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1. Introduction

The Abramowitz functions J, of order n, defined by
oo
Jn(2) :=/t”e‘t2_z/tdt, nez, (1)
0

are frequently encountered in kinetic theory (cf, e.g., [8,17]), where the integral equations resulting from linearization of
the Boltzmann equation have these functions (cf, e.g., [8,17,26,21]) as the kernels. The n-th order Abramowitz function J,
satisfies the third order ordinary differential equation (ODE) [1,2]

z] == 4+2]p=0 (2)
and the recurrence relations

1@ =—Jn-12), (3)

2Jn@)=Mn—1)Jn—2(2) + zJn-3(2). (4)

The integral representation (1) also leads to
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Jn(@) = Jn(2). (5)
Research on Abramowitz functions is rather limited. In [2], about two pages of Section 27.5 are devoted to Abramowitz
functions, which contain series and asymptotic expansions, originally developed in [1,25,38]. In [10], numerical computation
of Abramowitz functions is discussed when z is a positive real number, and, in particular, it is shown that the recurrence
relation for J, is stable in both directions. In [27], a more efficient and reliable numerical algorithm using Chebyshev
expansions has been developed for the evaluation of |, (n=0,1,2) when z is a positive real number.

For time-dependent or time-harmonic problems in kinetic theory, evaluation of Abramowitz functions with complex
arguments is often required. However, we are not aware of any work on the evaluation of Abramowitz functions in complex
domains.

In this paper, we develop an efficient and accurate numerical scheme for the evaluation of Abramowitz functions when
its argument z is in the right half of the complex plane (denoted as C+ = {z € C|Re(z) > 0}) for n > —1. We first note that
Chebyshev expansions are not good representations in the complex domain since Chebyshev polynomials are orthogonal
polynomials only when the argument is real. Second, when |z| is small, say, less than r for some r > 0, a series expansion
can be used to evaluate J,(z) accurately with small number of terms. Third, when |z| is large, say, greater than R for some
R > 0, the truncated asymptotic expansion can be used to evaluate J,(z) accurately.

We now consider the intermediate region D = {z € C* |r < |z| < R}, where neither the series expansion nor the asymp-
totic expansion can be used to achieve the required precision. Since 0 and oo are the only singularities of the ODE (2) satis-
fied by Jn, standard ODE theory [20, Chapter 16] together with the series expansion (7) shows that [,(z) = f;(z) + gn(2)Inz
where both f and g are entire functions. Thus, J, admits an infinite Laurent series representation in D by theory of complex
variables [5]. One may naturally ask whether J;(z) can be well approximated by a Laurent polynomial in D. It turns out that
such an approximation requires excessively large number of terms to achieve high accuracy. Furthermore, this global ap-
proximation is extremely ill-conditioned due to the fact that J, behaves like an exponential function asymptotically, making
its dynamic range too wide to be resolved numerically with high accuracy and rendering the scheme useless.

We propose two techniques to deal with the extreme ill-conditioning associated with the global approximation of J,
in D. First, we extract out the leading factor in the asymptotic expansion (18) of J,(z) and make a change of variable as
follows:

Jn(2) =\/§(§)"/2e—”un<v), vi=3 (g)w. (6)

It has been shown in [1,25] that U, (v) also satisfies a third order ODE with 0 a regular singularity and oo an irregular one.
Thus, U, (v) is analytic for z € D and therefore can be represented by an infinite Laurent series in v in the transformed
domain. The main advantage of working with U, (v) instead of J,(z) is that U,(v) has a much narrower dynamic range and
thus admits more accurate and efficient approximation.

Next, we divide the intermediate region D into several sub-regions D; = {z€ C*|r; <|z| < riy1} (i=0,...,M—=1,rp=r,
rv = R). By symmetry, we may further restrict ourselves to consider the quarter-annulus domain Q; = {z € C | Re(z) >
0,Im(z) >0,r; <|z| <riz1} (i=0,...,M — 1, rg =1, ryy = R). On each sub-region Q;, we approximate U, (V) via a Laurent

polynomial [24] in v where the coefficients are obtained by solving a least squares problem. Here the linear system is set
up by matching the function values with the values of the Laurent polynomial approximation on a set of N points on the
boundary of Q;. The least squares problem is still ill-conditioned and the conditioning becomes worse as N increases, but
its solution can be used to produce very accurate approximation to the function being approximated.

Here, we would like to remark that recently least squares method has been applied to construct accurate and stable
approximation for many classes of functions. In [7], it is used together with method of fundamental solutions to solve
boundary value problems for the Helmholtz equation. In [15], it is used to construct rational approximation for functions on
the unit circle. In [4,3], it is shown that a wide class of functions can be approximated in an accurate and well-conditioned
manner using frames and the least squares method. The least squares method is used in [16] to construct efficient and
accurate sum-of-Gaussians approximations for a class of kernels in mathematical physics and in [6,35] to construct sum-of-
poles approximations for certain functions. Needless to say, the least squares problem itself has to be solved using suitable
algorithms. Many such algorithms exist (cf.,, e.g.,, [11,14,18,28,32]).

For n > 3, we apply the recurrence relation (4) to compute J,(z). We note that the recurrence relation only needs the
values of J, for n=0,1, 2. Since many applications in kinetic theory require the evaluation of J_;, we provide the direct
evaluation of J_1 as well via our scheme since it is more efficient than using the recurrence relation.

Clearly, the scheme presented in this paper may be applied to the accurate evaluation of a very broad class of special
functions in complex domains. Very often these special functions satisfy an ODE with a finite number of singularities.
Therefore, they are analytic in complex domains excluding singular points and branch cuts. Complex analysis then ensures
that Laurent series is a suitable representation to such functions in the domain. With a careful choice of the domain and
suitable transformation, the least squares method becomes a reliable tool for constructing efficient, accurate and stable
approximation for these functions.

The remainder of this paper is organized as follows. Section 2 collects analytic results used in the construction of the
algorithm. Section 3 discusses numerical algorithms for the evaluation of Abramowitz functions. Section 4 illustrates the
performance and accuracy of the algorithm. The paper is concluded with a short discussion on possible extensions and
applications of the work.
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2. Analytic apparatus

The series expansion of J, takes the form

2Jn(2) = Z(a,") Inz+b)z. (7)
k=
For n = 1, the coefficients can be found in [2, §27.5.4] with aé]) (1) =0, a -1, b(]) 1, bm —J, bg) =3(1-y)/2,
and
(1) )] 2 (1)
M _ 2a,7, D _ Zb _5 + (3k* — 6k +2)a;

Y% T Trk—Dik—=2) k k(k — 1) (k — 2) o k=3, (8)

where y & 0.577215664901532860606512 is Euler’s constant. For n = —1, 0, the coefficients can be obtained from term-
by-term differentiation of (7), together with (3):

o’ =—k+1al P, b =—k+ Db — gD, k>o. ®)

For n = 2, the coefficients can be obtained from term-by-term integration of (7) together with J(0) = /7 /4, i.e., a(()z) =0,
b(z) /7 /2, and

0@ _ 1(] @ blm al(cl)
k _ k—1 1
a =——" b =—  ta k>1. (10)

We have the following lemma regarding the convergence of the power series Y 2, (“)zk and > 72 Ob(") k in the series
expansion (7).

Lemma 1. Forn = —1, ..., 2, the power series > oo a,(cn)z" and Y 12, b(">z" in (7) converge in C.

Proof. For n =1, direct calculation shows that

—1k2
_o0, o= _CED

(12k —m, k > 0. (11)

a2k—1

Thus, the radius of convergence for Y 2, a,i”)z" is oo by the ratio test and the series converges for all complex numbers.

We now split Y p2, bm) k into the odd and even parts:

oo

k= k=1
For the odd part, direct calculation shows
k(D
m __ (=2 (13)
A1 2k + DIk — DI

where (2k — 1)!!:= 2k — 1)(2k — 3) ---3 - 1. Using the root test and Stirling’s formula for factorials [5, p. 201], we observe
that the odd part converges for all complex numbers. For the even part, we claim that

2
b(]) —— k>1. 14
bl = fe—nE *= ()
We prove (14) by induction. First, (14) holds for k =1 by direct calculation. Now, assume (14) holds for 2k — 2, i.e.,
2
(1)
|b2k72| < [(k_z)']fl (]5)

By (11), it is easy to see that

1
1)
|a | m, k>1. (16)

Using the second equation in (8), we have
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b < 2lby_,| 3lay | 2lay,|
= 2k2k—1)2k—2) " k—1 ' 2k(Zk—1)(2k — 2)
3 21bS) | 1
2kk— 12k —=2)  [(k—D!]? (17)
4 1
S k- Dk —Dk—2P  [k=DIP
2
S k=D

where the first inequality follows from the triangle inequality, the second one follows from (16), the third one follows from
the induction assumption. Thus, the even part also converges for all complex numbers by the comparison and root tests,
and Stirling’s formula. Finally, the convergence of the power series for n = —1, 0, 2 follows from (9), (10), (11), (13), and
(14), the comparison and root tests, and Stirling’s formula. O

Even though (7) was originally derived under the assumption that z is positive real, it indeed makes sense for any z # 0.
Furthermore, it provides a natural analytic continuation [5, p. 283] of J, to C with the branch cut along negative real axis
and the principal branch for Inz chosen to be, say, Im(Inz) € (—m, 7].

The asymptotic expansion of J, via the expansion of Uy is given by [2, §27.5.8]:

™ m
T /V\"/2 c c
Jn(2)~,/§(§) ev(cg’>+17+%+---), z— o0, (18)

where v :=3(z/2)%3, ¢’ =1, ¢{” = 3n? 4+ 3n — 1)/12, and

12(k +2)cpy, = — (12k* + 36k — 3n* — 3n + 25)c",
1 (19)
+ 50 =2k +3 —m@k+3+2m". k=0,
Once again, (18) was originally derived under the assumption that z is real and positive [1,25]. One may, however, verify
that the expansion inside the parentheses on the right hand side of (18) is a formal solution to the third order ODE satisfied
by U, in (6). Furthermore, the exponential factor decays when argz € (—37”, 37”). Hence, (18) is valid for any ze€ C* as
Z— o0.

The following lemma is the theoretical foundation of our algorithm.

Lemma 2. Suppose that D C C is a closed bounded domain that does not contain the origin and the function f is analytic in D. Let
L(z) = Zl’:’i_Nl crz¥. Then

(i) if|f(2) = L(2)| <€ forzedD, then |f(z) — L(z)| <€ forz€ D;
(ii) if | f(2) — L(2)|/|f(2)| < € for z€ dD and f has no zeros in D, then | f (z) — L(2)|/|f(2)| < € for z € D.

Proof. This follows from the analyticity of L(z) on D and the maximum principle [5, p. 133]. O
3. Numerical algorithms
3.1. Series and asymptotic expansions

As we have shown in Lemma 1, the coefficients a,(cm and b,i") in (8)-(10) decay very rapidly and the corresponding series
expansions converge for any z # 0. However, they cannot be used for numerical calculation for large |z| due to cancellation
errors and increasing number of terms for achieving the desired precision. Thus, we will use the series expansions only for
|z] <1 (ie, r=1). In this region, both power series Y ;2 al({")zk and Y 22, b,((")zk converge exponentially fast and very few
terms are needed to reach the desired precision.

The coefficients c,(cn) in (19) diverge rapidly and the asymptotic expansion (18) has to be truncated in order to be of any
use. For any truncated asymptotic expansion, it is well-known that its accuracy increases as |z| increases. For a prescribed
precision €mach, one needs to determine N, — the number of terms in the truncated series, and R with |z| > R the applicable
region of the truncated series. This is straightforward to determine numerically. We have found that N, =18 and R =120
are sufficient to achieve 10~1° precision for J, (n=—1,..., 2).
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Fig. 1. Dynamic ranges of J,(z) and U,(z) in Q. For comparison purposes, both figures are plotted in the variable z. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

3.2. Construction of the Laurent polynomial approximation for the intermediate region

We now discuss the evaluation of J, in the intermediate region D = {z € C*|r < |z| < R}. First, by the conjugate
property (5), we only need to discuss the evaluation of J, in the first quadrant Q ={ze C|r<|z|<R,0<argz< %}. As
discussed in the introduction, it is very difficult to directly approximate J,(z) in Q due to its large dynamic range. We use
the transformation (6) and consider the approximation of U,(v) instead, U, has a very small dynamic range. Fig. 1 shows
logqo|J2(2)| in Q on the left and |U,(z)| in Q on the right, where the left panel shows that the magnitude of J,(z) ranges
from 1012 to 10°, and the right panel shows that the magnitude of U,(z) ranges from 1.0 to 1.7. Other J,(z) and U,(z)
exhibit similar pattern with much narrower ranges for |U,(z)| (n = —1, 0, 1). Thus, we will consider the evaluation of U, (v)
in Q.

To this end, we divide Q into several quarter-annulus domains:

T
Qi:={zeCri<|z| <rjy1,0<argz < 3}, i=0,...., M—1,r90=1, ry=R. (20)
We will try to approximate U,(v) in each Q; via a Laurent polynomial
U =LYy = Y dvk  zeq. (21)
k=—Ny

As noted before, Up(v) satisfies a third order ODE with 0 and oo as the only singular points [1,25]. Thus, Up(v) is analytic
in Q;. By Lemma 2, in order to guarantee the accuracy of the approximation in the whole domain Q;, it is sufficient to
ensure the same accuracy is achieved on the boundary of Q;, ie.,

N3
Up(v) — Z d,(c”vk <€, z€dQ;. (22)
k=—N1

The error-bound in (22) is achieved by solving the least squares problem:
AdD =f, Ay := vjf, fi=Un(vj), j=1,..., 4Np, (23)

where v; := 3(2]'/2)2/3, and z; are chosen to be the images of Gauss-Legendre nodes on each segment of dQ;, Ny is chosen
to ensure that the error of approximation of U, (v) by the corresponding Legendre polynomial interpolation on each segment
of 9Q; is bounded by €. The right hand side f in (23) is computed via symbolic software system MATHEMATICA to at least
50 digits. In other words, we do not use the actual analytic Laurent series to approximate U, on each quarter-annulus Q;.
Instead, a numerical procedure is applied to find much more efficient “modified” Laurent series for approximating U, on
each Q;.

The linear system (23) is ill-conditioned. However, since we always use d® in the Laurent polynomial approximation to
evaluate Up, we obtain (by the maximum principle) high accuracy in function evaluation in the entire sub-region as long as
the residual of the least squares problem (23) is small.

The least squares solver also reveals the numerical rank of A, which is used to obtain the optimal value of Ny = N, —
N1+ 1, the total number of terms in the Laurent polynomial approximation. It is then straightforward to use a simple search
to find the value for N1, which completes the algorithm for finding a nearly optimal and highly accurate Laurent polynomial
approximation for Uy in Q;.

Remark 1. We would like to emphasize that the Laurent polynomial approximation may not be unique, but this non-
uniqueness has no effect on the accuracy of the approximation.
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Remark 2. We have computed the integrals

' (z _1(z
P O c P 24
Jn(2) Jn(2)
aQ aQ
for n=—1, ..., 2 and found numerically that they are all close to zero. By the argument principle [5, p. 152], we have
In =2mi(Zn — Pp), (25)

where Z, and P, denote respectively the number of zeros and poles of J,(z) inside dQ. Since J,(z) is analytic in Q, it
has no poles in Q, i.e., P, =0. Thus, the fact that I, is very close to zero shows that Z, =0, that is, J, has no zeros in
Q. Further numerical investigation shows that functions |U,(v)| (n = —1,..., 2) range from 0.95 to 1.7 on dQ. Combining
these two facts, we conclude that the absolute error bound on the approximation of U, gives roughly the same relative
error bound.

3.3. Evaluation of J, forn=-1,...,2

Once the coefficients of Laurent polynomial approximation for each sub-region are obtained and stored, the evaluation
of Jn(2) is straightforward. That is, we first compute |z| to decide on which region the point lies, then use the proper
representation to evaluate J,(z) accordingly. We summarize the algorithm for calculating J,(z) forze Ct,n=-1,...,2 in
Algorithm 1.

Algorithm 1 Evaluation of J,(z) for ze C+.

procedure ABRAM(z, f)
> Input parameter: z - the complex number for which the Abramowitz function J, is to be evaluated.
> Output parameter: f - the value of Abramowitz function J,(2).
assert Re(z) > 0.

if |z| <1 then > z is in the series expansion region.
Use the series expansion (7) to evaluate f = J,(2).
else if |z| > 120 then > z is in the asymptotic region.

Set v =3(z/2)%3.
Use the asymptotic expansion (18) to compute U, (v).

set f=/% ()" e Un ().
else > z is in the intermediate region.
Set v =3(z/2)%/3.
Use a precomputed Laurent polynomial approximation (21) to compute U, (v).
set =% ()" e Un ).
end if
end procedure

Remark 3. All these expansions can be converted into a polynomial of a certain transformed variable. We use Horner's
method [23, §4.6.4] to evaluate the polynomial in the optimal number of arithmetic operations.

Remark 4. The accuracy of J,(z) deteriorates as |z| increases since the condition number of evaluating the exponential
function e~ is |v| and v has to be evaluated numerically via v = 3(z/2)?/3.

3.4. Evaluation of J, forn > 2

In [10], it is shown that (4) is stable in both directions when z is a positive real number. We have implemented the
forward recurrence to evaluate J,(z) for n > 2. We have not observed any numerical instability during our numerical tests
for ze C+.

4. Numerical results

We have implemented the algorithms in Section 3 and the code is available at https://github.com/zgimbutas/abramowitz.
Numerical experiments were performed on a desktop computer with a 3.10 GHz Intel(R) Xeon(R) CPU.
For the series expansion (7), a straightforward calculation shows that 18 terms in Zb,((")zk and 9 nonzero terms in

Zai")zk are needed to reach 10~1° precision for J, (n= —1,..., 2). For the asymptotic expansion (18), we find that it is

sufficient to choose Ny =18, R =120 for 10~!° precision. All coefficients are precomputed with 50 digit precision.
For the intermediate region, we divide |z| on [1, 120] into three subintervals [1, 3], [3, 15], [15, 120] and Q into Qq,
Q2, Q3, respectively. We use IEEE binary128 precision to carry out the precomputation step and solve the least squares
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Table 1

The relative L* error of Algorithm 1 over 100,000 uniformly distributed random points in
C+. The reference value is computed via MATHEMATICA to at least 50 digit accuracy. S denotes
the series expansion region and A denotes the asymptotic expansion region.

S Q1 Q2 Q3 A
Ja 15x 1071 21x10°13 4.4 %1016 6.4 x 10716 8.6 x 10716
Jo 1.3x10°1 24x10°1 2.2x10716 2.2x10716 2.2x 10716
I 1.1x 1071 24x10°1 4.7 x 10716 6.0 x 10716 8.0x 10716
J2 1.2x10°1 29x10°1 5.6 x 10716 8.4x 10716 1.2x 1071

Table 2

The maximum relative error for evaluating Jjoo using the forward recurrence relation (4) over
100, 000 uniformly distributed random points in the domain {z € C|Re(z) > 0, 0 < |z| < 1000}. The
reference values are calculated using MATHEMATICA with 240-digit precision arithmetic.

S Q4 Q2 Q3 A
13x1071 2.9 x 10713 13x10°1 2.0x 1013 3.7x 10713

problem with 10720 threshold for the residual. We have found that for Q; we need Ny =11, Ny =30 for Jo and Jq,
N, =10, Ny =32 for J_q1, and N =11, Ny = 32 for J,. For all four functions J, (n = -1, 0, 1, 2), we need N, =0,
Nt =30 for Q2 and N, =0, Ny =20 for Q3. The coefficients of Laurent polynomial approximations for J, (n=-1, 0, 1, 2)
on Q; (i=1, 2, 3) are listed in Tables B.4-B.15 in Appendix B.

Remark 5. The coefficients in Tables B.4-B.15 for Q; and Q3 do not have small norms. However, for Q», |%| < W =

0.254...; and for Qs3, ~20.087. It is easy to see that terms c; (%)J decrease as j increases. Alternatively, we

ol = s
could consider the Laurent series of the form Y ¢; (%)’ with v; =3(r;/2)?/® (r; is the lower bound for |z| in Q;). Then
the coefficient vector ¢ will have small norm, as required in [7,4]. However, this corresponds to the column scaling in the
least squares matrix and almost all methods for solving the least squares problems do column normalization. Thus, it has

no effect on the accuracy of the solution and stability of the algorithm.

Remark 6. The partition of the sub-regions is by no means optimal or unique. There is an obvious trade-off between the
number of sub-regions and the number of terms in the Laurent polynomial approximation. For example, one may use
a finer partition for the regions closer to the origin. We have tried to divide the intermediate region into 14 regions
with Q;:={z e CH|(v/2)"! < |z| < (v/2)!} (i=1,..., 14), and we observe that only 20 terms are needed for all regions.
However, our numerical experiments indicate that the partition has very mild effect on the overall performance (i.e., speed
and accuracy) of the algorithm.

4.1. Accuracy check

We first check the accuracy of Algorithm 1. The reference function values are calculated via MATHEMATICA to at least 50
digit accuracy. The error is measured in terms of maximum relative error, i.e.,

| Jn(zi) — Jn(zi)]
E:=max —————,
i [Jn(zi)|

where J,(z) :=e" Ju(z;) (vi :=3(zi/2)%/) is the reference value of the scaled Abramowitz function computed via MATHE-
MATICA, and ]n (z;) is the value computed via our algorithm. The points z; are sampled randomly with uniform distribution
in both its magnitude and angle in C+. Table 1 lists the errors for evaluating J, (n=—1,0, 1, 2) in various regions, where
we observe that the errors are within 10€mae, With the machine epsilon €mach & 2.22 x 1016 for IEEE double precision. In
general, the errors in the first intermediate region Q1 are slightly bigger due to mild cancellation errors.

For n > 2, extensive numerical experiments indicate that the forward recurrence relation (4) is stable for evaluating J,
in C+. The relative errors are shown in Table 2 for a typical run.

4.2. Timing results

Since all three representations (i.e., Laurent polynomials, series and asymptotic expansions) mainly involve polynomials of
degree less than 30, the algorithm takes about constant time per function evaluation in C+. We have tested the CPU time of
Algorithm 1 for evaluating J,(z) and compared it with that of evaluating the complex error function erf(z) = % foz e~ tdt.
The complex error function is a well studied special function that has received much attention in the community of scientific
computing (cf, e.g., [9,12,13,19,29-31,33,34,36,37]). Here we use the well-regarded Faddeeva package [22] to evaluate erf(z).
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Table 3
The total CPU time T in seconds for evaluating J,(z) using Algo-
rithm 1 and the error function erf(z) over 1,000,000 uniformly
distributed random points in 0 <Re(z) <10, 0 <Im(z) <10.
J-1(2) Jo(2) J1@ J2(2) erf(z)
T 0.44 0.41 0.44 0.41 0.34

The results are shown in Table 3. First, we note that erf(z) is an entire function which is somewhat simpler than the
Abramowitz functions and the Faddeeva package guarantees about 10~!3 accuracy. Second, the numbers of terms in all
three representations in our algorithm are chosen so that 10~1° precision may be achieved if the calculation were carried
out in 80-bit floating-point arithmetic (it achieves about 10~1> accuracy in double precision arithmetic as shown in Table 1).

In the asymptotic region, our algorithm is slightly faster than the numbers shown in Table 3, while the Faddeeva package
is faster by a factor of about 3. However, the efficiency in the asymptotic region (i.e., the asymptotic expansion) heavily de-
pends on the properties of the given special functions and is thus independent of the algorithm for other regions. Combining
all these factors, we may conclude that our algorithm is competitive with the highly optimized Faddeeva package.

5. Conclusions and further discussions

We have designed an efficient and accurate algorithm for the evaluation of Abramowitz functions [, in the right half
of the complex plane. Some useful observations in the design of the algorithm are applicable for evaluating many other
special functions in the complex domain. First, it is better to pull out the leading asymptotic factor from the given function
when |z| is large. Second, the maximum principle reduces the dimensionality of the approximation problem by one. Third,
the least squares scheme is generally a reliable and accurate method to find an approximation of a prescribed form. That
is, analytic representations should be used with caution even if they are available, as they often lead to large cancellation
error or very inefficient approximations or both.

Finally, though we have used Laurent polynomials to approximate Abramowitz functions in the intermediate region, there
are many other representations for function approximations. This includes truncated series expansion, rational functions (cf.,
e.g., [15]), etc. We have actually tested the truncated series expansion in the sub-region (i.e., Q1) closest to the origin for
Jn. Our numerical experiments indicate that the performance is about the same as the one presented in this paper.
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Appendix A. Zeros of J,(z)
We have used NINTEGRATE in MATHEMATICA to evaluate I, defined in (24). When WORKINGPRECISION is set to 100, |I,| are

about 1079 for n=—1,0,1,2. When it is set to 200, the values of |I,| decrease to 107160, By the argument principle, I,

can only take integral multiples of 27i. Thus, the numerical calculation clearly shows that J, (n=—1,0, 1, 2) have no zeros

in the intermediate region Q. Analytically, we can only show that J, has no zeros in the sector |arg(z)| < %. The proof is

presented below.
Lemma 3. If zo € C is a zero of J,(2), then so is Z.
Proof. This simply follows from the conjugate property (5). O

Lemma 4. Suppose that n > 0. Then J,,(z) has no zero in the sector | argz| < %.
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Proof. Let zo = Xxg +iyp € C+ be a zero of Jn(2). Then by Lemma 3, Zg is also a zero of J,(z). Consider functions f(t) =
Jn(zot) and g(t) = Jn(zot). Then f(1) =g(1) =0, and f, g and their derivatives decay exponentially fast to 0 as t — oo by
the asymptotic expansion (18).
The differential equation (2) implies that
tf" (&) — (n =1 f"(©) + 225 f(t) =0, (A1)
tg”(t) — (n — 1)g"(t) +2Z3g(t) = 0. (A2)
Multiplying both sides of (A.1) by g, integrating both sides from 1 to oo, and performing integration by parts, we obtain

¢}

0= /[tf”’g —(n—1)f"g+2z3fgldt
1

o o 00
tgf” T / f(g+g'tdt + /[—(n —1)f"g+223 fgldt
N ! ! (A3)
= f [—tf"g —nf"g+2z5fgldt
1
00
= /[—tf”g’ +nf'g + 223 fgldt.
1
Similarly,
00
0= / [—tf'g" +nf'g + 272 fgdt. (A4)
1
Moreover,
00 00
[iurg =g =- [eacse)
1 1
R
=—tf'g'| + / f'g'dt (A5)
vy
)
— g+ [ e
1
Adding (A.3), (A.4) and using (A.5) to simplify the result, we obtain
00 00
0=f' (g +@2n+1) / f'g'dt + 2(2(2) +Zp) / fgdt. (A.6)
1 1
Rearranging (A.6), we have
00 00
4(y§ — Xp) f | In(zot) Pdt = |20/ | Jj(z0)|” + 20 + 1) 202 / | J(zot)[? dt. (A7)
1 1

Since the right side of (A.7) and the integral on its left side are both positive, we must have y(z) - xé > 0 and the lemma
follows. O

Lemma5. J;(z) hasnozeroin D ={z € C+||z| > R}, where R is sufficiently large.
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Proof. Subtracting (A.4) from (A.3), we have

o0 o0

0= f t(f'g" — fghdt + 2(z5 — Z3) / fedt. (A.8)
1 1
That is,
4x0Y0 / | Jn(zot)|? dt = |z0/? / Im (Zot Jn—1(20t) Jn—2(Zot)) dt. (A.9)
1 1

In the domain D, J,(z) is well approximated by the leading term of its asymptotic expansion. Let zg = rei®® with rg > 0
and 6Op € [—m /2, r /2]. Substituting the leading terms of the asymptotic expansions into both sides of (A.9) and simplifying
the resulting expressions, we obtain

sin(20) ~ — sin(260/3). (A.10)

In other words, two sides of (A.9) have opposite sign unless they are both equal to zero, i.e., unless 6y = 0 or zg is a positive
real number. However, J,(x) >0 when x > 0, as seen from its integral representation (1). And the lemma follows. O

Appendix B. The coefficients of Laurent polynomial approximations for J,

We list the coefficients c; of Laurent polynomial approximations for evaluating J; (n=-1, 0, 1, and 2) on each quarter-
annulus domain Q; (i =1, 2, and 3) in Tables B.4-B.15. That is,

_[mo oz Ner—l 1\
Jn(Z)fv,/g(g) e Vv ch<;>, (B1)
J

=0
Table B.4
The coefficients ¢j (j=0, ..., 31) of the Laurent polynomial approximation given by (B.1) to eval-
uate J_1(2) to 19-digit precision in Q1 :={z€ C | Re(z) > 0,Im(z) > 0,1 < |z] <3}. N =10.
Real part Imaginary part
0.508404 632 08260678152 x 107 —0.174608 152994637 49948 x 10~
—0.745912235026 42620660 x 10~14 0.124626002 00296453012 x 1013
0.510342448 56324824207 x 10~ 12 —0.29429847146968217669 x 1012
—0.15527853485027100709 x 1010 0.263 158514306763 56796 x 10~ 12
0.26441404512287963095 x 1072 0.13983475139768244907 x 1079
—0.24748763871353093363 x 10~8 —0.37421319823017115933 x 10~8
0.482268582740909 04108 x 10~8 0.54340128932660141072 x 1077
0.216253553 72586607508 x 10~° —0.50872099870851161398 x 10~°
—0.36871705117848123797 x 10> 0.301340166 55759593920 x 10>
0.346284 048895070301 60 x 104 —0.73910823070405617219 x 107>
0.999777 374590 696 606 94 —0.57603083624530025151 x 10~*
—0.82327858162819693045 x 107! 0.84976858037261402153 x 1073
0.619747893 54573766566 x 103 —0.60513938190315115982 x 102
0.566 151822947 68079637 x 10~! 0.302907 889349 12727755 x 10~
—0.135136779991 090296 79 —0.115958015111906 82178
0.209718152 96188580167 0.349 173944 60827128828
—0.135593023 99958735143 —0.830316528 14884108813
—0.399898 988541072716 42 0.153226 178650705 16148 x 10’
0.173982716 38333840850 x 10" —0.207207 422 408 323786 54 x 10"
—0.38218064277297175142 x 10" 0.166 556450780677 18066 x 10!
0.574046 443 63343330931 x 10" 0.364413737004387 528 95
—0.60218557453822568030 x 10" —0.366998 894320715544 24 x 10"
0.386 640982933 78463250 x 10" 0.656 323653 065047 14202 x 10’
—0.256979491396 712909 42 —0.71730334400727831101 x 10"
—0.261383686 68366285752 x 10! 0.52101729871789289259 x 10’
0.33128062049048194583 x 10! —0.227447202390353 55439 x 10
—0.229475501 38820496670 x 10" 0.218248 685401302 64477
0.97998841946268481518 0.430819146717 14156557
—0.23273278868918701241 —0.308816 943645394016 56
0.135738167 24649184659 x 10~ 0.101035914 70624091510
0.647 176653107 87895482 x 102 —0.16204976273553372187 x 107!

—0.113530822404 96407813 x 102 0.91111645509511076869 x 103
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Table B.5
Similar to Table B.4, ¢; (j =0, ..., 29) for J_1(z) in Q2 ={z€ C|Re(z) >0,Im(2) > 0,3 < |z <
15}. N, =0.

Real part Imaginary part

0.999999 999999961 653 01
—0.83333333315888343156 x 10~
0.347222020992 14306218 x 1072
0.55459217936935525195 x 107!
—0.174770093 094 885 488 35
0.475579850792 85319878
—0.120447 196014882 44381 x 10’
0.241605 349770769 98585 x 10!
0.71401934124020221324
—0.603 675406 822 10374145 x 102
0.605451350482 09986187 x 103
—0.459463 671083 44566727 x 10*
0.28358573752155457724 x 10°
—0.135548 409522738422 75 x 10°
0.427223 358854162 76983 x 106
—0.18717734419017137932 x 10°
—0.766746 981331305086 47 x 107
0.566216201 19877490002 x 108
—0.245446 260540985694 13 x 10°
0.736 524060830223 39655 x 10°
—0.15200293963699011585 x 100
0.18157636339201652460 x 100
0.236970051052 14074056 x 10°
—0.60541865274209691412 x 10'0
0.13447347591183417529 x 10"
—0.165386003 26905832899 x 10'!
0.121080386 549490128 13 x 10"
—0.45881323770532016082 x 10'°
0.335597695 61348792357 x 10°
0.215904420673 76607526 x 10°

0.141 806 832 34758492536 x 10~ 12
—0.18355475502542401539 x 1010
0.66429512090231781628 x 1079
0.192090703 25965982796 x 10~/
—0.272358724156 55243493 x 10>
0.12329339800149018587 x 103
—0.33379989131254858384 x 1072
0.599204 046 47268786033 x 10!
—0.697 646996 51584141417
0.386077 962390076 72158 x 10!
0.324292794756 158453 98 x 102
—0.108419490933 56820460 x 10*
0.147667 142274551196 33 x 10°
—0.136296 993 207 088 38668 x 10°
0.93640538562551055857 x 106
—0.490 146 368 53552340206 x 107
0.192939969 196 33486842 x 108
—0.53379687761932413868 x 108
0.769699 843063 18530811 x 108
0.11898870845017090857 x 10°
—0.111677447076 65950837 x 10'0
0.370018 124502 86450398 x 10'°
—0.76973235212132828329 x 1010
0.105094 370501 90981895 x 10!
—0.82869660102657042317 x 10'0
0.87889333133786055548 x 10°
0.58320160548830925371 x 10'°
—0.64591210758282531847 x 10'°
0.300 129749468 95292083 x 10'°
—0.515536276 38896435829 x 10°

Table B.6
Similar to Table B4, ¢j (j=0, ..., 19) for J_1(2) in Q3 ={z€ C|Re(z) > 0,Im(2) > 0,15 < |z| <
120}. Ny =0.

Real part Imaginary part

0.100000 000000000002 11 x 10!
—0.83333333333337062447 x 10~
0.34722222219662307873 x 102
0.55459105063779291569 x 10!
—0.174766 524353 726 066 09
0.47552180369947961103
—0.120457 482 849866 30605 x 10"
0.244764 600694 64141708 x 10!
—0.19443570247379529707
—0.447750705 123 945998 08 x 102
0.421634597 09409223079 x 10°
—0.309908462 26113832847 x 10*
0.209 138849163 905853 68 x 10°
—0.128 959963 550 548 747 85 x 106
0.67085295525681611041 x 106
—0.263378771825866 16150 x 107
0.670963418948 17561042 x 107
—0.765712819081208 41443 x 107
—0.598 034480268 75748509 x 107
0.19209322347765871037 x 108

0.178673059693 17471010 x 10716
—0.97723166437483860903 x 10~ 14
0.185750995314 15563550 x 10~
—0.170367606 54072501033 x 107
0.720973 568 19624208386 x 1078
0.458 867227971042 14745 x 1077
—0.234325765233 68445886 x 10~*
0.14488404302693181855 x 1072
—0.512841062799477 56551 x 10~
0.11973398083848165562 x 10!
—0.187325842170831902 17 x 102
0.180645013045163968 11 x 103
—0.59296211153624558148 x 103
—0.108 214826 60282026169 x 10°
0.198088627 50865237678 x 106
—0.168133321 13288193078 x 107
0.859319504013814 14532 x 107
—0.265726278587 17182234 x 108
0.448016 842841870047 03 x 108
—0.300660136 10259277074 x 108
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Table B.7

The coefficients ¢j (j =0, ..., 29) of the Laurent polynomial approximation given by (B.1) to eval-

uate Jo(z) to 19-digit precision in Qq :={z€ C|Re(z) >0,Im(z) > 0,1 < |z| <3}. N, =11.

Real part

Imaginary part

—0.90832607641433626723 x 10716
0.123898 046 20230878343 x 10~14
0.189256 659364 46973863 x 10~ 12

—0.93436124699082728782 x 10~
0.210054713734263 56192 x 10~°

—0.279214696 04412283831 x 10~8
0.222106972 86892781643 x 10~/

—0.714946 136758 798 73372 x 10~/

—0.639545392 17286436591 x 106
0.114775999 34330755236 x 10~*

—0.944476013 85518738118 x 104
0.10005227131416389419 x 10"

—0.85416339695541973974 x 10~!
0.926 800887 58957499003 x 10~

—0.128309621833997329 14
0.182628019024 601 056 36

—0.220865249 636 18477505
0.167 009 795 045 197 070 12
0.62230841342939847177 x 107!

—0.461605904 35660301333
0.86282905145667261861

—0.10157725409050061178 x 10"
0.81127042933258073193

—0.405 888707 807 44941328
0.706462957 70216518095 x 10~
0.62576278207207491689 x 10~!

—0.560694 637 46156990540 x 10~!
0.20854565059593331201 x 10~

—0.377364113716308 56848 x 102
0.246580628 16300990462 x 103

—0.12971716857438253177 x 1015
0.123 740863457694 75560 x 1013
—0.435940424250019098 08 x 1012
0.71610240171455947215 x 10~11
—0.31570720100508497322 x 1010
—0.102677547 66776108185 x 1078
0.25281961277933484578 x 1077
—0.307710587817 15872427 x 1076
0.24264961215641857661 x 105
—0.12692783111400141826 x 10~
0.36582122360442313063 x 1074
0.425276796 32933790645 x 10~4
—0.11668274275597700974 x 102
0.75525130431164108091 x 102
—0.319992 796 72322587569 x 10!
0.101126017 89451786253
—0.247 947 862302 196 466 77
0.475744612 834386536 40
—0.705468 982760372 689 06
0.774053 364314386650 12
—0.548832 850036770366 33
0.896535548 33115686588 x 10~
0.342234269766 61392785
—0.504 149505276 123586 37
0.390200539 029 643 279 00
—0.186652 488 193406 157 55
0.513 693450241894 80453 x 10~!
—0.496 224602 98807761080 x 102
—0.107 066 204275949726 34 x 102
0.247 935486569 86345025 x 1073

Table B.8
Similar to Table B.7, ¢j (j =0, ..., 29) for Jo(z) in Q2 :={z<€ C|Re(z) >0,Im(z) > 0,3 < |z| < 15}.
N =0.

Real part Imaginary part

0.999999999 999 88637217
—0.83333333323131499972 x 10~"
0.868055556 89429826898 x 10!
—0.118 152065 14175737947
0.179693 330571877776 54
—0.243 373421697 903758 42
0.147644294 73872620763 x 10~!
0.233096 279379025 07555 x 10!
—0.164809 814902 887 64106 x 102
0.923051175444476 84520 x 102
—0.51600417922753718015 x 103
0.32464931691139105961 x 104
—0.223 140605 12920598345 x 10°
0.146047 082313218996 14 x 10°
—0.81145513740976803311 x 106
0.354579713 04583219348 x 107
—0.110840573 51725538629 x 108
0.179467 425877273553 94 x 108
0.358 000 946 662 486 988 96 x 108
—0.373049 554275698 00721 x 10°
0.144794204 88451058753 x 10'°
—0.359517888 16564166863 x 1010
0.600011150215066 62033 x 10'°
—0.607 805483 32669974319 x 10'°
0.155762 429613 36566425 x 10'°
0.552500835 98538675266 x 10'°
—0.92625760934489411655 x 100
0.695430356 36142439747 x 10'°
—0.256305707 64916110006 x 10'°
0.338633522975537 08594 x 10°

—0.86635400939375232846 x 10~ 13
0.22519321671024025250 x 10710
—0.20734497580441697938 x 108
0.96339270441630372077 x 1077
—0.23057043651727157918 x 10~
0.980983 545 24518453957 x 107>
0.127823214509 18857049 x 102
—0.51073707172260220779 x 107!
0.112915858278 76199238 x 10’
—0.172620962 517061806 00 x 10°
0.193287527 64190907274 x 10°
—0.159010533363 17843819 x 10*
0.90599663123843335441 x 10*
—0.26233323039837437629 x 10°
—0.981048077 56320344084 x 10°
0.182949487 040402 647 18 x 107
—0.131701608 09055557556 x 108
0.629 866054 85232028006 x 108
—0.21614451081432945159 x 10°
0.521946 990726 74118229 x 10°
—0.758676929174929413 54 x 10°
0.226 183986 96580184017 x 108
0.310062 196048 26621451 x 10'°
—0.87891548726761143921 x 10'°
0.138851365499019567 58 x 10!
—0.136224965 33575828228 x 10!
0.75732780185372212772 x 10'°
—0.128503 666477 73799533 x 10'0
—0.855417514506914 24086 x 10°
0.36939690751181780209 x 10°
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Table B.9
Similar to Table B.7, ¢j (j=0, ..., 19) for Jo(z) in Q3:={z€ C|Re(z) >0,Im(z) 20,15 < |z| <
120}. N, =0.

Real part Imaginary part

0.999 999 999 999 999 969 30
—0.83333333333319900902 x 107!
0.86805555553423816181 x 10~!
—0.118 152006 023 476 722 98
0.179689507 723 700402 85
—0.243237776508 14324772
0.11700570395152938411 x 10~"
0.237452 068 486 74586241 x 10!
—0.167588370665 20389957 x 10°
0.889665457 65421650942 x 10?
—0.394943740653 52553320 x 10°
0.140598 972 64393353350 x 10*
—0.40451355322086019935 x 10*
0.19384543104359811933 x 10°
—0.205176 883526 80136030 x 10°
0.170435218408 308 883 84 x 107
—0.87705077033153779372 x 107
0.267971952909 986 43893 x 108
—0.434487954511809 85546 x 108
0.266 930744198 889886 36 x 108

0.17593864033911935746 x 10~'6
—0.16846147898292977950 x 10~13
—0.114533 947 04160148063 x 10~

0.230483 859692902 84678 x 10~
—0.219453 859989587 48345 x 10~

0.120879546 26873876383 x 107>
—0.381038547 98729283635 x 10~*

0.41346400173493025458 x 1073

0.204376 305776 96960942 x 107!
—0.12064317238786081373 x 10’

0.339120804377 190498 06 x 102
—0.624 748204 64709927286 x 103

0.808763 586 506 78996996 x 10*
—0.745595997 90322239386 x 10°

0.480862 899008954 12320 x 106
—0.205 186473609 18521409 x 107

0.499039 829050756 29408 x 107
—0.308 748073455 14436382 x 107
—0.141981907 20585577590 x 108

0.25674511583029811722 x 108

Table B.10

The coefficients c; (j=0, ..., 29) of the Laurent polynomial approximation given by (B.1) for eval-

uation of J1(z) to 19-digit precision in Q1 :={z€ C|Re(z) >0,Im(z) > 0,1 < |z| <3}. N; =11.

Real part

Imaginary part

0.110051983 42846485755 x 101>
—0.102537173 90952836750 x 1013
0.35541980746147250213 x 10712
—0.57065663426773316925 x 10~
0.21377942402322032801 x 10710
0.92504177773563681659 x 1079
—0.219581322 06773784869 x 10~/
0.267 441468 13435088020 x 1076
—0.214179643 38884026393 x 105
0.116052298034 03698059 x 10~4
—0.369022 862459559263 31 x 1074
0.999 988 860265 205 37047
0.417 648 343 367 488 728 67
—0.128 804358 76254801279
0.100017970753 93494104
—0.123269945 33416519599
0.19390815724013910177
—0.304462 209484766 03076
0.402171783043 94830919
—0.390454113 78013014641
0.202994 860670515 64492
0.100869 854237 93876517
—0.34706311627097173040
0.397171277728308542 81
—0.276 279701 906 586 144 95
0.120939 113708 687 558 32
—0.28845724988884421284 x 107!
0.97253793671434469328 x 1073
0.11989911484170176670 x 1072
—0.204365653 48663071365 x 1073

—0.69497479897694901798 x 1016
0.573447330612984007 54 x 10713
0.17138035947739436987 x 10712

—0.800977526 80384861353 x 10~ 1
0.17745761143488866634 x 109

—0.234916902 82446912066 x 108
0.18715255541162079236 x 1077

—0.60538192727561566571 x 1077

—0.55166777471060148467 x 106
0.100892 068271577 76627 x 104

—0.857345236 30464858844 x 10~*
0.499847 603 95796500059 x 1073

—0.21759152835287886250 x 102
0.723846234663 04053406 x 1072

—0.182046813 78409207336 x 10~
0.32494324768891981532 x 10!

—0.310480560080575564 12 x 10~

—0.280943713 75086694729 x 10~
0.187014328290 689 364 87

—0.429651957 392473 659 92
0.642 709594 134958 603 86

—0.677 127070 547 480 866 83
0.48943085630911667832

—0.203 886519877 986375 36

—0.369206393 78264876881 x 102
0.67168398413971524804 x 107!

—0.454423099 541 98940539 x 10~
0.15236745276873557399 x 10!

—0.254009262 50086296020 x 102
0.14672057879876671250 x 1073
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Table B.11
Similar to Table B.10, ¢; (j=0, ..., 29) for J1(z) in Q2 :={z€ C|Re(z) >0,Im(z) > 0,3 < |z <
15}. N =0.

Real part Imaginary part

0.100000000 00001559822 x 10"
0.416 666 666 637 650457 92
—0.121527775756 02031881
0.641395990107 30684601 x 10~!
0.19340333876868250914 x 10~
—0.310853962 88117458325
0.140761123 93497740595 x 10"
—0.53034603582858591137 x 10"
0.168439698 37042581097 x 102
—0.308 961039620087 43537 x 102
—0.123540786 58896338072 x 10°
0.164 860287291 89802772 x 104
—0.79365600281962572617 x 10*
—0.17876338162032969792 x 10*
0.360421953 74432098049 x 108
—0.338183293 08700649502 x 107
0.194492 028977494948 34 x 108
—0.79047083372251398893 x 108
0.22787889419550420217 x 10°
—0.415506 385950006 04177 x 10°
0.172907 123696 17688112 x 10°
0.16763777971399520871 x 100
—0.630971170189396346 89 x 100
0.126396237 08614918540 x 10"
—0.16021424838185937866 x 10'!
0.12194470039177973074 x 10'!
—0.366 175697 40928099053 x 100
—0.208 824308 492 656 407 04 x 10'°
0.222 563247596 89985206 x 10'°
—0.573572754664 66452587 x 10°

—0.64432580975613771082 x 1013
—0.309292903 803 16585308 x 10!
0.13847887495450779512 x 1078
—0.11804143890505963878 x 10~°
0.52525129103659222882 x 107>
—0.142099426 15180352958 x 1073
0.22843270818239797021 x 102
—0.12508426902104267053 x 10!
—0.39633859151173122745
0.13366867242921989470 x 102
—0.23100296557839310161 x 103
0.277980113 16789725915 x 10*
—0.25085379438345641690 x 10°
0.17337711302201102756 x 108
—0.909323038984 62350515 x 10°
0.342 839554 43872702745 x 107
—0.746 254995983527 43942 x 107
—0.617040364456 367 43642 x 107
0.135424549695 310366 97 x 10°
—0.65483373280300662671 x 10°
0.196 648 952 33379210138 x 10'°
—0.40005075227615193294 x 10'°
0.514426712304306 95393 x 10'°
—0.24250533919233200087 x 10'0
—0.51063223260105245852 x 10'0
0.128012956 58115048467 x 10!
—0.139069953 24951658335 x 10!
0.82351413910371916318 x 1010
—0.236069992 598 179064 85 x 10'°
0.18100167963268264995 x 10°

Table B.12
Similar to Table B.10, ¢; (j=0, ..., 19) for J1(2) in Q3 :={z€ C|Re(z) >0, Im(2) >0, 15 < |z| <
120}. Ny =0.

Real part Imaginary part

0.100 000 000 000 000 000 88 x 10!
0.416666 666 666 656 932 68
—0.12152777777532530135
0.641396 602 06844395055 x 10~!
0.193403 76146506349534 x 107!
—0.310929014736 007 604 33
0.14108230204421526148 x 10
—0.53814287035192935174 x 10
0.180990405 065 459285 10 x 102
—0.44222521101771005259 x 102
—0.492817125056098 92221 x 10°
0.19120731039799297866 x 10*
—0.184802964 07139556113 x 10°
0.11949451283301751133 x 108
—0.514113640570026 63824 x 105
0.109735353928 19828712 x 107
0.17331435565199135031 x 107
—0.191271957480326 46177 x 108
0.50801574443329963657 x 108
—0.47910288059234253994 x 108

—0.37104682094436741073 x 1016
0.106 331057 86560679943 x 10~ '3
—0.81783483309751920964 x 1012
—0.532067 463095992 15652 x 10~10
0.147 143090852591 08266 x 10~7
—0.12847633757844741159 x 105
0.640298 043092 67135469 x 1074
—0.19729163937458920069 x 102
0.339592660467 10551528 x 10!
—0.46443129149364017364 x 10~!
—0.146 733386982 74539790 x 102
0.446 546557 664915277 24 x 103
—0.765292571761824189 14 x 104
0.880375481155049 96527 x 10°
—0.705634002 81206830770 x 106
0.390994526 69156576703 x 107
—0.143550076 61133573735 x 108
0.31757253245227946371 x 108
—0.33700657946301331333 x 108
0.61171907037609011958 x 107
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Table B.13

The coefficients ¢j (j =0, ..., 31) of the Laurent polynomial approximation given by (B.1) to eval-
uate J»(z) to 19-digit precision in Q1 ={z€ C|Re(z) >0,Im(z) > 0,1 < |z| <3}. Ny =11.

Real part

Imaginary part

0.31866632685819612221 x 10~16
0.23374202488114714431 x 101>
—0.12464763262921601144 x 1012
0.549389 148673 89395195 x 10~ !
—0.12158575842106281373 x 10~°
0.16018003273928560165 x 1078
—0.119414758 81449767865 x 10~/
0.153 068 687 90345339446 x 10~/
0.80407254481241384544 x 1076
—0.11465040286971344849 x 10~
0.92698417450695281624 x 1074
0.999481719915493 82451
0.14187062252412931802 x 10’
—0.12647835873372535821
0.186035981 11474663325
—0.287 649487 485808553 21
0.37671933372380252436
—0.286 735627303 066 85162
—0.252608 025036 984377 99
0.14171261472971538418 x 10’
—0.294579672497 08858073 x 10!
0.402 844065 18941590462 x 10!
—0.381289500139206926 43 x 10!
0.224752491800986 00179 x 10’
—0.298455 079954 699 949 80
—0.895442 874444819929 84
0.101756 395675792407 08 x 10’
—0.587 887788 65800093021
0.200093 190200811 82763
—0.35965432090839096074 x 10!
0.167694 205585345301 17 x 1072
0.27256710553195448121 x 103

0.62278738969830137987 x 10~16
—0.58368186829092031391 x 10~ 14
0.202591995 28722770999 x 10712
—0.306881697 70355401691 x 101
0.20706119567919592298 x 10~ 12
0.88216842473436341238 x 1079
—0.188 155398002 92924303 x 10~/
0.22567034551573649710 x 1076
—0.17772860498030423720 x 10~
0.88993097363922792729 x 1073
—0.171530442 583568098 74 x 104
—0.150461944 586 96453245 x 1073
0.18349141691729387994 x 102
—0.114282767 05995908659 x 10~
0.506 468 994 33597524505 x 10!
—0.17268243476553171463
0.464 960 764 809 206 824 74
—0.992 159994955 746 183 74
0.16511988403580568251 x 10!
—0.20381244501795426809 x 10!
0.157 820772036 35430607 x 10’
—0.377233543 35564292819 x 10~
—0.199070648 76530093167 x 10
0.333439877698 48875142 x 10!
—0.32351706541913757406 x 10
0.204544 678700893 65942 x 10!
—0.774743 518 505 746 398 68
0.83503119281933322786 x 107!
0.776897 300954 77593636 x 107!
—0.437976033 67743883119 x 10~"
0.957563 65430182522746 x 1072
—0.766 126 822 66254092889 x 1073

Table B.14

Similar to Table B.13, ¢ (j=0, ..., 29) for J2(2) in Q2 ={z€ C|Re(z) > 0,Im(z) > 0,3 < |z| <15}. N =0.

Real part

Imaginary part

0.999999 999 999980 618 08
0.141666 666 668292 75403 x 10!
—0.121527779 888 094 063 80
0.18566756593083182116
—0.351998911 746 989 632 56
0.745 140284771892 955 14
—0.156 986 886654073 007 95 x 10’
0.244026 634 96436078603 x 10!
0.425647 783 84044014501 x 10!
—0.866287 814850868846 13 x 102
0.76780431897157477513 x 103
—0.56054291413858448509 x 10*
0.347097 600 11543563256 x 10°
—0.172687 375146298 48298 x 10°
0.61187840164952315907 x 106
—0.90229280253909143653 x 10°
—0.582396935100244 39315 x 107
0.555853053 03478347757 x 108
—0.26301929032497527308 x 10°
0.840529096 16481142218 x 109
—0.186 577921546 06295188 x 10'°
0.259153 889 04113076082 x 10'°
—0.925179224 70966062167 x 10°
—0.51036926935170978903 x 10'°
0.13657170819172273067 x 10'!
—0.18234815409451008101 x 10!
0.14355121657220596589 x 10'!
—0.61032052837541757328 x 100
0.842751754996 28369228 x 109
0.15857079566801991882 x 109

0.162482521133093 15678 x 10~12
—0.23049278428420443693 x 10~10
0.10578621411215754890 x 10738
0.28424278401127180014 x 1078
—0.241909745 76544113333 x 107>
0.12627505833721768389 x 103
—0.369069 066 997 73089097 x 102
0.71150880132384387316 x 10!
—0.920280282 347422 81569
0.696 596 700416 12025801 x 10!
0.12336022855791130638 x 10"
—0.86886243977848514246 x 103
0.13997432791721954713 x 10°
—0.139229094314962 94516 x 10°
0.100633 027909 147 70506 x 107
—0.550900707 20520207541 x 107
0.22810067701144771236 x 108
—0.68226520995783255732 x 108
0.12293641811239037282 x 10°
0.211968273 244948 84533 x 108
—0.10131267803607086455 x 10'0
0.38427156992160196076 x 10'°
—0.860343 020334517 82637 x 10'0
0.126265 243 143 44868926 x 10!
—0.11301642152404259095 x 10!
0.355467235 14474331442 x 1010
0.45839423517954065893 x 10'°
—0.645093 443 22401839565 x 10'0
0.327738449951987 87342 x 10'°
—0.605 703525454 16858098 x 10°
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Table B.15
Similar to Table B.13, ¢j (j =0, ..., 19) for J»(z) in Q3 ={z€ C|Re(z) > 0,Im(z) > 0,15 < |z <
120}. N, =0.

Real part Imaginary part

0.100000 000 000000 002 68 x 10!
0.141666 666 666 666 076 32 x 10!
—0.121527777 777735963 34
0.185667 438 38222558548
—0.351994534 212129746 48
0.745056 201785816 04077
—0.156 944 002 222 83724037 x 10
0.246550589 99322356159 x 10!
0.33607089142515892731 x 10"
—0.69853332457831300099 x 102
0.55610818499114251623 x 103
—0.373824599719869 18636 x 10*
0.23868572841373643577 x 10°
—0.14415275031702837209 x 106
0.75853591811873756981 x 10°
—0.309728616 687691455 38 x 107
0.85376658237794416873 x 107
—0.12288668565761833934 x 108
0.26869963259519375012 x 106
0.163768535791747 02084 x 108

0.16274386801955295004 x 10716
—0.102878834626 94876761 x 10~13
0.21278064340420781315 x 1071
—0.213467 395888552059 15 x 10~°
0.108 100209498 54670351 x 1077
—0.127583354158 38672536 x 106
—0.191947509 13862712585 x 104
0.146930730940053 25564 x 1072
—0.57088317524506061035 x 10~
0.143780143817 58075690 x 10!
—0.24643410535733376707 x 102
0.27993273451335282871 x 103
—0.177305292 58353887568 x 104
—0.956973793 34253398976 x 103
0.14271567167383035412 x 106
—0.15003099051227929984 x 107
0.845725298441645 18814 x 107
—0.27945310142205107664 x 108
0.499737 837887 75688447 x 108
—0.359498303 22064479962 x 108

where v :=3 (%)2/ 3, (B.1) is obtained by combining (6) and (21), and rewriting the Laurent polynomial as a power series in
1 by pulling out the factor vNz,
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