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A numerical scheme is developed for the evaluation of Abramowitz functions Jn in 
the right half of the complex plane. For n = −1, . . . , 2, the scheme utilizes series 
expansions for |z| < 1, asymptotic expansions for |z| > R with R determined by the 
required precision, and least squares Laurent polynomial approximations on each sub-
region in the intermediate region 1 ≤ |z| ≤ R . For n > 2, Jn is evaluated via a forward 
recurrence relation. The scheme achieves nearly machine precision for n = −1, . . . , 2 at a 
cost that is competitive as compared with software packages for the evaluation of other 
special functions in the complex domain.
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1. Introduction

The Abramowitz functions Jn of order n, defined by

Jn(z) :=
∞

∫

0

tne−t2−z/tdt, n ∈ Z, (1)

are frequently encountered in kinetic theory (cf., e.g., [8,17]), where the integral equations resulting from linearization of 
the Boltzmann equation have these functions (cf., e.g., [8,17,26,21]) as the kernels. The n-th order Abramowitz function Jn
satisfies the third order ordinary differential equation (ODE) [1,2]

z J ′′′n − (n − 1) J ′′n + 2 Jn = 0 (2)

and the recurrence relations

J ′n(z) = − Jn−1(z), (3)

2 Jn(z) = (n − 1) Jn−2(z) + z Jn−3(z). (4)

The integral representation (1) also leads to

* Corresponding author at: Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA.
E-mail addresses: zydrunas.gimbutas@nist.gov (Z. Gimbutas), shidong.jiang@njit.edu (S. Jiang), lluo@odu.edu (L.-S. Luo).

https://doi.org/10.1016/j.jcp.2019.109169

0021-9991/ 2019 Elsevier Inc. All rights reserved.



2 Z. Gimbutas et al. / Journal of Computational Physics 405 (2020) 109169

Jn(z̄) = Jn(z). (5)

Research on Abramowitz functions is rather limited. In [2], about two pages of Section 27.5 are devoted to Abramowitz 
functions, which contain series and asymptotic expansions, originally developed in [1,25,38]. In [10], numerical computation 
of Abramowitz functions is discussed when z is a positive real number, and, in particular, it is shown that the recurrence 
relation for Jn is stable in both directions. In [27], a more efficient and reliable numerical algorithm using Chebyshev 
expansions has been developed for the evaluation of Jn (n = 0, 1, 2) when z is a positive real number.

For time-dependent or time-harmonic problems in kinetic theory, evaluation of Abramowitz functions with complex 
arguments is often required. However, we are not aware of any work on the evaluation of Abramowitz functions in complex 
domains.

In this paper, we develop an efficient and accurate numerical scheme for the evaluation of Abramowitz functions when 
its argument z is in the right half of the complex plane (denoted as C+ = {z ∈ C| Re(z) ≥ 0}) for n ≥ −1. We first note that 
Chebyshev expansions are not good representations in the complex domain since Chebyshev polynomials are orthogonal 
polynomials only when the argument is real. Second, when |z| is small, say, less than r for some r > 0, a series expansion 
can be used to evaluate Jn(z) accurately with small number of terms. Third, when |z| is large, say, greater than R for some 
R > 0, the truncated asymptotic expansion can be used to evaluate Jn(z) accurately.

We now consider the intermediate region D = {z ∈ C+ | r ≤ |z| ≤ R}, where neither the series expansion nor the asymp-

totic expansion can be used to achieve the required precision. Since 0 and ∞ are the only singularities of the ODE (2) satis-
fied by Jn , standard ODE theory [20, Chapter 16] together with the series expansion (7) shows that Jn(z) = fn(z) + gn(z) ln z

where both f and g are entire functions. Thus, Jn admits an infinite Laurent series representation in D by theory of complex 
variables [5]. One may naturally ask whether Jn(z) can be well approximated by a Laurent polynomial in D . It turns out that 
such an approximation requires excessively large number of terms to achieve high accuracy. Furthermore, this global ap-
proximation is extremely ill-conditioned due to the fact that Jn behaves like an exponential function asymptotically, making 
its dynamic range too wide to be resolved numerically with high accuracy and rendering the scheme useless.

We propose two techniques to deal with the extreme ill-conditioning associated with the global approximation of Jn
in D . First, we extract out the leading factor in the asymptotic expansion (18) of Jn(z) and make a change of variable as 
follows:

Jn(z) =
√

π

3

(ν

3

)n/2

e−νUn(ν), ν := 3
( z

2

)2/3

. (6)

It has been shown in [1,25] that Un(ν) also satisfies a third order ODE with 0 a regular singularity and ∞ an irregular one. 
Thus, Un(ν) is analytic for z ∈ D and therefore can be represented by an infinite Laurent series in ν in the transformed 
domain. The main advantage of working with Un(ν) instead of Jn(z) is that Un(ν) has a much narrower dynamic range and 
thus admits more accurate and efficient approximation.

Next, we divide the intermediate region D into several sub-regions D i = {z ∈ C+ | ri ≤ |z| ≤ ri+1} (i = 0, . . . , M−1, r0 = r, 
rM = R). By symmetry, we may further restrict ourselves to consider the quarter-annulus domain Q i = {z ∈ C | Re(z) ≥
0, Im(z) ≥ 0, ri ≤ |z| ≤ ri+1} (i = 0, . . . , M − 1, r0 = r, rM = R). On each sub-region Q i , we approximate Un(ν) via a Laurent 
polynomial [24] in ν where the coefficients are obtained by solving a least squares problem. Here the linear system is set 
up by matching the function values with the values of the Laurent polynomial approximation on a set of N points on the 
boundary of Q i . The least squares problem is still ill-conditioned and the conditioning becomes worse as N increases, but 
its solution can be used to produce very accurate approximation to the function being approximated.

Here, we would like to remark that recently least squares method has been applied to construct accurate and stable 
approximation for many classes of functions. In [7], it is used together with method of fundamental solutions to solve 
boundary value problems for the Helmholtz equation. In [15], it is used to construct rational approximation for functions on 
the unit circle. In [4,3], it is shown that a wide class of functions can be approximated in an accurate and well-conditioned 
manner using frames and the least squares method. The least squares method is used in [16] to construct efficient and 
accurate sum-of-Gaussians approximations for a class of kernels in mathematical physics and in [6,35] to construct sum-of-

poles approximations for certain functions. Needless to say, the least squares problem itself has to be solved using suitable 
algorithms. Many such algorithms exist (cf., e.g., [11,14,18,28,32]).

For n ≥ 3, we apply the recurrence relation (4) to compute Jn(z). We note that the recurrence relation only needs the 
values of Jn for n = 0, 1, 2. Since many applications in kinetic theory require the evaluation of J−1 , we provide the direct 
evaluation of J−1 as well via our scheme since it is more efficient than using the recurrence relation.

Clearly, the scheme presented in this paper may be applied to the accurate evaluation of a very broad class of special 
functions in complex domains. Very often these special functions satisfy an ODE with a finite number of singularities. 
Therefore, they are analytic in complex domains excluding singular points and branch cuts. Complex analysis then ensures 
that Laurent series is a suitable representation to such functions in the domain. With a careful choice of the domain and 
suitable transformation, the least squares method becomes a reliable tool for constructing efficient, accurate and stable 
approximation for these functions.

The remainder of this paper is organized as follows. Section 2 collects analytic results used in the construction of the 
algorithm. Section 3 discusses numerical algorithms for the evaluation of Abramowitz functions. Section 4 illustrates the 
performance and accuracy of the algorithm. The paper is concluded with a short discussion on possible extensions and 
applications of the work.
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2. Analytic apparatus

The series expansion of Jn takes the form

2 Jn(z) =
∞
∑

k=0

(a
(n)

k
ln z + b

(n)

k
)zk. (7)

For n = 1, the coefficients can be found in [2, §27.5.4] with a(1)
0 = a

(1)
1 = 0, a(1)

2 = −1, b(1)
0 = 1, b(1)

1 = −
√

π , b(1)
2 = 3(1 −γ )/2, 

and

a
(1)
k

= −
2a

(1)
k−2

k(k − 1)(k − 2)
, b

(1)
k

= −
2b

(1)
k−2

+ (3k2 − 6k + 2)a
(1)
k

k(k − 1)(k − 2)
, k ≥ 3, (8)

where γ ≈ 0.577215664901532860606512 is Euler’s constant. For n = −1, 0, the coefficients can be obtained from term-

by-term differentiation of (7), together with (3):

a
(n)

k
= −(k + 1)a

(n+1)
k+1

, b
(n)

k
= −(k + 1)b

(n+1)
k+1

− a
(n+1)
k+1

, k ≥ 0. (9)

For n = 2, the coefficients can be obtained from term-by-term integration of (7) together with J2(0) =
√

π/4, i.e., a(2)
0 = 0, 

b
(2)
0 =

√
π/2, and

a
(2)
k

= −
a
(1)
k−1

k
, b

(2)
k

= −
b

(1)
k−1

k
+

a
(1)
k−1

k2
, k ≥ 1. (10)

We have the following lemma regarding the convergence of the power series 
∑∞

k=0 a
(n)

k
zk and 

∑∞
k=0 b

(n)

k
zk in the series 

expansion (7).

Lemma 1. For n = −1, . . ., 2, the power series 
∑∞

k=0 a
(n)

k
zk and 

∑∞
k=0 b

(n)

k
zk in (7) converge in C.

Proof. For n = 1, direct calculation shows that

a2k−1 = 0, a
(1)
2k

= (−1)k2

(2k)!(k − 1)! , k > 0. (11)

Thus, the radius of convergence for 
∑∞

k=0 a
(n)

k
zk is ∞ by the ratio test and the series converges for all complex numbers. 

We now split 
∑∞

k=0 b
(n)

k
zk into the odd and even parts:

∞
∑

k=0

b
(1)
k

zk = z

∞
∑

k=0

b
(1)
2k+1

(z2)k +
∞
∑

k=1

b
(1)
2k

(z2)k. (12)

For the odd part, direct calculation shows

b
(1)
2k+1

= (−2)kb
(1)
1

(2k + 1)!(2k − 1)!! , (13)

where (2k − 1)!! := (2k − 1)(2k − 3) · · ·3 · 1. Using the root test and Stirling’s formula for factorials [5, p. 201], we observe 
that the odd part converges for all complex numbers. For the even part, we claim that

|b(1)
2k

| < 2

[(k − 1)!]3 , k ≥ 1. (14)

We prove (14) by induction. First, (14) holds for k = 1 by direct calculation. Now, assume (14) holds for 2k − 2, i.e.,

|b(1)
2k−2

| < 2

[(k − 2)!]3 . (15)

By (11), it is easy to see that

|a(1)
2k

| < 1

2k[(k − 1)!]3
, k > 1. (16)

Using the second equation in (8), we have
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|b(1)
2k

| ≤
2|b(1)

2k−2
|

2k(2k − 1)(2k − 2)
+

3|a(1)
2k

|
k − 1

+
2|a(1)

2k
|

2k(2k − 1)(2k − 2)

<
2|b(1)

2k−2
|

2k(2k − 1)(2k − 2)
+ 1

[(k − 1)!]3

<
4

2k(2k − 1)(2k − 2)[(k − 2)!]3 + 1

[(k − 1)!]3

<
2

[(k − 1)!]3 ,

(17)

where the first inequality follows from the triangle inequality, the second one follows from (16), the third one follows from 
the induction assumption. Thus, the even part also converges for all complex numbers by the comparison and root tests, 
and Stirling’s formula. Finally, the convergence of the power series for n = −1, 0, 2 follows from (9), (10), (11), (13), and 
(14), the comparison and root tests, and Stirling’s formula. ✷

Even though (7) was originally derived under the assumption that z is positive real, it indeed makes sense for any z 
= 0. 
Furthermore, it provides a natural analytic continuation [5, p. 283] of Jn to C with the branch cut along negative real axis 
and the principal branch for ln z chosen to be, say, Im(ln z) ∈ (−π , π ].

The asymptotic expansion of Jn via the expansion of Un is given by [2, §27.5.8]:

Jn(z) ∼
√

π

3

(ν

3

)n/2

e−ν

(

c
(n)
0 + c

(n)
1

ν
+

c
(n)
2

ν2
+ · · ·

)

, z → ∞, (18)

where ν := 3(z/2)2/3 , c(n)
0 = 1, c(n)

1 = (3n2 + 3n − 1)/12, and

12(k + 2)c
(n)

k+2
= − (12k2 + 36k − 3n2 − 3n + 25)c

(n)

k+1

+ 1

2
(n − 2k)(2k + 3− n)(2k + 3+ 2n)c

(n)

k
, k ≥ 0.

(19)

Once again, (18) was originally derived under the assumption that z is real and positive [1,25]. One may, however, verify 
that the expansion inside the parentheses on the right hand side of (18) is a formal solution to the third order ODE satisfied 
by Un in (6). Furthermore, the exponential factor decays when arg z ∈ (− 3π

4
, 3π

4
). Hence, (18) is valid for any z ∈ C+ as 

z → ∞.

The following lemma is the theoretical foundation of our algorithm.

Lemma 2. Suppose that D ⊂ C is a closed bounded domain that does not contain the origin and the function f is analytic in D. Let 
L(z) =

∑N2

k=−N1
ckz

k . Then

(i) if | f (z) − L(z)| ≤ ǫ for z ∈ ∂D, then | f (z) − L(z)| ≤ ǫ for z ∈ D;

(ii) if | f (z) − L(z)|/| f (z)| ≤ ǫ for z ∈ ∂D and f has no zeros in D, then | f (z) − L(z)|/| f (z)| ≤ ǫ for z ∈ D.

Proof. This follows from the analyticity of L(z) on D and the maximum principle [5, p. 133]. ✷

3. Numerical algorithms

3.1. Series and asymptotic expansions

As we have shown in Lemma 1, the coefficients a(n)

k
and b(n)

k
in (8)–(10) decay very rapidly and the corresponding series 

expansions converge for any z 
= 0. However, they cannot be used for numerical calculation for large |z| due to cancellation 
errors and increasing number of terms for achieving the desired precision. Thus, we will use the series expansions only for 
|z| < 1 (i.e., r = 1). In this region, both power series 

∑∞
k=0 a

(n)

k
zk and 

∑∞
k=0 b

(n)

k
zk converge exponentially fast and very few 

terms are needed to reach the desired precision.
The coefficients c(n)

k
in (19) diverge rapidly and the asymptotic expansion (18) has to be truncated in order to be of any 

use. For any truncated asymptotic expansion, it is well-known that its accuracy increases as |z| increases. For a prescribed 
precision ǫmach , one needs to determine Na — the number of terms in the truncated series, and R with |z| > R the applicable 
region of the truncated series. This is straightforward to determine numerically. We have found that Na = 18 and R = 120

are sufficient to achieve 10−19 precision for Jn (n = −1, . . . , 2).
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Fig. 1. Dynamic ranges of J2(z) and U2(z) in Q . For comparison purposes, both figures are plotted in the variable z. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

3.2. Construction of the Laurent polynomial approximation for the intermediate region

We now discuss the evaluation of Jn in the intermediate region D = {z ∈ C+ | r ≤ |z| ≤ R}. First, by the conjugate 
property (5), we only need to discuss the evaluation of Jn in the first quadrant Q = {z ∈ C | r ≤ |z| ≤ R, 0 ≤ arg z ≤ π

2
}. As 

discussed in the introduction, it is very difficult to directly approximate Jn(z) in Q due to its large dynamic range. We use 
the transformation (6) and consider the approximation of Un(ν) instead, Un has a very small dynamic range. Fig. 1 shows 
log10| J2(z)| in Q on the left and |U2(z)| in Q on the right, where the left panel shows that the magnitude of J2(z) ranges 
from 10−19 to 100 , and the right panel shows that the magnitude of U2(z) ranges from 1.0 to 1.7. Other Jn(z) and Un(z)

exhibit similar pattern with much narrower ranges for |Un(z)| (n = −1, 0, 1). Thus, we will consider the evaluation of Un(ν)

in Q .

To this end, we divide Q into several quarter-annulus domains:

Q i := {z ∈ C|ri ≤ |z| ≤ ri+1,0 ≤ arg z ≤ π

2
}, i = 0, . . . , M − 1, r0 = 1, rM = R. (20)

We will try to approximate Un(ν) in each Q i via a Laurent polynomial

Un(ν) ≃ L
(i)
n (ν) =

N2
∑

k=−N1

d
(i)

k
νk, z ∈ Q i . (21)

As noted before, Un(ν) satisfies a third order ODE with 0 and ∞ as the only singular points [1,25]. Thus, Un(ν) is analytic 
in Q i . By Lemma 2, in order to guarantee the accuracy of the approximation in the whole domain Q i , it is sufficient to 
ensure the same accuracy is achieved on the boundary of Q i , i.e.,

∣

∣

∣

∣

∣

∣

Un(ν) −
N2
∑

k=−N1

d
(i)

k
νk

∣

∣

∣

∣

∣

∣

≤ ǫ, z ∈ ∂Q i . (22)

The error-bound in (22) is achieved by solving the least squares problem:

Ad(i) = f, A jk := νk
j , f j := Un(ν j), j = 1, . . . , 4Nb, (23)

where ν j := 3(z j/2)
2/3 , and z j are chosen to be the images of Gauss-Legendre nodes on each segment of ∂Q i , Nb is chosen 

to ensure that the error of approximation of Un(ν) by the corresponding Legendre polynomial interpolation on each segment 
of ∂Q i is bounded by ǫ . The right hand side f in (23) is computed via symbolic software system Mathematica to at least 
50 digits. In other words, we do not use the actual analytic Laurent series to approximate Un on each quarter-annulus Q i . 
Instead, a numerical procedure is applied to find much more efficient “modified” Laurent series for approximating Un on 
each Q i .

The linear system (23) is ill-conditioned. However, since we always use d(i) in the Laurent polynomial approximation to 
evaluate Un , we obtain (by the maximum principle) high accuracy in function evaluation in the entire sub-region as long as 
the residual of the least squares problem (23) is small.

The least squares solver also reveals the numerical rank of A, which is used to obtain the optimal value of NT = N2 −
N1 +1, the total number of terms in the Laurent polynomial approximation. It is then straightforward to use a simple search 
to find the value for N1 , which completes the algorithm for finding a nearly optimal and highly accurate Laurent polynomial 
approximation for Un in Q i .

Remark 1. We would like to emphasize that the Laurent polynomial approximation may not be unique, but this non-
uniqueness has no effect on the accuracy of the approximation.
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Remark 2. We have computed the integrals

In =
∫

∂Q

J ′n(z)

Jn(z)
dz = −

∫

∂Q

Jn−1(z)

Jn(z)
dz (24)

for n = −1, . . ., 2 and found numerically that they are all close to zero. By the argument principle [5, p. 152], we have

In = 2π i(Zn − Pn), (25)

where Zn and Pn denote respectively the number of zeros and poles of Jn(z) inside ∂Q . Since Jn(z) is analytic in Q , it 
has no poles in Q , i.e., Pn = 0. Thus, the fact that In is very close to zero shows that Zn = 0, that is, Jn has no zeros in 
Q . Further numerical investigation shows that functions |Un(ν)| (n = −1, . . ., 2) range from 0.95 to 1.7 on ∂Q . Combining 
these two facts, we conclude that the absolute error bound on the approximation of Un gives roughly the same relative 
error bound.

3.3. Evaluation of Jn for n = −1, . . ., 2

Once the coefficients of Laurent polynomial approximation for each sub-region are obtained and stored, the evaluation 
of Jn(z) is straightforward. That is, we first compute |z| to decide on which region the point lies, then use the proper 
representation to evaluate Jn(z) accordingly. We summarize the algorithm for calculating Jn(z) for z ∈ C+ , n = −1, . . ., 2 in 
Algorithm 1.

Algorithm 1 Evaluation of Jn(z) for z ∈ C+ .

procedure Abram(z, f )
⊲ Input parameter: z – the complex number for which the Abramowitz function Jn is to be evaluated.
⊲ Output parameter: f – the value of Abramowitz function Jn(z).

assert Re(z) ≥ 0.

if |z| ≤ 1 then ⊲ z is in the series expansion region.
Use the series expansion (7) to evaluate f = Jn(z).

else if |z| ≥ 120 then ⊲ z is in the asymptotic region.
Set ν = 3(z/2)2/3 .

Use the asymptotic expansion (18) to compute Un(ν).

Set f =
√

π
3

(

ν
3

)n/2
e−ν Un(ν).

else ⊲ z is in the intermediate region.
Set ν = 3(z/2)2/3 .

Use a precomputed Laurent polynomial approximation (21) to compute Un(ν).

Set f =
√

π
3

(

ν
3

)n/2
e−ν Un(ν).

end if

end procedure

Remark 3. All these expansions can be converted into a polynomial of a certain transformed variable. We use Horner’s 
method [23, §4.6.4] to evaluate the polynomial in the optimal number of arithmetic operations.

Remark 4. The accuracy of Jn(z) deteriorates as |z| increases since the condition number of evaluating the exponential 
function e−ν is |ν| and ν has to be evaluated numerically via ν = 3(z/2)2/3 .

3.4. Evaluation of Jn for n > 2

In [10], it is shown that (4) is stable in both directions when z is a positive real number. We have implemented the 
forward recurrence to evaluate Jn(z) for n > 2. We have not observed any numerical instability during our numerical tests 
for z ∈ C+ .

4. Numerical results

We have implemented the algorithms in Section 3 and the code is available at https://github .com /zgimbutas /abramowitz. 
Numerical experiments were performed on a desktop computer with a 3.10 GHz Intel(R) Xeon(R) CPU.

For the series expansion (7), a straightforward calculation shows that 18 terms in 
∑

b
(n)

k
zk and 9 nonzero terms in 

∑

a
(n)

k
zk are needed to reach 10−19 precision for Jn (n = −1, . . ., 2). For the asymptotic expansion (18), we find that it is 

sufficient to choose Na = 18, R = 120 for 10−19 precision. All coefficients are precomputed with 50 digit precision.
For the intermediate region, we divide |z| on [1, 120] into three subintervals [1, 3], [3, 15], [15, 120] and Q into Q 1 , 

Q 2 , Q 3 , respectively. We use IEEE binary128 precision to carry out the precomputation step and solve the least squares 
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Table 1

The relative L∞ error of Algorithm 1 over 100, 000 uniformly distributed random points in 
C+ . The reference value is computed via Mathematica to at least 50 digit accuracy. S denotes 
the series expansion region and A denotes the asymptotic expansion region.

S Q 1 Q 2 Q 3 A

J−1 1.5× 10−15 2.1× 10−15 4.4× 10−16 6.4× 10−16 8.6× 10−16

J0 1.3× 10−15 2.4× 10−15 2.2× 10−16 2.2× 10−16 2.2× 10−16

J1 1.1× 10−15 2.4× 10−15 4.7× 10−16 6.0× 10−16 8.0× 10−16

J2 1.2× 10−15 2.9× 10−15 5.6× 10−16 8.4× 10−16 1.2× 10−15

Table 2

The maximum relative error for evaluating J100 using the forward recurrence relation (4) over 
100, 000 uniformly distributed random points in the domain {z ∈ C| Re(z) ≥ 0, 0 < |z| < 1000}. The 
reference values are calculated using Mathematica with 240-digit precision arithmetic.

S Q 1 Q 2 Q 3 A

1.3× 10−15 2.9× 10−15 1.3× 10−15 2.0 × 10−15 3.7× 10−15

problem with 10−20 threshold for the residual. We have found that for Q 1 we need N2 = 11, NT = 30 for J0 and J1 , 
N2 = 10, NT = 32 for J−1 , and N2 = 11, NT = 32 for J2 . For all four functions Jn (n = −1, 0, 1, 2), we need N2 = 0, 
NT = 30 for Q 2 and N2 = 0, NT = 20 for Q 3 . The coefficients of Laurent polynomial approximations for Jn (n = −1, 0, 1, 2) 
on Q i (i = 1, 2, 3) are listed in Tables B.4–B.15 in Appendix B.

Remark 5. The coefficients in Tables B.4–B.15 for Q 2 and Q 3 do not have small norms. However, for Q 2 , 
∣

∣

1
ν

∣

∣ ≤ 1
3(3/2)(2/3)

=

0.254 . . .; and for Q 3 , 
∣

∣

1
ν

∣

∣ ≤ 1
3(15/2)(2/3)

≈ 0.087. It is easy to see that terms c j

(

1
ν

) j
decrease as j increases. Alternatively, we 

could consider the Laurent series of the form 
∑

c̃ j

( νi
ν

) j
with νi = 3(ri/2)

(2/3) (ri is the lower bound for |z| in Q i). Then 
the coefficient vector c̃ will have small norm, as required in [7,4]. However, this corresponds to the column scaling in the 
least squares matrix and almost all methods for solving the least squares problems do column normalization. Thus, it has 
no effect on the accuracy of the solution and stability of the algorithm.

Remark 6. The partition of the sub-regions is by no means optimal or unique. There is an obvious trade-off between the 
number of sub-regions and the number of terms in the Laurent polynomial approximation. For example, one may use 
a finer partition for the regions closer to the origin. We have tried to divide the intermediate region into 14 regions 
with Q i := {z ∈ C+|(

√
2)i−1 ≤ |z| ≤ (

√
2)i} (i = 1, . . ., 14), and we observe that only 20 terms are needed for all regions. 

However, our numerical experiments indicate that the partition has very mild effect on the overall performance (i.e., speed 
and accuracy) of the algorithm.

4.1. Accuracy check

We first check the accuracy of Algorithm 1. The reference function values are calculated via Mathematica to at least 50 
digit accuracy. The error is measured in terms of maximum relative error, i.e.,

E := max
i

| Ĵn(zi) − J̃n(zi)|
| J̃n(zi)|

,

where J̃n(zi) := eνi Jn(zi) (νi := 3(zi/2)
2/3) is the reference value of the scaled Abramowitz function computed via Mathe-

matica, and Ĵn(zi) is the value computed via our algorithm. The points zi are sampled randomly with uniform distribution 
in both its magnitude and angle in C+ . Table 1 lists the errors for evaluating J̃n (n = −1, 0, 1, 2) in various regions, where 
we observe that the errors are within 10ǫmach with the machine epsilon ǫmach ≈ 2.22 × 10−16 for IEEE double precision. In 
general, the errors in the first intermediate region Q 1 are slightly bigger due to mild cancellation errors.

For n > 2, extensive numerical experiments indicate that the forward recurrence relation (4) is stable for evaluating Jn
in C+ . The relative errors are shown in Table 2 for a typical run.

4.2. Timing results

Since all three representations (i.e., Laurent polynomials, series and asymptotic expansions) mainly involve polynomials of 
degree less than 30, the algorithm takes about constant time per function evaluation in C+ . We have tested the CPU time of 
Algorithm 1 for evaluating J̃n(z) and compared it with that of evaluating the complex error function erf(z) = 2√

π

∫ z
0 e−t2dt. 

The complex error function is a well studied special function that has received much attention in the community of scientific 
computing (cf., e.g., [9,12,13,19,29–31,33,34,36,37]). Here we use the well-regarded Faddeeva package [22] to evaluate erf(z).



8 Z. Gimbutas et al. / Journal of Computational Physics 405 (2020) 109169

Table 3

The total CPU time T in seconds for evaluating Jn(z) using Algo-
rithm 1 and the error function erf(z) over 1, 000, 000 uniformly 
distributed random points in 0 ≤ Re(z) ≤ 10, 0 ≤ Im(z) ≤ 10.

J−1(z) J0(z) J1(z) J2(z) erf(z)

T 0.44 0.41 0.44 0.41 0.34

The results are shown in Table 3. First, we note that erf(z) is an entire function which is somewhat simpler than the 
Abramowitz functions and the Faddeeva package guarantees about 10−13 accuracy. Second, the numbers of terms in all 
three representations in our algorithm are chosen so that 10−19 precision may be achieved if the calculation were carried 
out in 80-bit floating-point arithmetic (it achieves about 10−15 accuracy in double precision arithmetic as shown in Table 1).

In the asymptotic region, our algorithm is slightly faster than the numbers shown in Table 3, while the Faddeeva package 
is faster by a factor of about 3. However, the efficiency in the asymptotic region (i.e., the asymptotic expansion) heavily de-
pends on the properties of the given special functions and is thus independent of the algorithm for other regions. Combining 
all these factors, we may conclude that our algorithm is competitive with the highly optimized Faddeeva package.

5. Conclusions and further discussions

We have designed an efficient and accurate algorithm for the evaluation of Abramowitz functions Jn in the right half 
of the complex plane. Some useful observations in the design of the algorithm are applicable for evaluating many other 
special functions in the complex domain. First, it is better to pull out the leading asymptotic factor from the given function 
when |z| is large. Second, the maximum principle reduces the dimensionality of the approximation problem by one. Third, 
the least squares scheme is generally a reliable and accurate method to find an approximation of a prescribed form. That 
is, analytic representations should be used with caution even if they are available, as they often lead to large cancellation 
error or very inefficient approximations or both.

Finally, though we have used Laurent polynomials to approximate Abramowitz functions in the intermediate region, there 
are many other representations for function approximations. This includes truncated series expansion, rational functions (cf., 
e.g., [15]), etc. We have actually tested the truncated series expansion in the sub-region (i.e., Q 1) closest to the origin for 
Jn . Our numerical experiments indicate that the performance is about the same as the one presented in this paper.
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Appendix A. Zeros of Jn(z)

We have used NIntegrate in Mathematica to evaluate In defined in (24). When WorkingPrecision is set to 100, |In| are 
about 10−59 for n = −1, 0, 1, 2. When it is set to 200, the values of |In| decrease to 10−160 . By the argument principle, In
can only take integral multiples of 2π i. Thus, the numerical calculation clearly shows that Jn (n = −1, 0, 1, 2) have no zeros 
in the intermediate region Q . Analytically, we can only show that Jn has no zeros in the sector | arg(z)| ≤ π

4
. The proof is 

presented below.

Lemma 3. If z0 ∈ C is a zero of Jn(z), then so is z̄0.

Proof. This simply follows from the conjugate property (5). ✷

Lemma 4. Suppose that n ≥ 0. Then Jn(z) has no zero in the sector | arg z| ≤ π
4
.
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Proof. Let z0 = x0 + iy0 ∈ C+ be a zero of Jn(z). Then by Lemma 3, z̄0 is also a zero of Jn(z). Consider functions f (t) =
Jn(z0t) and g(t) = Jn(z̄0t). Then f (1) = g(1) = 0, and f , g and their derivatives decay exponentially fast to 0 as t → ∞ by 
the asymptotic expansion (18).

The differential equation (2) implies that

t f ′′′(t) − (n − 1) f ′′(t) + 2z20 f (t) = 0, (A.1)

tg′′′(t) − (n − 1)g′′(t) + 2z̄20g(t) = 0. (A.2)

Multiplying both sides of (A.1) by g , integrating both sides from 1 to ∞, and performing integration by parts, we obtain

0 =
∞

∫

1

[t f ′′′g − (n − 1) f ′′g + 2z20 f g]dt

= tg f ′′
∣

∣

∣

∣

∞

1

−
∞

∫

1

f ′′(g + g′t)dt +
∞

∫

1

[−(n − 1) f ′′g + 2z20 f g]dt

=
∞

∫

1

[−t f ′′g′ − nf ′′g + 2z20 f g]dt

=
∞

∫

1

[−t f ′′g′ + nf ′g′ + 2z20 f g]dt.

(A.3)

Similarly,

0 =
∞

∫

1

[−t f ′g′′ + nf ′g′ + 2z̄20 f g]dt. (A.4)

Moreover,

∞
∫

1

[−t f ′g′′ − t f ′g′′]dt = −
∞

∫

1

td( f ′g′)

= −t f ′g′
∣

∣

∣

∣

∞

1

+
∞

∫

1

f ′g′dt

= f ′(1)g′(1) +
∞

∫

1

f ′g′dt.

(A.5)

Adding (A.3), (A.4) and using (A.5) to simplify the result, we obtain

0 = f ′(1)g′(1) + (2n + 1)

∞
∫

1

f ′g′dt + 2(z20 + z̄20)

∞
∫

1

f gdt. (A.6)

Rearranging (A.6), we have

4(y20 − x20)

∞
∫

1

| Jn(z0t)|2dt = |z0|2
∣

∣ J ′n(z0)
∣

∣

2 + (2n + 1)|z0|2
∞

∫

1

∣

∣ J ′n(z0t)
∣

∣

2
dt. (A.7)

Since the right side of (A.7) and the integral on its left side are both positive, we must have y20 − x20 > 0 and the lemma 
follows. ✷

Lemma 5. Jn(z) has no zero in D = {z ∈ C+||z| > R}, where R is sufficiently large.
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Proof. Subtracting (A.4) from (A.3), we have

0 =
∞

∫

1

t( f ′g′′ − f ′′g′)dt + 2(z20 − z̄20)

∞
∫

1

f gdt. (A.8)

That is,

4x0 y0

∞
∫

1

| Jn(z0t)|2 dt = |z0|2
∞

∫

1

Im (z̄0t Jn−1(z0t) Jn−2(z̄0t))dt. (A.9)

In the domain D , Jn(z) is well approximated by the leading term of its asymptotic expansion. Let z0 = r0e
iθ0 with r0 > 0

and θ0 ∈ [−π/2, π/2]. Substituting the leading terms of the asymptotic expansions into both sides of (A.9) and simplifying 
the resulting expressions, we obtain

sin(2θ0) ∼ − sin(2θ0/3). (A.10)

In other words, two sides of (A.9) have opposite sign unless they are both equal to zero, i.e., unless θ0 = 0 or z0 is a positive 
real number. However, Jn(x) > 0 when x > 0, as seen from its integral representation (1). And the lemma follows. ✷

Appendix B. The coefficients of Laurent polynomial approximations for Jn

We list the coefficients c j of Laurent polynomial approximations for evaluating Jn (n = −1, 0, 1, and 2) on each quarter-
annulus domain Q i (i = 1, 2, and 3) in Tables B.4–B.15. That is,

Jn(z) ≈
√

π

3

(ν

3

)n/2

e−ννN2

NT −1
∑

j=0

c j

(

1

ν

) j

, (B.1)

Table B.4

The coefficients c j ( j = 0, . . . , 31) of the Laurent polynomial approximation given by (B.1) to eval-
uate J−1(z) to 19-digit precision in Q 1 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 1 ≤ |z| ≤ 3}. N2 = 10.

Real part Imaginary part

0.50840463208260678152 × 10−17 −0.17460815299463749948 × 10−15

−0.74591223502642620660 × 10−14 0.12462600200296453012 × 10−13

0.51034244856324824207 × 10−12 −0.29429847146968217669 × 10−12

−0.15527853485027100709 × 10−10 0.26315851430676356796 × 10−12

0.26441404512287963095 × 10−9 0.13983475139768244907 × 10−9

−0.24748763871353093363 × 10−8 −0.37421319823017115933 × 10−8

0.48226858274090904108 × 10−8 0.54340128932660141072 × 10−7

0.21625355372586607508 × 10−6 −0.50872099870851161398 × 10−6

−0.36871705117848123797 × 10−5 0.30134016655759593920 × 10−5

0.34628404889507030160 × 10−4 −0.73910823070405617219 × 10−5

0.99977737459069660694 −0.57603083624530025151 × 10−4

−0.82327858162819693045 × 10−1 0.84976858037261402153 × 10−3

0.61974789354573766566 × 10−3 −0.60513938190315115982 × 10−2

0.56615182294768079637 × 10−1 0.30290788934912727755 × 10−1

−0.13513677999109029679 −0.11595801511190682178

0.20971815296188580167 0.34917394460827128828

−0.13559302399958735143 −0.83031652814884108813

−0.39989898854107271642 0.15322617865070516148 × 101

0.17398271638333840850 × 101 −0.20720742240832378654 × 101

−0.38218064277297175142 × 101 0.16655645078067718066 × 101

0.57404644363343330931 × 101 0.36441373700438752895

−0.60218557453822568030 × 101 −0.36699889432071554424 × 101

0.38664098293378463250 × 101 0.65632365306504714202 × 101

−0.25697949139671290942 −0.71730334400727831101 × 101

−0.26138368668366285752 × 101 0.52101729871789289259 × 101

0.33128062049048194583 × 101 −0.22744720239035355439 × 101

−0.22947550138820496670 × 101 0.21824868540130264477

0.97998841946268481518 0.43081914671714156557

−0.23273278868918701241 −0.30881694364539401656

0.13573816724649184659 × 10−1 0.10103591470624091510

0.64717665310787895482 × 10−2 −0.16204976273553372187 × 10−1

−0.11353082240496407813 × 10−2 0.91111645509511076869 × 10−3
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Table B.5

Similar to Table B.4, c j ( j = 0, . . . , 29) for J−1(z) in Q 2 = {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 3 ≤ |z| ≤
15}. N2 = 0.

Real part Imaginary part

0.99999999999996165301 0.14180683234758492536 × 10−12

−0.83333333315888343156 × 10−1 −0.18355475502542401539 × 10−10

0.34722202099214306218 × 10−2 0.66429512090231781628 × 10−9

0.55459217936935525195 × 10−1 0.19209070325965982796 × 10−7

−0.17477009309488548835 −0.27235872415655243493 × 10−5

0.47557985079285319878 0.12329339800149018587 × 10−3

−0.12044719601488244381 × 101 −0.33379989131254858384 × 10−2

0.24160534977076998585 × 101 0.59920404647268786033 × 10−1

0.71401934124020221324 −0.69764699651584141417

−0.60367540682210374145 × 102 0.38607796239007672158 × 101

0.60545135048209986187 × 103 0.32429279475615845398 × 102

−0.45946367108344566727 × 104 −0.10841949093356820460 × 104

0.28358573752155457724 × 105 0.14766714227455119633 × 105

−0.13554840952273842275 × 106 −0.13629699320708838668 × 106

0.42722335885416276983 × 106 0.93640538562551055857 × 106

−0.18717734419017137932 × 106 −0.49014636853552340206 × 107

−0.76674698133130508647 × 107 0.19293996919633486842 × 108

0.56621620119877490002 × 108 −0.53379687761932413868 × 108

−0.24544626054098569413 × 109 0.76969984306318530811 × 108

0.73652406083022339655 × 109 0.11898870845017090857 × 109

−0.15200293963699011585 × 1010 −0.11167744707665950837 × 1010

0.18157636339201652460 × 1010 0.37001812450286450398 × 1010

0.23697005105214074056 × 109 −0.76973235212132828329 × 1010

−0.60541865274209691412 × 1010 0.10509437050190981895 × 1011

0.13447347591183417529 × 1011 −0.82869660102657042317 × 1010

−0.16538600326905832899 × 1011 0.87889333133786055548 × 109

0.12108038654949012813 × 1011 0.58320160548830925371 × 1010

−0.45881323770532016082 × 1010 −0.64591210758282531847 × 1010

0.33559769561348792357 × 109 0.30012974946895292083 × 1010

0.21590442067376607526 × 109 −0.51553627638896435829 × 109

Table B.6

Similar to Table B.4, c j ( j = 0, . . . , 19) for J−1(z) in Q 3 = {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 15 ≤ |z| ≤
120}. N2 = 0.

Real part Imaginary part

0.10000000000000000211× 101 0.17867305969317471010 × 10−16

−0.83333333333337062447 × 10−1 −0.97723166437483860903 × 10−14

0.34722222219662307873 × 10−2 0.18575099531415563550 × 10−11

0.55459105063779291569 × 10−1 −0.17036760654072501033 × 10−9

−0.17476652435372606609 0.72097356819624208386 × 10−8

0.47552180369947961103 0.45886722797104214745 × 10−7

−0.12045748284986630605 × 101 −0.23432576523368445886 × 10−4

0.24476460069464141708 × 101 0.14488404302693181855 × 10−2

−0.19443570247379529707 −0.51284106279947756551 × 10−1

−0.44775070512394599808 × 102 0.11973398083848165562 × 101

0.42163459709409223079 × 103 −0.18732584217083190217 × 102

−0.30990846226113832847 × 104 0.18064501304516396811 × 103

0.20913884916390585368 × 105 −0.59296211153624558148 × 103

−0.12895996355054874785 × 106 −0.10821482660282026169 × 105

0.67085295525681611041 × 106 0.19808862750865237678 × 106

−0.26337877182586616150 × 107 −0.16813332113288193078 × 107

0.67096341894817561042 × 107 0.85931950401381414532 × 107

−0.76571281908120841443 × 107 −0.26572627858717182234 × 108

−0.59803448026875748509 × 107 0.44801684284187004703 × 108

0.19209322347765871037 × 108 −0.30066013610259277074 × 108
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Table B.7

The coefficients c j ( j = 0, . . . , 29) of the Laurent polynomial approximation given by (B.1) to eval-
uate J0(z) to 19-digit precision in Q 1 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 1 ≤ |z| ≤ 3}. N2 = 11.

Real part Imaginary part

−0.90832607641433626723 × 10−16 −0.12971716857438253177 × 10−15

0.12389804620230878343 × 10−14 0.12374086345769475560 × 10−13

0.18925665936446973863 × 10−12 −0.43594042425001909808 × 10−12

−0.93436124699082728782 × 10−11 0.71610240171455947215 × 10−11

0.21005471373426356192 × 10−9 −0.31570720100508497322 × 10−10

−0.27921469604412283831 × 10−8 −0.10267754766776108185 × 10−8

0.22210697286892781643 × 10−7 0.25281961277933484578 × 10−7

−0.71494613675879873372 × 10−7 −0.30771058781715872427 × 10−6

−0.63954539217286436591 × 10−6 0.24264961215641857661 × 10−5

0.11477599934330755236 × 10−4 −0.12692783111400141826 × 10−4

−0.94447601385518738118 × 10−4 0.36582122360442313063 × 10−4

0.10005227131416389419 × 101 0.42527679632933790645 × 10−4

−0.85416339695541973974 × 10−1 −0.11668274275597700974 × 10−2

0.92680088758957499003 × 10−1 0.75525130431164108091 × 10−2

−0.12830962183399732914 −0.31999279672322587569 × 10−1

0.18262801902460105636 0.10112601789451786253

−0.22086524963618477505 −0.24794786230219646677

0.16700979504519707012 0.47574461283438653640

0.62230841342939847177 × 10−1 −0.70546898276037268906

−0.46160590435660301333 0.77405336431438665012

0.86282905145667261861 −0.54883285003677036633

−0.10157725409050061178 × 101 0.89653554833115686588 × 10−1

0.81127042933258073193 0.34223426976661392785

−0.40588870780744941328 −0.50414950527612358637

0.70646295770216518095 × 10−1 0.39020053902964327900

0.62576278207207491689 × 10−1 −0.18665248819340615755

−0.56069463746156990540 × 10−1 0.51369345024189480453 × 10−1

0.20854565059593331201 × 10−1 −0.49622460298807761080 × 10−2

−0.37736411371630856848 × 10−2 −0.10706620427594972634 × 10−2

0.24658062816300990462 × 10−3 0.24793548656986345025 × 10−3

Table B.8

Similar to Table B.7, c j ( j = 0, . . . , 29) for J0(z) in Q 2 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 3 ≤ |z| ≤ 15}. 
N2 = 0.

Real part Imaginary part

0.99999999999988637217 −0.86635400939375232846 × 10−13

−0.83333333323131499972 × 10−1 0.22519321671024025250 × 10−10

0.86805555689429826898 × 10−1 −0.20734497580441697938 × 10−8

−0.11815206514175737947 0.96339270441630372077 × 10−7

0.17969333057187777654 −0.23057043651727157918 × 10−5

−0.24337342169790375842 0.98098354524518453957 × 10−5

0.14764429473872620763 × 10−1 0.12782321450918857049 × 10−2

0.23309627937902507555 × 101 −0.51073707172260220779 × 10−1

−0.16480981490288764106 × 102 0.11291585827876199238 × 101

0.92305117544447684520 × 102 −0.17262096251706180600 × 102

−0.51600417922753718015 × 103 0.19328752764190907274 × 103

0.32464931691139105961 × 104 −0.15901053336317843819 × 104

−0.22314060512920598345 × 105 0.90599663123843335441 × 104

0.14604708231321899614 × 106 −0.26233323039837437629 × 105

−0.81145513740976803311 × 106 −0.98104807756320344084 × 105

0.35457971304583219348 × 107 0.18294948704040264718 × 107

−0.11084057351725538629 × 108 −0.13170160809055557556 × 108

0.17946742587727355394 × 108 0.62986605485232028006 × 108

0.35800094666248698896 × 108 −0.21614451081432945159 × 109

−0.37304955427569800721 × 109 0.52194699072674118229 × 109

0.14479420488451058753 × 1010 −0.75867692917492941354 × 109

−0.35951788816564166863 × 1010 0.22618398696580184017 × 108

0.60001115021506662033 × 1010 0.31006219604826621451 × 1010

−0.60780548332669974319 × 1010 −0.87891548726761143921 × 1010

0.15576242961336566425 × 1010 0.13885136549901956758 × 1011

0.55250083598538675266 × 1010 −0.13622496533575828228 × 1011

−0.92625760934489411655 × 1010 0.75732780185372212772 × 1010

0.69543035636142439747 × 1010 −0.12850366647773799533 × 1010

−0.25630570764916110006 × 1010 −0.85541751450691424086 × 109

0.33863352297553708594 × 109 0.36939690751181780209 × 109
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Table B.9

Similar to Table B.7, c j ( j = 0, . . . , 19) for J0(z) in Q 3 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 15 ≤ |z| ≤
120}. N2 = 0.

Real part Imaginary part

0.99999999999999996930 0.17593864033911935746 × 10−16

−0.83333333333319900902 × 10−1 −0.16846147898292977950 × 10−15

0.86805555553423816181 × 10−1 −0.11453394704160148063 × 10−11

−0.11815200602347672298 0.23048385969290284678 × 10−9

0.17968950772370040285 −0.21945385998958748345 × 10−7

−0.24323777650814324772 0.12087954626873876383 × 10−5

0.11700570395152938411 × 10−1 −0.38103854798729283635 × 10−4

0.23745206848674586241 × 101 0.41346400173493025458 × 10−3

−0.16758837066520389957 × 102 0.20437630577696960942 × 10−1

0.88966545765421650942 × 102 −0.12064317238786081373 × 101

−0.39494374065352553320 × 103 0.33912080437719049806 × 102

0.14059897264393353350 × 104 −0.62474820464709927286 × 103

−0.40451355322086019935 × 104 0.80876358650678996996 × 104

0.19384543104359811933 × 105 −0.74559599790322239386 × 105

−0.20517688352680136030 × 106 0.48086289900895412320 × 106

0.17043521840830888384 × 107 −0.20518647360918521409 × 107

−0.87705077033153779372 × 107 0.49903982905075629408 × 107

0.26797195290998643893 × 108 −0.30874807345514436382 × 107

−0.43448795451180985546 × 108 −0.14198190720585577590 × 108

0.26693074419888988636 × 108 0.25674511583029811722 × 108

Table B.10

The coefficients c j ( j = 0, . . . , 29) of the Laurent polynomial approximation given by (B.1) for eval-
uation of J1(z) to 19-digit precision in Q 1 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 1 ≤ |z| ≤ 3}. N2 = 11.

Real part Imaginary part

0.11005198342846485755 × 10−15 −0.69497479897694901798 × 10−16

−0.10253717390952836750 × 10−13 0.57344733061298400754 × 10−15

0.35541980746147250213 × 10−12 0.17138035947739436987 × 10−12

−0.57065663426773316925 × 10−11 −0.80097752680384861353 × 10−11

0.21377942402322032801 × 10−10 0.17745761143488866634 × 10−9

0.92504177773563681659 × 10−9 −0.23491690282446912066 × 10−8

−0.21958132206773784869 × 10−7 0.18715255541162079236 × 10−7

0.26744146813435088020 × 10−6 −0.60538192727561566571 × 10−7

−0.21417964338884026393 × 10−5 −0.55166777471060148467 × 10−6

0.11605229803403698059 × 10−4 0.10089206827157776627 × 10−4

−0.36902286245955926331 × 10−4 −0.85734523630464858844 × 10−4

0.99998886026520537047 0.49984760395796500059 × 10−3

0.41764834336748872867 −0.21759152835287886250 × 10−2

−0.12880435876254801279 0.72384623466304053406 × 10−2

0.10001797075393494104 −0.18204681378409207336 × 10−1

−0.12326994533416519599 0.32494324768891981532 × 10−1

0.19390815724013910177 −0.31048056008057556412 × 10−1

−0.30446220948476603076 −0.28094371375086694729 × 10−1

0.40217178304394830919 0.18701432829068936487

−0.39045411378013014641 −0.42965195739247365992

0.20299486067051564492 0.64270959413495860386

0.10086985423793876517 −0.67712707054748086683

−0.34706311627097173040 0.48943085630911667832

0.39717127772830854281 −0.20388651987798637536

−0.27627970190658614495 −0.36920639378264876881 × 10−2

0.12093911370868755832 0.67168398413971524804 × 10−1

−0.28845724988884421284 × 10−1 −0.45442309954198940539 × 10−1

0.97253793671434469328 × 10−3 0.15236745276873557399 × 10−1

0.11989911484170176670 × 10−2 −0.25400926250086296020 × 10−2

−0.20436565348663071365 × 10−3 0.14672057879876671250 × 10−3
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Table B.11

Similar to Table B.10, c j ( j = 0, . . . , 29) for J1(z) in Q 2 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 3 ≤ |z| ≤
15}. N2 = 0.

Real part Imaginary part

0.10000000000001559822 × 101 −0.64432580975613771082 × 10−13

0.41666666663765045792 −0.30929290380316585308 × 10−11

−0.12152777575602031881 0.13847887495450779512 × 10−8

0.64139599010730684601 × 10−1 −0.11804143890505963878 × 10−6

0.19340333876868250914 × 10−1 0.52525129103659222882 × 10−5

−0.31085396288117458325 −0.14209942615180352958 × 10−3

0.14076112393497740595 × 101 0.22843270818239797021 × 10−2

−0.53034603582858591137 × 101 −0.12508426902104267053 × 10−1

0.16843969837042581097 × 102 −0.39633859151173122745

−0.30896103962008743537 × 102 0.13366867242921989470 × 102

−0.12354078658896338072 × 103 −0.23100296557839310161 × 103

0.16486028729189802772 × 104 0.27798011316789725915 × 104

−0.79365600281962572617 × 104 −0.25085379438345641690 × 105

−0.17876338162032969792 × 104 0.17337711302201102756 × 106

0.36042195374432098049 × 106 −0.90932303898462350515 × 106

−0.33818329308700649502 × 107 0.34283955443872702745 × 107

0.19449202897749494834 × 108 −0.74625499598352743942 × 107

−0.79047083372251398893 × 108 −0.61704036445636743642 × 107

0.22787889419550420217 × 109 0.13542454969531036697 × 109

−0.41550638595000604177 × 109 −0.65483373280300662671 × 109

0.17290712369617688112 × 109 0.19664895233379210138 × 1010

0.16763777971399520871 × 1010 −0.40005075227615193294 × 1010

−0.63097117018939634689 × 1010 0.51442671230430695393 × 1010

0.12639623708614918540 × 1011 −0.24250533919233200087 × 1010

−0.16021424838185937866 × 1011 −0.51063223260105245852 × 1010

0.12194470039177973074 × 1011 0.12801295658115048467 × 1011

−0.36617569740928099053 × 1010 −0.13906995324951658335 × 1011

−0.20882430849265640704 × 1010 0.82351413910371916318 × 1010

0.22256324759689985206 × 1010 −0.23606999259817906485 × 1010

−0.57357275466466452587 × 109 0.18100167963268264995 × 109

Table B.12

Similar to Table B.10, c j ( j = 0, . . . , 19) for J1(z) in Q 3 := {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 15 ≤ |z| ≤
120}. N2 = 0.

Real part Imaginary part

0.10000000000000000088× 101 −0.37104682094436741073 × 10−16

0.41666666666665693268 0.10633105786560679943 × 10−13

−0.12152777777532530135 −0.81783483309751920964 × 10−12

0.64139660206844395055 × 10−1 −0.53206746309599215652 × 10−10

0.19340376146506349534 × 10−1 0.14714309085259108266 × 10−7

−0.31092901473600760433 −0.12847633757844741159 × 10−5

0.14108230204421526148 × 101 0.64029804309267135469 × 10−4

−0.53814287035192935174 × 101 −0.19729163937458920069 × 10−2

0.18099040506545928510 × 102 0.33959266046710551528 × 10−1

−0.44222521101771005259 × 102 −0.46443129149364017364 × 10−1

−0.49281712505609892221 × 102 −0.14673338698274539790 × 102

0.19120731039799297866 × 104 0.44654655766491527724 × 103

−0.18480296407139556113 × 105 −0.76529257176182418914 × 104

0.11949451283301751133 × 106 0.88037548115504996527 × 105

−0.51411364057002663824 × 106 −0.70563400281206830770 × 106

0.10973535392819828712 × 107 0.39099452669156576703 × 107

0.17331435565199135031 × 107 −0.14355007661133573735 × 108

−0.19127195748032646177 × 108 0.31757253245227946371 × 108

0.50801574443329963657 × 108 −0.33700657946301331333 × 108

−0.47910288059234253994 × 108 0.61171907037609011958 × 107
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Table B.13

The coefficients c j ( j = 0, . . . , 31) of the Laurent polynomial approximation given by (B.1) to eval-
uate J2(z) to 19-digit precision in Q 1 = {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 1 ≤ |z| ≤ 3}. N2 = 11.

Real part Imaginary part

0.31866632685819612221 × 10−16 0.62278738969830137987 × 10−16

0.23374202488114714431 × 10−15 −0.58368186829092031391 × 10−14

−0.12464763262921601144 × 10−12 0.20259199528722770999 × 10−12

0.54938914867389395195 × 10−11 −0.30688169770355401691 × 10−11

−0.12158575842106281373 × 10−9 0.20706119567919592298 × 10−12

0.16018003273928560165 × 10−8 0.88216842473436341238 × 10−9

−0.11941475881449767865 × 10−7 −0.18815539800292924303 × 10−7

0.15306868790345339446 × 10−7 0.22567034551573649710 × 10−6

0.80407254481241384544 × 10−6 −0.17772860498030423720 × 10−5

−0.11465040286971344849 × 10−4 0.88993097363922792729 × 10−5

0.92698417450695281624 × 10−4 −0.17153044258356809874 × 10−4

0.99948171991549382451 −0.15046194458696453245 × 10−3

0.14187062252412931802 × 101 0.18349141691729387994 × 10−2

−0.12647835873372535821 −0.11428276705995908659 × 10−1

0.18603598111474663325 0.50646899433597524505 × 10−1

−0.28764948748580855321 −0.17268243476553171463

0.37671933372380252436 0.46496076480920682474

−0.28673562730306685162 −0.99215999495574618374

−0.25260802503698437799 0.16511988403580568251 × 101

0.14171261472971538418 × 101 −0.20381244501795426809 × 101

−0.29457967249708858073 × 101 0.15782077203635430607 × 101

0.40284406518941590462 × 101 −0.37723354335564292819 × 10−1

−0.38128950013920692643 × 101 −0.19907064876530093167 × 101

0.22475249180098600179 × 101 0.33343987769848875142 × 101

−0.29845507995469994980 −0.32351706541913757406 × 101

−0.89544287444481992984 0.20454467870089365942 × 101

0.10175639567579240708 × 101 −0.77474351850574639868

−0.58788778865800093021 0.83503119281933322786 × 10−1

0.20009319020081182763 0.77689730095477593636 × 10−1

−0.35965432090839096074 × 10−1 −0.43797603367743883119 × 10−1

0.16769420558534530117 × 10−2 0.95756365430182522746 × 10−2

0.27256710553195448121 × 10−3 −0.76612682266254092889 × 10−3

Table B.14

Similar to Table B.13, c j ( j = 0, . . . , 29) for J2(z) in Q 2 = {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 3 ≤ |z| ≤ 15}. N2 = 0.

Real part Imaginary part

0.99999999999998061808 0.16248252113309315678 × 10−12

0.14166666666829275403 × 101 −0.23049278428420443693 × 10−10

−0.12152777988809406380 0.10578621411215754890 × 10−8

0.18566756593083182116 0.28424278401127180014 × 10−8

−0.35199891174698963256 −0.24190974576544113333 × 10−5

0.74514028477189295514 0.12627505833721768389 × 10−3

−0.15698688665407300795 × 101 −0.36906906699773089097 × 10−2

0.24402663496436078603 × 101 0.71150880132384387316 × 10−1

0.42564778384044014501 × 101 −0.92028028234742281569

−0.86628781485086884613 × 102 0.69659670041612025801 × 101

0.76780431897157477513 × 103 0.12336022855791130638 × 101

−0.56054291413858448509 × 104 −0.86886243977848514246 × 103

0.34709760011543563256 × 105 0.13997432791721954713 × 105

−0.17268737514629848298 × 106 −0.13922909431496294516 × 106

0.61187840164952315907 × 106 0.10063302790914770506 × 107

−0.90229280253909143653 × 106 −0.55090070720520207541 × 107

−0.58239693510024439315 × 107 0.22810067701144771236 × 108

0.55585305303478347757 × 108 −0.68226520995783255732 × 108

−0.26301929032497527308 × 109 0.12293641811239037282 × 109

0.84052909616481142218 × 109 0.21196827324494884533 × 108

−0.18657792154606295188 × 1010 −0.10131267803607086455 × 1010

0.25915388904113076082 × 1010 0.38427156992160196076 × 1010

−0.92517922470966062167 × 109 −0.86034302033451782637 × 1010

−0.51036926935170978903 × 1010 0.12626524314344868926 × 1011

0.13657170819172273067 × 1011 −0.11301642152404259095 × 1011

−0.18234815409451008101 × 1011 0.35546723514474331442 × 1010

0.14355121657220596589 × 1011 0.45839423517954065893 × 1010

−0.61032052837541757328 × 1010 −0.64509344322401839565 × 1010

0.84275175499628369228 × 109 0.32773844995198787342 × 1010

0.15857079566801991882 × 109 −0.60570352545416858098 × 109
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Table B.15

Similar to Table B.13, c j ( j = 0, . . . , 19) for J2(z) in Q 3 = {z ∈ C | Re(z) ≥ 0, Im(z) ≥ 0, 15 ≤ |z| ≤
120}. N2 = 0.

Real part Imaginary part

0.10000000000000000268× 101 0.16274386801955295004 × 10−16

0.14166666666666607632 × 101 −0.10287883462694876761 × 10−13

−0.12152777777773596334 0.21278064340420781315 × 10−11

0.18566743838222558548 −0.21346739588855205915 × 10−9

−0.35199453421212974648 0.10810020949854670351 × 10−7

0.74505620178581604077 −0.12758335415838672536 × 10−6

−0.15694400222283724037 × 101 −0.19194750913862712585 × 10−4

0.24655058999322356159 × 101 0.14693073094005325564 × 10−2

0.33607089142515892731 × 101 −0.57088317524506061035 × 10−1

−0.69853332457831300099 × 102 0.14378014381758075690 × 101

0.55610818499114251623 × 103 −0.24643410535733376707 × 102

−0.37382459971986918636 × 104 0.27993273451335282871 × 103

0.23868572841373643577 × 105 −0.17730529258353887568 × 104

−0.14415275031702837209 × 106 −0.95697379334253398976 × 103

0.75853591811873756981 × 106 0.14271567167383035412 × 106

−0.30972861668769145538 × 107 −0.15003099051227929984 × 107

0.85376658237794416873 × 107 0.84572529844164518814 × 107

−0.12288668565761833934 × 108 −0.27945310142205107664 × 108

0.26869963259519375012 × 106 0.49973783788775688447 × 108

0.16376853579174702084 × 108 −0.35949830322064479962 × 108

where ν := 3 
(

z
2

)2/3
. (B.1) is obtained by combining (6) and (21), and rewriting the Laurent polynomial as a power series in 

1
ν by pulling out the factor νN2 .
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