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Abstract

In this paper, we study the stability properties of explicit marching schemes for second-kind
Volterra integral equations that arise when solving boundary value problems for the heat
equation by means of potential theory. We show that, for the Dirichlet problem on the unit
ball in all dimensions d ≥ 2, the simplest marching scheme is unconditionally stable. By
contrast, it is well known that explicit finite difference or finite element schemes for the heat
equation are stable only if the time step ∆t is of the order O(∆x2), where ∆x is the finest
spatial grid spacing. We also consider Robin boundary conditions for d = 1, and show that
there is a constant C depending only on the Robin (heat transfer) coefficient κ such that
the simplest first-order accurate scheme is stable if ∆t < C(κ), independent of the spatial
discretization. Our estimates involve new bounds for ratios of modified Bessel functions, and
for the smallest eigenvalues of real symmetric Toeplitz matrices, which may be of analytic
interest in other applications.

Keywords: heat equation, Abel equation, forward Euler scheme, Volterra integral equation,
stability analysis, Toeplitz matrix, modified Bessel function of the first kind

1. Introduction

In this paper, we study the stability of integral equation methods for the heat equation

∂u

∂t
(x, t)−∆u(x, t) = F (x, t) (1)

u(x, 0) = u0(x)

for 0 ≤ t ≤ T , subject to suitable boundary conditions in a smooth, bounded domain D. For
the sake of simplicity, we have assumed that the diffusion coefficient (thermal conductivity) is
one. In dimensions d > 1, we assume Dirichlet boundary conditions are imposed on Γ = ∂D:

u(x, t) = f(x, t)|x∈Γ, t>0.
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Epstein), greengard@courant.nyu.edu (Leslie Greengard), shidong.jiang@njit.edu (Shidong Jiang),
jwang@flatironinstitute.org (Jun Wang)
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We assume that the initial and boundary data are compatible, namely that f(x, 0) = u0(x)
for x ∈ Γ. In the one-dimensional setting, we consider both Dirichlet boundary conditions
on a half line x ≥ 0 (so that the boundary consists of a single point), and Robin boundary
conditions of the form

−ux(0, t) + κu(0, t) = f(t) . (2)

Here, κ > 0 is the heat transfer coefficient, and (2) models boundary coupling to an exterior
reservoir of given temperature κf(t), either via a thin conductive layer, or via convection with
Newton’s law of cooling [4]. The Neumann case κ = 0 instead imposes boundary flux f(t).

Before turning to the integral equation framework, we briefly review the finite difference
approach. For this, we assume we are given a spatial mesh discretizing the domain D with
grid points xn and seek to approximate the solution unm ≈ u(xn, tm) at time steps t0, t1, . . . , tN
with tm = m∆t. Two of the simplest schemes for solving (1) are the forward and backward
Euler methods:

um+1
n − umn

∆t
= ∆h[u]

m
n + F (xn, tm)

and

um+1
n − umn

∆t
= ∆h[u]

m+1
n + F (xn, tm) ,

respectively. Here ∆h[u]
m
n denotes the finite difference approximation of the Laplacian eval-

uated at the grid point xn at time tm. It is well known that the backward Euler scheme is
unconditionally stable, while, in d dimensions, the forward Euler scheme requires that the
time step satisfy the condition that ∆t < 1

2d∆x2, assuming a uniform spatial grid with step
size ∆x in each direction (see, for example, [40, p. 158]). For nonuniform grids, the time step
restriction is more complicated to analyze, but generally requires that ∆t = O(h2min) where
hmin is the finest mesh spacing in the discretization.

Unfortunately, the backward Euler scheme, is implicit and requires the solution of a large
sparse linear system at each time step tm. The forward Euler scheme, on the other hand, is
explicit and inexpensive. The stability restriction, however, forces extremely small time steps
to be taken, making long-time simulations impractical. This has spurred the development
of a variety of alternative approaches, including locally one-dimensional schemes, alternating
direction implicit methods, etc. [34].

When finite difference methods are used to solve general initial-boundary value problems,
GKSO theory plays a critical role [11, 12, 33, 38, 41], and requires that the interior marching
scheme be Cauchy stable (that is, beyond the stability condition above, the discrete boundary
conditions must satisfy additional criteria). In short, stability imposes rather intricate con-
straints on the coupling between the interior marching scheme and the boundary conditions
themselves. Similar considerations are involved when using finite element methods.

An alternative to direct discretization of the governing PDE is to recast the problem as a
boundary integral equation using heat potentials [36, 18]. In dimension d = 1, the solution
to the heat equation (1) on the half-line x ≥ 0 with Dirichlet boundary data

u(0, t) = f(t) (3)
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is given analytically by the representation

u(x, t) =

∫ t

0

∂G

∂x
(x, t− τ)µ(τ) dτ + v(x, t) , (4)

where G(x, t) = e−x2/4t√
4πt

is the Green’s function for the heat equation in free space, and v is the

following explicit solution to (1) comprising the initial potential plus the volume potential:

v(x, t) :=

∫ ∞

0
G(x− y, t)u0(y) dy +

∫ t

0

∫ ∞

0
G(x− y, t− τ)F (y, τ) dy dτ . (5)

The first term in (4) is a double layer heat potential living on the single boundary point. Since
v does not in general satisfy the boundary condition, enforcing (3) using the standard jump
relation (section 3, noting that the D term is zero), the double layer density is simply

µ(t) = −2f̃(t) , (6)

for the “corrected” Dirichlet data f̃(t) := f(t) − v(0, t). This is an exact solution, so that
stability follows trivially. The error is simply that made in evaluating the integrals that appear
in (4) and (5).

The Robin boundary condition (2) leads to a more interesting model in the one-dimensional
case. Representing u(x, t) now in the form of a single layer heat potential

u(x, t) =

∫ t

0
G(x, t− τ)σ(τ) dτ + v(x, t) (7)

with v as in (5), a similar application of the jump relations (section 3) leads to a weakly
singular Abel-type Volterra integral equation of the second kind for σ:

1

2
σ(t) +

κ√
4π

∫ t

0

σ(τ)√
t− τ

dτ = f̃(t) , t > 0 , (8)

with corrected Robin data

f̃(t) := f(t)− vx(0, t) + κv(0, t) .

A simple numerical solver for (8) is to sample σm := σ(tm) on the uniform grid tm = m∆t,
use the piecewise constant approximation σ(t) ≈ σm on [tm, tm+1], and perform the integrals
exactly, to give

σn = 2f̃n −
n−1
∑

m=0

wn−mσm, n = 1, . . . , N (9)

with the lower-triangular Toeplitz matrix weights

wj = 2
√
h(
√

j −
√

j − 1) =
2
√
h√

j +
√
j − 1

, j = 1, 2, . . . , (10)

f̃n := f̃(tn), and h = κ2∆t/π. We will refer to this scheme as the forward Euler method
for the Volterra equation (8); it is a simple collocation scheme [18, Sec. 13.3] as well as a
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convolution quadrature scheme [23]. The scheme is explicit, since σn does not appear on the
right-hand side. For smooth solutions σ ∈ C1([0, T ]) it is also first-order accurate, as can be
shown by combining compactness of the integral operator, Céa’s lemma, and noting that the
piecewise constant approximant has error O(∆t) (see [18, Sec. 13.1–3]).

In dimension d > 1, the Green’s function for the heat equation is

G(x, t) =
1

(4πt)d/2
e−

|x|2
4t , x ∈ R

d . (11)

We assume that the boundary Γ of D is at least C2, and let σ be a square integrable function
on Γ× [0, T ]. Then the single layer heat potential S is defined by the formula

S[σ](x, t) =
∫ t

0

∫

Γ
G(x− y, t− τ)σ(y, τ)ds(y)dτ (12)

and the double layer heat potential D is defined by

D[σ](x, t) =

∫ t

0

∫

Γ

∂G(x− y, t− τ)

∂ν(y)
σ(y, τ)ds(y)dτ, (13)

where ν(y) is the unit outward normal vector at y ∈ Γ. The initial potential is defined by

U [u0](x, t) =
∫

D
G(x− y, t− τ)u0(y)dy (14)

and the volume potential is defined by

W[F ](x, t) =

∫ t

0

∫

D
G(x− y, t− τ)F (y, τ)dydτ. (15)

The solution to the Dirichlet problem for (1) can be obtained (see section 3) by solving the
second kind Volterra equation

(

− 1

2
+D

)

[σ](x, t) = f̃(x, t), (x, t) ∈ Γ× [0, T ], (16)

where D is interpreted in a principal value sense, and, analogously to the d = 1 case, the
corrected data is

f̃(x, t) := f(x, t)− v(x, t) , where v(x, t) := U [u0](x, t) +W[F ](x, t) ,x ∈ Γ .

By the forward Euler method for (16), we mean a marching scheme of the form

σ(x, n∆t) = 2
n−1
∑

j=0

∫ (j+1)∆t

j∆t

∫

Γ

∂G(x− y, n∆t− τ)

∂ν(y)
σ(y, j∆t)ds(y)dτ (17)

− 2f̃(x, n∆t).

That is, we assume σ(y, t) is piecewise constant over each time interval [j∆t, (j+1)∆t], taking
on the value σ(y, j∆t). This is an explicit, first order accurate formula for the value of the
unknown at the nth time step.
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The goals of this work are to show that the d = 1 marching scheme (9) has a time step
restriction determined by the physical parameter κ, namely ∆t < π

c2κ2 with c ≈ 1.5, and that
the marching scheme (17) is unconditionally stable in all dimensions d ≥ 2.

The principal reasons that integral equation methods have received relatively little atten-
tion for solving the heat equation has been that direct evaluation of layer (or volume) poten-
tials require quadratic work in the total number of unknowns as well as the design of suitable
quadrature rules. Recent advances in fast algorithms for heat potentials, however, have re-
moved this obstacle. We refer the reader to the papers [8, 9, 10, 15, 25, 24, 37, 39, 43, 44, 45]
and the references therein for further discussion.

The mathematical tools needed to prove our stability results involve spectral bounds for
Toeplitz operators. We provide these in section 2. In section 3, we summarize the necessary
properties of layer potentials. The one-dimensional problem is then treated in section 4, the
two-dimensional problem in section 5, and higher-dimensional problems in section 6.

2. Spectral bounds for real symmetric Toeplitz operators

Let S1 be the unit circle in the complex plane, parametrized by polar angle θ with nor-
malized arc length measure dλ = 1

2πdθ.
For any f, g in the Hilbert space L2(S1), we write

f(θ) =

∞
∑

n=−∞
fne

inθ, g(θ) =

∞
∑

n=−∞
gne

inθ, (18)

in terms of the orthogonal basis {einθ}n∈Z, where fn (n ∈ Z) is the nth Fourier coefficient of
f defined by

fn =
1

2π

∫ 2π

0
f(θ)e−inθdθ.

The Hardy space H2 is defined by

H2 = {f ∈ L2(S1) | fn = 0, n < 0},

and we let P denote the orthogonal projection of L2(S1) onto H2. The Toeplitz operator
T f : H2 → H2 with symbol f ∈ L∞(S1), is defined by

T f (u) = P (fu) .

The operator T f is closely related to an infinite-dimensional Toeplitz matrix with entries
tij , i, j ∈ N that satisfy tij = ti+1,j+1 for all i, j. That is, the matrix is constant along diagonals
and determined by a two-sided sequence (tn)n∈Z with tij = ti−j . The Fourier transform maps
T f onto the class of Toeplitz matrices on l2(Z+); that is, if

(

T f (u)
)

n
denotes the nth Fourier

coefficient of T f (u), then

(

T f (u)
)

n
=

{ ∑∞
m=0 fn−mum , n ≥ 0

0 , n < 0

where um is the mth Fourier coefficient of u.
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Definition 1. A sequence {an}n∈Z+ is said to be convex if δ2an ≥ 0 for every n > 0, where
δ2an := an−1 − 2an + an+1 is the central second difference.

Recall that for n ∈ Z+ the Fejér kernel Fn(x) is defined to be

Fn(θ) =

n
∑

j=−n

(

1− |j|
n+ 1

)

eijθ =
1

n+ 1

[

sin
(

n+1
2 θ
)

sin
(

θ
2

)

]2

.

The following theorem can be found in [17, Chapter 1, Theorem 4.1].

Theorem 1. If an → 0 and the sequence {an}n∈Z+ is convex, then the series

v(θ) =

∞
∑

n=1

n (δ2an)Fn−1(θ) (19)

converges in L1([−π, π]) to a non-negative function, which is continuous except at 0, such that
vn = an.

It is often the case that the function v(θ) blows up as θ → 0. Using the elementary estimate
on the Fejér kernel

Fn(θ) ≤ min

{

(n+ 1),
π2

(n+ 1)θ2

}

,

[17, Chapter 1, formula 3.10] and the fact that, for a convex sequence tending to zero, we
have limn→∞ n(an − an+1) = 0, one can show that

lim
θ→0

θv(θ) = 0 . (20)

Bounds on the spectrum of finite Toeplitz matrices are of interest in many applications
[5, 14, 19, 26]. When a real symmetric Toeplitz operator (or matrix) is generated by a positive
sequence, the Gerschgorin circle theorem [40, §3.3] often gives a satisfactory upper bound on
its spectral radius or the largest eigenvalue. Curiously, satisfactory lower bounds on the
smallest eigenvalue do not seem to be available. The following theorem leads to a tight lower
bound on the smallest eigenvalue of a real symmetric Toeplitz matrix, defined by a convex
sequence, even when v is unbounded.

Theorem 2. Suppose that {vn}n∈N is a convex sequence and limn→∞ vn = 0. Set v0 = 2v1−v2,
and let v(θ) be the non-negative function defined by the sequence {vn}n∈Z+ as in Theorem 1.
Suppose that V is the self-adjoint Toeplitz matrix defined by Vii = 0 and Vij = v|i−j|. Then,

for any u ∈ CN , we have the lower bound

〈V u,u〉 ≥ (v2 − 2v1)‖u‖2.

Proof. For a finite length vector u = (u0, . . . , uN , 0, 0, . . . )n∈Z+ , define the function

u(θ) =

N
∑

n=0

une
inθ. (21)
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Theorem 1 implies that

0 ≤ 1

2π

∫ 2π

0
v(θ)|u(θ)|2dθ =

1

2π

∫ 2π

0
v(θ)

∑

0≤j,k≤N

uj ūke
i(j−k)θdθ

=
∑

0≤j,k≤N

vk−juj ūk

= 〈V u,u〉+ (2v1 − v2)‖u‖2.

Remark 1. If VN is the upper left N ×N principal submatrix of V , then, by an application
of the Rayleigh-Ritz theorem, its spectrum is bounded below by (v2 − 2v1).

Remark 2. For certain applications the sequence, {vn}n∈N, generating T v is not convex. In
this case, one may consider an operator of the form, cI + T v + T a with c and {an}n∈N chosen
so that (c, v1 + a1, v2 + a2, . . .) is a convex sequence. If T a is a bounded operator, then the
previous theorem implies a lower bound on the spectrum of V

〈V u,u〉 ≥ −(c+ ‖Ta‖)‖u‖2 for u ∈ C
N .

Remark 3. If v is unbounded, then the Toeplitz operator it determines is not defined on all
of H2. Equation (20) implies that if u ∈ H2, then v(1−eiθ)u ∈ L2. Thus T vw = P (vw) ∈ H2,
for w in the subspace (1 − eiθ)H2. It is not difficult to see that this subspace is dense. If
u ∈ H2 and r > 1, then

(

1− eiθ

r − eiθ

)

u ∈ H2

and

lim
r→1+

∥

∥

∥

∥

(

1− eiθ

r − eiθ

)

u− u

∥

∥

∥

∥

2

= 0.

Since 〈T vw,w〉 ≥ 0, for w in this domain, the Friedrichs extension of T v is a closed self-adjoint,
non-negative operator defined on a dense subspace Dv ⊂ H2.

3. Properties of heat potentials

By construction, the single and double layer heat potentials (12) and (13) satisfy the
heat equation. They also satisfy certain well-known jump conditions when the target point
x approaches the boundary from either side [18, 36]. In particular, for x0 ∈ Γ, the normal
derivative of the single layer potential S[σ] satisfies the relation

lim
ǫ→0+

∂S[σ](x0 ± ǫν(x0), t)

∂ν(x0)
= ∓ 1

2
σ(x0, t) + Sν [σ](x0, t),

and the double layer potential D[σ] satisfies the relation

lim
ǫ→0+

D[σ](x0 ± ǫν(x0), t) = ± 1

2
σ(x0, t) +D[σ](x0, t), (22)
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where both Sν [σ](x0, t) and D[σ](x0, t) are interpreted in the Cauchy principal value sense.
If we represent the solution to the heat equation (1) via a double layer potential u(x, t) =
D[σ](x, t), then the integral equation (16) follows immediately from the jump relation (22).

The kernel of the double layer potential is given explicitly by

∂G(x− y, t− τ)

∂ν(y)
=

(x− y) · ν(y)
2d+1πd/2(t− τ)1+d/2

e
− |x−y|2

4(t−τ) (23)

and the kernel of Sν is given by

∂G(x− y, t− τ)

∂ν(x)
= − (x− y) · ν(x)

2d+1πd/2(t− τ)1+d/2
e
− |x−y|2

4(t−τ)

and ν(y) replaced with ν(x). In one dimension, both kernels vanish at the single boundary
point y = x0 = 0.

Finally, the initial potential (14) is well known to satisfy the homogeneous heat equation
with initial data u0(x), while the volume potential (15) satisfies the inhomogeneous heat
equation

∂u

∂t
(x, t)−∆u(x, t) = F (x, t)

with zero initial data.

Remark 4. Using these properties, it is straightforward to see that representing the solution
to the Dirichlet problem in the form

u(x, t) = D[σ](x, t) + U [u0](x, t) +W[F ](x, t)

leads to the integral equation (16), with the only unknown corresponding to the double layer
density σ.

Remark 5. On the unit sphere Sd−1, ν(y) = y and |x| = |y| = 1. Thus, (x − y) · ν(y) =
−(1− x · y), |x− y| = 2(1− x · y), and (23) reduces to

∂G(x− y, t− τ)

∂ν(y)
= − 1− x · y

2d+1πd/2(t− τ)1+d/2
e
− 1−x·y

2(t−τ) . (24)

3.1. Connection with the Laplace kernel

The Green’s function for the Laplace equation in Rd is

GL(x,y) =

{

− 1
2π ln |x− y|, d = 2,
1

(d−2)ωd

1
|x−y|d−2 , d ≥ 3,

where

ωd =
2πd/2

Γ(d/2)
(25)

is the area of the unit sphere Sd−1 ⊂ Rd. Here Γ is the gamma function defined by the formula

Γ(z) =

∫ ∞

0
xz−1e−xdx. (26)
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The kernel of the Laplace double layer potential operator is given by

∂GL(x− y)

∂ν(y)
=

Γ(d/2)

2πd/2

(x− y) · ν(y)
|x− y|d . (27)

It is well known to satisfy Gauss’ Lemma [18]:

∫

Γ

∂GL(x− y)

∂ν(y)
dS(y) = − 1

2
, x ∈ Γ. (28)

Some connections between heat potentials and harmonic potentials (those satisfying the
Laplace equation) are given by the following two lemmas.

Lemma 1.

lim
t→∞

∫ t

0

∂G(x− y, t− τ)

∂ν(y)
dτ =

∂GL(x− y)

∂ν(y)
. (29)

Proof. By (23), we have

∫ t

0

∂G(x− y, t− τ)

∂ν(y)
dτ =

(x− y) · ν(y)
2d+1πd/2

∫ t

0

1

(t− τ)1+d/2
e
− |x−y|2

4(t−τ) dτ.

The change of variables λ = |x−y|2
4(t−τ) leads to

∫ t

0

∂G(x− y, t− τ)

∂ν(y)
dτ =

(x− y) · ν(y)
2πd/2|x− y|d

∫ ∞

|x−y|2
4t

λ
d
2
−1e−λdλ.

Taking the limit t → ∞ and using the definition of the gamma function (26), we obtain
(29).

Lemma 2. Suppose that D is a C1 convex domain. Then

∂G(x− y, t− τ)

∂ν(y)
≤ 0,

∂GL(x− y)

∂ν(y)
≤ 0, x,y ∈ Γ, (30)

and

lim
t→∞

∫ t

0

∫

Γ

∂G(x− y, t− τ)

∂ν(y)
dS(y)dτ = −1

2
, x ∈ Γ. (31)

For t ∈ (0,∞),

∫ t

0

∫

Γ

∣

∣

∣

∣

∂G(x− y, t− τ)

∂ν(y)

∣

∣

∣

∣

dS(y)dτ <
1

2
, x ∈ Γ. (32)

Proof. (30) follows from the expressions (23) and (27) and the fact that x ·y ≤ 0 for x,y ∈ Γ
when D is convex due to the convex separation theorem [2]. (31) follows from (28) and (29),
and (32) is a simple consequence of (30) and (31).
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4. The one-dimensional case

4.1. The Dirichlet problem

We consider first the forward Euler scheme (17) for the Dirichlet problem (16). Given a
piecewise constant approximation of the unknown density σ

σ(y, τ) = σ(y, tj) = σj(y), τ ∈ [tj , tj+1) for j = 0, 1, . . . .

with tj = j∆t, we restate (17) in the form

− 1

2
σj(x) +

j−1
∑

k=0

Vj−k[σk](x) = fj(x) := f(x, j∆t), (33)

for j = 0, 1, 2, . . ., where (as before) the tilde has been dropped from f , and where

Vj−k[σk](x) =

∫

Γ
Vj−k(x,y)σk(y)ds(y)

and

Vj−k(x,y) =

∫ (k+1)∆t

k∆t

∂G(x− y, j∆t− τ)

∂ν(y)
dτ.

Note that

Vl(x,y) =

∫ ∆t

0

∂G(x− y, l∆t− τ)

∂ν(y)
dτ, l ≥ 1.

V0(x,y) is set to 0.
The boundary Γ of the unit ball in one dimension consists of only two points x = ±1.

And (33) becomes a 2 × 2 system on the vector [σj(−1) σj(+1)]T . Diagonalization of this
2× 2 system leads to the following scalar equation for each eigenmode

−1

2
σ±
j ∓

j−1
∑

k=0

vj−kσ
±
k = f±

j , j = 0, 1, 2, . . . , (34)

where the convolution coefficient vl is given by the formula

vl =
1

2
√
π

∫ ∆t

0
(l∆t− τ)−3/2e

− 1
(l∆t−τ)dτ, l ≥ 1 (35)

with

γ(t) :=
1

2
√
π
t−3/2e−

1
t , t > 0 , (36)

and we set v0 = 0.
The system (34) for j = 0, 1, · · · , N can be written in matrix-vector form

(

− 1

2
I ∓ V

)

σ± = f±, (37)
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where I is the (N +1)× (N +1) identity matrix, V ∈ R(N+1)×(N+1) with entries vj,k = vj−k,
σ± = {σ±

j }Nj=0, f
± = {f±

j }Nj=0. we denote the symmetric part of V by W with its dependence
on N and ∆t written out explicitly, thus

W (N ; ∆t) :=
V + V T

2
. (38)

We have the following lemma.

Lemma 3. Fix T > 0. Then, for any N and ∆t with N∆t ≤ T , the spectral radius ρ(N ; ∆t)
of the matrix W (N ; ∆t) has the bound

ρ(N ; ∆t) ≤ C1(T ) , (39)

where

C1(T ) :=

∫ T

0
γ(T − τ)dτ =

1

2
√
π

∫ ∞

1
T

1√
u
e−udu <

1

2
. (40)

Proof. Using the Gershgorin circle theorem [40, §3.3], and the fact that the diagonal entries
of Wn are all zero, we have

ρ(N ; ∆t) ≤ max
i

N+1
∑

j=1

|wij | ≤ 2
N
∑

l=1

1

2
|vl| ≤

N
∑

l=1

vl . (41)

Now setting t = N∆t, we may collapse this sum into a single integral

N
∑

l=1

vl =
N
∑

l=1

∫ ∆t

0
γ(l∆t− τ)dτ =

N
∑

k=1

∫ ∆t

0
γ(N∆t− (k − 1)∆t− τ)dτ

=
N
∑

k=1

∫ k∆t

(k−1)∆t
γ(N∆t− τ)dτ =

∫ N∆t

0
γ(N∆t− τ)dτ = C1(N∆t)

according to the definition (40) of the function C1. Combining the last two results we have
ρ(N ; ∆t) ≤ C1(N∆t). The expression in (40) follows from the change of variables u = 1

T−τ .
A further change of variables x =

√
u leads to

C1(T ) =
1√
π

∫ ∞

1√
T

e−x2
dx <

1√
π

∫ ∞

0
e−x2

dx =
1

2
, for all T > 0 . (42)

Finally, the above expression shows that C1(T ) is a monotonically non-decreasing function of
T , so that ρ(N ; ∆t) ≤ C1(N∆t) ≤ C1(T ).

It is clear from (37) that to get a stability bound we will need to control the gap between
C1(T ) and

1

2
. For T ≥ 1, we have

1

2
− C1(T ) =

1

2
√
π

∫ 1
T

0

1√
u
e−udu >

1

2e
√
π

∫ 1
T

0

1√
u
du =

1

e
√
πT

. (43)
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Theorem 3. Suppose that T ≥ 1. Then

‖σ±‖ ≤ e
√
πT‖f±‖ (44)

for all N , ∆t such that N∆t ≤ T . That is, when Γ is the unit circle S0, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0, T ].

Proof. Multiplying both sides of (37) by −(σ±)T , we have

1

2
‖σ±‖2 ± (σ±)TV σ± = 1

2
‖σ±‖2 ± (σ±)TWσ± = −(σ±)Tf± . (45)

Applying (39) on the left side (45) and the Cauchy–Schwartz inequality on the right side, we
obtain

(

1

2
− C1(T )

)

‖σ±‖2 ≤ 1

2
‖σ±‖2 ± (σ±)TWσ± = −(σ±)Tf± ≤ ‖σ±‖‖f±‖ .

That is, finally applying (43),

‖σ±‖ ≤ 1
1

2
− C1(T )

‖f±‖ ≤ e
√
πT‖f±‖ ,

which completes the proof.

4.2. The Robin problem

We now analyze the Robin problem, recast as the Abel integral equation (8), repeated
here for convenience (multiplying both sides by two, and from now on dropping the tilde on
the right-hand side f):

σ(t) +
κ√
π

∫ t

0

σ(τ)√
t− τ

dτ = 2f(t). (46)

Firstly we show stability of the continuous problem for κ > 0. The Riemann–Liouville frac-
tional integral operator Rα is defined by the formula

Rα[g](t) =
1

Γ(α)

∫ t

0

g(τ)

(t− τ)1−α
dτ, α ∈ (0, 1),

where Γ(α) is the gamma function (26). Thus, the integral operator on the left side of (8) is

simply Γ(1/2)κ√
π

R1/2 = κR1/2. For all real functions g, Rα satisfies the non-negative property

[31, Eq. (2.1)]

∫ T

0
g(t)Rα[g](t)dt ≥ 0 . (47)

Taking the inner product of (46) with σ over a fixed interval [0, T ], and using (47), gives

‖σ‖2L2([0,T ]) ≤ 2(σ, f) ≤ 2‖σ‖L2([0,T ])‖f‖L2([0,T ])

12



where Cauchy–Schwartz was used in the last step. Thus on any finite interval [0, T ] we have
the L2 stability bound

‖σ‖ ≤ 2‖f‖ .

The above proof ingredient will recur several times in the discrete setting.
Recall from the introduction that the forward Euler scheme for (46) uses a piecewise

constant approximation of the density σ and the explicit formula (9). For initialization, we
set σ0 = f0 = 0. Let us define the vectors σ and f by {σn}Nn=0, {fn}Nn=0 ∈ RN+1, respectively.
Using this notation, (9) takes the form of the lower-triangular Toeplitz linear system

(I +W )σ = 2f , (48)

where W ∈ R(N+1)×(N+1) has elements wn,m = wn−m for n > m, and wn,m = 0 otherwise.
Here, wn is defined in (10) with h = κ2∆t/π.

There is a substantial literature on the numerical analysis and stability of Volterra equa-
tions in the one-dimensional setting. For a discussion of convergence theory and step-size
control, see [1, 16] and the monograph [3]. Much work on stability has been devoted to an
analysis of the model problem

y(t) +

∫ t

0
[λ0 + λ1(t− τ)]y(τ) dτ = f(t),

or to problems with a continuous kernel [16, 27]. In [20], a more relevant stability result is
obtained for systems of the form (48), but assuming that the sequence {wj} is in l1, which is
not the case here.

For previous work on Abel-type equations with singular kernels, we refer the reader to
[6, 21, 22, 42]. These papers, however, are mostly concerned with implicit marching schemes.
An exception is Lubich’s 1986 paper [23], which does a careful stability analysis for a variety
of schemes and makes clear the connection between completely monotonic sequences and
stability. An interesting result from that paper is Corollary 2.2, which states that “the
stability region of an explicit convolution quadrature . . . is bounded.” Theorem 4 below,
which is consistent with Lubich’s result, gives a precise value for the time step restriction. It
also guarantees that σ decays once the right-hand side f has switched off.

Before turning to that theorem, however, it is worth noting that this time-step restriction
does not apply to the equation (16) in higher dimensions. We will show below that explicit
methods for the Dirichlet problem can be unconditionally stable.

Theorem 4. There is a constant 0 < c < 3 −
√
2 such that, for any N and any f ∈ RN+1,

the solution to (48) obeys

‖σ‖ ≤ 2

1− c
√
h
‖f‖ , (49)

where ‖.‖ denotes the l2-norm. That is, the marching scheme (9) is stable for h < 0.39 <
(1/c)2 or ∆t < π/(c2κ2) where κ is the heat transfer coefficient.

Proof. We first show that there exists a constant c > 0 such that

σTWσ ≥ −c
√
h‖σ‖2 for any σ ∈ R

N+1, (50)

13



i.e. that the smallest eigenvalue ofW is bounded from below. Writing
√
hTN+1 :=

1

2
(W+W T )

as the symmetric part of W , note that σTWσ =
√
hσTTN+1σ, and that TN+1 is independent

of the time-step. Note that TN+1 is the (N + 1)× (N + 1) upper left principal submatrix of
the infinite symmetric Toeplitz matrix Tv, defined by the sequence 0, v1, v2, . . . with

vj =
1√

j +
√
j − 1

=
√

j −
√

j − 1, j ∈ N.

It is straightforward to check that the sequence {vj}j∈N is convex and that limj→∞ vj = 0.
By Theorem 2 and Remark 1, we have

σTTN+1σ ≥ (v2 − 2v1)‖σ‖2.

That is, (50) holds if c = 2v1 − v2 = 3 −
√
2. To complete the proof, take the inner product

of (48) with σ to get

‖σ‖2 + σTWσ = 2σTf .

Applying (50) to the left-hand side and the Cauchy–Schwartz inequality to the right-hand
side, we have

(1− c
√
h)‖σ‖2 ≤ 2‖σ‖‖f‖ ,

from which (49) follows for any σ 6= 0. It holds trivially when σ = 0.

Remark 6. The above proof gives c = 3 −
√
2 ≈ 1.5858. By numerically computing the

smallest eigenvalue of successively larger Toeplitz matrices V , or, better, by evaluating v(π) =
2
∑

j>0(−1)j−1vj , one can obtain an optimal estimate of c ≈ 1.52041925043874. We omit the
details of this computation and mention it only to illustrate that the explicit bound is within
about 4% of the optimal one.

Remark 7. With unit diffusion constant, the transfer coefficient κ has units (length)−1. Thus
our time-step condition ∆t < π/(cκ)2 is proportional to the square of the physical length
1/κ. Although reminiscent of the explicit finite-difference stability condition ∆t < c∆x2, our
stability condition is, by contrast, independent of any spatial discretization. (Indeed, once
f(t) is available, there is no need for spatial discretization.)

Remark 8. In the limit κ → 0, the scheme is unconditionally stable. This is to be expected,
since when κ = 0, the Robin boundary condition becomes a Neumann condition and the
representation (7) yields the analytic solution σ(t) = 2f(t).

5. The Dirichlet problem in two dimensions

We now consider (33) when Γ is the unit circle S1. We decompose both σj(y) and fj(x)
into Fourier series:

σj(y) =
+∞
∑

n=−∞
σn
j e

inφ, y = (cosφ, sinφ),

fj(x) =

+∞
∑

n=−∞
fn
j e

inθ, x = (cos θ, sin θ).

14



From (24), writing s = θ − φ, the nth Fourier mode of the kernel is
∫

S1

∂G(x− y, t− τ)

∂ν(y)
einφdφ =

∫ 2π

0
−1− cos(θ − φ)

8π(t− τ)2
e
− 1−cos(θ−φ)

2(t−τ) einφdφ

= −γn(t− τ)einθ, (51)

where, noting that the imaginary part of e−ins cancels by symmetry, we have

γn(t) :=
1

8πt2

∫ 2π

0
(1− cos(s))e−

1−cos(s)
2t cos(ns)ds , t > 0 . (52)

Since {einθ} are orthonormal, each Fourier mode evolves independently. The marching scheme
(or recurrence) (33) for the nth mode is then

− 1

2
σn
j −

j−1
∑

k=0

vnj−kσ
n
k = fn

j , j = 0, 1, 2, . . . , (53)

where the convolution coefficient vnl is given by the formula

vnl =

∫ ∆t

0
γn(l∆t− τ)dτ, l ≥ 1, (54)

and we set vn0 = 0. The system (53) for j = 0, 1, · · · , N can be written in matrix-vector form
(

− 1

2
I − V n

)

σn = fn, (55)

where I is the (N +1)× (N +1) identity matrix, V n ∈ R(N+1)×(N+1) with entries vnj,k = vnj−k,

σn = {σn
j }Nj=0, f

n = {fn
j }Nj=0. The symmetric part of V n we denote by Wn, and often make

its dependence on N and ∆t explicit, thus

Wn(N ; ∆t) :=
V n + (V n)T

2
=

1

2











0 vn1 vn2 . . . vnN
vn1 0 vn1 . . . vnN−1
...

...
...

...
...

vnN vnN−1 . . . vn1 0











. (56)

5.1. Stability analysis

We now prove two key results. The first is that the forward Euler scheme is unconditionally
stable for any fixed time interval [0, T ] (Theorem 5). More precisely, this theorem permits the
solution to grow linearly in time. The second is that for ∆t < 1, the L2 norm of the solution
is bounded independently of T . We will require the following lemma.

Lemma 4. Fix T > 0. Then, for any N and ∆t with N∆t ≤ T , and all n ∈ Z, the spectral
radius ρn(N ; ∆t) of the matrix Wn(N ; ∆t) has the bound

ρn(N ; ∆t) ≤ C2(T ) , (57)

where, in terms of the definition (52),

C2(T ) :=

∫ T

0
γ0(T − τ)dτ =

1

4π

∫ 2π

0
e−

1−cos(s)
2T ds < 1

2
. (58)
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Proof. Let n ∈ Z. Since the integrand in (52), excluding the cosns factor, is non-negative,
we observe that |γn(t)| ≤ γ0(t), so |vnl | ≤ v0l for all l ≥ 1. Using this, the Gershgorin circle
theorem [40, §3.3], and using the fact that the diagonal entries of Wn are all zero, we have

ρn(N ; ∆t) ≤ max
i

N+1
∑

j=1

|wn
ij | ≤ 2

N
∑

l=1

1

2
|vnl | ≤

N
∑

l=1

v0l . (59)

Now setting t = N∆t, we may collapse this sum into a single integral

N
∑

l=1

v0l =
N
∑

l=1

∫ ∆t

0
γ0(l∆t− τ)dτ =

N
∑

k=1

∫ ∆t

0
γ0(N∆t− (k − 1)∆t− τ)dτ

=

N
∑

k=1

∫ k∆t

(k−1)∆t
γ0(N∆t− τ)dτ =

∫ N∆t

0
γ0(N∆t− τ)dτ = C2(N∆t)

according to the definition (58) of the function C2. Combining the last two results we have
ρn(N ; ∆t) ≤ C2(N∆t). To prove the expression in (58) we insert (52), interchange the order

of integration and apply the change of variables λ = 1−cos(s)
2(T−τ) , thus

C2(T ) :=

∫ T

0
γ0(T − τ)dτ =

∫ T

0

1

8π(T − τ)2

∫ 2π

0
(1− cos(s))e

− 1−cos(s)
2(T−τ) dsdτ

=
1

4π

∫ 2π

0
e−

1−cos(s)
2T ds < 1

2
, for all T > 0 .

Finally, the above expression shows that C2(T ) is a monotonically non-decreasing function of
T , so that ρn(N ; ∆t) ≤ C2(N∆t) ≤ C2(T ).

It is clear from (55) that to get a stability bound we will need to control the gap between
C2(T ) and

1

2
. This motivates the following.

Proposition 1.

C2(T ) = 1

2
e−

1
2T I0

(

1

2T

)

, (60)

where In(·) is the modified regular Bessel function of order n (see Appendix). For T ≥ 1,

1

2
− C2(T ) ≥ 1

10T
. (61)

Proof. (60) follows from the integral representation of I0(x) (A.2). (61) follows from the facts

that I0(x) ≤ 1 + x2

2 [32, §10.25.2] and e−x ≤ 1− x
2 for T ≥ 1.

Theorem 5. Suppose that T ≥ 1. Then for all n ∈ Z,

‖σn‖ ≤ 10T‖fn‖ (62)

for all N , ∆t such that N∆t ≤ T . That is, when Γ is the unit circle S1, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0, T ].
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Proof. Since we are working in the Fourier domain, σn and fn are complex-valued. Thus, we
split (55) into two independent real systems

(

− 1

2
I − V n

)

σn
r = fn

r ,
(

− 1

2
I − V n

)

σn
i = fn

i ,
(63)

where σn
r and σn

i are the real and imaginary part of σn, respectively.
Multiplying both sides of the first equation in (63) by −(σn

r )
T , we have

1

2
‖σn

r ‖2 + (σn
r )

TV nσn
r = 1

2
‖σn

r ‖2 + (σn
r )

TWnσn
r = −(σn

r )
Tfn

r . (64)

Applying (57) on the left side (64) and the Cauchy–Schwartz inequality on the right side, we
obtain

(

1

2
− C2(T )

)

‖σn
r ‖2 ≤ 1

2
‖σn

r ‖2 + (σn
r )

TWnσn
r = −(σn

r )
Tfn

r ≤ ‖σn
r ‖‖fn

r ‖ .

That is, finally applying Proposition 1,

‖σn
r ‖ ≤ 1

1

2
− C2(T )

‖fn
r ‖ ≤ 10T‖fn

r ‖ .

Similar result holds for ‖σn
i ‖. Combining the two inequalities gives (62).

We now show that the dependence on T in (62) can be removed when the time step
satisfies ∆t ≤ 1. This is a physically reasonable requirement since we have assumed that the
diffusion coefficient is one, and the domain has of order unit area. We first provide a bound
on ρn(N ; ∆t) for n 6= 0 that is independent of N∆t.

Lemma 5. Let N and ∆t > 0 be arbitrary, and let ρn(N ; ∆t) be the spectral radius of
Wn(N ; ∆t) defined in (56). Then for all n 6= 0,

ρn(N ; ∆t) ≤ 1

2|n|+ 1
. (65)

Proof. Clearly, it is sufficient to prove (65) for n > 0. For this, let us note that substituting
(52) into (54), exchanging the order of integration, and making the change of variables λ =
1−cos(s)
2(l∆t−τ) , we obtain

vnl =







1
4π

∫ 2π
0 e−

1−cos(s)
2∆t cos(ns)ds, l = 1,

1
4π

∫ 2π
0

(

e−
1−cos(s)

2l∆t − e
− 1−cos(s)

2(l−1)∆t

)

cos(ns)ds, l > 1.

By the integral representation (A.2) of In, we have

vnl =

{

1

2
e−

1
2∆t I|n|(

1
2∆t), l = 1,

1

2

(

e−
1

2l∆t I|n|(
1

2l∆t)− e
− 1

2(l−1)∆t I|n|(
1

2(l−1)∆t)
)

, l > 1.
(66)

From (66), defining f(x) := e−xIn(x) and xl = 1/(2l∆t), we consider the sum

Sn = 2
N
∑

l=1

|vnl | = f(x1) +
N
∑

l=2

|f(xl)− f(xl−1)| . (67)
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By Lemma 9 (see Appendix), f(x) increases monotonically on [0, rn] and decreases monoton-
ically on [rn,+∞), with rn the unique maximum. We now consider (67) on a case-by-case
basis.

(a) All xl lie on [0, rn]: Since xl < xl−1 and f(x) increases on [0, rn], we have

Sn ≤ f(x1)−
N
∑

l=2

(f(xl)− f(xl−1)) = 2f(x1)− f(xN )

≤ 2f(x1) <
2

2n+ 1
.

where the last inequality follows from (A.6).

(b) All xl lie on [rn,∞): In this case, we have

Sn ≤ f(x1) +

N
∑

l=2

(f(xl)− f(xl−1)) = f(xN ) <
1

2n+ 1
.

(c) x1 > · · · > xm ≥ rn > xm+1 > · · · > xN : In this case, we have

Sn ≤ f(x1) +

m
∑

l=2

(f(xl)− f(xl−1))

+ |f(xm)− f(xm+1)| −
N
∑

l=m+2

(f(xl)− f(xl−1))

= f(xm) + |f(xm)− f(xm+1)|+ f(xm+1)− f(xN )

< f(xm) + |f(xm)− f(xm+1)|+ f(xm+1)

= 2max(f(xm), f(xm+1))

<
2

2n+ 1
.

By (59) we have

ρn(N ; ∆t) ≤
N
∑

l=1

|vnl | = 1

2
Sn <

1

2n+ 1
,

completing the proof.

Corollary 1. For all n 6= 0,

‖σn‖ ≤ 1
1

2
− 1

2|n|+1

‖fn‖ ≤ 6‖fn‖.

Thus all non-zero modes are unconditionally stable. The zeroth Fourier mode is a bit
more subtle, and brings in a weak restriction on ∆t, as follows.
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Lemma 6. Suppose that a = 0.05 and ∆t ≤ 1. Then c2I +W 0 + aW 1 is positive definite if

c2 =
1

2
e−1/2I0

(

1

2

)

+ 1

6
a ≈ 0.33085 . . . (68)

Proof. Define the sequence yj = w0
j + aw1

j = 1

2
(v0j + av1j ) for j ≥ 1 and y0 = c2. Theorem 2

then shows that a sufficient condition for the positive semi-definiteness of c2I + W 0 + aW 1

is that the sequence {yj}j∈Z+ is convex. But y1 = 1
4f(x1), yj = 1

4(f(xj) − f(xj−1)) (j > 1),
where f is the function defined in Lemma 13, and xj = 2j∆t. That is, yj is the first order
difference of f . Furthermore, the convexity of {yj}j∈N is equivalent to the non-negativity of
the third order difference of f , which follows from the fact that f ′′′(x) > 0 for all x > 0 as
proved in Lemma 13. For j = 0, the convexity of the sequence requires that one choose c2
such that

c2 + y2 = y0 + y2 ≥ 2y1. (69)

By the integral representation (A.2) of I0, it is easy to see that e−xI0(x) is strictly decreasing.

Thus, we have e−1/2I0
(

1

2

)

≥ e−
1

2∆t I0
(

1
2∆t

)

for ∆t ≤ 1. Furthermore,

max
[0,∞)

e−xI1(x) <
1

3

by (A.6). Hence, (69) is achieved by choosing

c2 =
1

2
e−1/2I0

(

1

2

)

+ 1

6
a > 2y1 =

1

2
e−

1
2∆t

(

I0

(

1

2∆t

)

+ I1

(

1

2∆t

))

for ∆t ≤ 1.

Corollary 2. Suppose that ∆t ≤ 1. Then, for arbitrary N ,

‖σ0‖ ≤ 7‖f0‖.

Proof. Set a = 0.05. By Lemma 6, the smallest eigenvalue of W 0 is bounded by

λ0
min ≥ −c2 − aλ1

max ≥ −c2 − aρ1 ≥ −c2 −
1

3
a.

Thus a simple bound using the value of c2 from Lemma 6 is

7‖σ0‖2 ≤
(

1

2
− c2 −

1

3
a

)

‖σ0‖2 ≤ 1

2
‖σ0‖2 + (σ0)TW 0σ0 = −(σ0)Tf0

≤ ‖σ0‖‖f0‖,

completing the proof.

6. Higher dimensions

In dimensions d > 2, we consider the Dirichlet problem on the unit ball, with data specified
on the unit sphere Sd−1. The unknown density σ is decomposed using the corresponding
spherical harmonics [29]

σ(y, τ) =

∞
∑

n=0

an,d
∑

m=1

σnm(τ)Y m
n (y),
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where

an,d = (2n+ d− 2)
(n+ d− 3)!

n!(d− 2)!
.

Here, an,d is the dimension of Hn(S
d−1), the space of homogeneous polynomials of degree

n on Rd restricted to Sd−1, while Y m
n are spherical harmonics of degree n. When d = 3,

an,d = 2n+1, the inner summation is usually written as
∑n

m=−n, and the spherical harmonics
Y m
n (θ, φ) are defined by

Y m
n (θ, φ) =

√

2n+ 1

4π

√

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ,

where Pm
n (cos θ) is the associated Legendre polynomial [32, §18.3] of degree n and order m.

The spherical harmonics admit the following integral representation [29]

Y m
n (x) =

an,d
ωd

∫

Sd−1

Pn,d−1(x · y)Y m
n (y)dS(y), (70)

where ωd is the area of Sd−1 defined in (25), and the Pn,d−1 are Gegenbauer polynomials [29,
Chapter 2] (also called ultraspherical polynomials), defined by the Rodrigues formula

Pn,d−1(t) =
(−1)n

2n
Γ
(

d−1
2

)

Γ
(

n+ d−1
2

)

1

(1− t2)
d−3
2

dn

dtn
(1− t2)n+

d−3
2 . (71)

The Funk–Hecke formula [29, Chapter 2, Theorem 2.39] states that

∫

Sd−1

f(x · z)Pn,d−1(y · z)dS(z) = βn,d−1Pn,d−1(x · y), (72)

where

βn,d−1 = ωd−1

∫ 1

−1
Pn,d−1(t)f(t)(1− t2)

d−3
2 dt

and f is any measurable function such that

∫ 1

−1
|f(t)|(1− t2)

d−3
2 dt < ∞ .

In R3, this reduces to f ∈ L1[−1, 1].
We compute the double layer heat potential nmth Fourier mode,

∫

Sd−1

∂G(x− y, t− τ)

∂ν(y)
Y m
n (y)dS(y)

= −
∫

Sd−1

1− x · y
2d+1πd/2(t− τ)1+d/2

e
− 1−x·y

2(t−τ)Y m
n (y)dS(y)

= −an,d
ωd

∫

Sd−1

γn,d(t− τ)Pn,d−1(x · z)Y m
n (z)dS(z)

= −γn,d(t− τ)Y m
n (x) ,

(73)
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where, by analogy with (52),

γn,d(t) :=
ωd−1

2d+1πd/2t(d+2)/2

∫ 1

−1
(1− x)e−

1−x
2t Pn,d−1(x)(1− x2)(d−3)/2dx . (74)

The third equality makes use of (70), (72), and exchanging the order of integration. The last
step follows again from (70). Notice that γn,d does not depend on the order m.

Since the {Y m
n } form an orthonormal basis for functions in L2(Sd−1) and (73) shows

that each spherical harmonic evolves independently under the action of the double layer heat
potential operator, we may consider the time evolution for each mode nm separately.

For the forward Euler scheme, we again assume that σ(x, t) takes the constant value
σj(x) = σ(x, j∆t) over each interval [j∆t, (j+1)∆t], j = 0, 1, . . . . Equivalently, each spherical
harmonic mode σnm(t) takes the constant value σnm

j = σnm(j∆t) over the interval [j∆t, (j +
1)∆t], j = 0, 1, . . . . A straightforward calculation leads to the following recurrence for the
nmth spherical harmonic mode, analogous to (53):

− 1

2
µj −

j−1
∑

k=0

vnj−kµk = gj , j = 0, 1, 2, . . . , (75)

where we use the abbreviations µj := σnm
j , gj = fnm

j , and the matrix elements

vnl =

∫ ∆t

0
γn,d(l∆t− τ)dτ, l > 0, (76)

and, as before, vn0 = 0.

6.1. Stability analysis

The normalization in (71) leads to [28, 30]

|Pn,d−1(x)| ≤ 1 = P0,d−1(x), x ∈ [−1, 1].

As the other terms in (74) are non-negative, we have

|γn,d(t− τ)| ≤ γ0,d(t− τ) , t− τ > 0 .

An almost identical proof as in Lemma 4 leads to the following lemma.

Lemma 7. Fix T > 0. Then, for any N and ∆t with N∆t ≤ T , and all n ∈ Z+, the spectral
radius ρn,d(N ; ∆t), of the symmetric Toeplitz matrix Wn(N ; ∆t) as defined by (56) with vnl
given by (76), has the bound

ρn,d(N ; ∆t) ≤ Cd(T ) ,

where

Cd(T ) :=

∫ T

0

ωd−1

2d+1πd/2(T − τ)(d+2)/2

∫ 1

−1

(1− x)

e
1−x

2(T−τ)

(1− x2)(d−3)/2dxdτ < 1

2
.

21



As before, we are also able to bound from below the gap between Cd(T ) and 1

2
, given a

weak condition on T . For this, we interchange the order of integration and apply the change
of variable λ = 1−x

2(T−τ) , giving

Cd(T ) =

∫ 1

−1

ωd−1

2d+1πd/2

(1 + x)(d−3)/2

√
1− x

(

2d/2
∫ ∞

1−x
2T

λd/2e−λdλ

)

dx

and

1

2
− Cd(T ) =

1

2d/2
√
πΓ
(

d−1
2

)

∫ 1

−1

(1 + x)(d−3)/2

√
1− x

(

∫ 1−x
2T

0
λd/2e−λdλ

)

dx.

Assume now T ≥ 1. Then for x ∈ [−1, 1], 1−x
2T ≤ 1. Thus, e−λ ≥ e−1 for λ ∈ [0, 1−x

2T ] and

1

2
− Cd(T ) ≥

1

2d/2
√
πΓ
(

d−1
2

)

∫ 1

−1

(1 + x)(d−3)/2

√
1− x

(

1

e

∫ 1−x
2T

0
λd/2dλ

)

dx

=
1

ed2d−1
√
πΓ
(

d−1
2

)

T
d
2

∫ 1

−1
(1− x2)(d−3)/2(1− x)dx

=
2

ed2d−1
√
πΓ
(

d−1
2

)

T
d
2

∫ 1

0
(1− x2)(d−3)/2dx

=
2

ed2d−1
√
πΓ
(

d−1
2

)

T
d
2

∫ π
2

0
cosd−2(θ)dθ

=
1

ed2d−1Γ
(

d
2

)

T
d
2

,

where the last equality follows from an integral identity in [7, §3.62].
Armed with this polynomial control of the gap, and following the same reasoning as used

to show (62), we obtain the following theorem regarding the stability of the forward Euler
scheme in higher dimensions.

Theorem 6. Fix d > 2, and T ≥ 1. For all n = 0, 1, . . . and m = 1, . . . , an,d,

‖σnm‖ ≤ 1
1

2
− Cd(T )

‖fnm‖ ≤ ed2d−1Γ

(

d

2

)

T
d
2 ‖fnm‖

for all N , ∆t such that N∆t ≤ T . That is, when Γ is the unit sphere Sd−1, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0, T ].

7. Conclusions and further remarks

We have analyzed the stability of the simplest explicit, first-order accurate time marching
scheme for solving the Dirichlet problem for the heat equation in the unit ball, with data spec-
ified on the unit sphere Sd−1 ⊂ Rd, using second-kind Volterra boundary integral equations.
While finite difference methods require that the Courant number ∆t/(∆x)2 be bounded by
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1
2d , we have shown that, for the Dirichlet problem, integral equation methods can be both
explicit and unconditionally stable for any fixed final time T .

We have also shown that, when solving the heat equation on the unit disk in two dimensions
with unit diffusion constant, the scheme is stable for all time, so long as ∆t ≤ 1. Finally,
for Robin boundary conditions in one dimension, we have shown that stability follows if
∆t < 0.39π/κ2, where κ is the heat transfer coefficient. We conjecture that similar results
hold in higher dimensions as well.

One of the key ingredients in our proof is a tight rational function bound for the ratio of
modified Bessel functions of the first kind with large positive real argument, which may be
of interest in its own right for other physical applications. A second ingredient in our proofs
is a bound on the smallest eigenvalue of real symmetric Toeplitz matrices via the convexity
of the associate Fourier series sequence. This may be of interest in some signal processing
applications. It is worth observing that a critical element in our proof is the pointwise non-
positivity of the double layer heat kernel on the unit sphere Sd−1. This property holds for
any convex domain. In fact, using the results in section 3.1, it is straightforward to extend
our stability proof in the L∞ norm on an arbitrary convex domain.

While this paper is purely analytic, we note that the numerical experiments in [43] are
consistent with the theory presented here. More detailed experiments will be reported in a
forthcoming paper [45] that considers the full initial-boundary value problem including forcing
terms.
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Appendix A. Properties of the modified Bessel functions of the first kind

The modified Bessel function of the first kind Iν(x) is defined by the formula [32, Chapter
10]

Iν(z) =
(

1

2
z
)ν

∞
∑

k=0

(

1

2
z
)2k

k!Γ(ν + k + 1)
.

It satisfies the recurrence relations [32, §10.29.2]

I ′ν(z) = Iν−1(z)−
ν

z
Iν(z), I ′ν(z) = Iν+1(z) +

ν

z
Iν(z). (A.1)

When ν is fixed and x → ∞ [32, §10.30.4],

Iν(x) ∼
ex√
2πx

, x ∈ R.

When ν is an integer n, In admits the integral representation [32, §10.32.3]

In(z) =
1

π

∫ π

0
ez cos θ cos(nθ)dθ. (A.2)

The following results can be found in [46].
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Lemma 8. Let Wν(x) = xIν(x)
Iν+1(x)

and Sp,ν = W 2
ν (x) − 2pWν(x) − x2. Then Sν,ν−1(x) is

monotonically decreasing from 0 to −∞ on (0,∞) for ν > 1/2,

ν − 1

2
+

√

x2 + ν2 − 1

4
≤ Wν−1(x) ≤ ν − 1

2
+

√

x2 +
(

ν + 1

2

)2
, (A.3)

and

ν − 1 +
√

x2 + (ν + 1)2 ≤ Wν−1(x) (A.4)

for ν ≥ 1

2
, with x ∈ (0,∞).

Lemma 9. Let n be a positive integer. Then

(a) There is only one zero rn for the equation

I ′n(x)
In(x)

= 1

on (0,+∞). Furthermore,

max(n2 − 1

2
,
n2

2
+ n) ≤ rn ≤ n2 + n. (A.5)

(b) The function e−xIn(x) increases monotonically on [0, rn] and decreases monotonically
on [rn,+∞).

(c) The maximum value of e−xIn(x) on [0,∞) satisfies

max
[0,+∞)

e−xIn(x) <
1

2n+ 1
. (A.6)

Proof. (a) Using the recurrence (A.1), we have

Wn−1(x) = x
I ′n(x)
In(x)

+ n.

Thus,

Sn,n−1(x) = x2
(

I ′n(x)
In(x)

)2

− x2 − n2.

When I′n(x)
In(x)

= 1, Sn,n−1 = −n2. By the monotonicity and the range of Sn,n−1(x), Sn,n−1

takes the value −n2 at only one point and we denote that point by rn.

Substituting x = rn into (A.3) and (A.4) with I′n(rn)
In(rn)

= 1 and simplifying the resulting

expressions, we obtain (A.5).
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(b) We have

d

dx
(e−xIn(x)) = e−xIn(x)

(

I ′n(x)
In(x)

− 1

)

.

Using (A.3), it follows that I′n(x)
In(x)

> 1 for x < n2 − 1

2
and I′n(x)

In(x)
< 1 for x > n2 + n.

Combing these facts with (a), we have I′n(x)
In(x)

> 1 for x < rn and I′n(x)
In(x)

< 1 for x > rn.

That is, d
dx(e

−xIn(x)) > 0 for x < rn and d
dx(e

−xIn(x)) < 0 for x > rn, which completes
the proof of (b).

(c) By the identity §10.35.5 in [32], we have

1 = e−x

(

I0(x) + 2

∞
∑

k=1

Ik(x)

)

.

Section 10.37 of [32] states that for fixed x > 0, Iν(x) is positive and decreasing for
0 < ν < ∞. Hence,

1 > e−x

(

In(x) + 2
n
∑

k=1

In(x)

)

= (2n+ 1)e−xIn(x),

which completes the proof.

The following lemma about differential inequalities can be found in [13, Chapter III, §4].
See also [35].

Lemma 10 (Petrovitsch 1901). Suppose that f(y, t) is continuous in an open domain D.
Suppose further that y is the solution to the Cauchy problem

y′(t) = f(y(t), t), y(t0) = y0, (y0, t0) ∈ D.

(a) (Increasing t). Suppose that u satisfies the inequalities

u′(t) ≥ f(u(t), t), t ∈ (t0, t0 + δ) (δ > 0)

u(t0) ≥ y(t0).
(A.7)

Then

u(t) ≥ y(t), t ∈ [t0, t0 + δ]. (A.8)

The inequality in (A.8) is reversed if both inequalities in (A.7) are reversed.

(b) (Decreasing t). Suppose that u satisfies the inequalities

u′(t) ≤ f(u(t), t), t ∈ (t0 − δ, t0) (δ > 0)

u(t0) ≥ y(t0).
(A.9)

Then

u(t) ≥ y(t), t ∈ [t0 − δ, t0]. (A.10)

The inequality in (A.10) is reversed if both inequalities in (A.9) are reversed.
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Lemma 11. Let

g0(x) = (4x− 3)I0(x)− (4x− 1)I1(x). (A.11)

Then g0(x) has a unique zero, denoted as x∗, on (34 ,∞). Furthermore, g0(x) < 0 on [34 , x
∗)

and g0(x) > 0 on (x∗,∞).

Proof. Let rν(x) =
Iν(x)

Iν+1(x)
. In particular,

r0(x) =
I0(x)

I1(x)
.

From §10.37 of [32], we know that Iν(x) is positive and increasing on (0,∞) for fixed ν(≥ 0)
and Iν(x) is decreasing on 0 < ν < ∞ for fixed x. Thus, rν(x) > 1 on (0,∞) for ν ≥ 0. Let

l0(x) =
4x− 1

4x− 3
.

Then it is clear that the sign of g0(x) is determined by comparing r0(x) with l0(x). First,

lim
x→ 3

4

+ l0(x) = +∞ and thus l0(x) > r0(x) as x → 3
4

+
. Second, the series expansion of l0(x)

and the asymptotic expansion of r0(x) are as follows:

l0(x) = 1 +
1

2x
+

3

8x2
+

9

32x3
+

27

128x4
+

81

512x5
+O

(

1

x6

)

,

r0(x) = 1 +
1

2x
+

3

8x2
+

3

8x3
+

63

128x4
+

27

32x5
+O

(

1

x6

)

.

Hence, r0(x) > l0(x) as x → ∞. Combining these two facts, there is at least one point
x∗ ∈ (34 ,∞) where r0(x

∗) = l0(x
∗). Or equivalently,

g0(x
∗) = 0.

By the recurrence relations (A.1), rν satisfies the following Riccati equation

r′ν(x) = 1 +
2ν + 1

x
rν(x)− r2ν(x).

In particular, for ν = 0,

r′0(x) = 1 +
1

x
r0(x)− r20(x).

We now calculate

l′0(x)− (1 +
1

x
l0(x)− l20(x)) = − 3

x(4x− 3)2
< 0 x ∈ (

3

4
,∞).

By Lemma 10, we have

l0(x) ≤ u0(x), x ≥ x∗; l0(x) ≥ r0(x), x ∈ (
3

4
, x∗).

Equivalently,

g0(x) ≥ 0, x ≥ x∗; g0(x) < 0, x ∈ [
3

4
, x∗),

completing the proof.
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Remark 9. Numerical computation shows that x∗ ≅ 1.452165365078841 . . ..

Corollary 3. Let

h0(x) = (x− 2)g0(x) = (x− 2)[(4x− 3)I0(x)− (4x− 1)I1(x)], (A.12)

where g0(x) is defined in (A.11). Then h0(x) ≥ 0 on [34 , x
∗] and [2,∞); h0(x) ≤ 0 on [x∗, 2).

Lemma 12. Let

h1(x) = (4x2 − 7x)I1(x)− (4x2 − 9x+ 3)I0(x). (A.13)

Then h1(x) > 0 on [34 ,∞).

Proof. Let x∗1 =
√
33+9
8 = 1.843 . . . be the larger root of 4x2 − 9x+ 3. Then 4x2 − 9x+ 3 > 0

for x > x∗1 and 4x2− 9x+3 < 0 for x ∈ [34 , x
∗
1). We break [34 ,∞) into several subintervals and

show the positivity of h1(x) on each subinterval.

(a) x ∈ [x∗1,∞). Let

u0(x) =
4x2 − 7x

4x2 − 9x+ 3
.

Then

u′0(x)− (1 +
1

x
u0(x)− u20(x)) =

3 (x− 3)

(4x2 − 9x+ 3)2
, (A.14)

which is greater than zero if x > 3 and less than zero if x < 3. At x = 3, u0(3) =
5
4 = 1.25

and r0(3) = 1.23459 . . . < 1.25 = u0(3). Thus, Using Lemma 10 in the increasing
direction we have r0(x) < u0(x) on [3,∞); and using Lemma 10 in the decreasing
direction, we still have r0(x) < u0(x) on [x∗1, 3). Equivalently, h1(x) > 0 on [x∗1,∞).

(b) x ∈ [74 , x
∗
1]. On this subinterval, we have 4x2 − 7x ≥ 0 and −4x2 + 9x− 3 ≥ 0. Hence,

h1(x) > 0, since I1(x) and I0(x) are always positive on [0,∞).

(c) x ∈ [34 ,
7
4 ]. By (A.14), we have u′0(x) − (1 + 1

xu0(x) − u20(x)) ≤ 0 on [34 ,
7
4 ]. Also,

u0(
3
4) = 2 < r0(

3
4) = 2.8 . . .. Using Lemma 10, we have r0(x) > u0(x), or equivalently

h1(x) > 0 on [34 ,
7
4 ].

Lemma 13. Let f0(x) = e−
1
x I0(

1
x), f1(x) = e−

1
x I1(

1
x), f(x) = f0(x) + af1(x) with a = 0.05.

Then f ′′′(x) > 0 on (0,∞).

Proof. Using the recurrence relation (A.1), we obtain

f ′′′
0 (x) =

1

x4
e−

1
xh0

(

1

x

)

,

where h0(x) is defined in (A.12). Similarly,

f ′′′
1 (x) =

1

x4
e−

1
xh1

(

1

x

)

,

where h1(x) is defined in (A.13). Thus, in order to show that f ′′′(x) > 0 on (0,∞), we only
need to show that h0(x) + ah1(x) > 0 on (0,∞).

We break it into several steps.
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(a) x ∈ [0, 1/4]. On this interval, 3 − 4x ≥ 2, 0 ≤ 1 − 4x ≤ 1, 2 − x ≥ 1.75, thus
h0(x) ≥ 1.75(2I0(x)− I1(x)) > 1.75I0(x). And 4x2 − 7x ≥ −1.5, 4x2 − 9x+ 3 ≤ 3, thus
h1(x) ≥ −1.5I1(x)− 3I0(x) > −4.5I0(x). Combinging these results, we have

h0(x) + ah1(x) > (1.75 + 0.05× (−4.5))I0(x) > 0.

(b) 1
4 ≤ x ≤ 9−

√
33

8 < 0.5. On this interval, 3 − 4x > 1, 4x − 1 ≥ 0, 2 − x > 1.5,
thus h0(x) > 1.5I0(x). And 4x2 − 7x > −2.5, 0 ≤ 4x2 − 9x + 3 ≤ 1, thus h1(x) >
−2.5I1(x)− I0(x) > −3.5I0(x). Combining these results, we have

h0(x) + ah1(x) > (1.5 + 0.05× (−3.5))I0(x) > 0.

(c) 9−
√
33

8 ≤ x ≤ 3/4. On this interval, 3 − 4x ≥ 0, 4x − 1 > 0.6, 2 − x > 1, thus
h0(x) > 0.6I1(x). And 4x2 − 7x ≥ −3, −(4x2 − 9x + 3) ≥ 0, thus h1(x) ≥ −3I1(x).
Combining these results, we have

h0(x) + ah1(x) > (0.6− 0.05× 3)I1(x) > 0.

(d) x ∈ [34 , x
∗] ∪ [2,∞). On these two subintervals, both h0(x) and h1(x) are positive by

Corollary 3 and Lemma 12. Thus h0(x) + ah1(x) > 0.

(e) x ∈ (x∗, 2). We calculate

h′1(x) = (x− 3)g0(x),

where g0(x) is defined in (A.11). By Lemma 11, g0(x) > 0 on (x∗,∞). Thus, h′1(x) < 0
on (x∗, 2). This shows that h1(x) > h1(2) ≈ 0.901688 on (x∗, 2). On the other hand,
it is straightforward to show that g′0(x) > 0 and g′′0(x) < 0 on (x∗, 2). Hence, h′′0(x) =
g′′0(x)(x − 2) + 2g′0(x) > 0 on (x∗, 2), indicating that h0(x) achieves its minimum at
exactly one point. Numerical calculation shows that

min
x∈(x∗,2)

h0(x) ≈ −0.043 . . . > −0.044.

Hence,

h0(x) + ah1(x) ≥ min
x∈(x∗,2)

h0(x) + 0.05× h1(2) > 0.
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