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Abstract—Spiking neural networks (SNNs) offer a promis-
ing biologically-plausible computing model and lend themselves
to ultra-low-power event-driven processing on neuromorphic
processors. Compared with the conventional artificial neural
networks, SNNs are well-suited for processing complex spa-
tiotemporal data. Despite its significance, dataflow optimization of
spiking neural accelerator architectures has not been extensively
studied. Recognizing the need for efficient processing of complex
spatiotemporal data while considering the all-or-none nature of
spiking activities, we propose holistic reconfigurable dataflow op-
timization for systolic array acceleration of spiking convolutional
networks (S-CNNs). A novel scheme is introduced for parallel
acceleration of computation across multiple time points, which
further allows for systemic optimization of variable tiling for a
large performance and efficiency gains. We show how variable
tiling, in particular, the positioning of the temporal dimension,
can be targeted to optimize data movement, throughput, and
energy efficiency. Furthermore, we explore joint layer-dependent
dataflow and accelerator hardware optimization to further boost
performance and energy efficiency. To support systemic design
space exploration, we develop an SNN dataflow simulator capable
of analyzing the throughput and energy dissipation of systolic
array accelerators for any targeted S-CNN while considering the
inherent spatiotemporal characteristics of spiking neural compu-
tation. The proposed techniques deliver orders of magnitude of
improvements on throughput, energy efficiency, and delay-energy
product for accelerating deep Alexnet and VGG-16 SNNs.

Index Terms—spiking neural networks, neuromorphic comput-
ing, dataflow, systolic array, hardware accelerator

I. INTRODUCTION

Spiking neural networks (SNNs) have emerged as the third
generation of artificial neural network (ANN) models that are
more biologically plausible than conventional ANNs. SNNs
are particularly well-suited for processing complex spatiotem-
poral data based on a variety of rate and temporal codes and
lend themselves to ultra-low-power event-driven processing on
neuromorphic hardware [1, 2, 35-37].

Hardware acceleration of conventional ANNs, in particular
deep neural networks (DNNs), offers a viable solution to
deployment of models that are deeper and more powerful. Pre-
vious works have proposed dataflows to maximize throughput
and energy efficiency of DNN accelerators [3-8], particularly
for the widely adopted deep convolutional neural networks
(CNNs) [9-11].

Clearly, there is also a strong demand for efficient dataflows
and microarchitectures for SNN accelerators. Despite its sig-
nificance, dataflow optimization of SNN accelerator archi-
tectures has not been extensively studied [13-15, 31]. The
unique temporal aspect of SNN operations and the all-or-
none nature of spiking activities introduce new challenges in
dataflow optimization. One common approach is to perform
SNN acceleration in a temporally sequential manner while
following an optimized non-spiking ANN dataflow, ignoring
the complex spatiotemporal tradeoffs [10,13].

Recognizing the need for developing SNN specific
dataflows, we propose holistic reconfigurable dataflow opti-
mization for systolic array acceleration of spiking convolu-
tional networks (S-CNNs). As in many recent DNN accelerator
works [17-19], we leverage systolic array architectures for
efficient parallel processing with high spatiotemporal locality
and compute density [25,26]. Our main contributions are:

• A novel scheme is introduced for parallel acceleration of
computation across multiple time points, which further
allows for systemic optimization of variable tiling for a
large performance and efficiency gains.

• We show that parallel spatiotemporal computation over
the six-dimensional space of input, weight, output, and
temporal data involves significant complications in bal-
ancing between data reuse/storage of different data types
and processing element utilization.

• We investigate how the tiling strategy, in particular the po-
sitioning of the temporal dimension, significantly impacts
data movement, throughput, and energy efficiency. We
propose the first method for mapping feedforward SNNs
on a systolic array with optimized output and weight
stationary dataflow.

• We explore joint layer-dependent dataflow and accelerator
hardware optimization to further boost performance and
energy efficiency.

• We develop an SNN dataflow simulator capable of ana-
lyzing the throughput and energy dissipation of systolic
array accelerators to support systematic design space
exploration while considering the inherent spatiotemporal
characteristics of spiking neural computation.



The proposed techniques deliver orders of magnitude of im-
provements on throughput, energy efficiency, and delay-energy
product for accelerating deep Alexnet and VGG-16 SNNs.

II. CHALLENGES FROM SPIKING NEURAL COMPUTATION

A. Data representations

In conventional ANNs, all data types, including input fea-
ture map (IFmap), filter, and output feature map (OFmap) data,
are typically multi-bit. 8 to 16-bit precision is widely used
in CNN hardware inference accelerators [3-8]. As shown in
Fig. 1, the IFmaps and OFmaps of an SNN layer correspond
to binary-valued input and output spikes, respectively. Binary
input/output spikes are primarily of no concern because of low
data volume. However, filter weights and intermediate results
Psums are multi-bit. Furthermore, once computed, Psums may
have to be stored over an extended period of time before being
accumulated to produce binary output spikes, resulting in data
movement challenges. The disparity in data representation
shall be exploited in dataflow optimization towards mitigating
the challenges brought by the high-volume filter and Psum
data.

Fig. 1: Computation of a convolutional layer in ANNs vs. in
SNNs. The latter involves temporal processing with binary-
valued input and output spikes.

B. Temporal data processing

Fig. 1 compares the computation of convolutional layers
in ANNs and SNNs. Apart from operating based on binary-
valued input/output spikes, another key characteristic of SNNs
is temporal processing. A spiking neuron integrates its inputs
over time and generates a spike whenever the membrane
potential surpasses a firing threshold (e.g., according to the
widely adopted leaky integrate-and-fire model [16]). SNN
hardware acceleration must consider the added temporal di-
mension, which causes complex spatiotemporal interactions in
data movement/computation and also opens up the opportunity
of parallel processing of computation at different time points
as pursued in this work.

III. TEMPORAL PARALLEL PROCESSING IN SPIKING
CONVOLUTIONAL LAYERS

A. Proposed parallel processing in temporal dimension

The computation of a spiking neuron consists of: 1) spike
input integration, 2) membrane potential accumulation, and

3) spike output generation, as shown in Fig. 2(a) [16, 32-
34]. At each time point t, all presynaptic inputs to the given
postsynaptic neuron are integrated and then added to the
postsynaptic membrane potential at the previous time t− 1 in
order to compute the potential at the present time t. Finally,
if the updated membrane potential exceeds a prescribed firing
threshed, a binary output spike is generated, and the membrane
potential is reset. The spike input integration step completely
dominates the total computational cost due to the typically
high degree of presynaptic connectivity. As in Fig. 2(a),
our key observation is that the most expensive spike input
integration step can be parallelized over multiple time steps
for all spiking neurons in the layer under processing given the
spike outputs from the preceding layer, which act as the inputs
to the current layer. This is because spike input integrations at
different time points are independent of each other. Upon the
completion of the first step, membrane potential accumulation
and spike output generation shall be performed in a temporally
ascending order due to the temporal dependency introduced by
the evolution of each membrane potential and reset. Our key
idea is to explore the added parallelism brought by temporal
parallel processing of spike input integration, which further
allows inclusion of the temporal dimension as part of the
variable tiling scheme. As shown later, systematic variable
tiling optimization can be explored to effectively optimize
or tradeoff between data movement, throughput, and energy
dissipation in spiking based spatiotemporal processing.

B. Computation in spiking convolutional layers

Spiking convolutional (CONV) layers dominate the com-
putational cost of a given S-CNN and are accelerated by the
targeted systolic array accelerators in a layer-by-layer manner.
The computation of a CONV layer can be expressed as:

P[t][n][m][x][y][i][j][c] =

I[t][n][c][Ux+ i][Uy + j]× W[m][c][i][j]

P[t][n][m][x][y] =
C−1∑
c=0

R−1∑
i=0

R−1∑
j=0

P[t][n][m][x][y][i][j][c]

(1)

P′[t][n][m][x][y] = P[t][n][m][x][y]+PFinal[t−1][n][m][x][y]
(2)

O[t][n][m][x][y] = f(P′[t][n][m][x][y])

PFinal[t][n][m][x][y] =

{
0 if O[t][n][m][x][y] = 1

P′[t][n][m][x][y] else

0≤x,y<E, E=(H−R+U)/U, 0≤c<C, 0≤m<M, 0≤t<T, 0≤n<N

(3)

where O, I, and W are the matrices of the OFmaps, IFmaps,
and filters, respectively; U is a given stride size, and f is
a spike generation function. (1), (2), and (3) correspond to
each of the three steps discussed above. Table I lists the
shape parameters of a layer and the number of time steps
(T). Out of the eight dimensions of the shape parameters, five
are independent, which, when combined with the temporal
dimension T , give rise to 6-D spatiotemporal space. Since



Fig. 2: Overview of the proposed work: (a) parallelization in temporal dimension, (b) systolic accelerator design, and (c)
generalized loop representation of the mapped tiling strategy.

we use a 2-D systolic array as a computing substrate, the
computation associated with two of these dimensions will
be parallelized in a simultaneous row-wise and column-wise
manner. We map a variable tiling scheme into the loop nest
shown in Fig. 2 (c).

TABLE I: Shape parameters of a CONV layer in SNNs

Shape Parameter Description
H / H ifmap width / height
E / E ofmap width / height
R / R filter width / height

C # of ifmap ( = # of filter channels)
M # of ofmap channels
T # of time steps

IV. DATAFLOW OPTIMIZATION FOR SPIKING CNNS

Dataflows specify data scheduling via variable tiling and
directly impact the overall runtime and energy dissipation of
a DNN accelerator [3-7, 11, 12]. However, dataflows for SNNs
have not been extensively studied. Mapping the computations
of a spiking conv layer involves directly associating two pa-
rameters (dimensions) with the 2-D systolic array to naturally
exploit spatial-locality and data reuse. These two parameters
are represented as d1 and d2 in Fig. 2. Ultimately, an optimized
tiling strategy over the six-dimensional space of input, weight,
output, and temporal data shall be adopted to maximize data
reuse, energy efficiency, and throughput.

One common dataflow approach is to perform SNN ac-
celeration in a temporally sequential manner while following
an optimized non-spiking ANN dataflow [10,13]. Clearly, this
approach is unable to parallelize computation along the tempo-
ral dimension and ignores the complications and opportunities
in dealing with complex spatiotemporal processing in SNNs.
We propose in-depth dataflow optimizations considering data
stationarity, variable tiling, and layer/network dependencies for
spiking CNNs (S-CNNs).

A. Stationary schemes for S-CNNs

Three stationary dataflows, namely, input stationary (IS),
weight stationary (WS), and output stationary (OS), have
been studied for non-spiking CNN accelerators [3-8]. In each

stationary scheme, one type of the data (i.e., IFmap, filter
weight, or Psum data) stays stationary in each processing
element (PE) of the array to minimize the movement of the
corresponding data. For SNNs, our key observation is that
the disparity among different data types must be considered,
particularly with respect to the low volumes of input/output
spike data for each spiking neuron. The IFmap data (input
spikes) are binary and hence require low data bandwidth and
are not the main bottleneck in data movement. Similarly, since
the final activation of each spiking neuron is binary, the output
spike data are not the bottleneck of data movement either. As
such, retaining the low-volume IFmap data in the systolic array
by choosing the input-stationary dataflow is not effective. The
OS and WS stationary flows can minimize the data movement
of high-volume multi-bit Psum and filter weight data and shall
be specifically focused on for SNN accelerators.

B. Variable Tiling

As discussed in Section II-B, the proposed parallelization
across multiple time points allows for systematic dataflow op-
timization via a proper choice of variable tiling. Nevertheless,
optimization of the variable tiling is a multi-faceted problem
and shall be based upon a careful balancing between data
reuse/movement, throughput, and energy efficiency involved
in processing spatiotemporal data. Under a given hardware re-
source constraint and resource allocation between the memory
and compute units, a systolic array accelerator may be either
compute-bound or memory-bound, which is further dependent
on the variable tiling in conjunction with the characteristics of
the CNN layer to be processed.

While the dataflow simulator proposed in Section V sup-
ports the evaluation of variable tiling in both the compute-
bound and memory-bound regimes, we discuss the impacts
of different tiling strategies under memory-bound operations
with respect to the high-volume multi-bit filter and Psum data,
the two main bottlenecks in data movement. In particular,
the positioning of temporal variable t has significant impacts
on the tradeoffs between runtime (throughput) and energy
dissipation.



Fig. 3: Mapping of a Psum-friendly output-stationary dataflow onto a systolic array accelerator.

1) Memory access/energy efficiency: The energy dissipated
in data movement can be orders of magnitude higher than that
of the corresponding MAC operation specifically when moving
data across the chip boundary [3-10]. In SNNs, Psums are the
most important contributor to data movement.

As the time parameter t goes deeper into the loop nest, it
changes more frequently. In other words, there would be more
incomplete computations performed over a larger number
of time points, producing a higher volume of Psums to be
stored. Although the final OFmap data (i.e., spike outputs) is
binary, the Psums are multi-bit. On the other hand, placing
parameter t in an outer-loop position helps reduce the amount
of Psums. This is because, under this case, the computation
of spike output of each processed spiking neuron spans over
a shortened period of time (clock cycles), leading to faster
conversion (summation) of multi-bit Psums to binary spike
outputs. This helps reduce data movement and hence improves
energy efficiency. We refer to dataflows in which t is placed
at an outer-loop position as a Psum-friendly dataflow.

2) Throughput: Due to the overlap between computation
and memory access, the throughput (runtime) of a systolic
array accelerator depends on the more dominant delay com-
ponent of the two [21,22]. In the memory-bound regime, the
filter weight access time dominates the overall runtime of an
accelerator.

In output stationary (OS) dataflows, placing parameter t
in an inner-loop position of the variable tiling opens up
the possibility for parameters related to the filter data to be
placed in outer-loop positions, leading to less frequent access
to multi-bit filter weight data and more filter data reuse.
Ultimately, doing so leads to a greater throughput or speedup
of the accelerator. We refer to such dataflows as filter-friendly
dataflows. Conversely, placing parameter t in an outer-loop
position forces the parameters related to the filter data to be
placed in inner-loop positions. This may degrade runtime as
it requires more frequent filter data transfers, hindering the
data loading before starting the systolic array computation.
Alternatively, throughput can be improved by adopting a
weight stationary (WS) dataflow as it immediately maximizes

the filter data reuse. However, this is typically at the cost of
higher energy dissipation due to the reduced Psum data reuse.

The above observations suggest that a careful trade-off
between throughput and data reuse (i.e., energy dissipation)
must be made while optimizing the dataflow for which the
positioning the time parameter t in variable tiling is one of the
key considerations. One of the proposed tiling strategy, which
enables the parallel processing of the temporal dimension, is
shown in Fig. 3, where data in a spatial 2D space such as
filter weight data associated with the R parameter are vector-
ized. The dataflow in Fig. 3 is an example of Psum-friendly
dataflow since all Psums generated in the array are for one
specific output position in the OFmap. At the same time, data
processing associated with parameters (T, M) is parallelized in
a simultaneous row-wise and column-wise manner. In general,
this dataflow is expected to have advantages in terms of energy
efficiency but results in greater runtime due to frequent filter
data transfers.

C. Layer-dependent dataflow reconfiguration

In a deep S-CNN, early conv layers tend to have larger
lateral IFmap and OFmap dimensions and a fewer number of
channels compared with late layers. For example in VGG-16,
H=224/R=3/C=3/M=64 for the first conv layer CONV1, and
H=14/R=3/C=512/M=512 for the 11-th conv layer CONV11.
If the binary spike output for each spiking neuron cannot
be computed quickly, all its Psums must be stored over an
extended period of time, producing more Psum data move-
ment. To prevent this from happening, one may place the
IFmap channel dimension C and filter spatial dimension R
at the inner-most loop positions. However, this may not be
the optimal strategy since it can lead to worsened filter data
reuse and PE utilization. This Psum data movement problem
gets more pronounced for large OFmaps for which there is a
tendency for storing Psum data for a larger number of spike
outputs.

As a result, early layers are deemed more Psum intensive,
pushing the tiling optimization more towards mitigating the
impact of Psum data movement. Conversely, the processing



of later conv layers with more filters is more severely bot-
tlenecked by the need to access to a larger amount of filter
data. Clearly, adopting a fixed variable tiling across different
layers or SNNs will lead to non-optimal results. Reconfiguring
variable tiling during runtime in a layer-dependent manner
may further improve the overall accelerator performance.
Comprehensive dataflow optimization considering all these
intertwined factors will be supported by the proposed SNN
dataflow simulator described next.

V. SNN DATAFLOW SIMULATOR

To support dataflow optimization over a large design space
while considering complex tradeoffs in the six-dimensional
space of input, output, weight, and temporal data, we introduce
an analytic simulator for SNN dataflows. As shown in Fig.
4, the simulator takes user-specified hardware configuration,
including technology node and area utilization for compute
units and memory, variable tiling, and targeted S-CNN as
inputs. It produces a detailed analysis of runtime (throughput),
memory access/data movement, and energy dissipation of the
systolic-array accelerator.

Fig. 4: An overview of SNN dataflow simulator framework.

A. Modeling of systolic array and memory

1) Array configurations: The most commonly used square-
shaped systolic arrays are considered. Each systolic array
comprises a set of processing elements (PEs), each containing
an accumulate (AC) unit and a scratchpad memory (a register
file). Note that since the spike inputs are binary, the more
complex MAC units are not needed.

2) Memory configurations: The memory hierarchy design
is critical to the overall performance and energy consumption
of spiking neural computation due to the SNN’s memory-
intensive nature. As a standard practice, three levels of the
memory hierarchy is assumed, as shown in Fig. 2: an external
memory (DRAM), on-chip L2/L1 buffers, and a small scratch-
pad memory in each PE. We model the L2 and L1 buffers
as double buffers, allowing simultaneous reads/writes to hide
access latency.

3) Compute and memory tradeoffs: Under a total accelera-
tor chip area constraint, the area of the compute units vs. that
of the memory can be varied. For example, the array size may
be set to 8x8, 16x16, 24x24, 32x32, 40x40, or 48x48, which
leaves the bulk of the remaining chip area to memory.

B. Performance/overhead analysis

With a given tiling strategy, the simulator generates the cor-
responding addresses for IFmap/filter/OFmap data access. The
simulator estimates runtime and memory access by generating
cycle-accurate read/write traces for each level of memory. We
follow the methods presented in [21,22] for runtime/energy
estimation.

1) Runtime/throughput: During each systolic array process-
ing iteration, the worst-case delay between computation/data
access determines the per iteration runtime. The worst-case
delay is accumulated over all iterations in the systolic array to
estimate the total runtime of the accelerator. The runtime of
one array iteration is modeled by the array computation cycle
number which is equal to the sum of the array height/width and
length of the input spike train since the data is fed from the left
and right edges of the array and propagate via uni-directional
links to the right/bottom end of the array. We model the data
access delay based on the bandwidth and read/write traces at
each level of memory.

2) Memory access and energy dissipation: Energy dissipa-
tion comes primarily from two sources: 1) compute energy
and 2) memory access energy. Compute energy is evaluated
by multiplying the number of AC operations with energy per
AC operation. Memory access energy dominates in the total
energy dissipation. If the data needed for array computation is
not present in the local scratchpad memories, it will be fetched
from the higher-level memories. The simulator traces the num-
ber of the read/write accesses to each memory. The dominant
energy dissipation due to memory access is evaluated based
on the access counts and the CACTI model [20].

TABLE II: Layer-specific comparison of tiling strategies in
output stationary (OS) dataflows for the VGG-16 net.

Normalized Performance for VGG16 CONV1 & CONV11 layers
Tiling Runtime/Energy EDPc EDP Id

strategy C1a C11b C1 C11 C1 C11
ref∗∗ T/M/E/C/R 367/32.4 10K/20K 119 20k 0.84X 0.005X
ref∗ T/R/E/M/C 100/100 100/100 100 100 1X 1X

E/R/T/M/C 37.6/0.48 62.4/64.6 0.18 40.3 555X 2.5X
M/T/E/C/R 359/32.4 10K/10K 117 1M 0.85X 0.0001X
E/T/C/M/R 215/7.19 50K/50K 15.5 20M 0.06X 0.000005X
C/M/E/T/R 2K/4K 931/10K 90K 100K 0.001X 0.001X
M/E/T/C/R 224/1.20 10K/10K 2.69 2M 37X 0.00005X
T/M/E/R/C 178/14.1 139/166 25.2 229 3.97X 0.43X

1© E-T E/C/T/M/R 30.9/2.88 18.6/138 0.89 25.6 112X 3.9X
2© B-T T/C/E/M/R 22.9/24 14.4/127 5.50 18.2 18X 6X
3© R-T C/T/E/M/R 22.5/35.7 13.8/106 8.03 14.7 13X 7X
a: CONV1. ref*: Existing SNN dataflow [30].
b: CONV11. ref**: Non-optimized SNN dataflow.
c: Energy-Delay Product. d: EDP improvement.

VI. RESULTS

By leveraging the proposed SNN simulator, we demonstrate
dataflow optimization under various systolic array configura-
tions and choices of stationary schemes for specific spiking
convolutional layers or across one entire spiking CNN net-
work. We focus on the accelerating CONV layers as they
account for over 90% of total computation [3, 21-22]. For



demonstration purposes, a 28nm technology node and two total
area constraints of 8mm2 and 16mm2 are assumed [3, 21].
We evaluate the performance and efficiency of the systolic
array accelerators for accelerating the inference of the pre-
trained SNN implementations of the Alexnet and VGG-16
networks, two deep learning architectures widely adopted for
image classification. These spiking CNNs have demonstrated
promising classification accuracy [28,29]. The two spiking
network models operate over 200-time steps with time-wise
packing of the binary spike inputs/outputs.

A. Layer-specific dataflow optimization

We perform comprehensive dataflow optimization for a
specific spiking conv layer by comparing a large number
of variable tiling strategies based on output stationary (OS)
dataflows. The targeted layers are CONV1 and CONV11 from
the VGG-16 net, a representative early and late conv layer, re-
spectively. Dataflow optimization has not been targeted in most
of the existing SNN works [13] with a few adopting a non-
spiking CNN dataflow in which the computations at different
time points are performed sequentially and the scheduling of
the computation at each time step follows the chosen dataflow
[13, 30]. One of the such SNN dataflows from [30] is denoted
by ref* and chosen as a baseline reference.

Table II reports a comprehensive comparison of the overall
accelerator performance across many tiling strategies. The ac-
celerator performance level varies over several orders of mag-
nitude, indicating the key importance of dataflow optimization.
For comparison purposes, one non-optimized dataflow denoted
by ref** in Table II is chosen as another reference. It is evident
that non-optimal dataflows can result in significantly degraded
overall performance.

We identify three near-optimal variable tiling schemes,
denoted by 1©, 2©, and 3© in Table II. We call dataflows 1©, 2©,
and 3© energy-targeted (E-T), energy-runtime balance-targeted
(B-T), and runtime-targeted (R-T), respectively. They favor the
optimization of energy or runtime or strike a good balance
between the two. As presented in Fig. 3, the advantages
of the E-T dataflow result from its Psum-friendly nature in
that the Psums for each binary spike output are accumulated
over a shortened time span, reducing the energy cost of
data movement. On the other hand, R-T dataflow shows the
advantages of filter reuse in that the parameters related to
filters are placed in outer-loop positions, leading to greater
throughput.

B. Joint optimization of tiling and stationary flows

It is meaningful to investigate how variable tiling and
stationarity of the dataflow can be jointly optimized. Fig. 5(a)
shows the throughputs of the E-T, B-T, and R-T variable tiling
when paired with the weight stationary (WS) and output (OS)
schemes for the VGG-16 CONV1 and CONV11 layers. It can
be seen that WS results in an improved throughput compared
with OS due to the maximized reuse of the filter data for both
layers, as discussed in Section IV-B2. Note that while R-T

Fig. 5: (a) The throughput of three dataflows for VGG-
16 CONV1 and CONV11 with OS and WS. (b) Energy
dissipation of various dataflows for VGG-16 CONV1 and
CONV11. AC refers to accumulation operation.

when paired with OS provides better throughput than E-T as
presented previously, with WS, E-T happens to offer higher
throughput than R-T for CONV1. This suggests that for early
layers, WS may exert a greater impact on throughput than
variable tiling.

Fig. 5(b) reports the breakdown of energy consumption for
the three tiling schemes when paired with OS or WS. As
discussed before, the Psums data is the most important factor
in energy efficiency, which is better handled by OS. As a
result, OS improves energy efficiency over WS. Among all
the considered tiling and stationarity combinations, paring OS
with E-T leads to the best energy efficiency.

C. Joint layer-dependent reconfigurable dataflow and
hardware optimization

We demonstrate the additional benefits brought by the pro-
posed layer-dependent configuration of variable tiling during
runtime based on OS dataflows. As discussed previously, the
three tiling schemes E-T, B-T, and R-T well represent distinct
trade-offs that can be made between throughput and energy
dissipation. We limit the tiling choice of each layer to these
three schemes while our simulator can support wide ranges
of design space exploration at a higher computational cost.
Furthermore, we explore accelerator hardware optimization by
allocating different area budgets for the compute units and on-
chip memory under a fixed total chip area constraint. This is
done by evaluating the overall performance by changing the
systolic array size, which correspondingly alters the amount of
on-chip memory under the constant total chip area. Note that
optimized accelerator hardware is not runtime reconfigurable
except for the variable tiling, which is reconfigured on a layer-
by-layer basis.



TABLE III: Joint layer-dependent dataflow and accelerator optimization under different optimization-targets for VGG-16.

VGG-16 CONV Layers (Area = 8mm2) Optimized
Target L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Array Size

Runtime 3© 3© 3© 2© 2© 2© 2© 3© 3© 3© 3© 3© 3© 24X24
Energy 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 32X32
EDP 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 2© 2© 2© 32X32

VGG-16 CONV Layers (Area = 16mm2) Optimized
Target L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Array Size

Runtime 3© 3© 3© 3© 2© 2© 2© 3© 3© 3© 3© 3© 3© 32X32
Energy 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 40X40
EDP 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 1© 40X40

∗ 1©, 2©, and 3© represents the E-T (Energy-Targeted) / B-T (energy-runtime Balance-Targeted)
/ R-T (Runtime-Targeted) dataflow respectively.

TABLE IV: Joint layer-dependent dataflow and accelerator
optimization under different optimization-targets for Alexnet.

Alexnet CONV Layers (Area = 8mm2) Optimized
Target L1 L2 L3 L4 L5 Array Size

Runtime 1© 2© 3© 3© 3© 24X24
Energy 2© 1© 1© 1© 2© 32X32
EDP 2© 3© 3© 3© 3© 16X16

Alexnet CONV Layers (Area = 16mm2) Optimized
Target L1 L2 L3 L4 L5 Array Size

Runtime 2© 2© 3© 3© 3© 32X32
Energy 2© 1© 2© 2© 3© 40X40
EDP 2© 3© 2© 1© 2© 32X32

Table III and Table IV summarize the results of joint
reconfigurable dataflow and hardware optimization based on
two total chip area constraints for VGG-16 and Alexnet,
respectively. The optimal variable tiling for all layers in the
network and the optimized accelerator in terms of its array
size are reported. The results are based on maximizing one of
the three performance targets across all layers of the network:
throughput (1/runtime), energy, and energy-delay product
(EDP). In general, targeting maximizing total energy efficiency
predominantly makes the optimal tiling for all layers to be E-
T, with some being B-T, which is well expected. Similarly,
targeting minimizing overall runtime makes the optimal tiling
R-T for most layers. The trend on the optimization of EDP
target is less visible, potentially due to the fact that both the
variable tiling and accelerator hardware are simultaneously
optimized.

Table V details the overall runtime, energy dissipation, and
EDP resulted from the optimizations performed in Tables III
and IV. We also report the results of using each of the two
reference tiling schemes ref* [30] and ref** for all layers.
For completeness of comparison, the results based on a fixed
default array size (16X16) are reported to demonstrate the
impact of hardware optimization. It is evident that the overall
performance improves with the chip area. The proposed joint
optimization improves EDP by up to 16.7X and by up to
282, 000X when compared with the variable tiling ref* and
ref** without hardware optimization, respectively.

VII. CONCLUSION

This work is motivated by a dearth of a knowledge base for
developing efficient SNN dataflows despite its crucial impact

on SNN accelerator design. A novel scheme is introduced to
enable the parallel acceleration of computation across multiple
time points, which further leads to large performance and
efficiency gains via optimization of the tiling strategy. We
demonstrate how the tiling strategy can be reconfigured on a
layer-by-layer basis and jointly optimized with the accelerator
hardware to achieve large gains in throughput and energy
efficiency. Furthermore, an SNN dataflow simulator has been
developed to aid systemic design space exploration. The pro-
posed techniques are able to improve EDP of the accelerator
by several orders of magnitude and more than one order of
magnitude over a non-optimized and existing SNN dataflow,
respectively.
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