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Abstract

Two fundamental difficulties are encountered in the numerical evaluation of time-
dependent layer potentials. One is the quadratic cost of history dependence, which
has been successfully addressed by splitting the potentials into two parts—a local part
that contains the most recent contributions and a history part that contains the con-
tributions from all earlier times. The history part is smooth, easily discretized using
high-order quadratures, and straightforward to compute using a variety of fast algo-
rithms. The local part, however, involves complicated singularities in the underlying
Green’s function. Existing methods, based on exchanging the order of integration in
space and time, are able to achieve high-order accuracy, but are limited to the case
of stationary boundaries. Here, we present a new quadrature method that leaves the
order of integration unchanged, making use of a change of variables that converts
the singular integrals with respect to time into smooth ones. We have also derived
asymptotic formulas for the local part that lead to fast and accurate hybrid schemes,
extending earlier work for scalar heat potentials and applicable to moving boundaries.
The performance of the overall scheme is demonstrated via numerical examples.

Keywords Unsteady stokes flow - Linearized Navier-stokes equations - Boundary
integral equations - Asymptotic expansion - Layer potentials - Moving geometries
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1 Introduction

In this paper, we consider an integral equation approach to the linearized, incompress-
ible Navier-Stokes equations (also called unsteady Stokes flow) in a nonstationary
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domain Dy = HrT=o D(t) with smooth boundary 'y = HZ=O I'(t):

ou
m =Au—Vp+g, x,1) € D7, (D)
V-u =0, (x,t) € Dr, 2)
u(x, 0) = up(x), x € D(0), 3)

subject to either Dirichlet (“velocity”’) boundary conditions
u(x, 1) = f(x, 1), x,1) eIy “)

or Neumann (“traction’) boundary conditions

(8“’ ) r)sik) m® =fxn. el ()
8Xk Bxi

While unsteady Stokes flow is of interest in its own right in modeling slow viscous
flow, with applications in microfluidics [16, 17], it also arises in solving the fully
nonlinear incompressible Navier-Stokes equations, where g = —u - Vu. In fact, most
widely used marching schemes for the nonlinear problem treat the advective term
explicitly so that g(x, #) can be considered a known function when marching in time
[2,4,5, 14,22, 26].

We are interested here in methods for the unsteady Stokes equations that
enforce the divergence-free condition exactly, without the need for a projection
step. Recently, we described a “mixed potential” method that accomplishes this task
through a Helmholtz decomposition of the forcing term g [8]. In the present paper,
we continue our investigation, begun in [15], of integral equation methods that rely
on the Green’s function for the unsteady Stokes equations—the so-called unsteady
Stokeslet. We will discuss the relative merits of the mixed potential approach and
the unsteady Stokeslet-based approach in the concluding section. For the moment,
we simply note that initial, volume, and layer potentials based on the unsteady
Stokeslet involve nothing more than convolution with the Green’s function without
any Helmholtz decomposition. Moreover, standard velocity or traction boundary con-
ditions can be imposed using the double layer or single layer potential, respectively.
These lead to well-conditioned integral equations of Volterra type.

For stationary boundaries, high-order accurate quadrature schemes have also been
developed [15], following the approach developed for layer heat potentials in [9, 20,
21]. That is, the layer potentials are split into two parts—a local part and a history
part, where the local part contains the temporal integration on the interval [r—§, ¢] and
the history part contains the temporal integration on [0, ¢ — §]. The local part involves
essential singularities in time, treated by exchanging the order of integration in space
and time, and carrying out product integration in time analytically. The history part
requires fast algorithms, but is more or less straightforward to discretize since the
integrals encountered are smooth in time.

When the boundary is nonstationary, the aforementioned scheme can still be used
to evaluate heat layer potentials accurately. As observed in [20], the heat kernel
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admits the following factorization:

Gr(x, 15 3(0), 7) =
HE B YR, T = 47r(t—t)e

1 _Ixo—y0l2 oyl _ &@O-y0)-G0O-y@)
= —©¢ 4(t—1) .e 4(t—1) .e 2(t—1) .
dr(t — 1)

Note that the first term on the right side of (6) can be dealt with via product integra-
tion, as in the stationary case, while the second and third terms are both smooth so
long as the boundary motion is smooth, since the factor % is then well behaved
as a function of t. Unfortunately, this simple modification fails for unsteady Stokes

layer potentials. The unsteady Stokeslet G(x, #; y, ) [11, 15] is given by the formula

— vl /4 —1) 1 — e lrl?/46—0)
Gx. 1y, 1) =2 -t®ry_l-e 1-25%r)
4 (t — 1) lIr)|? 2m||r||? e o

where r = x—y. As a result, when the boundary is moving, r = x—y(t) and the first
term can be handled as above but the second term on the right-hand side of (7) cannot
be factorized as a Stokeslet on a fixed domain modulated by a smooth function, due
to the presence of the factor ||r||? in the denominator.

Here, we present an accurate numerical scheme for the evaluation of the local
part of the unsteady Stokes layer potentials for both static and moving geometries.
For this, we split the local part further into two parts: [t — 8,7] = [t — 8,1 — €] U
[t — €, t]—the second part is treated asymptotically and the interval [t — §, ¢t — €] is
treated by a change of variables in the nearly singular integrals, as in [28]. We carry
out the asymptotic analysis only to lowest order for both the single and double layer
potentials. The double layer derivation is somewhat technical as compared with the
double layer heat potential [10, 28] because the kernel is not Riemann-integrable and
defined only in the principal value sense. Furthermore, although the first asymptotic
term, of the order /€, is local in space-time, the next term of order O (¢) involves an
integral on the entire spatial boundary. By contrast, asymptotic expansions for heat
layer potentials involve terms which remain local (although they involve higher and
higher order spatial derivatives for higher and higher powers of €.)

An important difference between the current approach and the earlier method of
[15] is that the spatial integrals are now singular rather than weakly singular and have
to be interpreted in the principal value sense. Fortunately, there are many high-order
rules available, such as the Gauss-trapezoidal rule of [1]. After combining all these
tools, the overall scheme is high-order accurate even for nonstationary boundaries
and the linear systems which arise from implicit time-marching schemes are well-
conditioned and amenable to solution using iterative schemes such as GMRES [24].

The paper is organized as follows. In Section 2, we state some needed integral
identities and summarize the relevant properties of single and double layer potentials
for unsteady Stokes flow. In Section 3, we derive the leading order asymptotic expan-
sions for layer potentials and in Section 4, we discuss the numerical treatment of the
nearly singular parts. In Section 5, a fully discrete numerical scheme is described
for the Dirichlet problem. Numerical examples are presented in Section 6 with some
concluding remarks in Section 7.

(6)
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2 Mathematical preliminaries

We turn now to a brief summary of potential theory for unsteady Stokes flow.
We refer the reader to [6, 7, 25] for a detailed analysis of the properties of these
parabolically singular layer potentials.

Definition 1 Let ¢ be a vector-valued function defined on I'7. Then, the single layer
potential operator S is defined by the formula

t
SIpl(x. 1) = /O /F GOy B0, s ®)

where G(x, t; y, 7) is defined in (7). The double layer potential operator D is defined
by the formula

! r ® n(y)
Di¢l(x,1) = D, 1y, D)¢(y. 1)ds(y)dr + Sz 2. Dds(y),
0 Jre ra 27|l
)
where
n(y) @ r+ (n@y) - —2185) -
D(x,1;y,T) = Il
8 (t — 1)
N ©r+r@n@) + 0@ HEA—452) | -t -
B 87 A2(t — 1)2
(10)
2
with A = Jﬂ ok The kernel in the second term of (9) is the contribution of the
instantaneous pressurelet p(X, t; y, ), denoted by
r
Y, T) = 8t — 1), 11
P 1Y, T) = 55 b =) (1)

where the Dirac § function is understood to satisfy the condition fé(S(t —1)dt = 1.

We decompose the single layer potential S[¢] defined in (8) into two parts—a
local part and a history part:

Sl = SLId] + Suldl, (12)

where the local part is
SLlpl(x, 1) = f,la fm) G, 1;y, D)@y, )ds(y)dr, (13)

and the history part is
Sulelx, 1) = foté /rm G, 13y, )Py, 1)ds(y)dr. (14)

It is convenient to split the double layer potential D[¢] into three parts: a local part
Dr[¢], a history part Dy [¢], and a pressure part Dp[¢]:

Di¢] = DLl¢]l + Dulel + Drld] (15)
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with .
DLIg] = / / D(x. 1 y, D, s (),
t—8 JT(1)

t—§
Dyld] = / / D(x. 1y, D, )ds()dr,
0 I'(r)

Doigti= [ RS g nas(y,
r@ 27|l
where the first and third terms on the right side of (15) are understood in the principal
value sense. For both layer potentials, the parameter § will be chosen to be a constant
multiple of whatever time step At is being used in a time-marching scheme. For kth
order accuracy, with k£ > 1, we set § = (k — 1) Az. The density ¢ will be represented
by a piecewise polynomial approximation with respect to the time variable. It is the
degree of that approximation which determines the time order of accuracy of the
numerical scheme. We refer the reader to [15] for a more detailed discussion.
We will make use of the following integral identities:

oo
/ eCdz = m, [% e Tdz= Y, (16)
—0o0
© | _ g%
/ 1= & N (17)
—00 Z
2 2
X | e 2,—z7
/ £ =T (18)
—o z -

The formulas (16) are well-known. To prove (17), let f(x) be defined by the
formula

1 e_’cZ2

It is easy to show that f(x) is well defined for x € (0, +00) since the integrand is
bounded as z — 0 and integrable as z — F00. Moreover, calculation shows that

lim, o+ f(x) = 0 and f'(x) = [ e dz = */T;? for x > 0. Integrating f'(x)

—00
from O to 1, we obtain (17). Similarly, let g(x) be defined by
© 1 e—x22 _ )sze_xzz
glx) = f 3 dz. (20)
o0 z

Then, lim,_, g+ g(x) =0 and g’'(x) = ffooo xe‘”zdz = /mx for x > 0. Integrating
g’ (x) from O to 1, we obtain (18).

Remark 1 To solve the equations (1) with velocity boundary conditions, we seek a
representation of the solution of the form

u(x, 1) = DIBI(x, 1) + Vigl(x. 1),
where .
Viglx, 1) = f / G(x. 1y, D)g(y, 1) dy dr.
0 Q(7)
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This satisfies the partial differential equation and divergence condition by construc-
tion [15]. Imposition of the boundary condition (4) leads to the boundary integral
equation

1
- §¢(x, 1) + D[pl(x, 1) = f(x, 1) — VI[gl(x, 1) 21

where D*[¢](x, t) denotes the double layer potential defined in the principal value
sense. We are primarily interested here in the solution of this equation and the design
of suitable quadrature methods and will assume that the volume source term and
corresponding potential V[g](x, ¢) are absent for the sake of simplicity.

3 Asymptotic analysis of the local layer potentials

While it is possible to treat the local parts of the single and double layer potentials by
quadrature techniques alone, it will turn out to be more efficient to split them further
into the sum of an aymptotic part and a nearly singular part:

Splp] = Scld] + Spe)[9] (22)

and
DLl¢] = Del@d]l + Do) @] (23)
where

t

S.0¢] = / /F Gy B0 s
t—e T
t—e

SLe) @] ::/ . /1:( )G(x,t;y, )¢y, t)ds(y)dr,

r— T
t

Delg] = / /F DO 9. s e
t—e€ T

t—e
Driold] = / / D(x. 1; y, D) (y, D)ds)dr.
—s Jr

The terms S¢[¢] and D, [¢] will be treated by asymptotic methods, with € < § chosen
to be sufficiently small to satisfy a given error tolerance.

To carry out the analysis, let the reference “target” point be denoted by x € I'(¢).
The unit tangent vector, unit normal vector, and signed curvature at x are denoted by
T, n, and «, respectively. The velocity at (x, ¢) is denoted by v. Assuming the curve
is parametrized in arclength s, starting from x, the “source” point y(s, t) € I'(r) has
the following Taylor expansion in s and ¢ — t:

y(s,7) =x+Ts — %n/cs2 — (- —1)+0E)+ 0t —1)).  (24)

Lemma 1 The leading order asymptotic expansion of the single layer potential is
given by

Sel@l(x, 1) = \/ET Q@ Té(x,1) + O(e). (25)
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Proof We first split the spatial integral in S¢[¢] into two parts:

/ _ / + / : (26)
(1) r(ONBEx  JT(0)NB.(x)

where B, (x) is a ball of radius a centered at x and B (X) is its complement in R2.
Here, a is a fixed small positive number. Clearly, ||r| is bounded away from zero

¢ eIl /46 —)
on F(‘L’) N Ba(X). Thus, the term =
1—e— Tl /4a—1)

27 |2

t
f / ~ O(e), (27)
t—e JT(T)NBS(x)

— 0 exponentially fast as ¢ — 0 for

T € (t — €,1), and the term approaches Combining these two

1
27 r|?”
facts, we conclude that

and hence,

t
Selpl(x, 1) = / / G, 1;y, )Py, 1)ds(y)dt + O(e). (28)
I'(t)NB, (x)

In the following asymptotic estimates, we expand quantities to sufficient orders in s
and ¢ — 7 to obtain first-order accuracy in €.

1
r=x—y=—Ts+En/csz-i-(v-n)n(t—r)-l-n-,

Ir)? = 5% + 0(s%), r”;il"; =T®T+ O(s), ds(y) = (1 + O(s%))ds.
(29)
Substituting (29) into (28), we obtain
oS /4(t T)
S[¢(xr>—/ f SI-TOT+06)
—a 47'[(t —
(30)

1 — e—s2/4(t—t)

g,z I-2TeT+ 0(s))> $(y, (1 + O(s*)dsd + O(e).

The change of variables z = \/‘ﬁ andu = /4(t — 1) gives s = zu, T = t—u?/4,

dsdt = —2(t — t)dzdu. Thus,

2/e poo [ =2
Selp1x, 1) =2/ / ( TeT
0 —oo \ 4
1 —e €Y
- 8_7:22 ==t T)) S(y(zu, t — u?/4), 1 — u?/H)dzdu + O(e).
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Here we have extended the domain of integration for the inner integral from
[—a/u,a/u] to (—o0, 00). Since u ranges from 0 to 2./€, [—a/u, a/u] will be
at least [—a/(24/€), a/(2:/€)]. Thus, such extension incurs an error of at most
O (¢). Note that x = y(0, r). Substituting (16) and (17) into the above expression,
we obtain

i e

Sc[pl(x, 1) = 4/ (E I-TQT) — e I— 2T®T)) dx, 1)+ 0(e), (32)

from which the result follows. ]

Lemma 2 The leading order asymptotic expansion of the double layer potential is
given by

t
Deldl(x, 1) = / fr DO D9, s )
I—e€ T

€ 1 1 1
= /—1(=v- k) I+ =-(v-n)T®T
n{<6v n+2/<> +3(V nT®

—(%l—i-%()n@n}(p(x,t)

(33)

+\/§{n®T+2T®n}¢S(X, t) + O(e).

Proof Analysis of the double layer is more involved because of the fact that it is
defined only in the principal value sense. We proceed by first expanding various
needed quantities in terms of the arclength parameter s:

1
r=x—-y=-Ts+ Enfcs2 + (v-nn( — 1)+ 0(53),
n(y) =n+ Tks + O(SZ),

1 5 3
nly) -r= —5ks +-n)(—1)+ 0(7),
n(y)®r=—n®Ts+<%n®n—T®T)Ks2+(v-n)n®n(t—t)—}—0(s3),

1
r®n(y)=—T®ns+(§n®n—T®T>Ks2+(v~n)n®n(t—t)—i—O(s3),

(¥, 1) = d(x, 1) + d,(x, 1)s + O(s?).
(34)
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In the last expression, ¢, is the derivative of ¢ with respect to arclength. Using
the same change of variables as for the single layer, namely z = 2 and u =

JV4(t—1)
J/4(t — 1), we have

73,2 -7
ftt—e o s2e 2T sdr = 8f02ﬁ 12 e dzdu = 8./e, (35)

(t—7)?

*32 -7
S - r)%dsdr =2 (2 [ P dzdu = 4/me,  (36)

2 2
t 1—e=s7/40=1) _¢2 /4(t— —s%/4(t—T)
S S AT e, dsdt = 16,/7e, (37)

2 2
t o0 1—e™s7 /400 _g2 /(4(1—1))e~5 /4(=T) 3
Ji—e 2ot =) I Iyt dsdv = 8 me. (39

The desired result follows from combining (10), (23), (29), and (34)—(38) after
simplifying the resulting expression. O

4 Quadrature methods for the nearly singular parts

We now consider the evaluation of the nearly singular contributions to the single and
double layer potentials, Sy ()[¢] and Dy ) [¢]. Inspection of the kernels shows that
we need to consider the following terms which involve singularities in either space
or time:

r @ n(y) e e l—e* l—e™™ — e ™

Ir]|2 t—1’ t—1)%’ At —1)° A2(t — 1)?

. (39)

_ _rl?
where A = e

In [15], it v;gls shown that by carrying out product integration in time first,
the resulting spatial convolution kernels have logarithmic singularities for which
there are effective quadrature rules. The full double layer kernel (including the
pressurelet) involves non-integrable singularities, so it is critical to use quadra-
ture rules that integrate functions in the principal value sense as well. Alpert’s
Gauss-trapezoidal rule for logarithmic singularities [1] accomplishes both tasks
with very high-order accuracy for discretizations based on equispaced points with
respect to an underlying parametrization of the curve I'(¢). For adaptive meth-
ods, based on representing the boundary as the concatenation of boundary seg-
ments, a variety of other high-order rules are available [3, 12, 13, 18, 19, 23,
29]. In all cases, the spatial quadrature rules avoid kernel evaluation at the sin-
gular point r = 0 itself. Thus, we will assume that r # 0 in the subsequent
discussion.

The remaining four terms in (39) involve singularities in time. We need to integrate
these terms when multiplied by a smooth function of t on the interval [t — §, t — €].
Assuming for simplicity that the smooth function is constant, we follow the approach
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introduced for heat potentials in [28] and apply the change of variables t — t = ¢€°.
Assuming the smooth function is constant as a function of t, we have

t—€ ,—h Ins .
dt = e % dz,
t—s I —T Ine
t—e 67)” Ind 7meiz _,
—Zdt: e 4 e *dz,
t—3§ ([ - T) Ine
=€ | _ ¢ Ind 4 2
[l [ (o e
t—§8 )‘(t - T) Ine ||1‘||

=€ 1 _ e * —pe ™ nd 16 w2 o |r)? Irl? —z
/ ﬁdt = / _4 <1 —e 4 € — &eizeiTe >eZdZ.
1—s At —T1) me Il 4

(40)
Note that all of the integrals in (40) are smooth in the new variable z (even for r = 0).
Following [28], in which only the first two integrals above arise, we use Gauss-
Legendre quadrature on the interval [Ine, Iné] to compute these integrals and the
corresponding temporal integration in both Sz (¢)[¢] and Dy ) [¢]. A detailed analy-
sis of the discretization error is nontrivial even for the case of the scalar heat kernel.
It is shown in [28], however, that the error in n-point Gauss-Legendre quadrature for
the single layer potential is of the order O(Ar%) + O (log (%) f(n)), where f(n)
is an exponentially decreasing function of n. The first term accounts for the use of
a krh order accurate approximation of the density in time. The second term is more
subtle. The order of accuracy is low with respect to the time step but compensated for
by permitting controllable precision by increasing n. Our numerical experiments are
consistent with the estimate above, but in practice, local error estimation based on the
desired precision will more efficiently determine the number of nodes required than
a priori analysis. Numerical experiments show that the number of quadrature points
needed is about 101log;,(1/€) to achieve a precision of € for |[r|| € [0, 1], assum-
ing that ||r|| is a smoothly varying function of t. It is likely that we could reduce the
number of nodes needed by a more specialized generalized Gaussian rule [3, 23, 29].

5 Numerical implementation

We illustrate the use of our hybrid scheme in solving the problem of unsteady
Stokes flow with velocity boundary conditions. The procedure follows that in
[15], and we refer the reader to that paper for a detailed discussion. In short,
for the history part Dy[¢], we make use of a Fourier spectral approximation of
the unsteady Stokeslet. This permits the use of the nonuniform FFT and recur-
rence relations, which reduces the cost of evaluation to O(N7 Nglog Ng), where
Nr is the number of time steps and Ng is the number of points in the discretiza-
tion of the boundary. Because the kernel separates in both space and time in the
Fourier basis, moving boundaries pose no difficulty. The local part Dr[¢] is han-
dled by the techniques outlined above in Sections 3 and 4. Because of the error
in the asymptotic piece, it is convenient to set the cutoff parameter € to the user-
specified tolerance ¢. The near-singular error is then controlled by the number of
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nodes in the near-singular part, which is of the order O(log(1/¢). It is also possi-
ble to forego the use of asymptotics entirely and use the near-singular quadrature
on [t — 8,t = &2] with an error of the order O(e) from the truncation in time.
This increases the number of Gauss-Legendre nodes needed, but could have advan-
tages in terms of robustness and is useful for numerical validation of the asymptotic
estimate and for step-size control. Finally, it was shown in [15] that any implicit
multistep semi-discretization scheme results in a system of second kind integral equa-
tions at each time step, even though the time-dependent Volterra integral equations
themselves are not of the second kind [6, 25]. Thus, iterative solution using
GMRES requires only a modest number of iterations to solve the resulting linear
system.

6 Numerical results

We illustrate the performance of our method in two moving geometries (Fig. 1):

(a) An ellipse moving with constant speed

0,t) =0.8 0) + 0.4¢,
1@, 1) =08 cos(0) 6 € [0, 27] @1)
y2(0,t) = 0.2sin(9),
(b) A circle deforming to an ellipse
0,t) = (0.54+0.2¢ 0),
n®.n = Jeos@) 0] 0<r<1. @2
y2(60,t) = (0.5 — 0.27) sin(0),

Example 1 Validation of the asymptotic expansion (25) of the unsteady Stokes single
layer potential.

02

01 r

01}

-0.2 -

-0.3 . . . . -0.6 . . .
-0.5 0 0.5 1 -0.5 0 0.5

Fig. 1 Two moving boundaries. Left: An ellipse moving with constant speed. Right: A circle morphing
into an ellipse. Red dashed line, initial position; blue solid line, final position
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10°

1 O()

10~ 1074

1078 10~8

estimated relative error
\
\

estimated relative error

10710 10~ 1072 10710 107¢ 1072
€ €

Fig.2 Asymptotic errors in the single layer potential (25). Red circles indicate numerical results and the
dashed blue line is the function y = 10x (both plotted on a log-log scale). Results for the moving boundary
(41) are plotted on the left and results for the moving boundary (42) are plotted on the right

To confirm the validity (and correctness) of the asymptotics for the single layer
potential, we calculate the single layer potential on two moving boundaries for ¢ €
[0, T] with T = 0.075 and density function

by, 1) = (cos(20y2(9, T),3y3(. T)) . (43)

A 12-digit accurate reference solution is computed using our near-singular quadra-
ture rules on the interval [0, T — €3] with €)s set to 10725, We use a 16tk order
accurate spatial integration rule on a mesh with 200 points and our hybrid asymp-
totic/numerical method for the near-singular part on [0, T — €] to 12-digit accuracy.
Thus, the net error compared with the reference solution should be dominated by the
asymptotic contribution on [T — €, T]. Figure 2 shows the relative /% error as we
vary € for the two moving boundaries in Fig. 1, which is clearly consistent with our
analysis showing that it should be proportional to €.

Example 2 Validation of the asymptotic expansion (33) of the unsteady Stokes
double layer potential.

10° 10°

10~

1074 ¢

1078

10°8¢

estimated relative error
estimated relative error

10710 107° 1072 1071 107 107 107
€ €
Fig.3 Asymptotic errors in the double layer potential (33). Red circles indicate numerical results and the

dashed blue line is the function y = 10x (both plotted on a log-log scale). Results for the moving boundary
(41) are plotted on the left and results for the moving boundary (42) are plotted on the right
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In our second experiment, we carry out the same analysis for the double layer
potential, with the same strategy for validation. The results are shown in Fig. 3,
clearly showing the linear decrease of the error with €.

Example 3 Unsteady Stokes flow for a bounded, moving domain with velocity
boundary conditions.

In our last example, we demonstrate the overall convergence of the full scheme for
unsteady Stokes flow in a moving geometry, solving the integral (21) (in the absence
of a forcing term). We use a fourth-order linear multistep method in time [15] (the
analog of the implicit fourth-order Adams-Moulton method for ODEs), and a 16th
order accurate quadrature in space. We consider an exact solution of the form

5
1 _ v.2
ux, t) = Zt_zg VIO () — yio, —(x1 — yj1))
j=l1

+ e Y sin(201)e™ (cos(xz), — sin(x2)) ,

(44)

where X = (x1, x2) and the {y;} are chosen to be equispaced on the circle of radius
2 centered at the origin, which encloses both domains of interest. In order to make
sure that the error in our solver is dominated by the order of accuracy of the polyno-
mial approximation, we set € = 1070 and compute the local quadrature with twelve
digits of accuracy. The number of spatial discretization points is 200 and the spatial
discretization error is also negligible. We place 100 test points inside the computa-
tional domain. Table 1 lists the numerical results for both moving boundaries. Here
Nr is the total number of time steps, Af is the step size, E is the relative 12 error at
the final time 7 = 1, and r is the ratio of relative /2 errors for successive time step
refinements. Thatis, r(j+1) = E(j)/E(j+1), where E(}j) is the error in column j.
This gives a rough estimate of the convergence order. Note that the geometric mean
of r is about 2%, consistent with the fourth-order convergence once At is sufficiently
small.

Table 1 Numerical results for solving the problem of unsteady Stokes flow with velocity boundary
conditions in the moving geometries shown in Fig. 1

Nr 20 40 80 160 320 640
At 1/20 1/40 1/80 1/160 1/320 1/640
Moving boundary (41)
E 5.6-1073 53-1077 1.7-1077 9.9.107° 5.8-10710 3.8-107!
r 107 3.0 17.5 17.2 15.4

Moving boundary (42)
E 471073 3.6-1077 1.6-1077 9.8-107° 6.0-10710 3.8-107!
r 130 23 16 16 15.8
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7 Conclusions

We have developed a new method for the accurate evaluation of unsteady Stokes
layer potentials in moving geometries. The scheme is based on splitting the local
parts of the layer potentials into asymptotic and nearly singular components. The
leading order asymptotic contributions are derived analytically and the nearly singu-
lar parts are handled accurately via a single Gauss-Legendre quadrature panel using
an exponential change of variables in time. Numerical experiments demonstrate that
the scheme converges at the expected rate for flows in bounded domains with veloc-
ity boundary conditions. One limitation of the current scheme is that the history part
is handled using a spectral approximation of the Green’s function [9, 10, 21]. We
are currently working on a marching scheme that represents the history part on an
adaptive spatial mesh using the “bootstrapping” method of [27].

It is worth noting that the recently developed mixed potential method for unsteady
Stokes flow [8] also permits high-order accurate marching schemes in moving
geometries. An advantage of that method is that it requires only harmonic and layer
potentials, simplifying the fast algorithm and quadrature issues. A disadvantage is
that it requires computation of the Helmholtz decomposition of the volume forcing
term. Unsteady Stokes potentials lead to better-conditioned integral equations when
using fully implicit marching schemes (at least for large time steps) and require only
integration of the volume forcing term against the Green’s function. We intend to
explore the relative performance of these two approaches in future work.

Funding information S. Jiang was supported by the National Science Foundation under grant DMS-
1720405 and by the Flatiron Institute, a division of the Simons Foundation.
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