
Scheduling Flows on a Switch to Optimize Response Times
Hamidreza Jahanjou

Google

hamidrj@google.com

Rajmohan Rajaraman

Northeastern University

rraj@ccs.neu.edu

David Stalfa

Northeastern University

stalfa@ccs.neu.edu

ABSTRACT

We study the scheduling of flows on a switch with the goal of

optimizing metrics related to the response time of the flows. The

input is a sequence of flow requests on a switch, where the switch

is represented by a bipartite graph with a capacity on each ver-

tex (port), and a flow request is an edge with associated demand.

In each round, a subset of edges can be scheduled under the con-

straint that the total demand of the scheduled edges incident on

any vertex is at most the capacity of the vertex. This class of sched-

uling problems has applications in datacenter networks, and has

been extensively studied. Previous work has essentially settled the

complexity of metrics based on completion time. The objective of
average or maximum response time, however, is more challenging.

We present approximation algorithms for flow scheduling over

a switch to optimize response time based metrics. For the average

response time metric, whose NP-hardness follows directly from

past work, we present an offline𝑂 (1+𝑂 (log(𝑛))/𝑐) approximation

algorithm for unit flows, assuming that the port capacities of the

switch can be increased by a factor of 1 + 𝑐 , for any given positive

integer 𝑐 . For the maximum response time metric, we first establish

that it is NP-hard to achieve an approximation factor of better than

4/3 without augmenting capacity. We then present an offline algo-

rithm that achieves optimal maximum response time, assuming the

capacity of each port is increased by at most 2𝑑𝑚𝑎𝑥 −1, where 𝑑𝑚𝑎𝑥

is the maximum demand of any flow. Both algorithms are based

on linear programming relaxations. We also study the online ver-

sion of flow scheduling using the lens of competitive analysis, and

present preliminary results along with experiments that evaluate

the performance of fast online heuristics.

ACM Reference Format:

Hamidreza Jahanjou, Rajmohan Rajaraman, and David Stalfa. 2020. Sched-

uling Flows on a Switch to Optimize Response Times. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3350755.3400218

1 INTRODUCTION

With the advent of software-defined networking (SDN) and Open-

Flow switch protocol, routing and scheduling in modern data center

networks is increasingly performed at the level of flows. A flow is

a particular set of application traffic between two endpoints that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400218

receive the same forwarding decisions. As a consequence of the

shift towards centralized flow-based control, efficient algorithms

for scheduling and routing of flows and their variants have gained

prominent importance [11, 15, 28, 39, 47].

In order to model the datacenter network carrying the flows, it

is common to represent the entire datacenter network as one non-

blocking switch (see Figure 1) interconnecting all machines [2, 5,

35, 47]. This simple model is attractive because of advances in full-

bisection bandwidth topologies [29, 46]. In this model, every input

(ingress) port is connected to every output (egress) port. Bandwidth

limits are at the ports and the interconnections are assumed to

have unlimited bandwidth. We model the datacenter network as

a general bipartite graph (which includes the full-bisection as a

special case) with capacities at each vertex (port).

In the context of scheduling and client-server applications, re-
sponse time–also known as flow time or sojourn time–is a very

natural and important objective. Indeed, response time is directly

related to quality of service experienced by clients [6, 19]. In the job

scheduling literature, metrics related to response times have been

extensively studied in diverse frameworks, including approxima-

tion algorithms [8, 9, 14, 21, 37], competitive analysis [7, 34, 45], and

queuing-theoretic analysis [12, 30]. For flow scheduling, however,

response time optimization is not as well-understood as completion

time optimization; to the best of our knowledge, there is no prior

work on approximation algorithms for flow scheduling to optimize

response time metrics. In this paper, we study the problem of sched-

uling flows on a switch network to minimize average response time

and maximum response time.

1.1 Results

We present approximation algorithms for flow scheduling on a

bipartite switch network to minimize response time metrics.

• We present a (1 + 𝑐,𝑂 (log𝑛/𝑐))-approximation algorithm, run-

ning in polynomial time, for scheduling 𝑛 unit flows under the

.

.

.

1

2

3

𝑚

.

.

.

1

2

3

𝑚

×
𝑓 1
3→𝑚

𝑓 2
3→3

𝑓 3
𝑚→1

𝑓 4
𝑚→𝑚

1

2

.

.

.

𝑚

.

.

.
.
.
.

1

2

.

.

.

𝑚

∞

∞

1

1

1

1

Figure 1: (left) An𝑚 ×𝑚 non-blocking switch with unit port

capacities. Each incoming flow is shown as a bar on the left,

with the length of the bar proportionate to the flow size.

Each flow also specifies its input and output ports. For in-

stance, two flows 𝑓 1 and 𝑓 4 share the same destination port.

(right) The switch can be regarded as a complete𝑚×𝑚 bipar-

tite graph augmented with two sets of parallel edges.

https://doi.org/10.1145/3350755.3400218
https://doi.org/10.1145/3350755.3400218

average response time metric, for any given positive integer

𝑐; that is, our algorithm achieves an average response time of

𝑂 (log𝑛)/𝑐 times the optimal assuming it is allowed port capac-

ity that is 1+𝑐 times that of the original. Our results on average

response time appear in Section 3.

• We show that it is NP-hard to attain an approximation factor

smaller than 4/3 for the maximum response time metric. We

next present a polynomial-time algorithm that achieves optimal
maximum response time, assuming it is allowed port capacity

that is at most 2𝑑𝑚𝑎𝑥 − 1 more than that of the optimal, where

𝑑𝑚𝑎𝑥 is the maximum demand of any flow request. For the

special case of unit demands, note that this is best possible,

given the hardness result. Our results on maximum response

time appear in Section 4.

Both of our algorithms are based on rounding a suitable linear

programming relaxation of the associated problem. The algorithm

for average response time uses the iterative rounding paradigm,

along the lines of previous work in scheduling jobs on unrelated

machines [8]. A challenge we need to address is that a "job" in

flow scheduling uses two different capacitated "resources" (ports)

simultaneously. We are able to overcome this challenge if we allow

resource augmentation. An important open problem is to determine

whether polylogarithmic- or better approximations for average

response time are achievable without resource augmentation.

For maximum response time, our hardness reduction is through

the classic Timetable problem [20] and provides a useful target for

practitioners developing heuristics. Our approximation algorithm

is achieved by applying a rounding theorem of [36], and in fact

extends to the more general problem in which we need to meet

distinct deadlines for individual flows.
Both the algorithms above are offline approximations. In Sec-

tion 5, we study online algorithms for response time metrics.

• We present preliminary theoretical results including a resource-

augmented constant-factor competitive algorithm for maxi-

mum response time, which builds on our offline algorithm. We

next present experimental evaluations of natural online heuris-

tics for average and maximum response time metrics.

Our work leaves some intriguing open problems and several direc-

tions for future research, which are highlighted in Section 6.

1.2 Related Work

There is considerable work on scheduling flows on non-blocking

switch networks as well as more general topologies, primarily for

completion time metrics. There is extensive literature on sched-

uling matchings over high-speed crossbar switches; these studies

largely adopt a queuing theoretic framework (e.g., see [25, 27, 50]).

In [16], Chowdhury et al. present effective heuristics for scheduling

generalizations of flows, called co-flows, without release times on

a non-blocking switch network. More recently, Luo et al. [44] pro-

vide heuristics for scheduling multicast flows over a reconfigurable

switch. Approximation algorithms for average completion time

of co-flows on a non-blocking switch are given in [1, 38, 48, 49].

Scheduling over general network topologies is studied in [15, 31, 51],

including approximation algorithms for average completion time.

Average response time. The single machine preemptive case with

release times, 1|𝑝𝑚𝑡𝑛, 𝑞𝑖 |
∑
𝑖 𝑅𝑖 , is solvable in polynomial time us-

ing the shortest remaining processing time (SRPT) rule [4]. With-

out preemption, 1| |∑𝑖 𝑅𝑖 is solvable using the shortest processing

time (SPT) rule; but, 1|𝑞𝑖 |
∑
𝑖 𝑅𝑖 is hard to approximate within

a factor of 𝑛
1

2
−𝜖

for all 𝜖 > 0 [37]. For two machines or more,

𝑃2|𝑝𝑚𝑡𝑛, 𝑞𝑖 |
∑
𝑖 𝑅𝑖 is NP-hard [18]. Leonardi and Raz show that

SRPT is an𝑂 (log(min(𝑛𝑚 , 𝑃)))-competitive algorithm for the prob-

lem 𝑃𝑚 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |𝑅𝑖 where 𝑃 is the ratio between the largest and the

smallest job processing times [43]. From a technical standpoint, a

related paper for our work is that of Garg and Kumar, who consider

the problem of minimizing total response time on related machines

(𝑄 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |
∑
𝑖 𝑅𝑖) and present an offline 𝑂 (log 𝑃)-approximation

algorithm and an online𝑂 (log2 𝑃)-competitive algorithm [22]. In a

later paper, the same authors consider the problem of minimizing to-

tal response time onmultiple identical machines where each job can

be assigned to a specified subset of machines. They give an𝑂 (log 𝑃)-
approximation algorithm aswell as anΩ(log𝑃

log log𝑃
) lower bound [23].

The same ideas were used to get an 𝑂 (𝑘)-approximation algorithm

for the unrelated case (𝑅 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |
∑
𝑖 𝑅𝑖) when there are 𝑘 different

processing times [24]. In the same paper, the authors showed an

Ω(log1−𝜖 𝑃) hardness of approximation for 𝑃 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |
∑
𝑖 𝑅𝑖 . More

recently, Bansal and Kulkarni design an𝑂 (min(log2 𝑛, log𝑛 log 𝑃))-
approximation algorithm for 𝑅 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |

∑
𝑖 𝑅𝑖 , which provides a

basis for our algorithm for average response time [8].

Independently, Dinitz and Moseley [17] have recently studied

online scheduling of flows in reconfigurable networks and provide

an𝑂 (1/𝜀2)-competitive algorithm, assuming that the speed of each

machine is 2+𝜀 times that in an optimal solution. One consequence

of their result is an 𝑂 (1/𝑐2)-competitive algorithm for average

response time in our model, assuming a (2 + 𝑐) factor blowup in

port capacity, for any positive integer 𝑐 . In contrast, our result for

average response time requires a (1 + 𝑐)-factor blowup, for any
positive integer 𝑐 , but incurs a logarithmic approximation ratio and

holds only for the offline model. We refer the reader to the full

paper for a comparison of our models [17].

Maximum response time. The problem of minimizing maximum

response time has not been studied extensively. 𝑃 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |𝑅max is

polynomial-time solvable [42]. The first-in first-out (FIFO) heuris-

tic is known to be (3 − 2

𝑚)-competitive for 𝑃𝑚 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |𝑅max and

𝑃𝑚 |𝑞𝑖 |𝑅max [10, 45]. On the other hand, Ambühl and Mastrolilli

give a (2 − 1

𝑚)-competitive algorithm for 𝑃𝑚 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |𝑅max and

show that FIFO achieves the best possible competitive ratio on two

identical machines when preemption is not allowed [3]. [8] gives

an 𝑂 (log𝑛)-approximation algorithm for 𝑅 |𝑝𝑚𝑡𝑛, 𝑞𝑖 |𝑅max .

2 PROBLEM DEFINITIONS AND NOTATION

We consider two scheduling problems in which flows arrive in fixed

intervals on a non-blocking switch. In this model, we are given

a switch 𝑆𝑚,𝑚′ = (𝑃, 𝐹) where 𝑃 is a set of𝑚 input ports and𝑚′

output ports where each port 𝑝 has a corresponding capacity 𝑐𝑝 . 𝐹

is a set of flows 𝑒 = 𝑝𝑞 with one input port 𝑝 and one output port 𝑞.

Each flow 𝑒 has a corresponding demand 𝑑𝑒 and release time 𝑟𝑒 . We

assume throughout that for any 𝑒 = 𝑝𝑞, 𝑑𝑒 ≤ 𝜅𝑒 = min(𝑐𝑝 , 𝑐𝑞).

For an given instance 𝑆𝑚,𝑚′ , we define a family of functions

𝜎 : 𝐹 × N → {0, 1}. We say that 𝜎 schedules flow 𝑒 in round 𝑡 if

𝜎𝑒,𝑡 = 1 (for ease of notation, we use 𝜎𝑒,𝑡 ≡ 𝜎 (𝑒, 𝑡)). A function 𝜎 is

a schedule of 𝑆𝑚,𝑚′ if the following conditions are met: every flow

𝑒 , is entirely scheduled across all rounds (i.e.

∑
𝑡 𝜎𝑒,𝑡 ≥ 1), every

flow 𝑒 is scheduled only in rounds after its release time (i.e. for

all 𝑡 , 𝜎𝑒,𝑡 = 1 ⇒ 𝑡 ≥ 𝑟𝑒), and for all ports 𝑝 the total size of all

flows scheduled on port 𝑝 in a given round is no more than 𝑝’s

capacity (i.e. for all 𝑡 ,
∑
𝑒 :𝑝∈𝑒 𝑑𝑒𝜎𝑒,𝑡 ≤ 𝑐𝑝). For a given flow 𝑒 and

schedule 𝜎 , the response time 𝜌𝑒 is the difference in its completion
time𝐶𝑒 = 1+min{𝑡 : 𝜎𝑒,𝑡 = 1} and its release time, i.e. 𝜌𝑒 = 𝐶𝑒 −𝑟𝑒 .

The first problem we study in this model is Flow Scheduling

to Minimize Average Response Time (FS-ART) in which we seek

to minimize

∑
𝑒∈𝐹 𝐶𝑒 − 𝑟𝑒 . The second problem we study in this

model is Flow Scheduling to Minimize Maximum Response Time

(FS-MRT) in which we seek to minimize max𝑒∈𝐹 {𝐶𝑒 − 𝜌𝑒 }.
Throughout the paper we use 𝑝𝑞 to denote a flow (directed edge)

from input port 𝑝 to output port 𝑞. We use [𝑖] to denote the set

of positive integers less than or equal to 𝑖 . An instance with equal

numbers of input and output ports is referred to as 𝑆𝑚 . The main

notation is given in the table below.

𝑆𝑚,𝑚′ : 𝑚-in,𝑚′-out
𝑃 : all ports

𝐹 : all flows

𝑛 : |𝐹 |
𝑝, 𝑞 : port

𝑐𝑝 : 𝑝’s capacity

𝜅𝑝𝑞 : min{𝑐𝑝 , 𝑐𝑞}
𝐹𝑝 : all 𝑒 : 𝑝 ∈ 𝑒

𝑒 , 𝑝𝑞 : flow

𝑑𝑒 : 𝑒’s demand

𝑟𝑒 : 𝑒’s release time

𝜌𝑒 : 𝑒’s response time

𝐶𝑒 : 𝑒’s completion time

𝑡 : round

𝜎 : schedule

𝜎𝑒,𝑡 = 1 ⇔ 𝑒 scheduled at 𝑡

3 AVERAGE RESPONSE TIME

We study Flow Scheduling to Minimize Average Response Time

(FS-ART), for instances with identical numbers of input and output

ports. Specifically, we assume each instance is an𝑚 ×𝑚 switch 𝑆𝑚 .

From a complexity viewpoint, FS-ART generalizes classic sched-

uling problems. The special case of FS-ART with arbitrary demands,

unit capacity, and𝑚 = 1 is equivalent to preemptive single-machine

scheduling with release times, which is strongly NP-hard when the

objective is weighted sum of completion times (1|𝑟𝑖 ; 𝑝𝑚𝑡𝑛 |∑𝑤𝑖𝑐𝑖).

Note that, 1|𝑟𝑖 ; 𝑝𝑚𝑡𝑛 |∑ 𝑐𝑖 is polynomial-time solvable while the

complexity of 1|𝑟𝑖 ;𝜎𝑖 = 𝜎 ;𝑝𝑚𝑡𝑛 |∑𝑤𝑖𝑐𝑖 is still open.

For𝑚 > 1, FS-ART instances incur coupling issues, even for unit

demands. Each flow requires resources at two ports simultaneously.
In [26], the authors consider the closely related biprocessor schedul-
ing problem: there are𝑚 identical machines and 𝑛 unit-sized jobs

which require simultaneous use of two pre-specified (dedicated)

machines. The objective is to minimize total completion time of jobs.

The hardness of this problem is related to the graph that arises from

the pre-specified machine pairs (machines correspond to nodes and

edges to jobs). It is shown in [26] that the problem is strongly NP-

hard if the graph is cubic, and remains NP-hard if the graph is

bipartite and subcubic (i.e. ∀𝑣 : 𝑑𝑒𝑔(𝑣) ≤ 3), which implies that

FS-ART is NP-hard even for unit demands and unit capacities and

identical release times for all flows. While constant-factor approxi-

mations [26, 40] are known for makespan and average completion

time, no results are known for response time metrics.

Section 3.1 presents a linear programming approach based on

iterative rounding,. Section 3.2 uses this approach to establish the

main approximation result of this section.

3.1 A linear-programming approach

In this section, we investigate linear programming approaches

used in the context of machine scheduling and adapt them to our

setting. On a conceptual level, our problem is harder than paral-

lel/related/unrelated machine scheduling in the sense that we have

to deal with simultaneous use of ports, but is easier in the sense

that we do not have to worry about the assignment of flows/jobs

to machines as each flow specifies its source and destination ports.

Our starting point is the following linear program similar to the

one used by Garg and Kumar [22].

Minimize

∑
𝑒

∑
𝑡 ≥𝑟𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2𝜅𝑒

)
𝑏𝑒𝑡 subject to (1)∑

𝑡 ≥𝑟𝑒
𝑏𝑒𝑡 ≥ 𝑑𝑒 ∀𝑒 (2)∑

𝑒∈𝐹𝑝
𝑏𝑒𝑡 ≤ 𝑐𝑝 ∀𝑝, 𝑡 (3)

𝑏𝑒𝑡 ≥ 0 ∀𝑒, 𝑡 (4)

Informally, the variable 𝑏𝑒𝑡 gives the amount of flow 𝑒 that is

scheduled in round 𝑡 . Constraint (2) ensures that each flow is com-

pleted. Constraint (3) ensures that no port is overloaded in any

round. We can rewrite the objective function as

∑
𝑒 Δ𝑒 where

Δ𝑒 =
∑
𝑡 ≥𝑟𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2𝜅𝑒

)
𝑏𝑒𝑡

is the fractional response time of 𝑒 . We show that, for a given instance

𝑆𝑛,𝑚 of FS-ART, the optimal solution to (1) - (4) lower bounds the

total response time of any schedule of 𝑆𝑛,𝑚 .

Lemma 3.1. For an arbitrary 𝑆𝑛,𝑚 , let 𝜎 be some (non-integral)
schedule of 𝑆𝑛,𝑚 and let 𝑏∗ (Δ∗𝑒) be the optimal solution to (1) - (4)
corresponding to 𝑆𝑛,𝑚 . Then

∑
𝑒 Δ
∗
𝑒 ≤

∑
𝑒 𝜌𝑒 .

Proof. Given 𝜎 , we construct a solution to (1) - (4) by setting

𝑏𝑒𝑡 ← (1/𝑑𝑒)𝜎𝑒,𝑡 , for all flows 𝑒 and rounds 𝑡 . To prove the lemma,

we prove the stronger claim that, for any flow 𝑒 , Δ𝑒 ≤ 𝜌𝑒 .

Suppose that the completion time of flow 𝑒 in schedule 𝜎 is 𝐶𝑒 .

Then the response time of 𝑒 is 𝜌𝑒 = 𝐶𝑒 − 𝑟𝑒 . Notice that

Δ𝑒 =

𝐶𝑒∑
𝑡=𝑟𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2𝜅𝑒

)
𝑏𝑒𝑡 ≤

𝐶𝑒∑
𝑡=𝐶𝑒−𝑑𝑒/𝜅𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2𝜅𝑒

)
𝜅𝑒 .

That is, Δ𝑒 is maximized when as much of flow 𝑒 is scheduled in

each round as possible to ensure that 𝑒 completes in round 𝐶𝑒 . But,

𝐶𝑒∑
𝑡=𝐶𝑒−𝑑𝑒/𝜅𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2𝜅𝑒

)
𝜅𝑒 =

𝑑𝑒/𝜅𝑒∑
𝑡=1

(𝐶𝑒 − 𝑟𝑒 − 𝑡
𝑑𝑒

+ 1

2𝜅𝑒

)
𝜅𝑒

= 𝐶𝑒 − 𝑟𝑒 −
1

2

≤ 𝜌𝑒

which completes the proof. □

We now consider another linear programming formulation first

used by Bansal and Kulkarni [8] for the problem of job scheduling

LP(`− 1) over
flows F (`− 1),

intervals I(∗, ∗, `− 1)

LP(`) over
flows F (`),

intervals I(∗, ∗, `)

solve LP (`− 1)
E(`− 1) : non-zero variables

A(`− 1) : integrally-assigned jobs
P (`− 1) : tight capacity constraints

set F (`) = F (`− 1) \A(`− 1)
drop all variables related to A(`− 1)

remove all zero variables

Figure 2: The ℓ-th iteration of the rounding scheme, ℓ ≥ 1,

starts by solving 𝐿𝑃 (ℓ − 1) and ends by defining 𝐿𝑃 (ℓ).

on unrelated machines. The authors use iterative rounding to get

a tentative schedule with low additive overload for any interval

of time. We do the same. This linear program and the subsequent

ones, used in iterative rounding, are all interval-based. In the initial

program, which we denote 𝐿𝑃 (0), the interval size is 4. In subse-

quent relaxations, the interval size can grow. 𝐿𝑃 (0) is the following
program along with constraints (2) and (4).

Minimize

∑
𝑒

∑
𝑡 ≥𝑟𝑒

(𝑡 − 𝑟𝑒
𝑑𝑒
+ 1

2

)
𝑏𝑒𝑡 subject to (5)∑

𝑒∈𝐹𝑝

∑
𝑡 ∈(4(𝑎−1),4𝑎]

𝑏𝑒𝑡 ≤ 4𝑐𝑝 ∀𝑝, 𝑎 (6)

As before, the real variable 𝑏𝑒𝑡 is the amount of flow 𝑒 scheduled

in round [𝑡, 𝑡 + 1). Constraint (6) ensures that the total sum of

flows scheduled on a given port 𝑝 in any four consecutive rounds

is no more than four times the capacity of 𝑝 . Clearly, this new LP

is a relaxation of the previous one; consequently, the value of an

optimal solution to this LP is a lower bound to the response time for

any integral schedule. Following [8], we use an iterative rounding

scheme to get the following result.

Lemma 3.2. The exists a solution 𝑏∗ = {𝑏∗𝑒𝑡 }𝑒,𝑡 satisfying the
following properties

(1) For each flow 𝑒 , there is exactly one round 𝑡 for which 𝑏∗𝑒𝑡 = 𝑑𝑒 .
(2) The cost of 𝑏∗ is at most that of an optimal solution to the LP.
(3) For any port 𝑝 and any time interval [𝑡1, 𝑡2],∑

𝑒∈𝐹𝑝

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏∗𝑒𝑡 ≤ 𝑐𝑝 (𝑡2 − 𝑡1) +𝑂 (𝑐𝑝 log𝑛).

Remark 3.3. We can regard a solution satisfying the properties

in the lemma as a sequence of bipartite graphs {𝐺𝑡 }𝑡 . Then, for
any given (time) interval [𝑎, 𝑏], the degree of any vertex 𝑝 in the

“combined” graph ∪𝑡 ∈[𝑎,𝑏]𝐺𝑡 is at most (𝑏 − 𝑎)𝑐𝑝 +𝑂 (𝑐𝑝 log𝑛). In
Section 3.2, we convert this sequence to a sequence of matchings.

Iterative rounding. To establish Lemma 3.2, we iteratively relax

variable assignments with a sequence of linear programs which

we denote by 𝐿𝑃 (ℓ) for ℓ = 0, 1, Recall that 𝐿𝑃 (0) is the initial
linear program above. We denote the set of flows that appear in

𝐿𝑃 (ℓ) by 𝐹 (ℓ) and an optimal solution to 𝐿𝑃 (ℓ) by 𝑏ℓ = {𝑏ℓ𝑒𝑡 }𝑒,𝑡 .
Let 𝐸 (ℓ) be the set of variables in 𝐿𝑃 (ℓ) with non-zero assignments.

Let 𝐴(ℓ) be the set of flows 𝑒 such that, for all 𝑡 , 𝑏ℓ𝑒𝑡 is integral. Let

𝑃 (ℓ) be the set of tight capacity constraints (7) in 𝐿𝑃 (ℓ) given 𝑏ℓ .

Let 𝑑max = max𝑒 {𝑑𝑒 }. See Figure 2 for a high level overview.

In each iteration ℓ ≥ 1, we construct 𝐿𝑃 (ℓ) as follows.
• Initialize 𝐹 (ℓ) = 𝐹 (ℓ − 1).
• Find an optimal solution {𝑏ℓ−1𝑒𝑡 }𝑒,𝑡 to 𝐿𝑃 (ℓ − 1).

• Eliminate zero variables. In other words the variables𝑏𝑒𝑡 in 𝐿𝑃 (ℓ)
are only defined for variables in 𝐸 (ℓ − 1), the support of 𝑏ℓ−1.
• Fix integral assignments. For all 𝑒 ∈ 𝐴(ℓ − 1), assign 𝑒 to those

rounds 𝑡 such that 𝑏ℓ−1𝑒𝑡 > 0 (i.e. set 𝑏∗𝑒𝑡 ← 𝑑𝑒) and drop all

variables 𝑏𝑒𝑡 in 𝐿𝑃 (ℓ). We also update 𝐹 (ℓ) = 𝐹 (ℓ)\{𝑒}.
• Define intervals for the current iteration as follows. Fix a port

𝑝 and consider the flows in 𝐹 (ℓ) ∪ 𝐹𝑝 . Sort all the variables in

{𝑏ℓ−1𝑒𝑡 ∈ 𝐸 (ℓ−𝑙) : 𝑒 ∈ 𝐹 (ℓ)∪𝐹𝑝 } in increasing order of 𝑡 , breaking
ties lexicographically. Next, iteratively partition 𝑏ℓ−1𝑒𝑡 variables

into groups 𝐼 (𝑝, 1, ℓ), 𝐼 (𝑝, 2, ℓ), . . . as follows. To construct group

𝐼 (𝑝, 𝑎, ℓ), start from the earliest non-grouped variable and greed-

ily group consecutive 𝑏ℓ−1𝑒𝑡 variables until their sum first exceeds

4𝑐𝑝 . The size of the interval 𝐼 = 𝐼 (𝑝, 𝑎, ℓ) is

Size(𝐼) =
∑
𝑏𝑒𝑡 ∈𝐼

𝑏ℓ−1𝑒𝑡 .

Note that Size(𝐼 (𝑝, 𝑎, ℓ)) ∈ [4𝑐𝑝 , 5𝑐𝑝). The time duration of 𝐼 can

be much larger than its size. On the other hand, for ℓ = 0, all

intervals are of size 4 as evident in the initial LP.

For ℓ ≥ 1, 𝐿𝑃 (ℓ) is given by objective (5) subject to constraints

(2), (4), and the following constraint.∑
𝑒∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑏𝑒𝑡 ∈𝐼 (𝑝,𝑎,ℓ)

𝑏𝑒𝑡 ≤ Size(𝐼 (𝑝, 𝑎, ℓ)) · 𝑐𝑝 ∀𝑝, 𝑎 (7)

Since 𝐿𝑃 (ℓ) is a relaxation of 𝐿𝑃 (ℓ−1), the second requirement of

Lemma 3.2 is satisfied. Also, by construction of 𝐿𝑃 (ℓ), the sequence
of iterations results in an integral assignment of all flows and so

the first requirement of Lemma 3.2 is satisfied. It remains to bound

the number of iterations and calculate the backlog.

Recall that 𝐹 (ℓ) is the set of flows 𝑒 such that variables𝑏𝑒𝑡 appear
in 𝐿𝑃 (ℓ). Note that, for ℓ > 0, these are the non-zero variables which

correspond to non-integrally-assigned jobs after solving 𝐿𝑃 (ℓ − 1).

Lemma 3.4. For all ℓ ≥ 1, |𝐹 (ℓ) | ≤ |𝐹 (ℓ − 1) |/2.

Proof. Consider a linearly independent set of tight constraints

in 𝐿𝑃 (ℓ − 1). Since a tight non-negativity constraint (4) results

in a zero variable, the number of non-zero variables, 𝐸 (ℓ − 1) ⊆
{𝑏ℓ−1

𝑓 ,𝑡
}𝑓 ,𝑡 , is at most the number of tight flow constraints (2) plus

the number of tight capacity constraints (7). That is

|𝐸 (ℓ − 1) | ≤ |𝐹 (ℓ − 1) | + |𝑃 (ℓ − 1) |. (8)

since |𝐹 (ℓ − 1) | is the number of flow constraints.

Now, each flow which is not integrally assigned by 𝑏ℓ−1 (i.e. not
in 𝐴(ℓ − 1)) contributes at least two to |𝐸 (ℓ − 1) |. Thus,

|𝐸 (ℓ − 1) | ≥ |𝐴(ℓ − 1) | + 2(|𝐹 (ℓ − 1) | − |𝐴(ℓ − 1) |)
= |𝐹 (ℓ − 1) | + |𝐹 (ℓ) |. (9)

The equality holds since 𝐹 (ℓ) = 𝐹 (ℓ − 1)\𝐴(ℓ) by construction.

Inequalities (8) and (9) together imply |𝐹 (ℓ) | ≤ |𝑃 (ℓ − 1) |.
Next, we show that |𝑃 (ℓ−1) | ≤ |𝐹 (ℓ−1) |/2 which completes the

proof. This is accomplished by a simple combinatorial argument.

Let’s give 2 tokens to every flow in 𝐹 (ℓ − 1). Now, each flow 𝑒 ∈
𝐹 (ℓ−1), gives a portion equal to𝑏ℓ−1𝑒𝑡 /𝑑𝑒 of its tokens to the interval
that contains 𝑏𝑒𝑡 . This token distribution is valid since∑

𝑝

∑
𝑡

𝑏ℓ−1𝑒𝑡 = 2

∑
𝑡

𝑏ℓ−1𝑒𝑡 = 2𝑑𝑒 ,

where we have used the fact that each flow appears in exactly two

port constraints. At the same time, each tight capacity constraint

for port 𝑝 receives at least 4 tokens since interval sizes are ≥ 4𝑐𝑝 by

definition and 𝑑𝑒 ≤ 𝑐𝑝 by assumption. Now, as each job distributes

exactly 2 tokens and each tight port constraint receives at least 4,

we conclude that |𝑃 (ℓ − 1) | ≤ |𝐹 (ℓ − 1) |/2. □

Lemma 3.4 shows that the number of iterations needed before

arriving at an integral solution is no more than 𝑂 (log𝑛). What

remains is to bound amount of extra load that any interval has taken

on. Recall that 𝐴(ℓ) denotes the set of flows which are integrally

assigned by the optimal solution 𝑏ℓ to 𝐿𝑃 (ℓ). Let 𝐴(ℓ, 𝑝, 𝑡1, 𝑡2) ⊆
𝐴(ℓ) be the set of flowswhich are integrally assigned to port 𝑝 in the

interval [𝑡1, 𝑡2] by the optimal solution 𝑏ℓ of 𝐿𝑃 (ℓ). Furthermore,

we define

Vol(𝑝, ℓ, 𝑡1, 𝑡2) =
∑

𝑒∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ𝑒𝑡 +
∑
ℓ′≤ℓ
|𝐴(ℓ ′, 𝑝, 𝑡1, 𝑡2) |,

which is the total size of flows assigned to port 𝑝 in the interval

[𝑡1, 𝑡2]by 𝑏0, . . . , 𝑏ℓ . The following lemma states that the amount

of extra load taken on any port in any interval is no more than a

constant additive over the load in the previous iteration.

Lemma 3.5. For any [𝑡1, 𝑡2], any port 𝑝 , and any round ℓ ≥ 1,

Vol(𝑝, ℓ, 𝑡1, 𝑡2) ≤ Vol(𝑝, ℓ − 1, 𝑡1, 𝑡2) + 10𝑐𝑝 . (10)

Proof. Fix an interval [𝑡1, 𝑡2] and a port 𝑝 . In each iteration

ℓ , the “extra” load in this interval can be introduced only if two

intervals overlap with the boundaries of [𝑡1, 𝑡2].
Consider a maximal set of contiguous intervals 𝐼 (ℓ, 𝑎, 𝑝), 𝐼 (ℓ, 𝑎 +

1, 𝑝), ..., 𝐼 (ℓ, 𝑎 +𝑤, 𝑝) that contain [𝑡1, 𝑡2]. Note that 𝑎 is the smallest

index such that 𝐼 (ℓ, 𝑎, 𝑝) contains some 𝑏ℓ𝑒𝑡 with 𝑡 ∈ [𝑡1, 𝑡2]. Simi-

larly,𝑤 is the largest number such that 𝐼 (ℓ, 𝑎 +𝑤, 𝑝) contains some

𝑏ℓ𝑒𝑡 with 𝑡 ∈ [𝑡1, 𝑡2]. Since each interval is of size smaller than 5𝑐𝑝 ,∑
𝑏𝑒𝑡 ∈𝐼 (ℓ,𝑎,𝑝)

𝑏ℓ𝑒𝑡 +
∑

𝑏𝑒𝑡 ∈𝐼 (ℓ,𝑎+𝑤,𝑝)
𝑏ℓ𝑒𝑡 < 10𝑐𝑝 . (11)

Moreover,

𝑎+𝑤−1∑
𝑥=𝑎+1

∑
𝑏𝑒𝑡 ∈𝐼 (ℓ,𝑥,𝑝)

𝑏ℓ𝑒𝑡 ≤
𝑎+𝑤−1∑
𝑥=𝑎+1

Size(𝐼 (ℓ, 𝑥, 𝑝))

=

𝑎+𝑤−1∑
𝑥=𝑎+1

∑
𝑏𝑒𝑡 ∈𝐼 (ℓ,𝑥,𝑝)

𝑏ℓ−1𝑒𝑡 ≤
∑

𝑒∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ−1𝑒𝑡 ,

where the first inequality follows from the port capacity constraints

(3), and the second equality follows from the definition of Size(∗).
Consequently, we have that∑

𝑒∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ𝑒𝑡 ≤
𝑎+𝑤∑
𝑥=𝑎

∑
𝑏𝑒𝑡 ∈𝐼 (ℓ,𝑥,𝑝)

𝑏ℓ𝑒𝑡

< 10𝑐𝑝 +
∑

𝑒∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ−1
𝑓 𝑡

≤ 10𝑐𝑝 − |𝐴(ℓ − 1, 𝑡1, 𝑡2, 𝑝) | +
∑

𝑒∈𝐹𝑝∩𝐹 (ℓ−1)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ−1𝑒𝑡 ,

where the last step uses the fact that 𝐹 (ℓ) = 𝐹 (ℓ − 1)\𝐴(ℓ).

The LHS of (10) equals∑
𝑓 ∈𝐹𝑝∩𝐹 (ℓ)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ
𝑓 𝑡
+|𝐴(ℓ − 1, 𝑡1, 𝑡2, 𝑝) | ≤∑
𝑓 ∈𝐹𝑝∩𝐹 (ℓ−1)

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏ℓ−1
𝑓 𝑡
+ 10𝑐𝑝 ,

which equals the RHS of (10). □

We now establish a bound on the total “extra” load in any in-

terval for the final assignment. Recall that 𝑏∗ is the final, integral
assignment derived from the iterative procedure above.

Lemma 3.6. For any interval [𝑡1, 𝑡2] and port 𝑝 ,∑
𝑒∈𝐹𝑝

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏∗𝑒𝑡 ≤ 𝑐𝑝 (𝑡2 − 𝑡1) + 10𝑐𝑝 log𝑛.

Proof. We fix the interval [𝑡1, 𝑡2] and port 𝑝 . By construction

of 𝑏∗, we need only to show that, for all ℓ

Vol(𝑝, ℓ, 𝑡1, 𝑡2) ≤ 𝑐𝑝 (𝑡1 − 𝑡2) + 10(ℓ + 1)𝑐𝑝 . (12)

We prove inequality 12 by induction on ℓ . For ℓ = 0, we have

Vol(𝑝, 0, 𝑡1, 𝑡2) =
∑
𝑒

∑
𝑡 ∈[𝑡1,𝑡2]

𝑏0𝑒𝑡 ≤ 𝑐𝑝 (𝑡1 − 𝑡2) + 4𝑐𝑝

by Constraint (6). So

Vol(𝑝, ℓ + 1, 𝑡1, 𝑡2) ≤ Vol(𝑝, ℓ, 𝑡1, 𝑡2) + 10𝑐𝑝
≤ 𝑐𝑝 (𝑡1 − 𝑡2) + 10(ℓ + 2)𝑐𝑝

by Lemma 3.5 and induction. □

We now have all the necessary ingredients to prove Lemma 3.2.

Proof of Lemma 3.2. In the final solution {𝑏∗𝑒𝑡 }𝑒,𝑡 , all flows are
integrally assigned. Furthermore, the cost of the final solution is at

most that of an optimal solution to the initial linear program (since

each iteration, we are relaxing the previous linear program). Finally,

by Lemma 3.6, for any time interval [𝑡1, 𝑡2] and port 𝑝 , the total

volume of assigned flows is at most 𝑐𝑝 (𝑡2 − 𝑡1) +𝑂 (𝑐𝑝 log𝑛). □

3.2 Getting a valid schedule

What we obtain from Lemma 3.2 is, unfortunately, not a valid

schedule but what could be called a pseudo-schedule; as noted in

Remark 3.3, the total amount of flow passing through a port 𝑝

during a time interval 𝐼 could as much as 𝑐𝑝𝑂 (log𝑛) more than

𝑐𝑝 |𝐼 |, as allowed by the capacity of the port. In this section we show

that we can convert the pseudo-schedule given by Lemma 3.2 into

a valid schedule using resource augmentation, i.e., assuming the

algorithm is allowed more port capacity than the optimal schedule.

It is immediate from Lemma 3.2 that if we augment the capacity of

every port by a factor of 1+𝑂 (log𝑛), thenwe obtain a valid resource-
augmented schedule with optimal average response time. In the

following, we show that we can achieve logarithmic-approximate

average response timewith a small constant blowup in port capacity,

for the case of unit demand flows (and arbitrary port capacities).

Theorem 1. For any positive integer 𝑐 , there exists a polynomial-
time algorithm that, given a set of𝑛 unit flows over a switch, computes
a (1 + 𝑂 (log𝑛)

𝑐)-approximation for average response time unit-size
flows, while incurring a blowup in capacity by a factor of (1 + 𝑐).

Proof. Given a set 𝐹 of flows over a switch, by Lemma 3.2, there

exists a pseudo-schedule which assigns flows to time slots such that

the total response time is at most the cost of an optimal solution to

the initial linear program and for any given time interval [𝑡1, 𝑡2],
and for any port 𝑝 , the total volume of flows assigned to 𝑝 during

the interval is at most 𝑐𝑝 (𝑡2 − 𝑡1) +𝑂 (𝑐𝑝 log𝑛).
Due to space constraints, we give the proof of the desired claim

for unit capacities. We extend the claim to arbitrary capacities in the

full paper [32].The pseudo-schedule can be regarded as a sequence

{𝐺𝑡 }𝑡 of bipartite 𝑚 ×𝑚 graphs such that in any given interval

[𝑡1, 𝑡2], the degree of each vertex in the combined graph ∪𝑡2𝑡1𝐺𝑡 is

at most (𝑡2 − 𝑡1) + 𝑐 ′ log𝑛 for some 𝑐 ′ > 0. Next, we convert this se-

quence {𝐺𝑡 }𝑡 into a sequence of bipartite matchings {𝑀𝑡 }𝑡 . To this
end, we divide the timeline into consecutive intervals 𝐼1, 𝐼2, ..., each

of size ℎ = ⌈𝑐 log𝑛𝑐 ⌉. Now, starting from the beginning, we schedule

flows in each interval before going to the next one. Consider an

interval 𝐼 𝑗 , the degree of each vertex in the combined graph𝐺𝐼 𝑗 is

at most 𝑑 = ⌈𝑐 ′(1 + 1

𝑐) log𝑛⌉. Applying the Birkhoff-von Neumann

Theorem [13], 𝐺𝐼 𝑗 can be decomposed into at most 𝑑 matchings in

polynomial time. By increasing the capacity (bandwidth) of each

port to 1+𝑐 , we can execute 𝑑 matchings in the next available spots

(with respect to release times) in at most ℎ time steps. Since each

flow is delayed by at most ℎ +𝑑 =
𝑂 (log𝑛)

𝑐 steps, the total response

time of this schedule is no more than

𝑂𝑃𝑇 + 𝑛 × 𝑂 (log𝑛)
𝑐

≤ 𝑂𝑃𝑇 × (1 + 𝑂 (log𝑛)
𝑐

), (13)

where the inequality follows from the fact that the number of flows

is lower bound on the total response time. □

4 MAXIMUM RESPONSE TIME

In this section, we consider the problem of Flow Scheduling to

Minimize Maximum Response Time (FS-MRT). More formally, for a

given instance 𝑆𝑚,𝑚′ of FS-MRT, our goal is to find the minimum 𝜌

such that there exists a schedule of 𝑆𝑚,𝑚′ with maximum response

time 𝜌 . Section 4.1 establishes that solving FS-MRT is NP-hard.

Section 4.2 provides a tight approximation to FS-MRT via a linear

programming relaxation and rounding of a more general problem.

4.1 Maximum Response Time Hardness

We establish the hardness of approximation for FS-MRT motivating

our approximations in Section 4.2.

Theorem 2. There is no polynomial time algorithm that solves
Flow Scheduling to Minimize Maximum Response Time to within a
factor of 4/3 of optimal, assuming 𝑃 ≠ 𝑁𝑃 .

Our proof of Theorem 2 is via a reduction from the Restricted

Time-table (RTT) problem, which is shown to be NP-hard in [20].

Due to space constraints, we defer the proof to the full paper [32].

4.2 Maximum Response Time Approximation

In this section, we give an approximation algorithm for Flow Sched-

uling to Minimize Maximum Response Time (FS-MRT). In fact,

the algorithm solves a more general problem which we call Time-
Constrained Flow Scheduling, for which there is also an easy reduc-

tion from FS-MRT. Time-Constrained Flow Scheduling is identical

to FS-MRT except that flows do not have corresponding release

times. Instead, each flow e, has a corresponding set of (possibly non-

contiguous) active rounds 𝑅(𝑒) such that 𝑒 can be scheduled in any

round 𝑡 ∈ 𝑅(𝑒). Observe that an instance of FS-MRT that is solvable

with a maximum response time of 𝜌 can be reduced to an instance

of Time-Constrained Scheduling where 𝑅(𝑒) = {𝑡 : 𝑟𝑒 ≤ 𝑡 < 𝑟𝑒 +𝜌}
for all flows 𝑒 . Therefore, the approximability of Time-Constrained

Scheduling transfers directly to FS-MRT.

Linear Programming Relaxation. We provide a linear program-

ming relaxation of Time-Constrained Flow Scheduling. Let𝑇 = {𝑡 ∈
𝑅(𝑒)}𝑒 be the set of rounds in which some edge can be scheduled.∑

𝑒∈𝐹𝑝
𝑑𝑒𝑥𝑒,𝑡 ≤ 𝑐𝑝 ∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (14)∑

𝑡 ∈𝑅 (𝑒)
𝑥𝑒,𝑡 = 1 ∀𝑒 ∈ 𝐹 (15)

𝑥𝑒,𝑡 ≥ 0 ∀𝑒 ∈ 𝐹, 𝑡 ∈ 𝑇 (16)

The variable 𝑥𝑒,𝑡 denotes the fraction of flow 𝑒 scheduled in round

𝑡 . Constraint (14) ensures that the total size of all edges adjacent

to a port that are scheduled in a round is no more than the port’s

capacity. Constraint (15) ensures that all edges are scheduled.

Theorem 3. Given an instance 𝑆𝑚,𝑚′ of Time-Constrained Flow
Scheduling, we can either determine that there is no schedule of 𝑆𝑚,𝑚′

or produce a schedule in which the capacity of each port has been
increased by 2𝑑max − 1.

To prove Theorem 3, we invoke the following lemma which is

proved in [36].

Lemma 4.1 (Theorem 3 in [36]). Let A be a real-valued 𝑟 × 𝑠

matrix, let x be a real-valued 𝑠-vector, let b be a real-valued 𝑟 -vector
such that Ax = b, and let Δ be a positive real number such that in
every column of A we have (a) the sum of the positive elements is at
most Δ and (b) the sum of the negative elements is at least −Δ. Then
we can compute an integral 𝑠-vector x̂ such that (c) for all 𝑖 , 1 ≤ 𝑖 ≤ 𝑠 ,
either x̂𝑖 = ⌊x𝑖 ⌋ or x̂𝑖 = ⌈x𝑖 ⌉, and (d) Ax̂ = b̂, where b̂𝑖 − b𝑖 < Δ for
1 ≤ 𝑖 ≤ 𝑟 . In the case that all entries in A are integers, then a stronger
bound applies: b̂𝑖 − ⌈b𝑖 ⌉ ≤ Δ − 1.

Proof of Theorem 3. We first show that LP is a valid relaxation

of Time-Constrained Flow Scheduling. We convert a schedule 𝜎 of

an arbitrary instance of Time-Constrained Flow Scheduling into

a feasible LP solution. For each flow 𝑒 , if 𝜎 schedules 𝑒 in round 𝑡 ,

then we set 𝑥𝑒,𝑡 to 1 and set it to 0 otherwise. By the port capacity

restrictions on 𝜎 , we have that Constraint (14) is satisfied. Also,

since all edges must be scheduled in some round of 𝜎 , we have that

Constraint (15) is satisfied. Constraint (16) is trivially satisfied.

We now rewrite (14) - (16) in matrix form as A𝐿𝑃x = b𝐿𝑃 with

the use of slack variables. Then, for a given instance of Time-

Constrained Flow Scheduling, we solve the program. This either

outputs that there is no solution or produces a solution vector x∗.
In the former case, we use the fact that LP is a valid relaxation

of Time-Constrained Flow Scheduling to determine that there is

no feasible solution to the given instance. If the LP solver pro-

vides a solution vector x∗, we rewrite A𝐿𝑃 and b𝐿𝑃 as follows. Let

𝑑max = max𝑒∈𝐹 {𝑑𝑒 }. LetA and b be identical toA𝐿𝑃 and b𝐿𝑃 except

that all rows corresponding to Constraint (16) have been removed,

and all values in rows corresponding to constraint (15) have been

multiplied by 𝑑max and made negative. Let Δ = 𝑑max.

We show that A, x, b, and Δ satisfy the conditions of Lemma 4.1.

By construction we have Ax = b. Let the columns of A be indexed

by 𝑡 ∈ [𝑇]. Let 𝑝𝑞 = 𝑒 ∈ 𝐹 be a flow in the given problem instance.

Constraint (14) entails that the coefficient 𝑑𝑝𝑞 would occur twice in

a single column 𝑡 : once for 𝑝 and once for 𝑞. Similarly, Constraint

(15) guarantees that −2𝑑max occurs once in each column 𝑡 for 𝑒 . So,

conditions (a) and (b) are satisfied for A, b, x, and Δ.
Lemma 4.1, therefore, entails the existence of matrices b̂, and x̂

that have properties (c) and (d). Property (c) entails that all values

in x̂ are integral. Since all elements of A are integral, we have that

all elements of b̂ are integral as well. Property (d) entails that the

difference between the values in b̂ and b is strictly less than 2𝑑max

and so is at most 2𝑑max − 1.
Recall that all elements of A corresponding to Constraint (15)

have been multiplied by 2𝑑max. Therefore, by dividing these values

by 2𝑑max, we get a matrix b′ such that the difference in values

b′ and b corresponding to Constraint (15) are strictly less than

1. Since all values are integral, this entail that the difference is 0.

Therefore, the schedule given by x̂ satisfies Constraint (15), and all

values corresponding to Constraint (14) are off by at most 2𝑑max−1.
Therefore, if we increase the capacity of each port by 2𝑑max − 1, we
can feasibly schedule all edges in their active rounds. □

5 ONLINE FLOW SCHEDULING

We next consider a natural online version of flow scheduling, in

which the sequence of flow requests is not available in advance;

the scheduler learns about a request only at the request’s release

time. We use the standard framework of competitive analysis, and

present some preliminary theoretical results in Section 5.1, and

experimental results in Section 5.2.

5.1 Preliminary Theoretical Results

In this section, we establish several preliminary results for flow

scheduling in the online setting. We first describe two lower bounds

on the quality of any online approximation for both the average

response time and maximum response time objectives. We then

provide an online approximation for maximum response time that

uses our offline algorithm, described above, as a subroutine. Due to

space constraints, we defer all proofs to the full paper [32].

The following lemma shows that there is no online algorithm

with a bounded competitive ratio for average response time.

Lemma 5.1 ([41]). For any𝑀 , there is an instance 𝐼 of flow sched-
uling such that the average response time of the schedule produced
by any online algorithm on 𝐼 is at least𝑀 times the average response
time of the optimal schedule of 𝐼 .

The following lemma establishes a lower bound for maximum

response time, using an argument similar to [33].

Lemma 5.2. There is an instance 𝐼 of flow scheduling such that
the maximum response time of the schedule produced by any online
algorithm on 𝐼 is at least 3/2 times the optimal for 𝐼 .

Lemma 5.3. There is an online algorithm, which computes a sched-
ule for any given instance 𝐼 , with maximum response time at most

Arrivals

Schedule

ρ = 1 ρ = 2 ρ = 3

Figure 3: Gray boxes represent batches of flows. At each in-

terval of the guessedmax response time 𝜌 , those flows in the

previous batch are scheduled starting in the current round.

Note that at most two boxes ever overlap.

double that of the optimal schedule of 𝐼 , and where the capacity of each
port 𝑝 has been increased to 2(𝑐𝑝+2𝑑max−1) where𝑑max = max𝑒 {𝑑𝑒 }.

Our online algorithm A𝑀𝑅𝑇 is depicted in Figure 3. We infor-

mally define it here. In each round 𝑡 , check if 𝑡 is an integral value

of the guessed maximum response time 𝜌 . If so, use the offline

algorithm to check if all flows which arrived in the previous 𝜌

rounds can be scheduled with maximum response time 𝜌 . If so,

schedule them according to the offline algorithm starting in round

𝑡 . Otherwise, increase the guessed 𝜌 by one.

5.2 Experimental Results

In this section, we describe experiments conducted to evaluate

the practical performance of several natural heuristics in on-line

scheduling flows over a switch. In these experiments, we measure

the average (
1

𝑛

∑
𝜌𝑖) andmaximum (max 𝜌𝑖) response times of flows.

As noted before, the latter objective is predictive of the quality of

service (QoS) as perceived by the user: by minimizing the maximum

response time, we ensure that no job takes too long to complete.

One must keep in mind, however, that optimizing for maximum

response time may come at the cost of increased average response

time which becomes more relevant when users submit batch jobs.

In the case of average response time, we compare the perfor-

mance of these heuristics to the optimal value of the linear program

(1)-(4) presented in §4.2. On the other hand, in the case of maximum

response time, we compare the performance of these heuristics to

the optimal value of the linear program (14)-(16) presented in §3.1.

Since these LPs give lower bounds on the optimal values of any

schedule, they provides us with bases for evaluating the heuristics.

5.2.1 Methodology. Packet-level simulators, such as ns2, are not

suitable for flow simulation due to the large number of packets

generated by each flow which makes the model infeasible. Hence,

we have developed an in-house simulator for online flow scheduling

of flows over a non-blocking switch.

Specifically, we use a 150 × 150 switch with unit port capacities.

This switch models a 3000-machine cluster with 150 racks and a

total bisection bandwidth of 300Gbps. Thus, each port has a capacity

of 1Gbps or 128MBps. Moreover, by setting each time unit to be

1/128 second, each port has a capacity of 1MB per time unit.

Our simulator maintains a (150, 150) bipartite graph𝐺𝑡 through-

out the simulation, where 𝑡 denotes the time step. The edges in

𝐺𝑡 consist of those edges (flows) released at time 𝑡 plus the ones

remaining from previous steps. In other words 𝐸 (𝐺𝑡) is the set

of released edges waiting to be scheduled. Any heuristic can be

plugged in to extract a bipartite matching𝑀𝑡 ⊆ 𝐸 (𝐺𝑡). Edges in𝑀𝑡

are assigned to run in time window 𝑡 to 𝑡 + 1. Note that the edges
waiting at a particular port form an open queue in the sense that

any edge can be selected to run (as opposed to the edge at the front

being the only available one).

In each instance of the experiment, flows are generated randomly

controlled by two parameters 𝑀 the average number of flows re-

leased per time unit, and 𝑇 the number of steps during which the

flows are generated. More precisely, for each time unit 𝑡 = 0, ..,𝑇 −1,
a Poisson distribution of mean𝑀 is used to generate flows released

at time 𝑡 . For each such flow, an input port and an output port is

selected uniformly at random. Note that 𝑀 = 150 means that at

each port, on average, there is one new flow per time step. Similarly,

the average number of new flows per port is 2 and 4 for𝑀 = 300

and𝑀 = 600 respectively.

In our experiments, we compare the following three heuristics.

• MaxCard: at every step a matching of maximum cardinality

is extracted from 𝐺𝑡 . This heuristic is guaranteed to keep the

largest number of ports busy during each step. We expect a good

performance for
1

𝑛

∑
𝜌𝑖 since port utilization is kept at its max,

but not for max 𝜌𝑖 since it does not distinguish between edges.

• MinRTime: at every step 𝑡 , each edge 𝑒 gets assigned a weight

equal to 𝑡 − 𝑟𝑒 , where 𝑟𝑒 is the edge’s (flow’s) release time. Next,

a matching of maximum weight is extracted from 𝐺𝑡 , where the

weight of an edge is the length of time since its release. We expect

a good performance for max 𝜌𝑖 since the longer an edge has been

waiting the higher is its priority. On the other hand,
1

𝑛

∑
𝜌𝑖 may

be high due to sub-optimal port utilization.

• MaxWeight: at every step, each edge gets assigned a weight

equal to the sum of queue sizes at its two endpoints. In other

words, the weight of an edge is the number of edges incident to

its endpoints. Next, a matching of maximum weight is extracted

from 𝐺𝑡 . Note that the queue size at a port 𝑝 is the number of

released but unscheduled edges having 𝑝 as an endpoint. We

expect this heuristic to perform well for both objectives.

Simulations are performed for various values of𝑀 and𝑇 . Specif-

ically, we fix 𝑀 ∈ {50, 100, 150, 300, 600} and run the simulator

for 𝑇 ∈ {10, 12, 14, 16, 18, 20, 40, 60, 80, 100}. Each result is the av-

erage of 10 tries. The linear programs are solved only for 𝑇 ∈
{10, 12, 14, 16, 18, 20} to avoid prohibitively long execution times:

even for 𝑀 = 600, and 𝑇 = 20, each run takes more than 3 hours

on an Intel Core-i7 6700HQ machine with 16GB of RAM.

5.2.2 Implementation. We implemented the simulator and its tools

in C++. We use Lemon 1.3.1 library for various graph algorithms

such as traversals and matchings. The default_random_engine
was used for the distributions. The linear program is modelled and

solved using Gurobi 8.1. In the case of maximum response time, we

used a binary-search scheme with the linear program in (14)-(16)

for finding the minimum feasible response time. The starting point

of the binary search is set to the best of the three heuristics.

5.2.3 Performance. Figure 4, on page 9, shows our findings for

average response time. The results are compared against the op-

timal value of the linear program (1)-(4) which provides a lower

bound on the optimal average response time. As predicted, overall,

MaxWeight and MinRTime are the best and the worst heuristic

respectively. However, as the average number of incoming flows

𝑀 (and hence the congestion) grows, they start to perform very

similarly. Curiously, in every scenario, the performance of the the

heuristics is within a factor 2 of the linear program. Moreover, the

gap seems to close for larger values of𝑀 .

Figure 5, on page 10, shows the results for maximum response

time. Again, the findings confirm our initial intuition. In particular,

MinRTime has consistently the best performance (it almost matches

the LP lower bound in some cases). On the other hand, MaxWeight

is the worst of the three. Again, all heuristics are always within a

factor 2.5 of the LP. Unlike the average case, the gap between the

heuristics seems to grow with𝑀 .

Our conclusion is thatMaxCard andMinRTime are good choices

for minimizing average response time and minimizing maximum

response time respectively. MaxWeight takes the middle ground

and is thus the best choice (among the three) when it is desirable

to keep both average and maximum response times low.

6 OPEN PROBLEMS

We have presented approximation algorithms for minimizing re-

sponse time metrics in flow scheduling over a switch network. Our

work offers a number of directions for future research.

Improved approximation ratios. For average response time, our

algorithm achieves an 𝑂 (log𝑛/𝑐)-approximation while incurring

a 1 + 𝑐 augmentation in capacity, for any given positive integer

𝑐 . While resource augmentation is necessary for any competitive

algorithm in the online setting, does an offline approximation (with

say a polylogarithmic approximation ratio) need resource augmen-

tation? For maximum response time, our algorithm achieves the

optimal objective while incurring an increase in capacity by the

size of the maximum demand. An important open problem is to

determine whether we need resource augmentation to obtain any

reasonable approximation algorithm for maximum response time.

Competitive online algorithms. Our work on online algorithms

is preliminary and provides some guidance on heuristics one can use

for response-time related metrics. While we have given a constant-

competitive algorithm for maximum response time with constant-

factor resource augmentation, the situation with no resource aug-

mentation is unclear. We plan to conduct a more thorough investi-

gation of online algorithms – both theoretical and experimental.

Generalizations and beyond worst-case analysis. Our work

has focused on scheduling flows on switch networks. We would

like to extend our research to a broader class of datacenter networks

(e.g., trees, fat-trees, more general networks) andmore general types

of flows (e.g., co-flows). We would also like to study the problems

posed in a model that includes some information about the dis-

tribution of input instances that may be available from practical

applications. This would be especially useful for the average re-

sponse time objective, for which no non-trivial competitive ratio is

achievable without resource augmentation.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CCF-1909363. We

would like to thank Janardhan Kulkarni for the many discussions on

online flow scheduling, and for generously allowing us to include

his proof of Lemma 5.1.

A FIGURES SHOWING EXPERIMENTAL RESULTS

Figure 4: Average response time results.

Figure 5: Maximum response time results.

REFERENCES

[1] S. Ahmadi, S. Khuller, M. Purohit, and S. Yang. On scheduling coflows. In IPCO,
2017.

[2] M. Alizadeh, S. Yang,M. Sharif, S. Katti, N.McKeown, B. Prabhakar, and S. Shenker.

pfabric: Minimal near-optimal datacenter transport. SIGCOMMComput. Commun.
Rev., 43(4):435–446, August 2013.

[3] C. Ambühl and M. Mastrolilli. On-line scheduling to minimize max flow time: an

optimal preemptive algorithm. Operations Research Letters, 33(6):597 – 602, 2005.

[4] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[5] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards

predictable datacenter networks. SIGCOMM Comput. Commun. Rev., 41(4):242–
253, August 2011.

[6] N. Bansal. Algorithms for Flow Time Scheduling. PhD thesis, School of Computer

Science, Carnegie Mellon University, December 2003.

[7] N. Bansal and H. Chan. Weighted flow time does not admit o(1)-competitive

algorithms. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1238–1244, 2009.

[8] N. Bansal and J. Kulkarni. Minimizing flow-time on unrelated machines. In

Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’15, pages 851–860, New York, NY, USA, 2015. ACM.

[9] J. Batra, N. Garg, and A. Kumar. Constant factor approximation algorithm for

weighted flow time on a single machine in pseudo-polynomial time. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
778–789, Oct 2018.

[10] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for

scheduling continuous job streams. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 270–279, January 1998.

[11] K. Benzekki, A. El Fergougui, and Abdelbaki Elbelrhiti E. Software-defined

networking (sdn): a survey. Security and Communication Networks, 9(18):5803–
5833, 2016.

[12] E. W. Biersack, B. Schroeder, and G. Urvoy-Keller. Scheduling in practice. SIG-
METRICS Performance Evaluation Review, 34(4):21–28, 2007.

[13] D. Birkhoff. Tres observaciones sobre el algebra lineal. Universidad Nacional de
Tucuman Revista , Serie A, 5:147–151, 1946.

[14] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow

time. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 84–93, 2001.

[15] M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You. Near optimal coflow

scheduling in networks. In Christian Scheideler and Petra Berenbrink, editors,

The 31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA
2019, Phoenix, AZ, USA, June 22-24, 2019, pages 123–134. ACM, 2019.

[16] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys.

SIGCOMM, Comput. Commun. Rev., 44(4):443–454, August 2014.
[17] Michael Dinitz and Ben Moseley. Scheduling for weighted flow and completion

times in reconfigurable networks. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020. Forthcoming.

[18] J. Du, J. Y.-T. Leung, and G. H. Young. Minimizing mean flow time with release

time constraint. Theoretical Computer Science, 75:347–355, 1990.
[19] N. Dukkipati and N. McKeown. Why flow-completion time is the right metric

for congestion control. SIGCOMM Comput. Commun. Rev., 36(1):59–62, January
2006.

[20] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-

modity flow problems. SIAM J. Comput., 5:691–703, 12 1976.
[21] U. Feige, Janardhan Kulkarni, and Shi Li. A polynomial time constant approxi-

mation for minimizing total weighted flow-time. In Timothy M. Chan, editor,

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1585–1595. SIAM,

2019.

[22] N. Garg and A. Kumar. Better algorithms for minimizing average flow-time on

related machines. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo

Wegener, editors, Automata, Languages and Programming, pages 181–190, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[23] N. Garg and A. Kumar. Minimizing average flow-time: Upper and lower bounds.

In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’07, pages 603–613, Washington, DC, USA, 2007. IEEE Computer

Society.

[24] N. Garg, A. Kumar, and V. N. Muralidhara. Minimizing total flow-time: The

unrelated case. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga,

editors, Algorithms and Computation, pages 424–435, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[25] P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling algorithms for

high-aggregate bandwidth switches. IEEE Journal on Selected Areas in Communi-
cations, 21(4):546–559, 2003.

[26] K. Giaro, M. Kubale, M. Malafiejski, and K. Piwakowski. Chromatic scheduling

of dedicated 2-processor uet tasks to minimize mean flow time. In 1999 7th
IEEE International Conference on Emerging Technologies and Factory Automation.
Proceedings ETFA ’99, volume 1, pages 343–347 vol.1, Oct 1999.

[27] L. Gong, P. Tune, L. Liu, S. Yang, and J. Xu. Queue-proportional sampling: A

better approach to crossbar scheduling for input-queued switches. In Proceedings
of the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS),
2017.

[28] P. Goransson and C. Black. Software Defined Networks: A Comprehensive Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.

[29] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. Vl2: A scalable and flexible data center network. In

Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,
SIGCOMM ’09, pages 51–62, New York, NY, USA, 2009. ACM.

[30] I. Grosof, Z. Scully, and M. Harchol-Balter. SRPT for multiserver systems. Perform.
Eval., 127-128:154–175, 2018.

[31] H. Jahanjou, E. Kantor, and R. Rajaraman. Asymptotically optimal approximation

algorithms for coflow scheduling. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’17, pages 45–54, New York,

NY, USA, 2017. ACM.

[32] H. Jahanjou, R. Rajaraman, and D. Stalfa. Scheduling flows on a switch to optimize

response times. arXiv: https://arxiv.org/abs/2005.09724, May 2020.

[33] S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao. Competitive analysis for

online scheduling in software-defined optical wan. In Proc. of the IEEE INFOCOM
Conference, pages 1–9, 05 2017.

[34] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. In

Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, pages
345–352, 1997.

[35] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "one big switch"

abstraction in software-defined networks. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’13,

pages 13–24, New York, NY, USA, 2013. ACM.

[36] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V.

Vazirani. Global wire routing in two-dimensional arrays, 1987.

[37] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonap-

proximability results for minimizing total flow time on a single machine. In

Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages
418–426, May 1996.

[38] S. Khuller and M. Purohit. Improved approximation algorithms for scheduling

co-flows. In SPAA, 2016. Brief Announcement.

[39] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, Jan 2015.

[40] M. Kubale and H. Krawczyk. An approximation algorithm for diagnostic test

scheduling in multicomputer systems. IEEE Transactions on Computers, 34:869–
872, 09 1985.

[41] J. Kulkarni. Personal communication.

[42] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel

processors by linear programming. J. ACM, 25(4):612–619, October 1978.

[43] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In

Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages
110–119, May 1997.

[44] L. Luo, K. Foerster, H. Yu, and S. Schmid. Splitcast: Optimizing multicast flows in

reconfigurable datacenter networks. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020. Forthcoming.

[45] M. Mastrolilli. Scheduling to Minimize Max Flow Time: Offline and Online Algo-
rithms, pages 49–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[46] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-

ishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant layer 2

data center network fabric. In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, pages 39–50, New York, NY, USA, 2009.

ACM.

[47] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time

of coflows in datacenter networks. In Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’15, pages 294–303, New York,

NY, USA, 2015. ACM.

[48] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time

of coflows in datacenter networks. In SPAA, pages 294–303, 2015.
[49] Mehrnoosh Shafiee and Javad Ghaderi. An improved bound for minimizing the

total weighted completion time of coflows in datacenters. IEEE/ACM Trans. Netw.,
26(4):1674–1687, 2018.

[50] D. Shah and J. Shin. Randomized scheduling algorithm for queueing networks.

The Annals of Applied Probability, 22(1):128–171, 2012.
[51] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and S. Wang.

Rapier: Integrating routing and scheduling for coflow-aware data center networks.

In INFOCOM, pages 424–432, 2015.

	Abstract
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Problem Definitions and Notation
	3 Average Response Time
	3.1 A linear-programming approach
	3.2 Getting a valid schedule

	4 Maximum Response Time
	4.1 Maximum Response Time Hardness
	4.2 Maximum Response Time Approximation

	5 Online Flow Scheduling
	5.1 Preliminary Theoretical Results
	5.2 Experimental Results

	6 Open Problems
	A Figures Showing Experimental Results
	References

