Scheduling Flows on a Switch to Optimize Response Times

Hamidreza Jahanjou
Google
hamidrj@google.com

ABSTRACT

We study the scheduling of flows on a switch with the goal of
optimizing metrics related to the response time of the flows. The
input is a sequence of flow requests on a switch, where the switch
is represented by a bipartite graph with a capacity on each ver-
tex (port), and a flow request is an edge with associated demand.
In each round, a subset of edges can be scheduled under the con-
straint that the total demand of the scheduled edges incident on
any vertex is at most the capacity of the vertex. This class of sched-
uling problems has applications in datacenter networks, and has
been extensively studied. Previous work has essentially settled the
complexity of metrics based on completion time. The objective of
average or maximum response time, however, is more challenging.

We present approximation algorithms for flow scheduling over
a switch to optimize response time based metrics. For the average
response time metric, whose NP-hardness follows directly from
past work, we present an offline O(1+ O(log(n))/c) approximation
algorithm for unit flows, assuming that the port capacities of the
switch can be increased by a factor of 1 + ¢, for any given positive
integer c. For the maximum response time metric, we first establish
that it is NP-hard to achieve an approximation factor of better than
4/3 without augmenting capacity. We then present an offline algo-
rithm that achieves optimal maximum response time, assuming the
capacity of each port is increased by at most 2d,;,qx — 1, where dyax
is the maximum demand of any flow. Both algorithms are based
on linear programming relaxations. We also study the online ver-
sion of flow scheduling using the lens of competitive analysis, and
present preliminary results along with experiments that evaluate
the performance of fast online heuristics.

ACM Reference Format:

Hamidreza Jahanjou, Rajmohan Rajaraman, and David Stalfa. 2020. Sched-
uling Flows on a Switch to Optimize Response Times. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °20), July 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3350755.3400218

1 INTRODUCTION

With the advent of software-defined networking (SDN) and Open-
Flow switch protocol, routing and scheduling in modern data center
networks is increasingly performed at the level of flows. A flow is
a particular set of application traffic between two endpoints that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07...$15.00
https://doi.org/10.1145/3350755.3400218

Rajmohan Rajaraman
Northeastern University
rraj@ccs.neu.edu

David Stalfa

Northeastern University
stalfa@ccs.neu.edu

receive the same forwarding decisions. As a consequence of the
shift towards centralized flow-based control, efficient algorithms
for scheduling and routing of flows and their variants have gained
prominent importance [11, 15, 28, 39, 47].

In order to model the datacenter network carrying the flows, it
is common to represent the entire datacenter network as one non-
blocking switch (see Figure 1) interconnecting all machines [2, 5,
35, 47]. This simple model is attractive because of advances in full-
bisection bandwidth topologies [29, 46]. In this model, every input
(ingress) port is connected to every output (egress) port. Bandwidth
limits are at the ports and the interconnections are assumed to
have unlimited bandwidth. We model the datacenter network as
a general bipartite graph (which includes the full-bisection as a
special case) with capacities at each vertex (port).

In the context of scheduling and client-server applications, re-
sponse time—also known as flow time or sojourn time-is a very
natural and important objective. Indeed, response time is directly
related to quality of service experienced by clients [6, 19]. In the job
scheduling literature, metrics related to response times have been
extensively studied in diverse frameworks, including approxima-
tion algorithms [8, 9, 14, 21, 37], competitive analysis [7, 34, 45], and
queuing-theoretic analysis [12, 30]. For flow scheduling, however,
response time optimization is not as well-understood as completion
time optimization; to the best of our knowledge, there is no prior
work on approximation algorithms for flow scheduling to optimize
response time metrics. In this paper, we study the problem of sched-
uling flows on a switch network to minimize average response time
and maximum response time.

1.1 Results

We present approximation algorithms for flow scheduling on a
bipartite switch network to minimize response time metrics.

e We present a (1 + ¢, O(logn/c))-approximation algorithm, run-

ning in polynomial time, for scheduling n unit flows under the

Figure 1: (left) An m X m non-blocking switch with unit port
capacities. Each incoming flow is shown as a bar on the left,
with the length of the bar proportionate to the flow size.
Each flow also specifies its input and output ports. For in-
stance, two flows f! and f* share the same destination port.
(right) The switch can be regarded as a complete m x m bipar-
tite graph augmented with two sets of parallel edges.

https://doi.org/10.1145/3350755.3400218
https://doi.org/10.1145/3350755.3400218

average response time metric, for any given positive integer
c; that is, our algorithm achieves an average response time of
O(log n)/c times the optimal assuming it is allowed port capac-
ity that is 1+ c times that of the original. Our results on average
response time appear in Section 3.

e We show that it is NP-hard to attain an approximation factor
smaller than 4/3 for the maximum response time metric. We
next present a polynomial-time algorithm that achieves optimal
maximum response time, assuming it is allowed port capacity
that is at most 2dp4x — 1 more than that of the optimal, where
dmax is the maximum demand of any flow request. For the
special case of unit demands, note that this is best possible,
given the hardness result. Our results on maximum response
time appear in Section 4.

Both of our algorithms are based on rounding a suitable linear
programming relaxation of the associated problem. The algorithm
for average response time uses the iterative rounding paradigm,
along the lines of previous work in scheduling jobs on unrelated
machines [8]. A challenge we need to address is that a "job" in
flow scheduling uses two different capacitated "resources” (ports)
simultaneously. We are able to overcome this challenge if we allow
resource augmentation. An important open problem is to determine
whether polylogarithmic- or better approximations for average
response time are achievable without resource augmentation.

For maximum response time, our hardness reduction is through
the classic Timetable problem [20] and provides a useful target for
practitioners developing heuristics. Our approximation algorithm
is achieved by applying a rounding theorem of [36], and in fact
extends to the more general problem in which we need to meet
distinct deadlines for individual flows.

Both the algorithms above are offline approximations. In Sec-
tion 5, we study online algorithms for response time metrics.

e We present preliminary theoretical results including a resource-
augmented constant-factor competitive algorithm for maxi-
mum response time, which builds on our offline algorithm. We
next present experimental evaluations of natural online heuris-
tics for average and maximum response time metrics.

Our work leaves some intriguing open problems and several direc-
tions for future research, which are highlighted in Section 6.

1.2 Related Work

There is considerable work on scheduling flows on non-blocking
switch networks as well as more general topologies, primarily for
completion time metrics. There is extensive literature on sched-
uling matchings over high-speed crossbar switches; these studies
largely adopt a queuing theoretic framework (e.g., see [25, 27, 50]).
In [16], Chowdhury et al. present effective heuristics for scheduling
generalizations of flows, called co-flows, without release times on
a non-blocking switch network. More recently, Luo et al. [44] pro-
vide heuristics for scheduling multicast flows over a reconfigurable
switch. Approximation algorithms for average completion time
of co-flows on a non-blocking switch are given in [1, 38, 48, 49].
Scheduling over general network topologies is studied in [15, 31, 51],
including approximation algorithms for average completion time.

Average response time. The single machine preemptive case with
release times, 1|pmtn, qi| 2; Ri, is solvable in polynomial time us-
ing the shortest remaining processing time (SRPT) rule [4]. With-
out preemption, 1|| }; R; is solvable using the shortest processing
time (SPT) rule; but, 1|g;| >}; R; is hard to approximate within
a factor of n3~€ for all € > 0 [37]. For two machines or more,
P2|pmtn, q;| 3}; R; is NP-hard [18]. Leonardi and Raz show that
SRPT is an O(log(min(%, P)))-competitive algorithm for the prob-
lem Pm|pmtn, q;|R; where P is the ratio between the largest and the
smallest job processing times [43]. From a technical standpoint, a
related paper for our work is that of Garg and Kumar, who consider
the problem of minimizing total response time on related machines
(Qlpmtn, qi| 23; R;) and present an offline O(log P)-approximation
algorithm and an online O(log? P)-competitive algorithm [22]. In a
later paper, the same authors consider the problem of minimizing to-
tal response time on multiple identical machines where each job can
be assigned to a specified subset of machines. They give an O(log P)-
approximation algorithm as well as an Q(lolgol%) lower bound [23].
The same ideas were used to get an O(k)-approximation algorithm
for the unrelated case (R|pmtn, q;| 3; R;) when there are k different
processing times [24]. In the same paper, the authors showed an
Q(log!™€ P) hardness of approximation for P|pmtn, q;| 3; R;. More
recently, Bansal and Kulkarni design an O(min(log? n, log nlog P))-
approximation algorithm for R|pmtn, q;| 3; R;, which provides a
basis for our algorithm for average response time [8].

Independently, Dinitz and Moseley [17] have recently studied
online scheduling of flows in reconfigurable networks and provide
an O(1/¢%)-competitive algorithm, assuming that the speed of each
machine is 2+¢ times that in an optimal solution. One consequence
of their result is an O(1/c?)-competitive algorithm for average
response time in our model, assuming a (2 + c¢) factor blowup in
port capacity, for any positive integer c. In contrast, our result for
average response time requires a (1 + c¢)-factor blowup, for any
positive integer ¢, but incurs a logarithmic approximation ratio and
holds only for the offline model. We refer the reader to the full
paper for a comparison of our models [17].

Maximum response time. The problem of minimizing maximum
response time has not been studied extensively. P|pmtn, q;|Rmax is
polynomial-time solvable [42]. The first-in first-out (FIFO) heuris-
tic is known to be (3 — %)—competitive for Pm|pmtn, qi|Rmax and
Pm|qi|Rmax [10, 45]. On the other hand, Ambiihl and Mastrolilli
give a (2 - %)—Competitive algorithm for Pm|pmtn, q;|Rmax and
show that FIFO achieves the best possible competitive ratio on two
identical machines when preemption is not allowed [3]. [8] gives
an O(log n)-approximation algorithm for R|pmtn, q;|Rmax -

2 PROBLEM DEFINITIONS AND NOTATION

We consider two scheduling problems in which flows arrive in fixed
intervals on a non-blocking switch. In this model, we are given
a switch Sp, v = (P, F) where P is a set of m input ports and m’
output ports where each port p has a corresponding capacity cp. F
is a set of flows e = pq with one input port p and one output port g.
Each flow e has a corresponding demand d. and release time ro. We
assume throughout that for any e = pq, de < ke = min(cp, cg).

For an given instance Sy, v, we define a family of functions
o0 : FXN — {0,1}. We say that o schedules flow e in round t if
0e,+ = 1 (for ease of notation, we use o = (e, t)). A function o is
a schedule of Sy, if the following conditions are met: every flow
e, is entirely scheduled across all rounds (i.e. }}; oe; > 1), every
flow e is scheduled only in rounds after its release time (i.e. for
all t, oey =1 = t > re), and for all ports p the total size of all
flows scheduled on port p in a given round is no more than p’s
capacity (i.e. forall t, 3,.pe. dede,r < ¢p). For a given flow e and
schedule o, the response time p, is the difference in its completion
time Ce = 1+min{t : 0. = 1} and its release time, i.e. pe = Ce —re.

The first problem we study in this model is Flow Scheduling
to Minimize Average Response Time (FS-ART) in which we seek
to minimize . Ce — 7. The second problem we study in this
model is Flow Scheduling to Minimize Maximum Response Time
(FS-MRT) in which we seek to minimize max,ep{Ce — pe}-

Throughout the paper we use pq to denote a flow (directed edge)
from input port p to output port g. We use [i] to denote the set
of positive integers less than or equal to i. An instance with equal
numbers of input and output ports is referred to as Sy,. The main
notation is given in the table below.

Smpmy : m-in,m’-out | e, pq : flow
P : all ports de e’s demand
F : all flows Te e’s release time
n ¢ |F| Pe e’s response time
p,q : port Ce : e’s completion time
cp : p’s capacity t : round
Kpg : min{cp,cq} o schedule
Fp : alle:pee Oer =1 & escheduledatt

3 AVERAGE RESPONSE TIME

We study Flow Scheduling to Minimize Average Response Time
(FS-ART), for instances with identical numbers of input and output
ports. Specifically, we assume each instance is an m X m switch S,.

From a complexity viewpoint, FS-ART generalizes classic sched-
uling problems. The special case of FS-ART with arbitrary demands,
unit capacity, and m = 1 is equivalent to preemptive single-machine
scheduling with release times, which is strongly NP-hard when the
objective is weighted sum of completion times (1|r;; pmtn| 3 wic;).
Note that, 1|r;; pmtn| Y, ¢; is polynomial-time solvable while the
complexity of 1|r;j; 07 = o3 pmtn| 3, wic; is still open.

For m > 1, FS-ART instances incur coupling issues, even for unit
demands. Each flow requires resources at two ports simultaneously.
In [26], the authors consider the closely related biprocessor schedul-
ing problem: there are m identical machines and n unit-sized jobs
which require simultaneous use of two pre-specified (dedicated)
machines. The objective is to minimize total completion time of jobs.
The hardness of this problem is related to the graph that arises from
the pre-specified machine pairs (machines correspond to nodes and
edges to jobs). It is shown in [26] that the problem is strongly NP-
hard if the graph is cubic, and remains NP-hard if the graph is
bipartite and subcubic (i.e. Vo : deg(v) < 3), which implies that
FS-ART is NP-hard even for unit demands and unit capacities and
identical release times for all flows. While constant-factor approxi-
mations [26, 40] are known for makespan and average completion
time, no results are known for response time metrics.

Section 3.1 presents a linear programming approach based on
iterative rounding,. Section 3.2 uses this approach to establish the
main approximation result of this section.

3.1 A linear-programming approach

In this section, we investigate linear programming approaches
used in the context of machine scheduling and adapt them to our
setting. On a conceptual level, our problem is harder than paral-
lel/related/unrelated machine scheduling in the sense that we have
to deal with simultaneous use of ports, but is easier in the sense
that we do not have to worry about the assignment of flows/jobs
to machines as each flow specifies its source and destination ports.

Our starting point is the following linear program similar to the
one used by Garg and Kumar [22].

t— 1
Minimize Z Z (y Te | 2—) ber
e Ke

subjectto (1)

e t2re

Z ber > de Ve (2)
t>re

Z bet < ¢p Vp.t (3)
eer
ber > 0 Vet (4)

Informally, the variable b.; gives the amount of flow e that is
scheduled in round t. Constraint (2) ensures that each flow is com-
pleted. Constraint (3) ensures that no port is overloaded in any
round. We can rewrite the objective function as), A, where

Ae=) (t;ere +i) bet

t2re

is the fractional response time of e. We show that, for a given instance
Sn,m of FS-ART, the optimal solution to (1) - (4) lower bounds the
total response time of any schedule of Sy, ;y,.

LEmMA 3.1. For an arbitrary Sy m, let o be some (non-integral)
schedule of Sp,m and let b* (A}) be the optimal solution to (1) - (4)
corresponding to Sy m. Then Y, A} < Y pe.

Proor. Given o, we construct a solution to (1) - (4) by setting
ber < (1/de)0e,, for all flows e and rounds ¢. To prove the lemma,
we prove the stronger claim that, for any flow e, A, < pe.

Suppose that the completion time of flow e in schedule o is Ce.
Then the response time of e is p, = C, — re. Notice that

pe= S s S (S)
€ de) €= de 2ke)

t=re t=Ce—dc[Ke

That is, A, is maximized when as much of flow e is scheduled in
each round as possible to ensure that e completes in round C,. But,

< t—re 1 _dE/KE Ce—Te—t 1
2 (d +£)“e—2(—d6 +m)"e
t=Ce—de [Ke t=1

1
=Ce—Te — 5 < Pe
which completes the proof. O

We now consider another linear programming formulation first
used by Bansal and Kulkarni [8] for the problem of job scheduling

solve LP({ — 1)
E(¢—1) : non-zero variables
A(€—1) : integrally-assigned jobs
P(¢—1) : tight capacity constraints

LP(¢ — 1) over
flows F(£ —1),
intervals I(x,x,¢— 1)

LP(¢) over
flows F(¢),
intervals I(x, *, £)

set F'({) =F(—1)\A((—-1)
drop all variables related to A(¢ — 1)
remove all zero variables

Figure 2: The ¢-th iteration of the rounding scheme, ¢ > 1,
starts by solving LP(¢ — 1) and ends by defining LP(?).

on unrelated machines. The authors use iterative rounding to get
a tentative schedule with low additive overload for any interval
of time. We do the same. This linear program and the subsequent
ones, used in iterative rounding, are all interval-based. In the initial
program, which we denote LP(0), the interval size is 4. In subse-
quent relaxations, the interval size can grow. LP(0) is the following
program along with constraints (2) and (4).

Minimize Z Z (t ; i + %) bet
(-

e t2re

subjectto (5)

ber < 4cp Vp,a (6)
e€F, te(4(a-1),4a]

As before, the real variable b.; is the amount of flow e scheduled
in round [t,t + 1). Constraint (6) ensures that the total sum of
flows scheduled on a given port p in any four consecutive rounds
is no more than four times the capacity of p. Clearly, this new LP
is a relaxation of the previous one; consequently, the value of an
optimal solution to this LP is a lower bound to the response time for
any integral schedule. Following [8], we use an iterative rounding
scheme to get the following result.

LEMMA 3.2. The exists a solution b* = {b},}¢, satisfying the
following properties

(1) For each flowe, there is exactly one roundt for which b}, = de.
(2) The cost of b* is at most that of an optimal solution to the LP.
(3) For any port p and any time interval [t1, t2],

Z by, < cp(ta —t1) +O(cplogn).

ecF, te[t,b]

REMARK 3.3. We can regard a solution satisfying the properties
in the lemma as a sequence of bipartite graphs {G;};. Then, for
any given (time) interval [a, b], the degree of any vertex p in the
“combined” graph U, ¢[45]G is at most (b — a)cp + O(cp logn). In
Section 3.2, we convert this sequence to a sequence of matchings.

Iterative rounding. To establish Lemma 3.2, we iteratively relax
variable assignments with a sequence of linear programs which
we denote by LP(¢) for £ = 0, 1,.... Recall that LP(0) is the initial
linear program above. We denote the set of flows that appear in
LP(¢) by F(¢) and an optimal solution to LP(f) by b’ = {bgt}e’t.
Let E(¢) be the set of variables in LP(f) with non-zero assignments.
Let A(?) be the set of flows e such that, for all ¢, bit is integral. Let
P(¢) be the set of tight capacity constraints (7) in LP(¢) given b’.
Let dmax = maxe{de}. See Figure 2 for a high level overview.
In each iteration £ > 1, we construct LP(¢) as follows.

e Initialize F(¢) = F(£ —1).
e Find an optimal solution {bg;l Ye,r to LP(£—1).

e Eliminate zero variables. In other words the variables be; in LP(¢f)
are only defined for variables in E(£ — 1), the support of b*~!.
Fix integral assignments. For all e € A(f — 1), assign e to those
rounds t such that bﬁ;l > 0 (ie. set b}, < de) and drop all
variables be; in LP(¢). We also update F(¢) = F(¢£)\{e}.

Define intervals for the current iteration as follows. Fix a port
p and consider the flows in F(f) U Fp. Sort all the variables in
{bﬁ?l € E(f-1) : e € F(£)UFp} inincreasing order of t, breaking
ties lexicographically. Next, iteratively partition b ! variables
into groups I(p, 1,£),I(p, 2,), ... as follows. To construct group
I(p, a, t), start from the earliest non-grouped variable and greed-
ily group consecutive b, ! variables until their sum first exceeds
4cp. The size of the interval I = I(p, a,{) is

Size(I) = Z bi;l.

ber€l

Note that Size(I(p, a, £)) € [4cp, 5¢p). The time duration of I can
be much larger than its size. On the other hand, for £ = 0, all
intervals are of size 4 as evident in the initial LP.

For ¢ > 1, LP(¥) is given by objective (5) subject to constraints
(2), (4), and the following constraint.

bet < Size(I(p,a,f)) - cp Vp,a (7)
e€F,NF(€) ber€l(p,aLt)

Since LP(¢) is arelaxation of LP(£—1), the second requirement of
Lemma 3.2 is satisfied. Also, by construction of LP(?), the sequence
of iterations results in an integral assignment of all flows and so
the first requirement of Lemma 3.2 is satisfied. It remains to bound
the number of iterations and calculate the backlog.

Recall that F(?) is the set of flows e such that variables b.; appear
in LP(¢). Note that, for £ > 0, these are the non-zero variables which
correspond to non-integrally-assigned jobs after solving LP(f — 1).

LEmMMA 3.4. Forallt > 1,|F(¢)| < |F(£—1)|/2.

Proor. Consider a linearly independent set of tight constraints
in LP(¢ — 1). Since a tight non-negativity constraint (4) results
in a zero variable, the number of non-zero variables, E(f — 1) C
{bj;,_tl } f,t> is at most the number of tight flow constraints (2) plus

the number of tight capacity constraints (7). That is
|E(e - D] < [F(£=1)|+[P(£ = 1)]. ®)

since |F(¢ — 1)| is the number of flow constraints.
Now, each flow which is not integrally assigned by b*~! (i.e. not
in A(£ — 1)) contributes at least two to |E(£ — 1)|. Thus,

|E(¢ - D] 2 |A(f =D+ 2(]F(¢ - 1)| - [A(£ = D)
=[F(£ =D +|F(O)]. ©)

The equality holds since F(f) = F(¢£ — 1)\A(¢) by construction.
Inequalities (8) and (9) together imply |F(¢)| < |P(£ — 1)].

Next, we show that |P(£—1)| < |F(¢£—1)|/2 which completes the
proof. This is accomplished by a simple combinatorial argument.
Let’s give 2 tokens to every flow in F(¢ — 1). Now, each flow e €
F(£-1), gives a portion equal to bg;l /de of its tokens to the interval
that contains b,;. This token distribution is valid since

Db =2 bht = 2d,,
Pt t

where we have used the fact that each flow appears in exactly two
port constraints. At the same time, each tight capacity constraint
for port p receives at least 4 tokens since interval sizes are > 4cp, by
definition and de < c) by assumption. Now, as each job distributes
exactly 2 tokens and each tight port constraint receives at least 4,
we conclude that |P(¢ — 1)| < |F(¢ - 1)|/2. O

Lemma 3.4 shows that the number of iterations needed before
arriving at an integral solution is no more than O(logn). What
remains is to bound amount of extra load that any interval has taken
on. Recall that A(¢) denotes the set of flows which are integrally
assigned by the optimal solution b to LP(f). Let A(¢, p,t1,t2) C
A(?) be the set of flows which are integrally assigned to port p in the
interval [y, t2] by the optimal solution b% of LP(f). Furthermore,

we define
DL b+ DA p L),
e€FpNF(£) te[ty,t2] <t

VOl(p, £, ty, [2) =

which is the total size of flows assigned to port p in the interval
[t1, t2]by BO, ..., b’. The following lemma states that the amount
of extra load taken on any port in any interval is no more than a
constant additive over the load in the previous iteration.

LEMMA 3.5. For any [t1, t2], any port p, and any round £ > 1,
Vol(p, £, t1, t2) < Vol(p, £ — 1,11, t2) + 10cp. (10)

Proor. Fix an interval [t1,t2] and a port p. In each iteration
¢, the “extra” load in this interval can be introduced only if two
intervals overlap with the boundaries of [#1, f2].

Consider a maximal set of contiguous intervals I(¢, a, p), I(£,a +
1,p), ..., I(£,a+w, p) that contain [#1, t2]. Note that a is the smallest
index such that I(#, a, p) contains some bgt with t € [t1, t2]. Simi-
larly, w is the largest number such that I(#, a + w, p) contains some
bgt with ¢ € [#1, 2]. Since each interval is of size smaller than 5cp,

Z b, +

ber€l(t,a,p)

4

be; < 10cp. (11)
ber€l(t,a+w,p)
Moreover,

at+w-1 a+w-1
be, Z Size(I(t,x, p))
x=a+1 b, e[(f,x,p) x=a+1
-1
Z bet 4

ecFpNF(¢) tety,tz]

IA

at+w—1

=2 2

x=a+1 be; €l (t,x,p)

IN

where the first inequality follows from the port capacity constraints
(3), and the second equality follows from the definition of Size(x).
Consequently, we have that

at+w

IR DD I

e€F,NF () te[ty,t;] X=a be,el(tx,p)

< 10cy + Z Z b]{};l

e€F,NF () te[ty,tz]

< 10cp — |A(€ = 1,11, b2, p)| + Z Z bg;lx
e€F,NF(£-1) te[ty,t;]

where the last step uses the fact that F(¢) = F(£ — 1)\A(¢).

The LHS of (10) equals

b HA(L = 111,12, p)] <
fEF,NF(2) te[ty,tz]

bt +10cy,
fEeFpNF(£-1) te(tytz]
which equals the RHS of (10). O

We now establish a bound on the total “extra” load in any in-
terval for the final assignment. Recall that b* is the final, integral
assignment derived from the iterative procedure above.

LEmMMA 3.6. For any interval [t1, t2] and port p,

Z Z b:t < Cp(tz —t1) + IOCP lOg n.

ecF, te[t,tz]

Proor. We fix the interval [#1, t2] and port p. By construction
of b*, we need only to show that, for all ¢

Vol(p, £, t1, t2) < cp(t1 — t2) +10(£ + 1)cp. (12)

We prove inequality 12 by induction on ¢. For £ = 0, we have

Vol(p,0,1,12) = > D7 bE, < eplty — t2) +4cy

€ te[t,t]
by Constraint (6). So
Vol(p, £ + 1,11, t2) < Vol(p, £, t1, t2) + 10cp
< cp(ty —12) +10(£ +2)cp
by Lemma 3.5 and induction. O

We now have all the necessary ingredients to prove Lemma 3.2.

ProoF oF LEMMA 3.2. In the final solution {b}, }¢ , all flows are
integrally assigned. Furthermore, the cost of the final solution is at
most that of an optimal solution to the initial linear program (since
each iteration, we are relaxing the previous linear program). Finally,
by Lemma 3.6, for any time interval [t1, t3] and port p, the total
volume of assigned flows is at most ¢ (t2 — t1) + O(cp logn). O

3.2 Getting a valid schedule

What we obtain from Lemma 3.2 is, unfortunately, not a valid
schedule but what could be called a pseudo-schedule; as noted in
Remark 3.3, the total amount of flow passing through a port p
during a time interval I could as much as ¢, O(log n) more than
cp|I|, as allowed by the capacity of the port. In this section we show
that we can convert the pseudo-schedule given by Lemma 3.2 into
a valid schedule using resource augmentation, i.e., assuming the
algorithm is allowed more port capacity than the optimal schedule.
It is immediate from Lemma 3.2 that if we augment the capacity of
every port by a factor of 1+0O(log n), then we obtain a valid resource-
augmented schedule with optimal average response time. In the
following, we show that we can achieve logarithmic-approximate
average response time with a small constant blowup in port capacity,
for the case of unit demand flows (and arbitrary port capacities).

THEOREM 1. For any positive integer c, there exists a polynomial-
time algorithm that, given a set of n unit flows over a switch, computes
a(l+ M)—a roximation for average response time unit-size

¢ pp ge resp
flows, while incurring a blowup in capacity by a factor of (1 + c).

Proor. Given a set F of flows over a switch, by Lemma 3.2, there
exists a pseudo-schedule which assigns flows to time slots such that
the total response time is at most the cost of an optimal solution to
the initial linear program and for any given time interval [, t2],
and for any port p, the total volume of flows assigned to p during
the interval is at most ¢, (t2 — t1) + O(cp logn).

Due to space constraints, we give the proof of the desired claim
for unit capacities. We extend the claim to arbitrary capacities in the
full paper [32].The pseudo-schedule can be regarded as a sequence
{Gt}:+ of bipartite m X m graphs such that in any given interval
[#1, t2], the degree of each vertex in the combined graph Uif Gy is
at most (t2 — 1) + ¢’ log n for some ¢’ > 0. Next, we convert this se-
quence {G;}; into a sequence of bipartite matchings {M; };. To this
end, we divide the timeline into consecutive intervals I, I, ..., each
of size h = [Clo#]. Now, starting from the beginning, we schedule
flows in each interval before going to the next one. Consider an
interval I}, the degree of each vertex in the combined graph Gy, is
atmostd = [¢/(1+ %) log n]. Applying the Birkhoff-von Neumann
Theorem [13], Gy, can be decomposed into at most d matchings in
polynomial time. By increasing the capacity (bandwidth) of each
port to 1+ ¢, we can execute d matchings in the next available spots
(with respect to release times) in at most h time steps. Since each
flow is delayed by at most h+d = w
time of this schedule is no more than

steps, the total response

o(l o(l
OPT + nx 208" opry (4 OU08M o
c c
where the inequality follows from the fact that the number of flows
is lower bound on the total response time. O

4 MAXIMUM RESPONSE TIME

In this section, we consider the problem of Flow Scheduling to
Minimize Maximum Response Time (FS-MRT). More formally, for a
given instance Sy, of FS-MRT, our goal is to find the minimum p
such that there exists a schedule of Sy, ,y with maximum response
time p. Section 4.1 establishes that solving FS-MRT is NP-hard.
Section 4.2 provides a tight approximation to FS-MRT via a linear
programming relaxation and rounding of a more general problem.

4.1 Maximum Response Time Hardness

We establish the hardness of approximation for FS-MRT motivating
our approximations in Section 4.2.

THEOREM 2. There is no polynomial time algorithm that solves
Flow Scheduling to Minimize Maximum Response Time to within a
factor of 4/3 of optimal, assuming P # NP.

Our proof of Theorem 2 is via a reduction from the Restricted
Time-table (RTT) problem, which is shown to be NP-hard in [20].
Due to space constraints, we defer the proof to the full paper [32].

4.2 Maximum Response Time Approximation

In this section, we give an approximation algorithm for Flow Sched-
uling to Minimize Maximum Response Time (FS-MRT). In fact,
the algorithm solves a more general problem which we call Time-
Constrained Flow Scheduling, for which there is also an easy reduc-
tion from FS-MRT. Time-Constrained Flow Scheduling is identical

to FS-MRT except that flows do not have corresponding release
times. Instead, each flow e, has a corresponding set of (possibly non-
contiguous) active rounds R(e) such that e can be scheduled in any
round t € R(e). Observe that an instance of FS-MRT that is solvable
with a maximum response time of p can be reduced to an instance
of Time-Constrained Scheduling where R(e) = {t : re <t <re+p}
for all flows e. Therefore, the approximability of Time-Constrained
Scheduling transfers directly to FS-MRT.

Linear Programming Relaxation. We provide a linear program-
ming relaxation of Time-Constrained Flow Scheduling. Let T = {t €
R(e)}e be the set of rounds in which some edge can be scheduled.

Z deXet < ¢p VpePteT (14)
e€F,
Z Xetr =1 Ve € F (15)
teR(e)
Xer 20 Vee F,teT (16)

The variable x ; denotes the fraction of flow e scheduled in round
t. Constraint (14) ensures that the total size of all edges adjacent
to a port that are scheduled in a round is no more than the port’s
capacity. Constraint (15) ensures that all edges are scheduled.

THEOREM 3. Given an instance Sy, of Time-Constrained Flow
Scheduling, we can either determine that there is no schedule of S,
or produce a schedule in which the capacity of each port has been
increased by 2dmax — 1.

To prove Theorem 3, we invoke the following lemma which is
proved in [36].

LEMMA 4.1 (THEOREM 3 IN [36]). Let A be a real-valued r X s
matrix, let x be a real-valued s-vector, let b be a real-valued r-vector
such that Ax = b, and let A be a positive real number such that in
every column of A we have (a) the sum of the positive elements is at
most A and (b) the sum of the negative elements is at least —A. Then
we can compute an integral s-vector X such that (c) foralli,1 < i <s,
either X; = | x;] or%; = [x;], and (d) Ax = b, whereb; —b; < A for
1 < i < r.In the case that all entries in A are integers, then a stronger

bound applies: b; — [b;] < A —1.

Proor oF THEOREM 3. We first show that LP is a valid relaxation
of Time-Constrained Flow Scheduling. We convert a schedule ¢ of
an arbitrary instance of Time-Constrained Flow Scheduling into
a feasible LP solution. For each flow e, if ¢ schedules e in round ¢,
then we set x,; to 1 and set it to 0 otherwise. By the port capacity
restrictions on o, we have that Constraint (14) is satisfied. Also,
since all edges must be scheduled in some round of ¢, we have that
Constraint (15) is satisfied. Constraint (16) is trivially satisfied.

We now rewrite (14) - (16) in matrix form as A px = by p with
the use of slack variables. Then, for a given instance of Time-
Constrained Flow Scheduling, we solve the program. This either
outputs that there is no solution or produces a solution vector x*.
In the former case, we use the fact that LP is a valid relaxation
of Time-Constrained Flow Scheduling to determine that there is
no feasible solution to the given instance. If the LP solver pro-
vides a solution vector x*, we rewrite Ay p and by p as follows. Let
dmax = maxecp{de}. Let A and b be identical to A; p and by p except
that all rows corresponding to Constraint (16) have been removed,

and all values in rows corresponding to constraint (15) have been
multiplied by dmax and made negative. Let A = dpax.

We show that A, x, b, and A satisfy the conditions of Lemma 4.1.
By construction we have Ax = b. Let the columns of A be indexed
by t € [T]. Let pq = e € F be a flow in the given problem instance.
Constraint (14) entails that the coefficient dpq would occur twice in
a single column ¢: once for p and once for g. Similarly, Constraint
(15) guarantees that —2dmax occurs once in each column ¢ for e. So,
conditions (a) and (b) are satisfied for A, b, x, and A.

Lemma 4.1, therefore, entails the existence of matrices f) and X
that have properties (c) and (d). Property (c) entails that all values
in % are integral. Since all elements of A are integral, we have that
all elements of b are integral as well. Property (d) entails that the
difference between the values in b and b is strictly less than 2dmax
and so is at most 2dyax — 1.

Recall that all elements of A corresponding to Constraint (15)
have been multiplied by 2dmax. Therefore, by dividing these values
by 2dmax, we get a matrix b’ such that the difference in values
b’ and b corresponding to Constraint (15) are strictly less than
1. Since all values are integral, this entail that the difference is 0.
Therefore, the schedule given by % satisfies Constraint (15), and all
values corresponding to Constraint (14) are off by at most 2dmax — 1.
Therefore, if we increase the capacity of each port by 2dmax — 1, we
can feasibly schedule all edges in their active rounds.]

5 ONLINE FLOW SCHEDULING

We next consider a natural online version of flow scheduling, in
which the sequence of flow requests is not available in advance;
the scheduler learns about a request only at the request’s release
time. We use the standard framework of competitive analysis, and
present some preliminary theoretical results in Section 5.1, and
experimental results in Section 5.2.

5.1 Preliminary Theoretical Results

In this section, we establish several preliminary results for flow
scheduling in the online setting. We first describe two lower bounds
on the quality of any online approximation for both the average
response time and maximum response time objectives. We then
provide an online approximation for maximum response time that
uses our offline algorithm, described above, as a subroutine. Due to
space constraints, we defer all proofs to the full paper [32].

The following lemma shows that there is no online algorithm
with a bounded competitive ratio for average response time.

LEMMA 5.1 ([41]). For any M, there is an instance I of flow sched-
uling such that the average response time of the schedule produced
by any online algorithm on I is at least M times the average response
time of the optimal schedule of I.

The following lemma establishes a lower bound for maximum
response time, using an argument similar to [33].

LEMMA 5.2. There is an instance I of flow scheduling such that
the maximum response time of the schedule produced by any online
algorithm on I is at least 3/2 times the optimal forI.

LEmMA 5.3. There is an online algorithm, which computes a sched-
ule for any given instance I, with maximum response time at most

Arrivals ‘ ‘ ‘ ‘ ‘ ‘ ‘

Schedule

Figure 3: Gray boxes represent batches of flows. At each in-
terval of the guessed max response time p, those flows in the
previous batch are scheduled starting in the current round.
Note that at most two boxes ever overlap.

double that of the optimal schedule of I, and where the capacity of each
port p has been increased to 2(cp+2dmax—1) where dmax = maxe{de}.

Our online algorithm Apsrr is depicted in Figure 3. We infor-
mally define it here. In each round ¢, check if ¢ is an integral value
of the guessed maximum response time p. If so, use the offline
algorithm to check if all flows which arrived in the previous p
rounds can be scheduled with maximum response time p. If so,
schedule them according to the offline algorithm starting in round
t. Otherwise, increase the guessed p by one.

5.2 Experimental Results

In this section, we describe experiments conducted to evaluate
the practical performance of several natural heuristics in on-line
scheduling flows over a switch. In these experiments, we measure
the average (% > pi) and maximum (max p;) response times of flows.
As noted before, the latter objective is predictive of the quality of
service (QoS) as perceived by the user: by minimizing the maximum
response time, we ensure that no job takes too long to complete.
One must keep in mind, however, that optimizing for maximum
response time may come at the cost of increased average response
time which becomes more relevant when users submit batch jobs.

In the case of average response time, we compare the perfor-
mance of these heuristics to the optimal value of the linear program
(1)-(4) presented in §4.2. On the other hand, in the case of maximum
response time, we compare the performance of these heuristics to
the optimal value of the linear program (14)-(16) presented in §3.1.
Since these LPs give lower bounds on the optimal values of any
schedule, they provides us with bases for evaluating the heuristics.

5.2.1 Methodology. Packet-level simulators, such as Ns2, are not
suitable for flow simulation due to the large number of packets
generated by each flow which makes the model infeasible. Hence,
we have developed an in-house simulator for online flow scheduling
of flows over a non-blocking switch.

Specifically, we use a 150 X 150 switch with unit port capacities.
This switch models a 3000-machine cluster with 150 racks and a
total bisection bandwidth of 300Gbps. Thus, each port has a capacity
of 1Gbps or 128MBps. Moreover, by setting each time unit to be
1/128 second, each port has a capacity of 1MB per time unit.

Our simulator maintains a (150, 150) bipartite graph G, through-
out the simulation, where ¢ denotes the time step. The edges in
G; consist of those edges (flows) released at time ¢ plus the ones
remaining from previous steps. In other words E(G;) is the set
of released edges waiting to be scheduled. Any heuristic can be

plugged in to extract a bipartite matching M; C E(G;). Edges in M;
are assigned to run in time window t to t + 1. Note that the edges
waiting at a particular port form an open queue in the sense that
any edge can be selected to run (as opposed to the edge at the front
being the only available one).

In each instance of the experiment, flows are generated randomly
controlled by two parameters M the average number of flows re-
leased per time unit, and T the number of steps during which the
flows are generated. More precisely, for each time unitt = 0,..,T—1,
a Poisson distribution of mean M is used to generate flows released
at time t. For each such flow, an input port and an output port is
selected uniformly at random. Note that M = 150 means that at
each port, on average, there is one new flow per time step. Similarly,
the average number of new flows per port is 2 and 4 for M = 300
and M = 600 respectively.

In our experiments, we compare the following three heuristics.

e MaxCARD: at every step a matching of maximum cardinality
is extracted from G;. This heuristic is guaranteed to keep the
largest number of ports busy during each step. We expect a good
performance for % >, pi since port utilization is kept at its max,
but not for max p; since it does not distinguish between edges.

e MINRTIME: at every step t, each edge e gets assigned a weight
equal to t — re, where re is the edge’s (flow’s) release time. Next,
a matching of maximum weight is extracted from G;, where the
weight of an edge is the length of time since its release. We expect
a good performance for max p; since the longer an edge has been
waiting the higher is its priority. On the other hand, % 2, pi may
be high due to sub-optimal port utilization.

o MAXWEIGHT: at every step, each edge gets assigned a weight
equal to the sum of queue sizes at its two endpoints. In other
words, the weight of an edge is the number of edges incident to
its endpoints. Next, a matching of maximum weight is extracted
from G;. Note that the queue size at a port p is the number of
released but unscheduled edges having p as an endpoint. We
expect this heuristic to perform well for both objectives.

Simulations are performed for various values of M and T. Specif-
ically, we fix M € {50, 100, 150,300, 600} and run the simulator
for T € {10, 12,14, 16, 18, 20, 40, 60, 80, 100}. Each result is the av-
erage of 10 tries. The linear programs are solved only for T €
{10, 12, 14, 16, 18, 20} to avoid prohibitively long execution times:
even for M = 600, and T = 20, each run takes more than 3 hours
on an Intel Core-i7 6700HQ machine with 16GB of RAM.

5.2.2 Implementation. We implemented the simulator and its tools
in C++. We use Lemon 1.3.1 library for various graph algorithms
such as traversals and matchings. The default_random_engine
was used for the distributions. The linear program is modelled and
solved using Gurobi 8.1. In the case of maximum response time, we
used a binary-search scheme with the linear program in (14)-(16)
for finding the minimum feasible response time. The starting point
of the binary search is set to the best of the three heuristics.

5.2.3 Performance. Figure 4, on page 9, shows our findings for
average response time. The results are compared against the op-
timal value of the linear program (1)-(4) which provides a lower
bound on the optimal average response time. As predicted, overall,
MAXWEIGHT and MINRTIME are the best and the worst heuristic

respectively. However, as the average number of incoming flows
M (and hence the congestion) grows, they start to perform very
similarly. Curiously, in every scenario, the performance of the the
heuristics is within a factor 2 of the linear program. Moreover, the
gap seems to close for larger values of M.

Figure 5, on page 10, shows the results for maximum response
time. Again, the findings confirm our initial intuition. In particular,
MINRTIME has consistently the best performance (it almost matches
the LP lower bound in some cases). On the other hand, MAXWEIGHT
is the worst of the three. Again, all heuristics are always within a
factor 2.5 of the LP. Unlike the average case, the gap between the
heuristics seems to grow with M.

Our conclusion is that MAXCARD and MINRTIME are good choices
for minimizing average response time and minimizing maximum
response time respectively. MAXWEIGHT takes the middle ground
and is thus the best choice (among the three) when it is desirable
to keep both average and maximum response times low.

6 OPEN PROBLEMS

We have presented approximation algorithms for minimizing re-
sponse time metrics in flow scheduling over a switch network. Our
work offers a number of directions for future research.

Improved approximation ratios. For average response time, our
algorithm achieves an O(log n/c)-approximation while incurring
a 1+ ¢ augmentation in capacity, for any given positive integer
c. While resource augmentation is necessary for any competitive
algorithm in the online setting, does an offline approximation (with
say a polylogarithmic approximation ratio) need resource augmen-
tation? For maximum response time, our algorithm achieves the
optimal objective while incurring an increase in capacity by the
size of the maximum demand. An important open problem is to
determine whether we need resource augmentation to obtain any
reasonable approximation algorithm for maximum response time.
Competitive online algorithms. Our work on online algorithms
is preliminary and provides some guidance on heuristics one can use
for response-time related metrics. While we have given a constant-
competitive algorithm for maximum response time with constant-
factor resource augmentation, the situation with no resource aug-
mentation is unclear. We plan to conduct a more thorough investi-
gation of online algorithms — both theoretical and experimental.
Generalizations and beyond worst-case analysis. Our work
has focused on scheduling flows on switch networks. We would
like to extend our research to a broader class of datacenter networks
(e.g., trees, fat-trees, more general networks) and more general types
of flows (e.g., co-flows). We would also like to study the problems
posed in a model that includes some information about the dis-
tribution of input instances that may be available from practical
applications. This would be especially useful for the average re-
sponse time objective, for which no non-trivial competitive ratio is
achievable without resource augmentation.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CCF-1909363. We
would like to thank Janardhan Kulkarni for the many discussions on
online flow scheduling, and for generously allowing us to include
his proof of Lemma 5.1.

A FIGURES SHOWING EXPERIMENTAL RESULTS

1.

12

N

0.8
0.6
0.4
0.2

0

35

25

~

5

N

0.5
0

~

0

Avgerage Response Time for M=50

mMaxCard ®MinRTime M MaxWeight mLP 18
1.6

14

b §

0.8

0.6

0.4

0.2
10 1z 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

-

o

Avgerage Response Time for M=100

®MaxCard ®MinRTime ™ MaxWeight mLP
1.8

16

1.2
0.8
0.6
0.4
0.2
10 12 14 16 18 20 40 60 80 100 0

NUMBER OF STEPS (T)

-

Avgerage Response Time for M=150

W MaxCard ®MinRTime ™ MaxWeight mLP

16

14

2

1

0.8

0.6

I o

0.2

10 12 14 16 18 20 40 60 80 100 0

NUMBER OF STEPS (T)
Avgerage Response Time for M=300
mMaxCard ®WMinRTime ™ MaxWeight mLP
115
L1
1.05
&
-llll-I.II
10 12 14 16 18 20 40 60 80 100 0.9
NUMBER OF STEPS (T)
Avgerage Response Time for M=600

mMaxCard ™ MinRTime ™ MaxWeight mLP 1.04
10
1.02
1.01
1
mmmEBE I
10 12 14 16 18 20 40 60 80 100 0.98

NUMBER OF STEPS (T)

Average Response Time Ratio for M=50

10 12 14 16 18 20

ard inRTime i —LP

Average Response Time Ratio for M=100

10 12 14 16 18 20

ard inRTime i —LP

Average Response Time Ratio for M=150

ard inRTime i — LP

Average Response Time Ratio for M=300

\

10 12 14 16 18 20

ard inRTime

ight ——LP

Average Response Time Ratio for M=600

\

ard inRTime i —LP

Figure 4: Average response time results.

16
14
12

oN B o ®

300

200

150

100

@
o

0

400

300

100

0

Maximum Response Time for M=50

M MaxCard M MinRTime M MaxWeight ®LP 25

1.5

1
0
10 12 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

Maximum Response Time for M=100

W MaxCard M MinRTime M MaxWeight ®mLP 3

25

2

15

A

keubbEEY -

kb 0
10 12 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

Maximum Response Time for M=150

B MaxCard B MinRTime M MaxWeight ®LP 2.5

1.5

i

Huuuu“

o bk B .
10 12 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

Maximum Response Time for M=300

W MaxCard W MinRTime M MaxWeight mLP 1.6
1.4
12

0.8

0.6

0.4

w i Bl

m b N ;
10 12 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

Maximum Response Time for M=600

B MaxCard M MinRTime M MaxWeight mLP

1.4

1.2

1

0.8

0.6

0.4

NN =

- 0
10 3 K 14 16 18 20 40 60 80 100

NUMBER OF STEPS (T)

Max Response Time Ratio for M=50

\/_—__—\

_—-——\/\

—
10 12 14 16 18 20
MaxCard inRTime igl — | P

Max Response Time Ratio for M=100

—

10 12 14 16 18 20

ard MinRTime \ ight e LP

Max Response Time Ratio for M=150

ard inRTime

Max Response Time Ratio for M=300

‘\\

10 42 14 16 18 20

ard inRTime ight e

Max Response Time Ratio for M=600

ard MinRTime igl — | P

Figure 5: Maximum response time results.

REFERENCES

(1]

[10]

[11]

[12]
[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21

[23]

[24]

[25

[26

S. Ahmadi, S. Khuller, M. Purohit, and S. Yang. On scheduling coflows. In IPCO,
2017.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
pfabric: Minimal near-optimal datacenter transport. SSGCOMM Comput. Commun.
Rev,, 43(4):435-446, August 2013.

C. Ambiihl and M. Mastrolilli. On-line scheduling to minimize max flow time: an
optimal preemptive algorithm. Operations Research Letters, 33(6):597 — 602, 2005.
K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.
Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards
predictable datacenter networks. SIGCOMM Comput. Commun. Rev., 41(4):242—
253, August 2011.

N. Bansal. Algorithms for Flow Time Scheduling. PhD thesis, School of Computer
Science, Carnegie Mellon University, December 2003.

N. Bansal and H. Chan. Weighted flow time does not admit o(1)-competitive
algorithms. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1238-1244, 2009.

N. Bansal and J. Kulkarni. Minimizing flow-time on unrelated machines. In
Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing,
STOC 15, pages 851-860, New York, NY, USA, 2015. ACM.

J. Batra, N. Garg, and A. Kumar. Constant factor approximation algorithm for
weighted flow time on a single machine in pseudo-polynomial time. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
778-789, Oct 2018.

M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 270-279, January 1998.

K. Benzekki, A. El Fergougui, and Abdelbaki Elbelrhiti E. Software-defined
networking (sdn): a survey. Security and Communication Networks, 9(18):5803—
5833, 2016.

E. W. Biersack, B. Schroeder, and G. Urvoy-Keller. Scheduling in practice. SIG-
METRICS Performance Evaluation Review, 34(4):21-28, 2007.

D. Birkhoff. Tres observaciones sobre el algebra lineal. Universidad Nacional de
Tucuman Revista , Serie A, 5:147-151, 1946.

C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow
time. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 84-93, 2001.

M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You. Near optimal coflow
scheduling in networks. In Christian Scheideler and Petra Berenbrink, editors,
The 31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA
2019, Phoenix, AZ, USA, June 22-24, 2019, pages 123-134. ACM, 2019.

M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys.
SIGCOMM, Comput. Commun. Rev., 44(4):443-454, August 2014.

Michael Dinitz and Ben Moseley. Scheduling for weighted flow and completion
times in reconfigurable networks. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020. Forthcoming.

J. Du, J. Y.-T. Leung, and G. H. Young. Minimizing mean flow time with release
time constraint. Theoretical Computer Science, 75:347-355, 1990.

N. Dukkipati and N. McKeown. Why flow-completion time is the right metric
for congestion control. SSIGCOMM Comput. Commun. Rev., 36(1):59-62, January
2006.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5:691-703, 12 1976.

U. Feige, Janardhan Kulkarni, and Shi Li. A polynomial time constant approxi-
mation for minimizing total weighted flow-time. In Timothy M. Chan, editor,
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1585-1595. SIAM,
2019.

N. Garg and A. Kumar. Better algorithms for minimizing average flow-time on
related machines. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, Automata, Languages and Programming, pages 181-190, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

N. Garg and A. Kumar. Minimizing average flow-time: Upper and lower bounds.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’07, pages 603-613, Washington, DC, USA, 2007. IEEE Computer
Society.

N. Garg, A. Kumar, and V. N. Muralidhara. Minimizing total flow-time: The
unrelated case. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga,
editors, Algorithms and Computation, pages 424-435, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling algorithms for
high-aggregate bandwidth switches. IEEE Journal on Selected Areas in Communi-
cations, 21(4):546-559, 2003.

K. Giaro, M. Kubale, M. Malafiejski, and K. Piwakowski. Chromatic scheduling
of dedicated 2-processor uet tasks to minimize mean flow time. In 1999 7th
IEEE International Conference on Emerging Technologies and Factory Automation.
Proceedings ETFA ’99, volume 1, pages 343-347 vol.1, Oct 1999.

[27

(28]

[29

(32]

(33]

(34]

[36

[37

[38

[39

™~
2

[47]

L. Gong, P. Tune, L. Liu, S. Yang, and J. Xu. Queue-proportional sampling: A
better approach to crossbar scheduling for input-queued switches. In Proceedings
of the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS),
2017.

P. Goransson and C. Black. Software Defined Networks: A Comprehensive Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. V12: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,
SIGCOMM 09, pages 51-62, New York, NY, USA, 2009. ACM.

I. Grosof, Z. Scully, and M. Harchol-Balter. SRPT for multiserver systems. Perform.
Eval., 127-128:154-175, 2018.

H. Jahanjou, E. Kantor, and R. Rajaraman. Asymptotically optimal approximation
algorithms for coflow scheduling. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA °17, pages 45-54, New York,
NY, USA, 2017. ACM.

H. Jahanjou, R. Rajaraman, and D. Stalfa. Scheduling flows on a switch to optimize
response times. arXiv: https://arxiv.org/abs/2005.09724, May 2020.

S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao. Competitive analysis for
online scheduling in software-defined optical wan. In Proc. of the IEEE INFOCOM
Conference, pages 1-9, 05 2017.

B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. In
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, pages
345-352, 1997.

N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "one big switch"
abstraction in software-defined networks. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies, CONEXT ’13,
pages 13-24, New York, NY, USA, 2013. ACM.

R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V.
Vazirani. Global wire routing in two-dimensional arrays, 1987.

H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonap-
proximability results for minimizing total flow time on a single machine. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages
418-426, May 1996.

S. Khuller and M. Purohit. Improved approximation algorithms for scheduling
co-flows. In SPAA, 2016. Brief Announcement.

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14-76, Jan 2015.

M. Kubale and H. Krawczyk. An approximation algorithm for diagnostic test
scheduling in multicomputer systems. IEEE Transactions on Computers, 34:869—
872,09 1985.

J. Kulkarni. Personal communication.

E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel
processors by linear programming. J. ACM, 25(4):612-619, October 1978.

S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages
110-119, May 1997.

L. Luo, K. Foerster, H. Yu, and S. Schmid. Splitcast: Optimizing multicast flows in
reconfigurable datacenter networks. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020. Forthcoming.

M. Mastrolilli. Scheduling to Minimize Max Flow Time: Offline and Online Algo-
rithms, pages 49-60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant layer 2
data center network fabric. In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, pages 39-50, New York, NY, USA, 2009.
ACM.

Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time
of coflows in datacenter networks. In Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 15, pages 294-303, New York,
NY, USA, 2015. ACM.

Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time
of coflows in datacenter networks. In SPAA, pages 294-303, 2015.

Mehrnoosh Shafiee and Javad Ghaderi. An improved bound for minimizing the
total weighted completion time of coflows in datacenters. IEEE/ACM Trans. Netw.,
26(4):1674-1687, 2018.

D. Shah and J. Shin. Randomized scheduling algorithm for queueing networks.
The Annals of Applied Probability, 22(1):128-171, 2012.

Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and S. Wang.
Rapier: Integrating routing and scheduling for coflow-aware data center networks.
In INFOCOM, pages 424-432, 2015.

	Abstract
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Problem Definitions and Notation
	3 Average Response Time
	3.1 A linear-programming approach
	3.2 Getting a valid schedule

	4 Maximum Response Time
	4.1 Maximum Response Time Hardness
	4.2 Maximum Response Time Approximation

	5 Online Flow Scheduling
	5.1 Preliminary Theoretical Results
	5.2 Experimental Results

	6 Open Problems
	A Figures Showing Experimental Results
	References

