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Abstract
In this paper, we extend the boundary integral scheme for the threshold dynamics method
to treat the case where the material interface is nonsmooth and may undergo topological
changes. The scheme is then applied to study the wetting dynamics in both two and three
dimensions. Numerical experiments show that the scheme is more efficient as compared with
the existing method using uniform grids, making accurate simulation of wetting dynamics
on a chemically patterned solid surface in three dimensions within practical reach.

Keywords Threshold dynamics method · Nonuniform FFT · Heat equation · Wetting

1 Introduction

Wetting and spreading are of critical importance for many applications such as microfluidics,
inkjet printing, surface engineering, and oil recovery [2,3]. The way in which a liquid drop
spreads on a solid surface is governed by the surface and interfacial interactions, which
usually occur at a small scale. The most important quantity in wetting is the contact angle
between the liquid surface and the solid surface [14].When the solid surface is homogeneous,
the contact angle for a static drop is given by Young’s equation:

cos θY = γSV − γSL

γLV
, (1)
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where γSL , γSV and γLV are the solid–liquid, solid–vapor and liquid–vapor surface energy
densities, respectively. θY is the so-called Young’s angle [33].Mathematically, Young’s equa-
tion (1) can be derived by minimizing the total energy in the solid–liquid–vapor system. If
we ignore gravity and the effect of the fluid flow, the total energy in the system can be written
as

E = γLV |ΣLV | + γSL |ΣSL | + γSV |ΣSV |, (2)

where ΣLV , ΣSL and ΣSV are the liquid–vapor, solid–liquid and solid–vapor interfaces
respectively and | · | denotes the area of the interface. When the solid surface Γ is a homo-
geneous planar surface, provided that the volume of the liquid drop is fixed, the unique
minimizer of the total energy is a domain with a spherical surface in Ω with constant curva-
ture, and the contact angle between the spherical surface and the solid surface Γ is Young’s
angle θY [29].

The study of wetting dynamics has attracted much attention in the physics and applied
mathematics communities [1,10,12,21,32]. Numerical simulation of wetting on rough
surfaces is challenging. Onemust track the interfacemotion accurately, and deal with compli-
cated boundary shapes and boundary conditions. There aremany different numericalmethods
for solving interface and contact line problems, including the front-tracking method [18,30],
the front-capturing method using the level-set function [34], and the phase-field methods
[4,5]. Recently, Xu et al. [28,31] developed an efficient threshold dynamics method for solid
wetting problems. The method is based on the minimization of the weighted surface area
functional over an extended domain that includes the solid domain as an additional phase.
The method is insensitive to the inhomogeneity or roughness of the solid boundary. The
heat equation is solved in a rectangular domain with a uniform grid using convolution of
the heat kernel with the initial condition. The convolution is evaluated using the fast Fourier
transform (FFT) at O(N log N ) cost per time step with N being the total number of uniform
grid points in the entire computational domain. However, simulations must choose a spatial
mesh size that is of the same order as the time step size, resolve the thin layer around the
contact points, and capture the interface accurately. These requirements make N very large
and the simulation very expensive, especially for three dimensional problems. The thresh-
old dynamics method has subsequently been extended to deal with many other applications
including image processing [24,27], topology optimization [6], and harmonic target-valued
maps [20,25,26].

In this paper, we extend the boundary integral scheme for the threshold dynamics method
developed in [17] for smooth material interfaces to nonsmooth material interfaces. The
scheme discretizes the physical space only in a neighborhood of the interfaces and applies
non-uniform fast Fourier transform (NUFFT) [8,9,15] to further accelerate the calculation.
Unlike many grid-based methods where the spatial mesh size is required to be of the same
order as the time step size, the numerical experiments showed that the spatial mesh size can
be chosen based on the accuracy consideration and was more or less independent of the time
step size for the whole simulation. The combination of these techniques has greatly reduced
the computational cost for the threshold dynamics simulation. We then apply the scheme
to study the wetting dynamics in both two and three dimensions, where the solid surface
might be chemically patterned. The numerical results demonstrate that the scheme offers
significant speedup for the simulation of wetting dynamics. Indeed, as compared with the
method presented in [31], the scheme requires much less memory and is about 100 times
faster for the simulation of wetting dynamics on a chemically patterned solid surface in three
dimensions.
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The rest of the paper is organized as follows. In Sect. 2, we first introduce the threshold
dynamics method for wetting dynamics on a single solid surface and then extend it to the
wetting dynamics on a chemically patterned surface. In Sect. 3, we introduce the boundary
integral scheme for the pure heat diffusion equation with the initial condition being the
characteristic function of some bounded domain with a piecewise smooth boundary. The
thresholding scheme is introduced in Sect. 4. Various numerical experiments are presented
in Sect. 5. Conclusions and future directions are given in Sect. 6.

2 Threshold Dynamics Method for Wetting Dynamics

In this section, we briefly introduce the threshold dynamics method for wetting dynamics on
solid surfaces. In Sect. 2.1,we introduce the threshold dynamicsmethod forwetting dynamics
on a chemically homogeneous surface. In Sect. 2.2, we extend the threshold dynamicsmethod
to deal with wetting dynamics on a chemically patterned surface.

2.1 Threshold Dynamics Method forWetting Dynamics on a Chemically
Homogeneous Surface

We first consider a wetting problem in a domain Ω ∈ R
d , d = 2, 3 (see the left graph in

Fig. 1). The solid surface Γ (smooth a.e.) is part of the domain boundary ∂Ω . Denote the
liquid domain by D1 ⊂ Ω . We assume that ∂D1 ∩ ∂Ω ⊂ Γ . The volume of the liquid
drop is fixed such that |D1| = V0. We denote by ΣLV = ∂D1 ∩ Ω , ΣSL = ∂D1 ∩ Γ and
ΣSV = Γ \∂D1 the liquid–vapor, solid–liquid and solid–vapor interfaces respectively.

Xu et al. [31] extend the liquid–vapor domain to a larger domain Ω̃ containing the solid
phase denoted by D3 (see the right graph in Fig. 1). Analogous to that in [11], the energy (2)
can be approximated by

Eδt (χD1 , χD2) = γLV√
δt

∫
Ω̃

χD1Gδt ∗ χD2dx + γSL√
δt

∫
Ω̃

χD1Gδt ∗ χD3dx

+ γSV√
δt

∫
Ω̃

χD2Gδt ∗ χD3dx, (3)

Fig. 1 Left: the liquid domain and vapor domain in the wetting system. Right: the liquid domain, vapor domain
and solid domain in the wetting system
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where

Gδt (x) := 1

(4πδt)d/2 exp

(
−‖x‖2

4δt

)

is the heat kernel at time δt and χDi denotes the indicator function of the domain Di , that is,

χDi (x) =
{
1 if x ∈ Di ,

0 otherwise.
(4)

Since D3 is always fixed, denote u1 = χD1 and u2 = χD2 and define an admissible set

B =
{
(u1, u2) ∈ BV (Ω) | ui (x) = 0, 1, and u1(x) + u2(x) = 1, a.e. x ∈ Ω,∫
Ω

u1dx = V0
}

(5)

where BV denotes the space of functions of bounded variation. The wetting problem can
now be approximated by

min
(u1,u2)∈B

Eδt (u1, u2). (6)

Based on the relaxation and linearization procedure developed in [11], Xu et al. [31] first
relax the problem to an equivalent minimization problem in a convex admissible set:

min
(u1,u2)∈K

Eδt (u1, u2). (7)

where K is the convex hull of the admissible set B:
K =

{
(u1, u2) ∈ BV (Ω) | 0 ≤ ui ≤ 1, u1(x) + u2(x) = 1, a.e. x ∈ Ω,∫
Ω

u1dx = V0
}
. (8)

Using an iterative method, when the kth iteration (uk1, u
k
2) is computed, the approximate

energy (3) is linearized around (uk1, u
k
2) by

Eδt (u1, u2) ≈ Eδt (uk1, u
k
2) + L̂(u1 − uk1, u2 − uk2, u

k
1, u

k
2).

with

L̂(u1, u2, u
k
1, u

k
2)

= 1√
δt

(∫
Ω̃

u1Gδt ∗ (γLV u
k
2 + γSLχD3) + u2Gδt ∗ (γLV u

k
1 + γSVχD3)dx

)
. (9)

To find the approximate (uk+1
1 , uk+1

2 ), one needs only to solve the following minimization
problem of the linear functional on a convex admissible set:

min
(u1,u2)∈K

L̂(u1 − uk1, u2 − uk2, u
k
1, u

k
2). (10)

This is equivalent to solving

min
(u1,u2)∈K

(∫
Ω̃

u1φ1 + u2φ2dx
)

, (11)
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where φ1 = 1√
δt
Gδt ∗ (γLV uk2 + γSLχD3) and φ2 = 1√

δt
Gδt ∗ (γLV uk1 + γSVχD3). This

problem is reduced to a point-wise minimization problem, which can be efficiently solved
with a thresholding step through comparing the values of φ1 and φ2, i.e.,

uk+1
1 =

{
1 if φ1 < φ2 + δ,

0 otherwise
(12)

and uk+1
2 = χΩ − uk+1

1 . Here δ is a parameter to be determined so that the volume is
preserved, i.e.,

∫
uk+1
1 dx is unchanged. More details will be given in Sect. 4. The method is

summarized in Algorithm 1.

Algorithm 1 Threshold dynamics method for solid wetting problems.

Given initial D0
1 , D0

2 ⊂ Ω , such that D0
1 ∩D0

2 = ∅, D0
1 ∪D0

2 = Ω and |D0
1 | = V0, set a tolerance parameter

ε > 0.
1: For given sets (Dk

1 , Dk
2), compute two functions

φ1 = 1√
δt

Gδt ∗ (γLV χDk
2

+ γSLχD3 ), φ2 = 1√
δt

Gδt ∗ (γLV χDk
1

+ γSV χD3 ). (13)

2: Find δ such that the set

D̃δ
1 = {x ∈ Ω | φ1 < φ2 + δ} (14)

satisfies |D̃δ
1| = V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 = Ω\Dk+1
1 .

3: If |Dk
1 − Dk+1

1 | ≤ ε, stop; otherwise, go back to Step 1.

Note that step 1 in Algorithm 1 requires calculating the weighted sum of the convolution
between Gδt (x) and the characteristic functions of some bounded domains with piecewise
smooth boundaries. This is equivalent to finding the solution to the pure initial value problem
of the heat diffusion equation at t = δt , where the initial data are the characteristic functions
of some domains with piecewise smooth boundaries. This will be discussed in Sect. 3. The
thresholding step will be discussed in Sect. 4.

2.2 Threshold Dynamics Method forWetting Dynamics on Chemically Patterned
Surfaces

In this section, wewill extend the threshold dynamicsmethod in Sect. 2.1 to deal with wetting
dynamics on a chemically patterned surface. A chemically patterned solid surface is a surface
patterned with hydrophobic and hydrophilic materials (see, for example, Fig. 2).

To extend Algorithm 1 to wetting dynamics on a chemically patterned surface, we need to
split the original solid domain into two domains D3 and D4 in Fig. 2, representing materials
A and B, respectively. Denote by γSAL , γSAV , γSBL and γSBV the solidA-liquid, solidA-
vapor, solidB-liquid, and solidB-vapor surface energy densities, respectively. Then, the total
interfacial energy (2) becomes

E = γLV |ΣLV | + γSBL |ΣSBL | + γSBV |ΣSBV | + γSAL |ΣSAL | + γSAV |ΣSAV |. (15)
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Fig. 2 A liquid droplet on a
chemically patterned solid
surface

Vapor

Liquid

Solid

D1

D2

D4
D3

Similarly, when the kth iteration (uk1, u
k
2) is computed, the (k + 1)th iteration (uk+1

1 , uk+1
2 )

can be obtained as the solution to the following minimization problem:

min
(u1,u2)∈K

(∫
Ω̃

u1ψ1 + u2ψ2dx
)

, (16)

where ψ1 = 1√
δt
Gδt ∗ (γLV uk2 + γSALχD3 + γSBLχD4) and ψ2 = 1√

δt
Gδt ∗ (γLV uk1 +

γSAVχD3 +γSBVχD4). This problem can be solved in a point-wise manner and (uk+1
1 , uk+1

2 )

can be redefined via the formulas

uk+1
1 =

{
1, if ψ1 < ψ2 + δ,

0, otherwise,
(17)

and uk+1
2 = χΩ − uk+1

1 . Once again, δ is a parameter to be determined so as to preserve the
volume

∫
uk+1
1 dx. The algorithm is almost identical to Algorithm 1, except that we need to

change φ1 and φ2 to ψ1 and ψ2, respectively.
An important step in both algorithms is to solve the free space heat diffusion equation with

the initial data being the weighted sum of the characteristic functions of different bounded
domains. In the following, we briefly review and extend an efficient boundary integral scheme
for the free space heat solverwith the initial data being the characteristic function of a bounded
domain. The original scheme is introduced in [17] for smooth boundaries, and we extend the
scheme here to treat nonsmooth boundaries. Then φ1, φ2, ψ1, and ψ2 can be calculated as
the weighted sum of these solutions.

3 An NUFFT-Based Heat Solver

Consider the following pure initial value problem of the heat equaiton:

ut (x, t) = Δu(x, t),

u(x, 0) = χD(x),
(18)

where the initial data χD(x) is the characteristic function of some bounded domain D ∈ R
d

(d = 2, 3). In [17], we assume that the boundary ∂D of D is smooth. For wetting dynamics,
the boundary is often piecewise smooth due to the presence of the (possibly chemically
patterned) solid surface. Here, we first summarize theNUFFTbased solver for (18) developed
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in [17] for smooth boundaries. We then extend the scheme to nonsmooth boundaries. Note
that u(x, δt) is given by the formula

u(x, δt) =
∫

· · ·
∫
Rd

Gd(x, y; δt)χD(y)dy =
∫

· · ·
∫
D
Gd(x, y; δt)dy, (19)

where the Green’s function (or the fundamental solution) of the heat equation in Rd is given
by the formula

Gd(x, y; t) = 1

(4π t)d/2 e
− ‖x−y‖2

4t , x, y ∈ R
d . (20)

It is well known that Gd admits the following Fourier representation:

Gd(x, y; δt) = 1

(2π)d

∫
· · ·

∫
Rd

e−‖k‖2δt+ik·(x−y)dk, k ∈ R
d . (21)

Substituting (21) into (19) and exchanging the order of integration, we obtain

u(x, δt) = 1

(2π)d

∫
· · ·

∫
Rd

e−‖k‖2δt+ik·x f (k)dk, (22)

where f (k) is given by the formula

f (k) =
∫

· · ·
∫
D
e−ik·ydy. (23)

and f (k) is a C∞ function since D is a bounded domain in R
d . One may also show that

f (k) tends to 0 as ‖k‖ → ∞ (see, for example, [22]).
At first glance, Eq. (22) seems to be much more expensive than (19) since it involves

integrals in both physical and Fourier spaces. However, the following three observations can
be used to greatly reduce the computational cost of (22). First, the area/volume integral in
(23) can be converted to a line/surface integral using either Green’s theorem or the divergence
theorem. Second, the heat kernel Gd admit an efficient spectral Fourier approximation due
to the exponential decay of the high frequency modes in its Fourier representation (see, for
example, [16,17]). Third, NUFFT can be used to speed up the calculation of the discrete
sums.

In [17], we have assumed that the material interface is smooth and thus used a spectrally
accurate global discretization. For wetting dynamics, due to the existence of possibly chem-
ically patterned solid surface and the contact angle, such assumptions are no longer held.
Instead, we have to consider the case where the boundary is only piecewise smooth.

For 2D problems, the double integral in (23) is converted into a line integral using Green’s
theorem as follows:

f (k) =
∫∫

D
e−ik·ydy =

⎧⎪⎪⎨
⎪⎪⎩

i
k1

∫
∂D

e−ik·ydy2, k1 �= 0,
∫

∂D
y1e

−ik2 y2dy2, k1 = 0
(24)

with k = (k1, k2). Because the boundary curve ∂D is only piecewise smooth, to evaluate
the boundary integral in (24), we divide the boundary into, say, KS chunks with corners
belonging to the set of end points of chunks. We then discretize the parameter space for each
chunk using a pth order Gauss–Chebyshev rule (we set p = 16 in our implementation).
The discretization of the integrals in (24) is of the pth order and the overall heat solver will
also be of the pth order. Assume we use the pth order scaled and shifted Chebyshev nodes
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(sks0, sks1, sks2, . . . , sks p) with weights (wks0, wks1, wks2, . . . , wks p) to discretize the ks th
chunk for ks = 1, 2, . . . , KS . Then, we have

f (k) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i

k1

KS∑
ks=1

p∑
j=0

e−ik·y(sks j )y′
2(sks j )wks j , k1 �= 0,

KS∑
ks=1

p∑
j=0

y1(s j )e
−ik2 y2(sks j )y′

2(sks j )wks j , k1 = 0.

(25)

Furthermore, the area bounded by ∂D can be calculated by

A =
∫∫

D
dy =

∫
∂D

y1dy2 ≈
KS∑
ks=1

p∑
j=0

y1(sks j )y
′
2(sks j )wks j . (26)

For 3D problems, the volume integral in (23) is converted into a surface integral using the
divergence theorem

f (k) =
∫∫∫

D
e−ik·ydy =

⎧⎪⎪⎨
⎪⎪⎩

i
k1

∫∫
∂D

e−ik·y(î · ny)dsy, k1 �= 0,
∫∫

∂D
y1e

−ik2 y2−ik3 y3(î · ny)dsy, k1 = 0,
(27)

where î is the unit vector along the x-axis and ny is the unit normal vector at y. For piecewise
smooth ∂D, we divide it into KS patches. We then parametrize each patch via [u, v] ∈
[0, π] × [0, π], where u is the polar angle and v is the azimuthal angle. We now discretize
u using N1 scaled and shifted Chebyshev nodes (uks1, uks2, . . . , uks N1), and v using N2

scaled and shifted Chebyshev nodes (vks1, vks2, . . . , vks N2) for ks = 1, 2, . . . , KS . Hence,
the integrals in (27) are approximated by

f (k) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i

k1

KS∑
ks=1

N1∑
i=1

N2∑
j=1

e−ik·yks i j n1(uks i , vks j )Jks i jwks i j , k1 �= 0,

KS∑
ks=1

N1∑
i=1

N2∑
j=1

y1(uks i , vks j )e
−ik·yks i j n1(uks i , vks j )Jks i jwks i j , k1 = 0,

(28)

where n1(uks i , vks j ) is the x-component of the unit outward normal vector, Jks i j = |yu ×yv|
is the Jacobian at the point (uks i , vks j ), and wks i j is the corresponding quadrature weight.
Furthermore, the volume bounded by ∂D can be computed as follows:

V =
∫∫∫

D
dy =

∫∫
∂D

x(î · ny)dsy

≈
KS∑
ks=1

N1∑
i=1

N2∑
j=1

x(uks i , vks j )n1(uks i , vks j )Jks i jwks i j .

(29)

After f (k) has been computed, the solution u(x, δt) in (22) can be evaluated by approxi-
mating the Fourier integral via a spectrally accurate truncated trapezoidal rule. We have

u(x, δt) ≈ hd

(2π)d

M−1∑
m1=−M

· · ·
M−1∑

md=−M

e−‖m‖2h2δt+ihm·x f (hm). (30)
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We refer the readers to Theorem 1 in [17] for the choices of h and M in (30). It is clear that
we can apply type-1 NUFFT to evaluate f (hm) defined in (25) or (28), and then apply type-2
NUFFT to evaluate u(x, δt) in (30) efficiently (see, for example, [15] about the definitions
of different types of NUFFTs).

We summarize the whole procedure in Algorithm 2. The total cost of Algorithm 2 is
O (NS + NT + NF log NF ), where NS , NT are the total number of non-equispaced source
points on the boundary and the total number of target points near the boundary, respectively,
and NF = (2M)d is the total number of equispaced points in the Fourier space.

Algorithm 2 NUFFT-based solver for the initial value problem (18).
Given the prescribed accuracy ε, the time step size δt , and the boundary ∂D, compute u(x, δt) defined in (19)
on a set of prescribed target points xi , i = 1, . . . , NT .
1: Divide the boundary ∂D into KS subsets and discretize each subset via NS points in the parameter space

(scaled and shifted Chebyshev nodes for curves in 2D; scaled and shifted Chebyshev nodes along both
the polar direction and the azimuthal direction for surfaces in 3D), and compute the source locations yks j
(ks = 1, . . . , KS ; j = 0, . . . p in 2D and j = 1, . . . N1N2 in 3D ) via the given parametrization of ∂D,
and the associated weights wks j .

2: Compute the derivatives y′
j or the Jacobians.

3: Compute the mesh spacing h and M for the Fourier spectral approximation of the heat kernel according to
Theorem 1 in [17].

4: Use type-1 NUFFT to evaluate f (hm) defined in (25) or (28) for mi = −M, . . . , M − 1 (i = 1, . . . , d).
5: Use type-2 NUFFT to evaluate u(x j , δt) defined in (30) for j = 1, . . . , NT .

4 The Thresholding Step

We now discuss how thresholding is performed in our algorithm. As mentioned in
the preceding section, we use a carefully chosen set of points to represent the inter-
face in both two and three dimensions from which all other geometric quantities such
as the tangential derivatives, unit normal vectors, and area elements can be computed
efficiently. Hence, we only need to keep track of this set of points in the threshold dynam-
ics.

We note that in Step 2 of Algorithm 1, D1 at the next iteration is determined by comparing
the values of φ1 and φ2. It can be simplified via computing

γLV φ̃ = φ1 − φ2 = 1√
δt
Gδt ∗

(
γLVχDk

2
+ γSLχD3 − γLVχDk

1
− γSVχD3

)

= 1√
δt
Gδt ∗

(
γLVχDk

2
− γLVχDk

1
+ (γSL − γSV )χD3

)

= γLV√
δt
Gδt ∗

(
χDk

2
− χDk

1
+ γSL − γSV

γLV
χD3

)

= γLV
1√
δt
Gδt ∗

(
χDk

2
− χDk

1
+ cos(θY )χD3

)

where the last equality follows from (1). Then, Step 2 is equivalent to find x such that
φ̃(x) < δ̃ where δ̃ = δ

γLV
. For the patterned surface, we can define ψ̃ = ψ1−ψ2

γLV
in the

same way. Hence, in numerical examples, we only need to set the equilibrium contact angles
θY to determine the dynamics instead of considering the specific choices of surface ten-
sions.

123



Journal of Scientific Computing (2019) 81:1860–1881 1869

Thresholding begins by finding the level set of a given φ̃ (or ψ̃) calculated by (13) based
on the solution to the initial value problem (18) with some initial sets D1, D2, and D3 (or
D3, D4). Note that in Algorithm 1, each iteration starts with an indicator function of a
set and ends with the indicator function of a new set. In other words, we start with a set
of points y j ( j = 1, . . . , TS) to represent the boundary of the initial domain and end up
with another set of points to represent the boundary of the new domain at the next time
step.

Before we introduce the algorithm for finding the level set of φ̃ (or ψ̃), we first
introduce the algorithm to allocate the target points in wetting problems. When the
boundary is smooth, it is natural to allocate the target points along the normal direc-
tion of each source point. And the points on the new boundary are obtained through a
rootfinding algorithm along the normal lines, with the target points serving as the inter-
polation nodes for function evaluation. However, when the boundary is nonsmooth, say,
having corners, these normal lines from different source points will intersect with each
other even for small diffusion time steps. The subsequent line search algorithm will then
change the order of discrete points on the new boundary, leading to instability of the
scheme.

An implicit constraint in the threshold dynamics method for wetting dynamics is that
source points on the solid surface should always be located on the solid surface. In
this case, if we continue to allocate target points along the normal direction for each
source point as in [17], the original source points on the solid surface will move away
from the solid surface (below or above). Hence, to find the proper direction for allocat-
ing target points, we need to “interpolate” between the normal direction at each source
point and the tangential direction of the solid surface at the contact points (in the 3D
case, the tangential direction is considered to be the direction tangential to the solid sur-
face and normal to the contact line). Generally, at each source point, when it is close
to the solid surface, we expect to allocate some of the target points around it along
or parallel to the solid surface. When the source point is away from the solid surface,
some of the target points along the normal direction of the surface should be allocated.
Specifically, we introduce a weight function Ws : [0,∞) → [0, 1] (e.g., Ws(x) =
min(x, 1)). The direction in which the target points should be allocated is then determined
by

Ws(d(x))n(x) + (1 − Ws(d(x)))t(x),

where d(x) is the distance from the source point x to the solid surface, n(x) is the normal
vector at x, and t(x) is the tangential direction at x. In Fig. 3, we plot the allocated target
points where Ws is a piecewise constant function.

Fig. 3 Target points allocated for a wetting problem
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The algorithm is summarized in Algorithm 3.

Algorithm 3 Allocating target points in single-droplet wetting problems.
Given the time step size δt , the tangential direction t j at the source point on the solid surface, and a
set of source points y j ( j = 1, . . . , Ns) describing the interface at the current time, return the target
points.
1: Compute the derivatives y′

j and the unit normal vector n j for j = 1, . . . , Ns .

2: Compute a length L that is proportional to
√

δt , for example, L = 5
√

δt .
3: Compute p Gauss–Legendre nodes on the standard interval [−1, 1].
4: Select a weight function Ws and compute the distance between each source point and the solid surface to

form d j for j = 1, . . . , Ns .
5: For each point y j , compute the direction μ j for allocating the target points by μ j = Ws (d j )n j + (1 −

Ws (d j ))t j .
6: For each point y j on the boundary, allocate p scaled Gauss–Legendre nodes on the interval [−L, L]

centered at y j along the direction μ j ; altogether we obtain pNS target points xi for i = 1, . . . , qNs .

Remark 1 Note that the single subscript of y j ( j = 1, . . . , NS) comes from renumerating
the set of source points according to the following order:

y10, y11, . . . , y1p, y20, y21, . . . , y2p, . . . , yKS0, yKS1, . . . , yKS p

for the 2D case where NS = KS p and

y11, y12, . . . , y1N , y21, y22, . . . , y2N , . . . , yKS1, yKS2, . . . , yKSN

for the 3D case where NS = KSN and N = N1N2. For simplicity, we will use the single
subscript later.

Starting from a set of source points y j ( j = 1, . . . , Ts), we first apply Algo-
rithm 3 to allocate target points on both sides of all source points and apply Algo-
rithm 2 to compute the solution to the initial value problem (18) to obtain the values
of φ̃ (or ψ̃) on the target points. Then, we use a root-finding algorithm (for example,
Müller’s method in [19]) to find a point whose solution value is equal to v along each
given direction computed in Algorithm 3. We summarize the whole scheme in Algo-
rithm 4.

Algorithm 4 Computing the level set for a given function value v.
Given the prescribed accuracy ε, the time step size δt , a set of source points y j ( j = 1, . . . , TS) describing
the interface at the current time, and a specified function value v, compute the level set for the function value
v and return a new set of TS points representing the new interface after diffusion and thresholding, at which
the solution to the initial value problem is equal to v. Also return the area or the volume bounded by the new
level set.
1: Apply Algorithm 3 to find the target points and the direction μ j for allocating the target points at each

source point y j .
2: Compute the value of φ̃ (or ψ̃) at these target points by applying Algorithm 1 to solve the initial value

problem (18) with the initial data being the indicator function of D1, D2, and D3.
3: For each point y j on the boundary along its corresponding direction μ j , approximate u(x(s), δt) with a

(p−1)th order Legendre polynomial and useMüller’s method [19] to find the parameter value s ∈ [−L, L]
at which the function value is equal to the given value v.

4: Calculate the coordinates of the points in the level set by setting y j = y j + s · μ j .
5: Use (26) or (29) to compute the area or the volume bounded by the new level set.
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In wetting dynamics, we need to find the area- or volume-preserving level set. We
can simply add another round of iterations in Algorithm 4. The algorithm is summa-
rized in Algorithm 5. Our numerical experiments show that 4–6 iterations are required
to achieve 12-digit accuracy and only 2–3 iterations are needed to reach single pre-
cision. Obviously, the cost of the root-finding procedure in Algorithms 4 and 5 is
O(Ns).

Algorithm 5 Calculating the area- or volume-preserving level set.
Given the prescribed accuracy ε, the time step size δt , and a set of source points y j ( j = 1, . . . , NS) describing
the interface at the current time, return a new set of TS points representing the new interface after diffusion and
thresholding, whose area or volume is equal to that bounded by the original set of points.
1: Use (26) or (29) to compute the area or the volume bounded by the original set of source points.
2: Make initial guesses for the solution values v0, v1, v2 randomly but close to 0 for example, and apply

Algorithm 4 to find the level sets and the areas or the volumes associated with vi (i = 0, 1, 2).
3: Use Müller’s method to find the solution value v and associated level set whose enclosed area or volume

is equal to that bounded by the original set of points.
4: Return the new set of points and the solution value v.

5 Numerical Experiments

We have implemented the aforementioned algorithms in both Fortran and MATLAB. We
used the NUFFT library from [15]. We now illustrate the performance of our algorithm via
several numerical examples. All results were obtained on a laptop with a 2.3GHz Intel Core
i5 processor and 8GB of RAM.

5.1 Two-Dimensional Results

Example 1 Non-smooth two-phase interface motion—Mean curvature motion of the hexa-
gram in 2D. To show the capability of our method to simulate the dynamics of a non-smooth
interface in 2D, we consider the mean curvature motion of an initially non-smooth hexa-
gram in two dimensions. We first check the accuracy of the NUFFT-based heat solver in
Algorithm 2 in two dimensions for the non-smooth case. For the 2D solver, we use the hex-
agram in Fig. 5 as the boundary and compute the solution to the initial value problem with
δt = 0.0005. The numerical solutions are evaluated at NT = p ·Ns = 16×1440 fixed target
points with p = 16 points along each proper direction (for example, see Fig. 4) of the source
points. Table 1 shows the relative L2 error of the numerical solution of the heat diffusion
equation at t = δt with various numbers of source points on the boundary.

We set δt = 0.0005 and use 360 points to discretize the interface with p = 16. The
computational domain is [−1, 1]2. Figure 5 displays the snapshots of the mean curvature
motion of the hexagram at different times. The simulation shows that our algorithm is very
robust for the nonsmooth case even when the hexagram shrinks.

Example 2 Non-smooth three-phase interface motion and wetting on a solid surface.We now
apply our algorithms to simulate the dynamics of the liquid–vapor interface when the liquid
drop is placed on a solid surface. The computation domain is [−1, 1]2. We use 400 points to
discretize the interface with p = 16. The target points are distributed as in Fig. 3.

Figure 6 shows the snapshots of the wetting process on a hydrophilic solid material, where
the profile of the liquid drop gradually changes from a half-circle to an arc with contact angle
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Table 1 Relative L2 error versus number of discretization points on the boundary for the 2D heat solver

NS 30 × 12 40 × 12 50 × 12 60 × 12 70 × 12

Error 3.396e−6 5.917e−8 5.847e−10 3.373e−12 1.629e−14

The boundary curve is a non-smooth hexagram shown in Fig. 4. The reference solution is obtained with
Ns = 120 × 12 points on the boundary

Fig. 4 Target points generated
along a non-smooth hexagram
interface

asπ/3. Figure 7 displays the snapshots of thewetting process on a hydrophobic solidmaterial,
where the profile of the liquid drop gradually changes from a half circle to an arc with contact
angle 2π/3. Both figures are generated with δt = 0.0005.

The simulation of the hydrophilic solid material using our scheme takes about 98.7 s. We
have also run the same case with the same accuracy using the uniform mesh method in [31]
with 4096 × 4096 grid points (δ = 0.001). It takes 4649 s. For the hydrophobic case, our
scheme takes about 101.5 s, whereas the uniform mesh method in [31] takes 4389 s, where
the computational domain is again discretized into 4096 × 4096 grid points. Therefore, the
computational cost is reduced by a factor of about 40 with the current method. The efficiency
gain in our scheme mainly comes from limiting the calculation to a neighborhood of the
material interfaces and applying the NUFFT to speed up discrete summations.

To show the convergence of Algorithm 1 with respect to δt , we first check the con-
vergence of dynamics through computing the solution at t = 0.04 by using δt =
0.008, 0.004, 0.002, 0.001, 0.0005 with θY = π/3. The reference solution is obtained by
setting δt = 0.000125 and using 400 points to discretize the interface with p = 16. Table 2
lists the relative L2 errors of the dynamic solution at t = 0.04 with various values of δt . The
convergence order is consistent with the results in [23,31].

We then check the convergence of the equilibrium solutionswith respect to δt .We set θY =
π/3andcompute the equilibriumsolutions byusing δt = 0.008, 0.004, 0.002, 0.001, 0.0005.
The exact solution for the equilibrium solution can be computed because the equilibrium solu-
tion is a circular curve with the correct contact angle θY = π/3 and preserved volume. More
details on the equilibrium solution for wetting dynamics can be found in [7]. Table 3 lists the
relative L2 errors of the solution at the equilibriumwith various values of δt . The convergence
order is consistent with the results in [23,31].

Example 3 Interface motion with topological changes—Two droplets merging in 2D. In this
example, we show that our algorithms can handle the cases involving topological changes
as well. We simulate the process of two droplets merging. Initially, we have two droplets on
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Fig. 5 Snapshots of the mean curvature motion of a hexagram. δt = 0.0005. The computational domain is
[−1, 1]2

the solid surface as in Fig. 8. We set θY = π/3 and the two droplets will spread on the solid
surface. Theoretically, the two droplets will merge when the two contact points meet.

In the implementation,we represent the interface of each droplet using 200 points. Because
the contact point only moves along the solid surface, we track the distance between the right
contact point of the left droplet and the left contact point of the right droplet. If the distance is
smaller than a given tolerance ε, we connect the two curves and treat them as one connected
curvebymerging these two sets of points. Thenwedistribute the target points along the normal
direction of the new single interface and continue the simulation as we did in Example 2.

We set δt = 0.0002 and use 200 points to discretize each interface with p = 16 in
Algorithm 3. Figure 9 displays the snapshots of the volume-preserving motion of the two
droplets on the solid surface at different times. From these snapshots, we see that the two
droplets merge and the profile eventually becomes an arc with equilibrium contact angle π/3.
This is in agreement with the numerical simulation in [31] and the experimental results.

Example 4 Wetting on chemically patterned surfaces in 2D.Tomodel solid wetting dynamics
on chemically patterned surfaces, we use the NUFFT-based heat solver to solve the free space
heat diffusion equation to obtain ψ1 and ψ2. The thresholding step is the same as before.
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Fig. 6 Snapshots of the wetting process on a hydrophilic solid surface with Young’s angle π/3. The compu-
tational domain is [−1, 1]2

Table 2 Relative L2 error versus δt for the solution in wetting dynamics at t = 0.04

δt 0.008 0.004 0.002 0.001 0.0005

Error 1.511e−2 9.347e−3 5.630e−3 3.283e−3 1.738e−3

The reference solution is obtained with δt = 0.000125

Table 3 Relative L2 error versus δt for the solution of the equilibrium state

δt 0.008 0.004 0.002 0.001 0.0005

Error 1.631e−2 9.056e−3 4.509e−3 2.217e−3 8.803e−4

Figure 10 displays the snapshots of the wetting dynamics on the same chemically patterned
surface with different initial conditions. For different initial conditions, the contact points are
pinned at different positions at the equilibrium displaying the phenomenon of contact angle
hysteresis. In this simulation, δt = 0.0005, Young’s angle in materialA (i.e., the red domain
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Fig. 7 Snapshots of the wetting process on a hydrophobic solid surface with Young’s angle 2π/3. The com-
putational domain is [−1, 1]2

Fig. 8 Initial profile of two
droplets on a solid surface

D3 in Fig. 10) is 2π/3 and Young’s angle in material B (i.e., the white domain D4 in Fig. 10)
is π/3. The interface is discretized with 400 points and p = 16.
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Fig. 9 Snapshots of two droplets merging on a solid surface with Young’s angle π/3. The computational
domain is [−1, 1]2

5.2 Three-Dimensional Results

Example 5 Wetting in 3D. We now consider the wetting of a droplet on the solid surface
in three dimensions. Figure 11 displays the snapshots of the solid wetting process on a
hydrophobic solid surface. In this simulation, we set δt = 0.002 and use 96 × 96 points to
discretize the surface of the droplet with p = 16 with Young’s angle π/3. Figure 12 displays
the snapshots of the solid wetting process on hydrophilic solid surfaces. In this simulation,
we set δt = 0.0005 and use 96 × 96 points to discretize the surface of droplet with p = 16
with Young’s angle 2π/3. The results in Figs. 11 and 12 show that our numerical results
agree strongly with the predicted theoretical results.

Simulating the wetting on a hydrophobic surface takes about 1090 s whereas simulating
the wetting on a hydrophilic surface takes about 4111 s. The algorithm in [31] would require
at least 1024× 1024× 1024 uniform grid points in the computational box to reach a similar
level of accuracy for such 3D simulations. Even if we ignore the memory constraint, the
whole simulation would take about 600 h on the same laptop to reach equilibrium, making
the algorithm in [31] impractical for 3D problems.

Example 6 Solid wetting on chemically patterned surfaces in 3D.
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Fig. 10 Snapshots of wetting dynamics on a chemically patterned surface in 2D. In this simulation, δt =
0.0005, Young’s angle in material A (i.e., the red domain D3) is 2π/3 and Young’s angle in material B (i.e.,
the white domain D4) is π/3. The computational domain is [−1, 1]2

To verify the performance of our algorithm in the 3D simulation, we compare our results
with the phase field simulation in [13].We use the same initial condition and the same pattern
on the solid surface. That is, two intersecting hydrophobic strips of width 0.1 with Young’s
angle 2π/3 are placed at the center of an otherwise hydrophilic background with Young’s
angleπ/4. Figure 13 displays the snapshots of similar dynamics of the interface as that in [13,
Figure 8]. Figure 14 shows that the droplet spreads out on the hydrophilic surface (blue area)
and contracts on hydrophobic strips (white area) and eventually reaches an equilibrium state.
This is consistent with the result in [13, Figure 9]. In this simulation, we set δt = 0.0005 and
use 96 × 96 points to discretize the surface of the droplet with p = 16.

6 Conclusions and Future Discussions

In this paper, we have extended the algorithm in [17] for smooth curves/surfaces to deal with
cases involving non-smooth curves/surfaces and cases involving topological changes. We
have also applied the extended algorithm to study the wetting dynamics in both two and three
dimensions. The algorithm avoids discretizing of the entire volume and does not need to
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Fig. 11 Snapshots of the wetting process on a hydrophobic solid material with Young’s angle 2π/3. The CPU
time for the whole simulation is 1090 s. The computational domain is [−0.6, 0.6]× [−0.6, 0.6]× [−0.5, 0.2]

Fig. 12 Snapshots of the wetting process on a hydrophilic solid material with Young’s angle π/3. The CPU
time for the whole simulation is 4111 s. The computational domain is [−0.8, 0.8]× [−0.8, 0.8]× [−0.5, 0.1]
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Fig. 13 Snapshots of wetting dynamics on a chemically patterned surface in 3D. In this simulation, δt =
0.0005, Young’s angle in material A (i.e., the blue domain D3) is π/4 and Young’s angle in material B (i.e.,
the white domain D4) is 2π/3. The computational domain is [0, 0.8] × [0, 0.8] × [−0.8, 0]

Fig. 14 Positions of the contact
line between time t = 0 and
t = 0.01 at time intervals of
0.0005

truncate the computational domain. Hence, an expensive uniform grid for the discretization
of a large volumic domain is not needed and one only needs a nearly optimal number of
discretization points in the neighborhood of the material interfaces. When combined with
the NUFFT, the algorithm achieves nearly optimal complexity with much fewer number of
unknowns. Our numerical experiments demonstrate that the algorithm is highly accurate and
efficient compared with the existing algorithms. We expect that the algorithm will be of
practical use for the study of wetting dynamics on both single-material solid surfaces and
chemically patterned solid surfaces.
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