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Abstract

The Flory Huggins interaction parameter χ quantifies the excess free energy of

mixing unlike species, and governs phase behavior in polymer blends and block copoly-

mers. Chain architecture affects how chains pack and interact in the melt, which can

significantly influence χ. To explore this, we investigate χ for blends with different

architectures of flexible bead-spring chains. We examine blends in which both chain

species have a “polypropylene” bead-spring structure, but one species has beads with

a slightly weaker interaction: either the side beads (case 1), main chain beads (case

2), or branch point beads (case 3). We use molecular dynamics simulations and ther-

modynamic integration during “morphing” of one species to another to find χ for all

three cases, for which random mixing models would give identical results. We find
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the strongest repulsion in the case of side beads, reflecting its higher accessibility to

other beads. These systems provide an appealing test for PRISM predictions of struc-

ture and miscibility in polymer blends. We supply input to PRISM from simulations

without any adjustment, and PRISM predictions are compared directly with simula-

tion results. We find PRISM predictions for χ obtained using the Percus-Yevick (PY)

closure (available in public PRISM modules, but problematic in that it incorrectly

predicts the dependence of χ on molecular weight) are inconsistent even in their signs

and sensitive to the initial guess needed to solve the integral equations.

Introduction

Polymer blends and block copolymers are ubiquitous and have found many applications,

as they offer unique and tunable material properties.1–3 Polymer blends can be miscible

or phase-separated or exhibit any degree of mixing between these extremes. Morphology

plays an important role in the performance of polymer blends and copolymer mesophases in

a given application.4,5 To tune and optimize the morphology of polymer blends and block

copolymers, it is critical to understand their phase behavior, which is governed by the degree

of polymerization (N), composition (ϕ), monomer interactions and chain architecture.2,6

The Flory-Huggins interaction parameter χ is the excess free energy of mixing different

species, arising from monomer interactions and chain architecture. Conceptually, χ measures

the free energy cost to place two unlike monomers next to each other. Stronger χ leads to

higher free energy costs and a stronger tendency to demix. For demixed systems, further

increases in χ result in sharper interfaces between the demixed phases.2

χ includes both enthalpic and entropic (packing) effects, which may be written separately

as

χ = χS +
χH

T
(1)

For chemically unlike polymers, χ is dominated by enthalpy, as the disparity in cohesive

2



energy densities makes demixing more likely.7 For polymers that are chemically similar,

differences in chain architecture and monomer geometry (size, shape, chain stiffness, etc.)

lead to non-ideal packing in the blend. This contributes entropically to χ, and demixing can

still occur for long chains.8

Experimentally, it is possible to measure χ, by comparing X-ray or neutron scattering

of mixed blends with the Random Phase Approximation (RPA).9 For highly incompatible

mixtures, χ can be obtained by measuring interfacial profiles in bilayers using X-ray or

neutron reflectivity.10

It is harder to predict χ using simulations. Various methods have been proposed; each

has its limitations. One method predicts χ by simulating the interface between segregated

phases of a polymer mixture and measuring the interface thickness and composition.11,12

This method requires the polymer mixture to have χ > χcritical and a scheme for rapid

equilibration, so that a sharp interface between the segregated phases can be simulated

within the simulation volume and equilibrated in a reasonable time. For miscible blends

near the critical point, we may calculate χ by measuring composition fluctuations in the

simulations and comparing them to RPA. However, to simulate measurable amplitudes in

concentration fluctuations, we need reasonably large values for χN , implying the use of long

chains in simulations for blends with small values of χ. But if chains are longer than the

entanglement length, chains move by reptation, which results in very slow equilibration.

Another method for determining χ involves simulations where a chain is inserted into pure

and mixed phases.13,14 This approach calculates χ from either (a) the ratio of chain inser-

tion probabilities in pure and mixed phases (Widom insertion),15–17 or (b) the insertion free

energy, measured by adding a chain into pure and blend systems, and integrating the ther-

modynamic work required to insert the chain with respect to the interaction strength.18–20

But the probability of insertion of a long chain into a melt is low because of the overlap

with other chains. Also, since the insertion is made into similar systems, high accuracy for

measured values is needed to obtain reliable values for χ.
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χ has also been estimated by measuring the cohesive energy densities in simulations of

blends.21–23 Chen et al. used this method with Gibbs ensemble configurational-bias Monte

Carlo simulations to determine χ for olefin oligomers.23 However, because these methods

only measure the system energy, they obtain only the energetic contribution to χ.

The Polymer Reference Interaction Site Model (PRISM) has also been used to predict

structural and thermodynamic properties associated with polymer miscibility.24–26 PRISM

relates various structural correlation functions between different species in polymer melts and

blends. The theory takes the form of coupled non-linear integral equations, which must be

solved numerically to obtain the correlation functions, from which χ can be calculated. In its

first formulation, PRISM incorrectly predicted the dependence of χ on molecular weight.27

Later, this shortcoming was remedied with an improved “molecular” closure, which better

accounted for the connectivity within molecules.28

In our group, we have developed a powerful method for extracting χ of polymer blends

from simulations.8,29 Our approach is related to previous methods for computing solvation

free energies, which compute the thermodynamic work to turn on interactions between a

solute and the surrounding solvent, and so determine the free energy to transfer a molecule

from one phase into another, thereby measuring Henry constants or chemical potential dif-

ferences between phases.18 Since our method uses standard molecular dynamics platforms

(albeit with manipulations of the interactions, and measurements of nonstandard quantities),

it can be used without custom programming of anything other than driver scripts.

In our method, we use molecular dynamics (MD) simulations and a novel thermodynamic

integration scheme to compute the thermodynamic work required to transform chains from

one species to another. Starting from a reference melt in which all chains are of type 1, we

compute the work ∆Gblend = Gblend −G1 to transform or “morph” half the chains to type 2,

and separately the work ∆Gpure = G2 − G1 to morph all the chains to type 2. The excess
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Gibbs free energy of mixing is

∆Gex = Gblend − ϕ1G1 − ϕ2G2 = ∆Gblend − ϕ2∆Gpure (2)

From the excess Gibbs free energy of mixing per bead ∆Gex, we define χ as

β∆Gex = χϕ1ϕ2 (3)

Here, β = 1/kBT (kB is the Boltzmann constant, T is temperature); ϕ1 and ϕ2 are volume

fractions of polymer 1 and 2; and Gblend, G1 and G2 are free energy per bead of the blend,

pure component 1, and pure component 2 respectively.

In previous works, we have successfully applied this method to obtain χ as small as 10−4

per monomer. Kozuch et al. studied the effect of stiffness mismatch on χ using this method.8

In the study, bead-spring chains in the blend differed only in their backbone stiffness and

experienced repulsive interactions as a result of non-ideal local packing. χ predictions were

found to be consistent with experiments for blends of enthalpically similar species, when

real polymers were mapped to bead-spring chains. Zhang et al. employed this method to

study blends of bead-spring chains with mismatched enthalpic interactions.29 χ predictions

were verified by calculating the interfacial density profile for phase-separated binary mixtures

using lattice self-consistent field theory and comparing it with the interfacial density profile

from simulations of immiscible blends.

Figure 1: Different types of chains considered in this work: (a) Chain type 1, present in all
blends; Chain type 2 for cases of weakly interacting (b) side bead, (c) main bead and (d)
branch bead.

Here, we use this method to explore the effect of chain architecture on χ (Figure 1). We
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consider binary blends of flexible bead-spring chains, in which both chain species have a

structure analogous to polypropylene. Half of the polymer chains in the blend are as shown

in (a), while the other half are as either (b), (c) or (d) in Figure 1. The interaction strength

of the red beads is weaker than that of the blue beads, with the red-blue interaction given

by the usual geometric mean mixing rule appropriate for nonpolar interactions. We have

three cases, in which the weakly interacting bead is on the side, main or branch point of the

monomer. Random mixing models would predict the same χ for all three blends. However,

we intuitively expect chains (b), (c) and (d) will pack and interact differently with chains (a).

Hence different chain architecture should result in different phase behavior in the blends. As

we shall see below, the strongest repulsive interactions are present in the blend with weakly

interacting side beads, which are most accessible to interact with beads on other chains.

We also use our simulations to test PRISM predictions of χ. We obtain single-chain

correlation functions between different types of beads in the simulations. We provide these

correlations as input to PRISM along with the interaction potential acting between the

beads.

We solve PRISM equations numerically using pyPRISM, an open-source python plat-

form for performing PRISM calculations developed by Martin et al.30 In this way, we obtain

PRISM predictions for structural correlations between different beads in the blend and cal-

culate χ from these correlation functions for each case. Spatial correlations between the two

types of chains in the blend and correlations between weakly interacting beads are compared

with simulation results, to investigate the accuracy of PRISM predictions.

At present, our calculations are limited to use of the local Percus-Yevick closure. The

PY “atomic” closure predicts incorrect molecular weight dependence for the critical point

χ in symmetric polymer blends, which was eventually remedied by improved “molecular”

closures. However, the more complex molecular closures have not yet been implemented

in pyPRISM. We find PRISM results for χ are within an order of magnitude of simulation

values, albeit sometimes with incorrect signs, and strongly dependent on the initial guess
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provided to solve the PRISM equations.

Methods

Morphing simulation details

In our two-component polymer blends, all the bead-spring chains have an architecture anal-

ogous to polypropylene. Polymer 1 refers to “reference” chains in which all beads have

the same interaction strength. Polymer 2 chains have one weakly interacting bead in each

monomer, with the rest of the beads identical to those in polymer 1.

We represent non-bonded interactions between beads with the Lennard-Jones (LJ) po-

tential ULJ(r), given by

ULJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(4)

Here r is the distance between centers of interacting beads, ϵ is the interaction strength, and

the LJ potential minimum is located at σ∗ = 21/6σ.

Our idealized flexible bead-spring model is not intended to represent any actual polymer.

For example, we use a rather short cutoff rc = 2σ∗, as a matter of computational conve-

nience; that is, we define our model polymer to have this interaction potential, rather than

introducing it as a poor approximation to the full LJ interaction.

However, to work with familiar “atomistic” magnitudes of length, energy, and time, we

choose the bead size σ as 0.2 nm, and the reference interaction strength ϵ as 1 kT (2.49 kJ/mol

at 300 K). Likewise, the bead mass mb is taken as 12 g/mol, so that the Lennard-Jones time

τLJ equals σ(mb/ϵ)
1/2 = 0.44 ps. The “weakened” beads have a smaller interaction strength,

which is controlled by the morphing parameter λ (see below). For interactions between

unlike beads, we use geometric average of the interaction parameters.

The bond length between successive beads is taken as σ∗, and bonded interactions are

described by a harmonic potential Ub =
1
2
kb(r − σ∗)2, with spring constant kb = 400kT/σ2.
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This spring is quite stiff, and maintains an essentially fixed bond length.

Each chain contains 60 beads (20 monomers), and the system consists of 400 chains. The

velocity rescaling thermostat and Berendsen barostat were used to maintain the temperature

and pressure. As a consequence of the short cutoff, we use a reasonably large pressure P

equal to 0.1kT/σ3 (517.7 bar) to maintain a melt-like density. All simulations were performed

using GROMACS.31

First, we obtain an equilibrated melt in which all the chains are of type 1 (reference

chains). To build the initial configuration, we stack straight chains in a rectangular array in

a simulation box of dimensions 10×10×10 nm. We minimize the system energy, and perform

NVT simulation for 100 ps at 300 K to randomize the chain orientations. We then deform

the simulation box for 1 ns until the box dimensions reach 6.5× 6.5× 6.5 nm, corresponding

to a nominal melt with bead concentration of 0.7 beads per σ3. The resized melt is then

simulated in an NPT ensemble at P = 0.1kT/σ3 and T= 300 K to obtain an equilibrated

melt.

To obtain ∆Gex, we perform “morphing” simulations.8,29 We perform a series of simu-

lations in which the morphing parameter λ increments systematically from 0 to 1, and the

interaction strength of the weakened beads is correspondingly reduced linearly from 1 kT to

0.5 kT. The usual geometric mixing rule ϵαβ =
√
ϵαϵβ determines the interaction strength

between weakened and reference beads.

If the designated beads in all the chains are weakened, we obtain at λ = 1 a pure melt of

type 2 chains with a weakened bead in every monomer. And if the designated beads in half

of the chains are weakened, we obtain at λ = 1 a blend of type 1 and 2 chains. A typical

configuration of the fully morphed blend is shown in Fig. 2.

We then determine the work required to morph the chains by a small increment of λ.

The simulations are carried out in NPT ensemble; the Gibbs partition function Z can be
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Figure 2: Snapshot of blend with weakly interacting side beads at λ = 1, i.e., with fully
weakened beads. Reference chains without weakened beads are red; chains with weakened
beads are green; weakened beads themselves are blue.

written as a sum over microstates r as

Z =
∑
r

e−β(Er(λ)+PVr) = e−βG (5)

in which G is the Gibbs free energy. In the partition sum, only the microstate energy Er(λ)

depends explicitly on the morphing parameter λ, through its effect on the pair interactions.

Hence we have explicitly

∂G

∂λ
= Z−1

∑
r

(∂Er/∂λ)e
−β(Er(λ)+PVr) =

⟨
∂Er

∂λ

⟩
(6)

Because only Er(λ) has explicit λ dependence, only (∂Er/∂λ) appears in the ensemble av-

erage.

Correspondingly, the free energy change on morphing is

∆G =

∫ 1

0

dλ

⟨
∂Er

∂λ

⟩
(7)
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That is, ∆G on morphing is the integral with respect to the “displacement” λ of the aver-

age “generalized force”, which is the corresponding derivative of the energy ∂Er/∂λ. The

relationship is precisely analogous to the usual thermodynamic work as the integral of the

force, which is the average of ∂E/∂x.

Rather than averaging the actual derivative ∂Er/∂λ, we make a finite difference approx-

imation:

∂G

∂λ
≈ ⟨∆Eλ⟩

∆λ
(8)

where ∆Eλ is the change in the system energy for a small change ∆λ. To compute this aver-

age, we rerun a simulation trajectory at a given λ with interaction parameters corresponding

to adjacent λ values. The total energy of the system is measured for the two reruns, and the

difference ∆Eλ is divided by ∆λ.

Depending on the position of the weakly interacting bead in its monomer, we have three

cases (Figure 1): (i) side bead, (ii) main bead, and (iii) branch bead. We have performed

simulations and determined χ for all three cases. It is physically clear that the blend with

weakened side bead should give the largest χ because the side bead is most accessible to

interact with other beads. Likewise, we expect the blend with weakened branch bead to give

the smallest χ, as access to this bead is more sterically restricted.

We also perform PRISM calculations for χ and compare with our simulation results for

all three cases. Beyond the value of χ itself, we compare two types of spatial correlations

obtained from simulations with PRISM predictions: (1) correlation between chain 1 (“ref-

erence chains”) and chain 2 (“weakened chains”); and (2) correlation between “weakened”

beads. These correlations change as we morph the chains. The correlation function between

reference and weakened chains exhibits a “correlation hole”, as the two chain species begin to

avoid each other. The correlation function between weakened beads exhibits a “correlation

hill” or increased correlation, as beads begin to clump together. We compare the extent of

changes observed in these correlation functions between simulation and PRISM calculations

for all three cases.

10



PRISM theory

PRISM theory describes structural correlations in polymer systems. PRISM requires the

input of intra-molecular correlation functions between monomeric species, as well as the

interaction potential acting between the species. On solving non-linear integral equations

defined in the PRISM theory, we obtain spatial correlations between different species across

the system as output. We can calculate χ from the inter-molecular correlation functions

describing the polymer blend.24,30

In our study, each bead corresponds to an interacting site. For ease of discussion, we

introduce notation for different types of beads in the system. We denote all beads in chain

type 1 as sites of type A, the beads in chain type 2 with interaction strength identical to A

as sites of type B, and weakly interacting beads are sites of type C. The three cases have

C beads in three different positions within monomer: the side, main or branch. We could

have used a 4-site or even a 6-site convention instead of three site types proposed above,

to have a more explicit and symmetric representation of the system. However, with higher

number of sites, the matrices of correlation functions in PRISM have higher dimension. We

find difficult convergence and numerical inconsistencies when solving PRISM equations for

more than three types of sites.

The PRISM integral equation, which relates different spatial correlation functions, is

written in Fourier space as

Ĥ(k) = Ω̂(k) · Ĉ(k) · [Ω̂(k) + Ĥ(k)] (9)

Here Ĥ(k) is the matrix of total correlation functions, Ω̂(k) is the matrix of intra-molecular

correlation functions, and Ĉ(k) is the matrix of direct correlation functions (conforming to

PRISM literature, the caret denotes quantities in Fourier space). For our system with three

types of sites, each of these functions is a 3 × 3 matrix, with different pairwise correlation

functions as its elements. PRISM theory has been extensively discussed in literature;28,30,32–34
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here, for completeness and consistency of notation, we briefly recapitulate the main elements

of the theory in Appendix A.

Solving PRISM equations

There are two unknowns in the PRISM equation, Ĥ(k) and Ĉ(k); hence an additional “clo-

sure relation” is needed. Closure relations relate H(r) and C(r) to the interaction potential

U(r). Various closure relations have been proposed, which are approximations based on

analogies with atomic fluids.32 However, PRISM equations implementing these “atomic”

closures are known to predict incorrect molecular weight dependence for χ (1/
√
N instead of

1/N).27 The atomic closures ignore chemical bonding mediated indirect interactions between

two sites.32 To remedy this, “molecular” closures have been introduced.28,32 Unfortunately,

molecular closures are not yet available in pyPRISM. In this work, among the available

atomic closure relations we use the Percus-Yevick (PY) closure, which in real space is given

by

cαβ(r) =
(
1− eβUαβ(r)

)
(hαβ(r) + 1) (10)

in which β = 1/kBT (kB is the Boltzmann constant and T is the temperature). PY has been

found to work well for one-component polymer fluids.32

With the inputs of intra-molecular correlation functions Ω̂(k) and the interaction po-

tentials Uαβ(r), we have coupled, non-linear PRISM integral equations and closure relation.

To solve these equations numerically within pyPRISM, the PRISM equations are iterated

from an initial guess until a consistent solution is found, using a Newton-Krylov numerical

method. In the numerical scheme, we use a real-space domain of 8192 grid points with

spacing 0.002 nm to represent the various functions, for a total spatial range of greater than

16 nm.

To prepare an initial guess and obtain a solution, we proceed as follows. First, we find

the solution to PRISM equations describing a melt of type 1 chains (reference melt), with
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sites interacting with the Weeks-Chandler-Anderson (WCA) potential (purely repulsive in-

teractions). This single-component purely repulsive melt is relatively robust to solve with

even a zero initial guess. The solution for reference melt with WCA potential is then used

as an initial guess to solve the PRISM equations describing the reference melt, with sites

interacting with the actual truncated LJ potential (Eqn. 4). In turn, the solution for refer-

ence melt with the actual potential is used as an initial guess for solving PRISM equations

describing the blend, where half the chains have a weakened bead in every monomer (chain

type 2). We thereby obtain the intermolecular total and direct correlation functions Ĥ(k)

and Ĉ(k).

Using the output of direct correlation functions Ĉ(k) from PRISM theory, we compute

χ using the following equation

χ = lim
k→0

ρ

2

[
ĈAA(k) +

(
4

9
ĈBB(k) +

1

9
ĈCC(k) +

4

9
ĈBC(k)

)
− 2

(
2

3
ĈAB(k) +

1

3
ĈAC(k)

)]
(11)

Here Cαβ are the direct correlation functions between monomers of type α and β, and ρ is

the number density of interaction sites. Eqn. 11 is derived in Appendix B.

In this way, we calculate χ for all three cases. We also calculate spatial correlations from

intermolecular correlation functions hαβ(r), including spatial correlations between different

chain types (reference and weakened chains) and intermolecular correlation functions between

weakened beads. All PRISM calculations were performed using the open-source python

module pyPRISM, developed by Martin et al.,30 which provides a well-documented and

user-friendly platform to perform PRISM calculations.

13



0.2 0.4 0.6 0.8

19.0

19.5

20.0

20.5

21.0

λ

∂
G
/∂
λ
(M
J/
m
ol
)

(a)

0.2 0.4 0.6 0.8

38.0

38.5

39.0

39.5

40.0

λ

∂
G
/∂
λ
(M
J/
m
ol
)

(b)

Figure 3: Free energy integrand vs morphing parameter λ for the case of weakly interacting
side bead in (a) blend and (b) pure system.

Results and discussion

Simulation

From the morphing simulations for all three cases, we determine the free energy integrand

∂G/∂λ as a function of λ using Eqn. 8, for both blend and pure systems (Figure 3). The

excess free energy integrand ∂Gex/∂λ as a function of λ is determined using Eqn. 2 (see

Figure 4). Since the area under the curve is positive, there is a free energy cost for mixing

such chains, as a result of a mismatch in interaction and packing of chains.

The integrand ∂G/∂λ, like any average quantity measured in simulations, has statistical

error. To estimate it, we begin by measuring the autocorrelation function of the time series

for the numerator ∆Eλ in Eqn. 8, from which we obtain an autocorrelation time τ of about

1 ps. Our simulation trajectories span over 30 ns for each λ value, with data taken every

1ps.

If these measurements are independent, the corresponding statistical error for the inte-

grand, calculated from the the standard deviation of ∆Eλ divided by the square root of the

number of measurements, is very small indeed. Error bars for the integrand based on this

“short-time” statistical error are much smaller than the points in Figure 3.

However, we expect there are longer relaxation times in the system, corresponding to
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concentration fluctuations, leading to weak but long-lived fluctuations in the time series for

∆Eλ. Such fluctuations lead to error in the average integrand that is not so easily estimated,

and is presumably the source of the “wandering” of successive integrand points away from

the evident linear trend as a function of λ.

Indeed, on general grounds we expect the integrand to at least start out linear in λ, per-

sisting as long as the perturbation from the reference system is reasonably weak. Deviations

from the linear trend may thus be regarded as evidence of imperfect averaging, leading to

uncertainty in the slope of the integrand, and ultimately to uncertainty in χ. To obtain

values for χ and quantify this uncertainty, we fit the integrand (∂Gex/∂λ) vs λ to a linear

function passing through the origin, shown as the dashed lines in Figure 4.
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Figure 4: Excess free energy integrand vs morphing parameter λ for the cases of weakened
side (blue), main (red) and branch (green) beads. Points are from simulations and the dashed
line is a linear fit to the points.

χ is then computed by integrating the fitted linear function for (∂Gex/∂λ) with respect

to λ and dividing the result by the number of beads. The resulting values of χ for all three

cases are of the order O(10−2) (see Table 1); the corresponding uncertainties for χ reflect the

95 percent confidence intervals for the linear fits. By comparison, error bars computed from

the statistical error inferred from a 1 ps correlation time are much smaller, of order O(10−5).

The blend with weakly interacting side beads has the largest χ value. χ for blends with

weakened main beads or weakened branch beads are essentially equal. Steric accessibility
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of the weakly interacting beads explains the order of χ values for the different cases. For

weakly interacting side beads, beads from other chains have easier access to the weakened

beads.

Table 1: χ from simulations and PRISM theory.

Simulations PRISM
Case χ χV χE χ
Side 0.0494 ± 0.0012 -0.00184 0.04163 0.0747
Main 0.0375 ± 0.0008 -0.00137 0.0401 0.03385
Branch 0.0361 ± 0.0011 -0.00124 0.039 -0.0105

Like any Gibbs free energy, excess free energy ∆Gex can be written as a sum of three

parts:

∆G = ∆E − T∆S + P∆V (12)

Correspondingly, the χ value derived from the excess free energy can be regarded as having

three contributions,

χ = χE + χS + χV (13)

In our simulations, we can measure the change in system energy on morphing, and thereby

obtain the energetic contribution to χ. Likewise, the system expands slightly as we morph

the designated beads to have weaker interactions, because the weaker attractive interactions

lead to a lower density. The volume change contributes to the excess free energy. Table 1

reports the energetic and volume contributions to χ, denoted χE and χV . Comparing these

contributions to the full χ, we see that for these architectures χ is mostly energetic, with

only a 10–20% entropic contribution, and a negligible contribution from volume changes.

Of course, we would not be able to reach that conclusion without the morphing method to

supply the full χ.
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Figure 5: PRISM input for the case of weakened side bead: Intra-chain correlation functions
between bead types (a) A-A (b) B-B (c) B-C and (d) C-C, before (blue) and after (red)
morphing from the reference melt of identical chains to the pure melt of type 2 chains.

Comparison to PRISM

We test PRISM theory by comparing its predictions for χ with simulation results. We pro-

vide as input to PRISM the intra-molecular correlation functions obtained from simulations

and the interaction potential between different species. By solving the PRISM equations

numerically using the available PY closure, we determine the total and direct intermolecular

correlation functions Ĥ(k) and Ĉ(k). χ can be determined from Ĉ(k) using Eqn. 11.

The intra-chain correlations supplied to PRISM were obtained from the simulations of
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pure melt of type 2 chains for different cases. The intra-chain correlation functions measured

in the melt with weakened side beads are presented in Figure 5 (red curves). Figure 5

also shows the intra-chain correlations obtained from the simulations of reference melts of

identical chains (blue curves).

The intra-chain correlation functions obtained from the simulations remain essentially

constant as we morph the chains. For weak repulsive interactions per monomer, local con-

figurations are not perturbed significantly. Hence we can supply the intra-chain correlation

functions from pure melts as input to PRISM, without worrying whether the correlations

were obtained from pure or blend systems. (We have explicitly checked that using the post-

morphing intrachain correlation functions as input to PRISM makes essentially no difference

in the PRISM predictions.)
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Figure 6: Direct correlation functions Ĉ(k) for the blend with weakly interacting side beads
in half the chains.

Figure 6 shows the PRISM results for Ĉ(k), for the case of weakly interacting side beads

in half the chains in the blend. χ is calculated from k → 0 limit of Ĉ(k) using Eqn. 11.

PRISM predictions for χ for different cases are tabulated in Table.1.

PRISM predictions for χ are only qualitatively consistent with morphing results. PRISM

predicts a larger χ than simulation results for weakened side beads, and a negative χ for the
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blend with weakened branch beads, for which the morphing result is positive. Only for the

case of weakened main beads in the blend does the PRISM χ prediction compare well with

simulation results.
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Figure 7: Intermolecular spatial correlation functions between chain type 1 and 2, from
simulations (a, b and c) and PRISM (d, e and f) for the cases of side (a,d), main (b,e) and
branch (c,f). “Before morphing” = reference melt of identical chains; “After morphing” =
final blend.

To investigate the discrepancy in PRISM predictions for χ, we examine its predictions for

spatial correlation functions. Firstly, we consider spatial correlations between chains of type

1 (reference) and 2 (weakened) (Figure 7). (The plots focus on the short distance structure

for clarity; the correlation functions do all approach unity at large distances.) Local repulsive

interactions lead to a dampened correlation between the two types of chains at intermediate

distances (Figure 7 (a)-(c)). This effect is strongest for the blend with weakened side beads

in type 2 chains, owing to easier access for the other beads to interact with weakened beads.

For the cases of weakened main or branch beads in the blend, there is only a very small

reduction in correlations between the two types of chains.

Correlation functions obtained from PRISM differ from the simulation results, with re-

gard to the appearance of correlation holes between reference and weakened chains. Com-
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paring Figure 7 (a) and (d), for weakened side beads, PRISM predicts a smaller reduction

in correlations at intermediate distances after morphing. But PRISM predicts a higher χ

compared to simulations for the blend containing chains with weakened side beads (Table 1).

Likewise, comparing (b) and (c) with (e) and (f) respectively in Figure 7, PRISM predicts

almost no change in correlations at intermediate distances for the cases of weakened main

and branch beads. But PRISM χ is positive for the blend with weakened main beads in type

2 chains and negative for the blend containing weakened branch beads in half the chains.
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Figure 8: Intermolecular spatial correlation functions between weakly interacting beads
(Bead type C), from simulations (a, b and c) and PRISM (d, e and f) for the cases of
side (a,d), main (b,e) and branch (c,f). “Before morphing” = reference melt of identical
chains; “After morphing” = final blend.

Figure 8 compares simulation results and PRISM predictions for intermolecular corre-

lations between weakened beads in the blend. After morphing, there will be a heightened

correlation between weakened beads, as beads with like interactions tend to clump together.

The correlation should be strong in the blend containing weakened side beads, and weak

for the cases of weakened main beads and branch beads, because of the differences in steric

accessibility. This behavior is found for correlations from simulations (Figure 8 (a)-(c)), but

not in PRISM predictions.
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Figure 9: Initial guess dependent χ vs strength of weakly interacting bead ϵC : ϵC for initial
guess incremented from 0.5 kT to 1 kT (blue) and decremented from 1 kT to 0.5 kT (red).

Disturbingly, our PRISM predictions for χ depend qualitatively on the details of the

initial guess used to solve the integral equations. For the results reported so far, the procedure

for providing an initial guess for the solution to PRISM equations was as described in Section

“Solving PRISM equations”. However, if we use a different initial guess scheme, we obtain

a different value for χ.

For example, for the blend with weakened side beads, we employed a different initial

guess scheme. First, we obtain the solution for a system in which all beads have interaction

described by LJ potential and strength ϵ = 1 kT, using the solution of reference melt and

WCA potential as the initial guess. We then systematically reduced ϵC from 1 kT to 0.5

kT, using the solution from the previous step as the initial guess in the given step. As

shown in Figure 9 (red points), the resulting χ values are all negative. In a different scheme,

we systematically increased ϵC from 0.5 kT to 1 kT. The first solution for ϵC = 0.5kT is

obtained by using the solution with ϵC = 1kT as the initial guess, and subsequent initial

guesses obtained from the previous solution. Then we obtain positive χ values through all

the steps (blue curve). Even when ϵC reaches 1 kT, χ does not reduce to zero. It is difficult

to ascertain which χ is to be believed.

The discrepancies in PRISM predictions may be in part an artifact of our use of atomic
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PY closure in PRISM calculations. Atomic closures are known to give incorrect dependence

of χ on molecular weight in earlier PRISM studies.28,32,35 They fail to accurately capture the

effect of connectivity on spatial correlations between different species.32 Molecular closures

have been formulated, which take a more explicit account of bond mediated correlations.

However, pyPRISM does not at present implement molecular closures; we look forward to

an enhanced version of this useful platform, with which a test of χ predictions from molecular

closures may be performed.

Conclusions

In this work, we employ molecular dynamics simulations and a novel thermodynamic in-

tegration scheme to study how chain architecture affects χ. We “morph” the system from

a one-component melt to two-component blend in a series of simulations in which the in-

teraction strength of designated beads is systematically weakened. We integrate the work

required to morph over the varying interaction strength, to determine the excess free energy.

Our method combines the power of MD simulations to efficiently sample and average ther-

modynamic quantities, with thermodynamic integration over a well-defined path to obtain

values for χ.

Depending on the position of weakened bead in the monomer, we obtain χ for different

architectures. The blend containing chains with weakened interactions on the side bead gives

the strongest χ. This is physically reasonable, because it is easier for beads on other chains

to approach a side bead, compared to a main or branch bead.

Our simulations also present a good test case for PRISM calculations. We can pro-

vide single-chain correlations from simulations as input and solve the PRISM equations.

Because the simulations directly supply the necessary intrachain correlation functions, no

approximate or model intrachain correlation functions need be used when comparing PRISM

predictions with simulation results.
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Our PRISM predictions for χ are only qualitatively consistent with morphing results.

For the blend with weakened side beads in half the chains, χ predicted from PRISM is

higher than the value from simulations (and depends on the initial guess). For weakened

main beads, PRISM and simulations predict similar values. For weakened branch beads,

PRISM gets the sign wrong for χ. PRISM calculations also exhbit sensitivity to the initial

guess required to solve the theory numerically. Depending on the scheme adopted for initial

guesses, we can obtain completely different χ values.

The discrepancies in PRISM predictions may in part result from our use of atomic clo-

sures. We have used pyPRISM, an open-source python module which at present only imple-

ments local atomic closures. It has been shown that atomic closures do not properly account

for the effects of molecular connectivity on structural correlations. When molecular closures

are implemented in pyPRISM, we will revisit the predictions for these bead-spring models.

Appendix A: Elements of PRISM theory

The total correlation function Ĥ(k) describes the correlation between the position of different

sites in the blend. (Here and throughout, the caret ˆ denotes quantities in Fourier space.)

Our system has three different kinds of sites, denoted A, B, and C:

Ĥ(k) =

⎡⎢⎢⎢⎢⎣
ρpairAA ĥAA(k) ρpairAB ĥAB(k) ρpairAC ĥAC(k)

ρpairBA ĥBA(k) ρpairBB ĥBB(k) ρpairBC ĥBC(k)

ρpairCA ĥCA(k) ρpairCB ĥCB(k) ρpairCC ĥCC(k)

⎤⎥⎥⎥⎥⎦ (14)

Here ρpairαβ = ραρβ, where ρα and ρβ are the number density of site types α and β. The

real-space function hαβ(r) is given by hαβ(r) = gαβ(r)−1, where gαβ(r) is the intermolecular

pair correlation function.

One necessary input for PRISM is the matrix of intra-molecular correlation functions

Ω̂(k). Information about the chain chemical structure and connectivity is encoded in Ω(r).
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Ω̂(k) for a three-component system is given by

Ω̂(k) =

⎡⎢⎢⎢⎢⎣
ρsiteAA ω̂AA(k) ρsiteAB ω̂AB(k) ρsiteAC ω̂AC(k)

ρsiteBA ω̂BA(k) ρsiteBB ω̂BB(k) ρsiteBC ω̂BC(k)

ρsiteCA ω̂CA(k) ρsiteCB ω̂CB(k) ρsiteCC ω̂CC(k)

⎤⎥⎥⎥⎥⎦ (15)

where ρsiteαβ = (ρα + ρβ) if α ̸= β, else ρsiteαβ = ρα.

ω̂αβ(k) are intrachain correlation functions, between species α and β present within a

chain. This means that Ω̂(k) is “block diagonal”, with each block corresponding to the

species present on a given type of chain. For our system, the reference chain has only sites

of type A, while the weakened chain has sites of type B and C.

ω̂(k) is often supplied using analytical expressions, that approximately represent various

chemical structures and architectures. Here, we use simulations to provide these correlations

without any approximation. We obtain ω̂αβ(k) from simulations by measuring the intra-chain

pair distribution function gintraαβ (r), which is related to ω̂αβ(k) via

ω̂αβ(k) =

⎧⎪⎪⎨⎪⎪⎩
ρ
∫
gintraαβ (r) sin(kr)

kr
r2dr, if α ̸= β

1 + ρ
∫
gintraαβ (r) sin(kr)

kr
r2dr, if α = β

(16)

This relation was derived from Debye scattering equation30,36

ω̂αβ(k) =

⟨
1

N total

Nα∑
i

Nβ∑
j

sin(krij)

krij

⟩
(17)

in which N total = Nα +Nβ when α ̸= β, else N total = Nα. Here Nα is the number of sites of

type α present within a given chain.

As stated above, for our system ω̂AB(k) = ω̂AC(k) = 0, as beads A do not reside in

the same chains as B and C. We obtain gintraαβ (r) from simulations of pure melt of type 2

chains, the system obtained after morphing all the chains in the system. These correlation
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functions are nearly identical to those from those obtained from the blend, as the local

structures are not affected significantly by small changes in surrounding conditions (see Fig.

5). The second input needed to solve the PRISM equation are the interaction potentials

Uαβ(r) acting between different types of sites.

The direct correlation function Ĉ(k) is obtained by solving the PRISM equation. Ĉ(k)

is written as

Ĉ(k) =

⎡⎢⎢⎢⎢⎣
ĉAA(k) ĉAB(k) ĉAC(k)

ĉBA(k) ĉBB(k) ĉBC(k)

ĉCA(k) ĉCB(k) ĉCC(k)

⎤⎥⎥⎥⎥⎦ (18)

Here ĉαβ(k) is the direct intermolecular site-site correlation function between sites of type α

and β. The matrix of structure factors Ŝ(k) is related to Ĥ(k) and Ω̂(k) through

Ŝ(k) = Ω̂(k) + Ĥ(k) (19)

Substituting Eqn. 19 into Eqn. 9 we have

Ŝ = Ω̂ + Ω̂ · Ĉ · Ω̂ + Ω̂ · Ĉ · Ω̂ · ĈΩ̂ + . . . (20)

Hence beads at two different sites are correlated through Ω̂(k) as they are on the same chain,

or they are on different chains and interact via Ĉ(k), and so forth. Therefore Ĉ(k) represents

the effective potential acting between the sites.

Appendix B: χ from direct correlation function Ĉ(k)

The free energy (or effective Hamiltonian) of concentration fluctuations is given by

β∂G =
1

2

∑
α,β

∫
d3k ψ̂∗

α(k)Ŝ
−1
αβ (k)ψ̂β(k) (21)
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Here ψ̂α is fluctuation in the concentration of site type α. Ŝ−1
αβ are the elements of the matrix

inverse of Ŝ.

Using equations 19 and 9, the inverse structure factor matrix Ŝ−1(k) can be written as

Ŝ−1 = Ω̂−1 − Ĉ (22)

We are interested in χ in the k → 0 limit. In this limit, the intra-chain correlation

function ω̂αβ(k) (Eqn. 17) simplifies, and the matrix elements Ω̂(k)αβ reduce to

Ω̂(k → 0)αβ =
NαNβ

NT

ρsiteαβ

=
NαNβ

V
ni

=
NαNβ

ni

ϕiρ

= f (i)
α f

(i)
β niϕiρ

(23)

Here i denotes the type of chain corresponding to the block of the matrix Ω̂ we are consider-

ing; ni is the number of chains of type i, ϕi their volume fraction, Ni the number of sites per

chain, and f
(i)
α the fraction of sites of type α on chains of type i. Finally, V is the volume of

the system, and ρ the total number density of sites in the system. Here we assume that the

volume of all sites is equal.

Evidently, each block in the matrix Ω̂ is a scalar niϕiρ, times a dyad of vectors of site

fractions f
(i)
α . That is, each block of the matrix is proportional to a projection operator,

which projects any vector of concentration fractions onto the site fractions present on chains

of type i.

Projection operator matrices of the form FαFβ cannot be fully inverted; they have a

nullspace, consisting of all vectors orthogonal to F . Hence Ω̂ as well as Ŝ, which can be

written as a series expansion (Eqn. 19), cannot be fully inverted. This singularity is a

consequence of the fact that at long wavelengths, a fluctuation must satisfy the condition
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that the different sites appear at specified fractions on a given type of chain.

So we invert the matrix Ω̂ in the subspace of fluctuations proportional to vectors f
(i)
α for

each chain type. The limited inverse satisfies the condition Ω̂ · Ω̂−1 · Ω̂ = Ω̂, which can be

solved as

Ω̂−1
αβ =

f
(i)
α f

(i)
β

niϕiρ(f (i) · f (i))2
(24)

where f (i) · f (i) is the square of the site fraction vector f
(i)
α for chain type i.

The monomer concentrations within each chain type i must be proportional to f
(i)
α , so

at long wavelengths, we can write the concentration fluctuations as

ψ̂α(k → 0) =
∑
i

f (i)
α δϕi (25)

Furthermore, since the system is incompressible, the sum of concentration fluctuations
∑

i δϕi

must vanish everywhere. If we have two kinds of chain, we must have δϕ1 = −δϕ2. So

the entire set of concentration fluctuations of all the species α can be thus be written as

proportional to δϕ1.

Using Eqn. 22, Eqn. 24, and with δϕ2 = −δϕ1 we simplify the free energy of concentration

fluctuations at long wavelengths to

β∂G =
1

2
δϕ2

1

(
1

N1ϕ1ρ
+

1

N2ϕ2ρ
−

(∑
αβ

f (1)
α f

(1)
β c1α,1β +

∑
αβ

f (2)
α f

(2)
β c2α,2β − 2

∑
αβ

f (1)
α f

(2)
β c1α,2β

))
(26)

Here ciα,jβ denotes the direct correlation function between sites of type α on chains of type i

and sites of type β on chains of type j, (recall f
(i)
α is the fraction of sites of type α on chains

of type i). Effectively, Eqn. 26 expresses the direct correlation cij between chains of type i

and type j, with a weighted average over the different kinds of monomers on each chain.

Comparing this form to the usual RPA expression, we identify χ as

χ =
ρ

2
(c̄11 + c̄22 − 2c̄12) (27)
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Here we have defined the weighted average c̄ij as

c̄ij =
∑
αβ

f (i)
α f

(j)
β ciα,jβ (28)

in which all direct correlation functions are understood to be evaluated in the limit k → 0.

For the particular case of interest in this work, chains of type 1 have only monomers of

type A, while chains of type 2 have sites of type B and C, with f
(2)
B = 2/3 and f

(2)
C = 1/3.

Hence we have

c̄11 = c1A,1A

c̄22 = (4/9)c2B,2B + (4/9)c2B,2C + (1/9)c2C,2C

c̄12 = (2/3)c1A,2B + (1/3)c1A,2C (29)

Finally, since monomers of type A only occur on chains of type 1, and monomers of types

B and C only occur on chains of type 2, we can silently drop the 1 and 2 subscripts on the

right side of the above equations.
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