1 )
(e +o() 3 o ! B )

The final n — n'/* steps cost at most 3 per step and this completes the proof of Theorem 2.

3 Higher Dimensions

Consider for example 4 dimensions. Here we have two reasonable options.

L Wijks = aij +big +cig+djr + €1+ fri

2‘ m7j7k7l - az7‘77k + bZJJ + czka + d‘)k)l'

We have not considered the first option. The second option is a strightforward generalisation
of what we have done so far. Here we will sketch a proof as a series of bullet points that

the optimum and the greedy solution for the d-dimensional problem grow at rate n/¢ in
expectation. By the d-dimensional problem we mean
n
Minimize {Z Wi o1(i),s0a 1) O1s---5,04-1 are permutations of [n]} ) (23)
i=1

where

d
Wiiig = Z Al(i?~~-,ij717ij+lym7id is the sum of independent uniform [0, 1] random variables.
j=1



Let Z, denote the optimal objective function value in problem (23). We claim that Theorem
2 can be generalised to

Theorem 5. Suppose that d > 3. Then there ezist constants cq, Cq such that (a) E(Z,) >
cqn'’® and (b) GREEDY (n*/(*Y)) finds a solution of expected value at most d(cq + o(1))n'/?.
In this case Step 6 can be completed by choosing an arbitrary completion.

Proof Sketch:
We can follow the argument in Lemma 3 essentially replacing n'/3 by n'/¢ and n?? by n(¢-1/4,
In effect, we make the following replacements:

(a): p becomes L/n(@-1/d,

(b): J, K will be replaced by I, ..., I; of expected size np. Here I; is a representative of a
G) )< p}, for some fixed plane i, = 7.

set {(22, [EYSUI SRR PR PR S o Ai7i27---aij—17ij+l 77777 i

(c): In which case X becomes {j € (I x --- x Iy) : W;; < p}.

d): (5) becomes |X| = ©(L?). Note that each I, has distribution B(n?!,p) and X has
J
distribution B(|I3| X |I3] X -+ x |14], p).

(e): A matching now means a matching in a random (d — 1)-uniform hypergraph H induced
by Iy x --- x Iz, where possible edges are included with probability p. In the proof of
Claim 1, we now let K = |I| + -+ + |Iy|, which q.s. is of order Ln'/?. We now claim
that with probability ﬁ there are at most ﬁ components of H with ¢ < d—+ 1 edges
and no components with d + 2 or more edges. Indeed, the probability that there are a
components of H with ¢ edges can be bounded by

K ' a LAd=1)+1 a
= — ] . 24
((z(d —2)+ 1)p ) 0 ( (=17 (24)
Explanation: A minimal size component with ¢ edges is a cactus which has ¢(d— 1)+ 1

vertices. Thus the LHS of (24) bounds the probability of the existence of a components
with at least ¢ edges.

This verifies the claim and shows that if £y, is the event that X defines a matching M
plus O(1) edges, then =&y, is unlikely enough so that we can use (6).

(f): We let W, denote the minimum weight in M. We see that W, is the minimum of | M|
independent copies of U = (Uy 4+ Uy + - - - + Uy)p where Uy, Us, ..., Uy are independent
uniform [0, 1]. The sum p(I;+I>+13) becomes p(Iy+- - -+1;) where I, = fut:t—l d(u)Mldu
and

[u]
o(u) = Pr(U > pu) = 1— + <—1>k(d) (u— k)



The pl;,j > 2 are dominated by pI; where

! ud\ ™! 1 [ (d)"/T (1 4 1/d)
_ = ~ —z%/d!
= / (1 d') TV / N Y

Domination comes from the fact that ¢(u) <1 — 5 for u > 1.

(g): After this we find that (14) becomes

(d)YIT(1 +1/d)p
(o] -+« gl - )4

This is because |M| is strongly concentrated around the mean of B([y| - |[I4_1|,p).

E(Wn | EL,SM) ~

(h): The |I;| are strongly concentrated about their means which are of value ~ np. This
results in replacing (15) by

(dYIT(1 + 1/d)
nld-1)/d

EW, | Eu) =

Multiplying by n gives us part (a) of Theorem 5 with ¢ = (d\)I'(1 + 1/d).

(i): The essential part of (b) is the inequality (21). We iteratively define X, by X, = @) and

for m > 1,
Xm:{(z'Q,zg,..., eH[ \J X }

<m

Here X,, defines that part of the data that is condltloned by the previous stps of the
algorithm. Then we let

Yo = (I x Iy x - x L) n | X

i<m
We have to argue as in (18) that
Pr(|Y,,| = O(Ln'%)) =1 - O(n73).

For this, where S = {x;, : t = 1,2,..., s} is a matching in H and m < n — n!/(@+1),
Pr(SCY,)< Y Pr(ﬂ{xiteXit}>:
i1 <---<ig
t—1 s
S HPI‘ (:c € X;,|[{zr € Xif}> < Y T+ o) (n — iy + 1)@
i << t=1 =1 i <<y t=1

s n—m+1

1+ o(1) 1 s »
<H Z (n — 1+ 1) d1)2/dgo<m) =0(n™),

t=1 I[=1
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for s > 3d(d+1)/(d — 1)%

We deduce from this that we can write |Y;,| = O(|L] + - - - +|14]) = O(n'/9) as required.
We can then replace (22) by

/(1) )
(ca+o(1)) Z —— + M degn!/?,
— (n —m + 1)d=1/

The final n — n'/@*D) steps cost at most d per step and this completes our sketch proof of
Theorem 5.

4 Greedy for small positive integer weights

When W, ; is chosen uniformly from [1, M =n*],0 < a < 1 we

(a): Let Z,, denote the cost of the mth triple. Then for 1 <m <n and a > 1,

a(n—m—|—1)2}S Ly

Pr@m: 7. >a)<n(1- 2" <
r(dm : m_a)_n( _M> S nexpy — Vi

if
3M logn

a > m (25)

Putting mo = n — (3M logn)'/? we see that a satisfies (25) for

1 m < my.
a =
3M logn
[m—‘ m > myg.

It follows that w.h.p. and in expectation that if m; = n — logn, then

«  3Mlogn
ZZ <mg + Z = m+ 17 + M(n—my) =n+o(n),

m=mo-+1

5 Greedy versus Greedy

There is another version of the greedy algorithm where at each step we choose the “tple” of
minimum weight that can be added to the current choice. Let F()) denote the exponential

12



rate A random variable i.e. Pr(E()\) > u) = e **. We consider the d-dimensional case and
argue next that if the weights W;, _,;, are independent E(1) then the value of the solution
given by the two algorithms is the same in distribution. So let G,,; be the value returned by
Algorithm 1 of Section 1 and let GG, » be the value returned by algorithm described in this
section. We claim that G, ; and G, 2 have the same distribution.

The distribution of G, is E(n?™1) + G,_1; and the distribution of G, 5 is E(n?)(1 + (n —
1)) + Gy-12. The term E(n?)(n — 1) is a result of the fact that conditioning an exponential
to be greater than x is equivalent to adding x to a copy of that variable. Then observe that
the random variables F(n?™!) and nFE(n?) have the same distribution. The claim follows by
induction.

Note that coincidentally, when d = 3, E(G,, 1) is equal to the expected optimum value for the
d = 2 case, see [5] and [6]. This does not generalise.

6 Final Comments

We have analysed a random multi-dimensional assignment problem with a particular form of
objective fucntion. We have shown that w.h.p. there is a simple greedy algorithm that is a
(3 4+ o(1)-approximation to the minimum. It is possible to replace the 3 here by 3 — ¢, by
arguing that w.h.p. the optimum solution must use the (at least) second smallest j, &k (when
d = 3) for Q(n) values of i. We omit the details as the real aim is to replace 3 by 1.
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