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Abstract

In this paper, we study the stability properties of explicit marching schemes for second-kind
Volterra integral equations that arise when solving boundary value problems for the heat
equation by means of potential theory. We show that, for the Dirichlet problem on the unit
ball in all dimensions d > 2, the simplest marching scheme is unconditionally stable. By
contrast, it is well known that explicit finite difference or finite element schemes for the heat
equation are stable only if the time step At is of the order O(Axz?), where Ax is the finest
spatial grid spacing. We also consider Robin boundary conditions for d = 1, and show that
there is a constant C' depending only on the Robin (heat transfer) coefficient x such that
the simplest first-order accurate scheme is stable if At < C(k), independent of the spatial
discretization. Our estimates involve new bounds for ratios of modified Bessel functions, and
for the smallest eigenvalues of real symmetric Toeplitz matrices, which may be of analytic
interest in other applications.

Keywords: heat equation, Abel equation, forward Euler scheme, Volterra integral equation,
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1. Introduction

In this paper, we study the stability of integral equation methods for the heat equation

ou
a(x,t) — Au(x,t) = F(x,t) (1)

u(x,0) = up(x)

for 0 <t < T, subject to suitable boundary conditions in a smooth, bounded domain D. For
the sake of simplicity, we have assumed that the diffusion coefficient (thermal conductivity) is
one. In dimensions d > 1, we assume Dirichlet boundary conditions are imposed on I' = 9D:

’LL(X, t) = f(X> t)|x€1", t>0-
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We assume that the initial and boundary data are compatible, namely that f(x,0) = ug(x)
for x € I'. In the one-dimensional setting, we consider both Dirichlet boundary conditions
on a half line z > 0 (so that the boundary consists of a single point), and Robin boundary
conditions of the form

—u,(0,t) + ku(0,t) = f(¢t) . (2)

Here, k > 0 is the heat transfer coefficient, and (2) models boundary coupling to an exterior
reservoir of given temperature k f(t), either via a thin conductive layer, or via convection with
Newton’s law of cooling [4]. The Neumann case x = 0 instead imposes boundary flux f(¢).

Before turning to the integral equation framework, we briefly review the finite difference
approach. For this, we assume we are given a spatial mesh discretizing the domain D with
grid points xz,, and seek to approximate the solution v}, ~ u(xy,,t,,) at time steps tg, t1,...,tN
with ¢, = mAt. Two of the simplest schemes for solving (1) are the forward and backward
Euler methods:

m+1 _ . m
% = Ah[u]g + F(zp,tm)

and

m+1 _ . m
% - Ah[u]g—H + F(xmtm) )

respectively. Here Ap[u| denotes the finite difference approximation of the Laplacian eval-
uated at the grid point z,, at time t,,. It is well known that the backward Euler scheme is
unconditionally stable, while, in d dimensions, the forward Euler scheme requires that the
time step satisfy the condition that At < 2—1dAx2, assuming a uniform spatial grid with step
size Az in each direction (see, for example, [40, p. 158]). For nonuniform grids, the time step
restriction is more complicated to analyze, but generally requires that At = O(h?m-n) where
hmin 18 the finest mesh spacing in the discretization.

Unfortunately, the backward Euler scheme, is implicit and requires the solution of a large
sparse linear system at each time step t¢,,. The forward Euler scheme, on the other hand, is
explicit and inexpensive. The stability restriction, however, forces extremely small time steps
to be taken, making long-time simulations impractical. This has spurred the development
of a variety of alternative approaches, including locally one-dimensional schemes, alternating
direction implicit methods, etc. [34].

When finite difference methods are used to solve general initial-boundary value problems,
GKSO theory plays a critical role [11, 12, 33, 38, 41|, and requires that the interior marching
scheme be Cauchy stable (that is, beyond the stability condition above, the discrete boundary
conditions must satisfy additional criteria). In short, stability imposes rather intricate con-
straints on the coupling between the interior marching scheme and the boundary conditions
themselves. Similar considerations are involved when using finite element methods.

An alternative to direct discretization of the governing PDE is to recast the problem as a
boundary integral equation using heat potentials [36, 18]. In dimension d = 1, the solution
to the heat equation (1) on the half-line x > 0 with Dirichlet boundary data

u(0,t) = f(t) (3)



is given analytically by the representation

t oG

u(x,t) = %(x,t —71)pu(r)dr + v(z,t), (4)
0

712/4t
where G(z,t) = < —

following explicit solution to (1) comprising the initial potential plus the volume potential:

is the Green’s function for the heat equation in free space, and v is the

o, 1) = /OOO Gl -y, uoly) dy + /0 /OOO Gz — gt — 7)F(y, 7) dydr . (5)

The first term in (4) is a double layer heat potential living on the single boundary point. Since
v does not in general satisfy the boundary condition, enforcing (3) using the standard jump
relation (section 3, noting that the D term is zero), the double layer density is simply

u(t) = =2f(1) , (6)

for the “corrected” Dirichlet data f(t) := f(t) — v(0,t). This is an exact solution, so that
stability follows trivially. The error is simply that made in evaluating the integrals that appear
in (4) and (5).

The Robin boundary condition (2) leads to a more interesting model in the one-dimensional
case. Representing u(x,t) now in the form of a single layer heat potential

u(z,t) :/0 G(z,t —71)o(r)dr + v(z,t) (7)

with v as in (5), a similar application of the jump relations (section 3) leads to a weakly
singular Abel-type Volterra integral equation of the second kind for o:

N[

a(t)—i—\/%/o "t(i)TdT - jy, t>o0, (8)

with corrected Robin data

Ft) = f(t) = va(0,2) + 5v(0, ) .

A simple numerical solver for (8) is to sample o, := o(t,,) on the uniform grid t,, = mAt,
use the piecewise constant approximation o(t) = oy, on [y, tm+1], and perform the integrals
exactly, to give

n—1
On=2fn— > WnmOm, n=1,... N (9)
m=0
with the lower-triangular Toeplitz matrix weights

wj:2\/ﬁ(\/3—\/j—l):\/jj\§%, ji=1,2,..., (10)

fn = f(tn), and h = k2 At/m. We will refer to this scheme as the forward Euler method
for the Volterra equation (8); it is a simple collocation scheme [18, Sec. 13.3] as well as a



convolution quadrature scheme [23]. The scheme is explicit, since o, does not appear on the
right-hand side. For smooth solutions o € C*([0,T]) it is also first-order accurate, as can be
shown by combining compactness of the integral operator, Céa’s lemma, and noting that the
piecewise constant approximant has error O(At) (see [18, Sec. 13.1-3)).

In dimension d > 1, the Green’s function for the heat equation is

1 X2
G(X,t) = W@ at X € Rd . (11)

We assume that the boundary I' of D is at least C2, and let o be a square integrable function
on I' x [0, T]. Then the single layer heat potential S is defined by the formula

ol(x,t) = /0 /FG(X —y,t—71)o(y,)ds(y)dr (12)

and the double layer heat potential D is defined by

I(x, ) //6Gx YL2T) o ryds(y)dr. (13)

where v(y) is the unit outward normal vector at y € I'. The initial potential is defined by

Uluo) (x, £) = /D Glx — y,t — T)uoly)dy (14)

and the volume potential is defined by

F](xjt):/o /DG(x—y,t—T)F(y,T)dydT. (15)

The solution to the Dirichlet problem for (1) can be obtained (see section 3) by solving the
second kind Volterra equation

(_% + D) [U}(th) - .]E(X7t)7 (X7t) el'x [OvT]7 (16)

where D is interpreted in a principal value sense, and, analogously to the d = 1 case, the
corrected data is

f(x,t) = f(x,t) —v(x,t) , where v(x,t):=Uugl(x,t) + W[F](x,t) ,x €T .

By the forward Euler method for (16), we mean a marching scheme of the form

(G+1)At _ At —
o(x,nAt) = / /an y,n t=7) o(y,jAt)ds(y)dr (17)
AN

- 2f(x7 nAt).

That is, we assume o(y, t) is piecewise constant over each time interval [jAt, (j+1)At], taking
on the value o(y, jAt). This is an explicit, first order accurate formula for the value of the
unknown at the nth time step.



The goals of this work are to show that the d = 1 marching scheme (9) has a time step
restriction determined by the physical parameter , namely At < 5 with ¢ ~ 1.5, and that
the marching scheme (17) is unconditionally stable in all dimensions d > 2.

The principal reasons that integral equation methods have received relatively little atten-
tion for solving the heat equation has been that direct evaluation of layer (or volume) poten-
tials require quadratic work in the total number of unknowns as well as the design of suitable
quadrature rules. Recent advances in fast algorithms for heat potentials, however, have re-
moved this obstacle. We refer the reader to the papers [8, 9, 10, 15, 25, 24, 37, 39, 43, 44, 45]
and the references therein for further discussion.

The mathematical tools needed to prove our stability results involve spectral bounds for
Toeplitz operators. We provide these in section 2. In section 3, we summarize the necessary
properties of layer potentials. The one-dimensional problem is then treated in section 4, the
two-dimensional problem in section 5, and higher-dimensional problems in section 6.

2. Spectral bounds for real symmetric Toeplitz operators

Let S be the unit circle in the complex plane, parametrized by polar angle 6 with nor-
malized arc length measure d\ = %dﬂ.
For any f,g in the Hilbert space L2(S!), we write

f(0) = Z fnemea g(0) = Z gnemea (18)

in terms of the orthogonal basis {€"?},,cz, where f, (n € Z) is the nth Fourier coefficient of
f defined by

1 271 ind
fom g [ 1O a8

The Hardy space H? is defined by
H? ={f e L*(S")| fn=0,n <0},

and we let P denote the orthogonal projection of L?(S') onto H?. The Toeplitz operator
T7: H?> — H? with symbol f € L>(S'), is defined by

T/ (u) = P(fu) .

The operator T7 is closely related to an infinite-dimensional Toeplitz matrix with entries
tij, %, € Nthat satisfy t;; = t;41 41 for all 7, j. That is, the matrix is constant along diagonals
and determined by a two-sided sequence (t,,)ncz with t;j = ti—;. The Fourier transform maps
T/ onto the class of Toeplitz matrices on [?(Z, ); that is, if (7 (u))n denotes the nth Fourier
coefficient of T (u), then

(Tf(u))n = { > m—o fo—mUm , n>0

0, n <0

where u,,, is the mth Fourier coefficient of w.



Definition 1. A sequence {a,}ncz, is said to be convex if 5%a,, > 0 for every n > 0, where
8%ay, := @p_1 — 20, + any1 is the central second difference.

Recall that for n € Z, the Fejér kernel F),(x) is defined to be

ro= 3 (-3t ]

j=-n
The following theorem can be found in [17, Chapter 1, Theorem 4.1].

Theorem 1. If a,, — 0 and the sequence {an}nez+ 18 convez, then the series

Z (6%an) Fp_1(0) (19)

converges in L' ([—m,7]) to a non-negative function, which is continuous except at 0, such that
Up = Qp.

It is often the case that the function v(6) blows up as @ — 0. Using the elementary estimate
on the Fejér kernel

2
T
F.(0) <min<(n+1), ——— ¢,
0) < min {4 1), s ]
[17, Chapter 1, formula 3.10] and the fact that, for a convex sequence tending to zero, we
have lim;, oo n(ay — anp41) = 0, one can show that
lim fv(0) =0 . (20)
0—0
Bounds on the spectrum of finite Toeplitz matrices are of interest in many applications
[5, 14, 19, 26]. When a real symmetric Toeplitz operator (or matrix) is generated by a positive
sequence, the Gerschgorin circle theorem [40, §3.3] often gives a satisfactory upper bound on
its spectral radius or the largest eigenvalue. Curiously, satisfactory lower bounds on the
smallest eigenvalue do not seem to be available. The following theorem leads to a tight lower
bound on the smallest eigenvalue of a real symmetric Toeplitz matrix, defined by a convex
sequence, even when v is unbounded.

Theorem 2. Suppose that {v, }nen is a conver sequence and limy, oo v, = 0. Set vy = 2v1 —va,
and let v(0) be the non-negative function defined by the sequence {vn}nez, as in Theorem 1.
Suppose that V' is the self-adjoint Toeplitz matriz defined by Vi; = 0 and Vij = v;_;. Then,
for any u € CN, we have the lower bound

(Vu,u) > (v — 201)[|uf?.

Proof. For a finite length vector u = (uo,...,un,0,0,...)yecz. , define the function

N .
= Z e, (21)
n=0



Theorem 1 implies that

2 2
0= - v(6)|u(6)?d6 = 1/ v(8) Z ujtipe’ 0 g
0

27w Jo 27 :
0<j,k<N
= E V— U U,
0<j,k<N

— (V) + (201 — v9) ]
O]

Remark 1. If Vi is the upper left N x N principal submatrix of V', then, by an application
of the Rayleigh-Ritz theorem, its spectrum is bounded below by (v — 2v1).

Remark 2. For certain applications the sequence, {v;, }nen, generating TV is not convex. In
this case, one may consider an operator of the form, ¢I + 7" + T* with ¢ and {a, }nen chosen
so that (¢,v1 + a1,v2 + ag,...) is a convex sequence. If T is a bounded operator, then the
previous theorem implies a lower bound on the spectrum of V'

(Vu,u) > —(c+ HTa|])Hu||2 for u € CVN.

Remark 3. If v is unbounded, then the Toeplitz operator it determines is not defined on all
of H?. Equation (20) implies that if u € H?, then v(1 —e®)u € L2. Thus T%w = P(vw) € H?,
for w in the subspace (1 — ¢)H?. Tt is not difficult to see that this subspace is dense. If
u € H? and r > 1, then

1_61'9
(r—e"'9>UEH2

1_61'9
(r—ew)u_u

Since (T"w, w) > 0, for w in this domain, the Friedrichs extension of T is a closed self-adjoint,
non-negative operator defined on a dense subspace D, C H?.

and

=0.
2

lim
r—1t

3. Properties of heat potentials

By construction, the single and double layer heat potentials (12) and (13) satisfy the
heat equation. They also satisfy certain well-known jump conditions when the target point
x approaches the boundary from either side [18, 36]. In particular, for xo € I', the normal
derivative of the single layer potential S[o] satisfies the relation

lim 0S[o](xo £ ev(xp), t)
e—0+ ov(xq)

= :F%a(xo, t) + Suo](xo,t),

and the double layer potential D[o] satisfies the relation

El_i}&D[a] (x0 £ ev(x0),t) = £30(x0,t) + D[o](x0, 1), (22)



where both S, [0](x0,t) and D[o](x0,t) are interpreted in the Cauchy principal value sense.

If we represent the solution to the heat equation (1) via a double layer potential u(x,t) =

Dio](x,t), then the integral equation (16) follows immediately from the jump relation (22).
The kernel of the double layer potential is given explicitly by

IG(x —y,t — 1) (x—y) vly) b2
v (y) T odrigd2(p — p)idz© e (23)

and the kernel of S, is given by

0G(x—yt—7)  (x-y)vx) @
v (x) A+ 17 d/2(t — )1+d/2

and v(y) replaced with v(x). In one dimension, both kernels vanish at the single boundary
point y = xg = 0.

Finally, the initial potential (14) is well known to satisfy the homogeneous heat equation
with initial data wg(x), while the volume potential (15) satisfies the inhomogeneous heat
equation

du
ot

with zero initial data.

(x,t) — Au(x,t) = F(x,t)

Remark 4. Using these properties, it is straightforward to see that representing the solution
to the Dirichlet problem in the form

u(x,t) = Dlo](x,t) + U[uo](x,t) + W[F](x,t)

leads to the integral equation (16), with the only unknown corresponding to the double layer
density o.

Remark 5. On the unit sphere S9! v(y) = y and |x| = |y| = 1. Thus, (x —y) -v(y) =
—(1-x-y), |x—y|=2(1—-x-y), and (23) reduces to
IGx—y,t —7) l-x-y Lxy

= — T 2(t-T)
v (y) 9d+15d/2(¢ — )1+d/2 e 2=, (24)

3.1. Connection with the Laplace kernel
The Green’s function for the Laplace equation in R? is

—%iwln\x—y\, d=2,

GL(X,y) = { d > 3’

1 1
(d—2)wq |x—y|4—2"
where

27rd/2
T(d/2)

wd (25)

is the area of the unit sphere S4~1 ¢ R?. Here I' is the gamma function defined by the formula

I'(z) = /OOO ¥ e . (26)



The kernel of the Laplace double layer potential operator is given by
OGL(x—y) _ I'(d/2) (x—y) -v(y)

= 27
owy) 2mi -yl &)
It is well known to satisfy Gauss’ Lemma [18]:
IGL(x —y)
CLE = Y aS(y) = —1, xel. 28
| s asm =4 x (28)

Some connections between heat potentials and harmonic potentials (those satisfying the
Laplace equation) are given by the following two lemmas.

Lemma 1.

(29)

Proof. By (23), we have

/t 8G(x—y,t—7-)d7_: (x—-y) vy) /t 1 e—zf_yﬁdr
o ) 22 Jy (f= )i

The change of variables A = Ix— i |) leads to

"OG(x —y,t—T) (x—y)-vly) [ i1
/0 o0 (y) dr = 22 x — y|d /"g"Q Az e dA.

Taking the limit ¢ — oo and using the definition of the gamma function (26), we obtain
(29). O

Lemma 2. Suppose that D is a C' convex domain. Then

0G(x—y,t—7) <0 IGL(x—y)

<0, —=<0, x,yeTI, 30
ow(y) ov(y) (30
and
. IG(x y, -7) _ 1
tlg&/ / iy dS(y )dT——i, xel. (31)
Fort € (0,00),
1
9G(x — y, ) dS(y)dr < 5 XE€ T. (32)

Proof. (30) follows from the expressions (23) and (27) and the fact that x-y <0 for x,y € T
when D is convex due to the convex separation theorem [2]. (31) follows from (28) and (29),
and (32) is a simple consequence of (30) and (31). O



4. The one-dimensional case

4.1. The Dirichlet problem

We consider first the forward Euler scheme (17) for the Dirichlet problem (16). Given a

piecewise constant approximation of the unknown density o
U(va) :U(Y7tj) :U](y)v TE [t]atj+l) fOI’j:O,l,....
with t; = jAt, we restate (17) in the form

j—1

10i(x) + > Visplon)(x) = f5(x) = f(x, jAL),

k=0

for 7 =0,1,2,..., where (as before) the tilde has been dropped from f, and where

Vi alon] (x) = /F V(% y)ow(y)ds(y)

and
k+DAL HQ(x — y, jAL — T)
Vi_k(x,y) = / ’ dr.
! k() kAt ov(y)
Note that
At
0G(x —y,IAt —T)
V X, = / dT, l 2 1.
oy = f o (y)

Vo(x,y) is set to 0.

The boundary I' of the unit ball in one dimension consists of only two points z = +1.
And (33) becomes a 2 x 2 system on the vector [0;(—1) oj(+1)]?. Diagonalization of this

2 x 2 system leads to the following scalar equation for each eigenmode

-1
1, X +_ et ,
—505 F ) vi-koy =15 j=012..,
k=0
where the convolution coefficient v; is given by the formula

1 At 3/2 1
= — IANt—T7)" T aat=r)d [>1
(%) 2\/77‘_/0 ( T) € T, =

with
y(t) = Lt_3/26_% t>0
* 2ﬁ ) )
and we set vy = 0.
The system (34) for j =0,1,---, N can be written in matrix-vector form

(=31 FV)o™ = f*,

10

(34)

(35)

(36)

(37)



where I is the (N+1) x (N +1) identity matrix, V € RINVFTUXIN+D with entries v = v;_p,
+ = {O'J 0 f* = {fjE - we denote the symmetric part of V' by W with its dependence
on N and At written out exphcltly, thus

V+vT
B

W(N;At) = (38)

We have the following lemma.

Lemma 3. Fiz T > 0. Then, for any N and At with NAt < T, the spectral radius p(N; At)
of the matrix W(N; At) has the bound

p(N;At) < Ci(T) (39)

where

T 1 o[~ 1 1

Proof. Using the Gershgorin circle theorem [40, §3.3], and the fact that the diagonal entries
of W™ are all zero, we have

N+1

p(N; At) < maXZ‘ww|<222|vl|<Zvl (41)
Now setting t = NAt, we may collapse this sum into a single integral
At
Zvl Z/ lAt—TdT—Z/ (NAt — (k—1)At — 7)dT
kAt NAt
= Z/ Y(NAt — 7)dT = / Y(NAt — 7)dr = C1(NAY)
0

according to the definition (40) of the function Cy. Combining the last two results we have
p(N; At) < Cy(NAt). The expression in (40) follows from the change of variables u = ——.
A further change of variables x = y/u leads to

Cy(T) = — /oo gy < /oo gy — L for all T > 0 (42)
= — e T < —= e T = - or a .
! N v Jo 2

JT
Finally, the above expression shows that C(7') is a monotonically non-decreasing function of
T, so that p(N; At) < C1(NAt) < Ci(T). O

It is clear from (37) that to get a stability bound we will need to control the gap between
C1(T) and . For T > 1, we have

Ly =t /% Leugy s L /% L= 2 (43)
- - = —€ au —au = .
g ! 207 Jo Vu 2T Jo Vu e/l

11



Theorem 3. Suppose that T' > 1. Then
lo || < evVaT||f| (44)

for all N, At such that NAt < T. That is, when ' is the unit circle S°, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0,T].

Proof. Multiplying both sides of (37) by —(a®)?, we have
Hot P+ (@) Vo* = Lo > £ () Wo™ = —(a)"f* . (45)

Applying (39) on the left side (45) and the Cauchy—Schwartz inequality on the right side, we
obtain

(3 = D)) 0¥ |2 < o™ + (0*) T Wot = ~(o)T f* < o] -

That is, finally applying (43),

1
+ + +
o < —— <evrnTl ,
o1 < Ty IF1 < eVaTIg
which completes the proof. O

4.2. The Robin problem

We now analyze the Robin problem, recast as the Abel integral equation (8), repeated
here for convenience (multiplying both sides by two, and from now on dropping the tilde on
the right-hand side f):

K t o(T) B
J(t)+ﬁ/0 de = 2f(t). (46)

Firstly we show stability of the continuous problem for x > 0. The Riemann—Liouville frac-
tional integral operator R, is defined by the formula

Roldl) = 75 | mmmdr, o€ (0.)

where I'(«) is the gamma function (26). Thus, the integral operator on the left side of (8) is

simply L/j)”Rl /2 = KRq/o. For all real functions g, R, satisfies the non-negative property
31, Eq. (2.1)]
T
| stRalaiae > 0. (47)

Taking the inner product of (46) with o over a fixed interval [0, T], and using (47), gives

lol1220.77) < 205 f) < 2lloll 2o 1 £ | 220,10)

12



where Cauchy—Schwartz was used in the last step. Thus on any finite interval [0,7] we have
the L? stability bound

lofl < 2)l£] -

The above proof ingredient will recur several times in the discrete setting.

Recall from the introduction that the forward Euler scheme for (46) uses a piecewise
constant approximation of the density o and the explicit formula (9). For initialization, we
set 09 = fo = 0. Let us define the vectors o and f by {0, }N_, { £}, € RV*L respectively.
Using this notation, (9) takes the form of the lower-triangular Toeplitz linear system

(I+W)o =2f , (48)

where W € RWHDX(N+1) L35 elements Wn,m = Wp—m for n > m, and wy,,, = 0 otherwise.
Here, wy, is defined in (10) with h = k2 At/T.

There is a substantial literature on the numerical analysis and stability of Volterra equa-
tions in the one-dimensional setting. For a discussion of convergence theory and step-size
control, see [1, 16] and the monograph [3]. Much work on stability has been devoted to an
analysis of the model problem

t
u(t) + /0 Do+ At — 1y(r) dr = f(2),

or to problems with a continuous kernel [16, 27]. In [20], a more relevant stability result is
obtained for systems of the form (48), but assuming that the sequence {w;} is in I!, which is
not the case here.

For previous work on Abel-type equations with singular kernels, we refer the reader to
[6, 21, 22, 42]. These papers, however, are mostly concerned with implicit marching schemes.
An exception is Lubich’s 1986 paper [23], which does a careful stability analysis for a variety
of schemes and makes clear the connection between completely monotonic sequences and
stability. An interesting result from that paper is Corollary 2.2, which states that “the
stability region of an explicit convolution quadrature ... is bounded.” Theorem 4 below,
which is consistent with Lubich’s result, gives a precise value for the time step restriction. It
also guarantees that o decays once the right-hand side f has switched off.

Before turning to that theorem, however, it is worth noting that this time-step restriction
does not apply to the equation (16) in higher dimensions. We will show below that explicit
methods for the Dirichlet problem can be unconditionally stable.

Theorem 4. There is a constant 0 < ¢ < 3 — /2 such that, for any N and any f € RN*L,
the solution to (48) obeys

lo]l < (49)

2
e R

where ||.| denotes the I>-norm. That is, the marching scheme (9) is stable for h < 0.39 <
(1/¢)? or At < m/(c*k?) where K is the heat transfer coefficient.

Proof. We first show that there exists a constant ¢ > 0 such that

oc'Weo > —C\/EHO'HQ for any o € RVHL (50)
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i.e. that the smallest eigenvalue of W is bounded from below. Writing vAT 1 := Tw+wT)
as the symmetric part of W, note that o’ Weo = Vhe T, N+10, and that T is independent
of the time-step. Note that T4 is the (IV 4+ 1) x (IV 4 1) upper left principal submatrix of
the infinite symmetric Toeplitz matrix T, defined by the sequence 0, vy, vs, ... with
1
RV, RV

It is straightforward to check that the sequence {v;};jen is convex and that lim; . v; = 0.
By Theorem 2 and Remark 1, we have

ol Tyiio0 > (vg — 21}1)H0'H2.

That is, (50) holds if ¢ = 2v; — v3 = 3 — /2. To complete the proof, take the inner product
of (48) with o to get

lo||? + ™ Wo =207 f.

Applying (50) to the left-hand side and the Cauchy—Schwartz inequality to the right-hand
side, we have

(1= Vi)l < 2]ellI £l
from which (49) follows for any o # 0. It holds trivially when o = 0. O

Remark 6. The above proof gives ¢ = 3 — /2 ~ 1.5858. By numerically computing the
smallest eigenvalue of successively larger Toeplitz matrices V', or, better, by evaluating v(7) =
2 Zj>0(—1)j*1vj, one can obtain an optimal estimate of ¢ ~ 1.52041925043874. We omit the
details of this computation and mention it only to illustrate that the explicit bound is within
about 4% of the optimal one.

Remark 7. With unit diffusion constant, the transfer coefficient  has units (length) ~!. Thus
our time-step condition At < 7/(ck)? is proportional to the square of the physical length
1/k. Although reminiscent of the explicit finite-difference stability condition At < cAz?, our
stability condition is, by contrast, independent of any spatial discretization. (Indeed, once
f(t) is available, there is no need for spatial discretization.)

Remark 8. In the limit kK — 0, the scheme is unconditionally stable. This is to be expected,
since when k£ = 0, the Robin boundary condition becomes a Neumann condition and the
representation (7) yields the analytic solution o (t) = 2f(t).

5. The Dirichlet problem in two dimensions

We now consider (33) when T is the unit circle S'. We decompose both o;(y) and f;j(x)
into Fourier series:

+oo
oi(y) =Y o}, y=(cos¢,sing),

n=—oo

+oo
fix)= Y fre™, x=(cosf,sind).

n=—oo

14



From (24), writing s = § — ¢, the nth Fourier mode of the kernel is

27T —COs -
/ 8G(x—y,7§—7’)em¢)dq5 _ / _1—cos(9—¢)6_12(t7£97)¢>em¢d¢
St 0

ov(y) 87 (t — 7)2
= —yult—T1)em, (51)
where, noting that the imaginary part of e™¥* cancels by symmetry, we have
Tn(t) == # /0%(1 - cos(s))e_FC;tS(S) cos(ns)ds , t>0. (52)

Since {e™?} are orthonormal, each Fourier mode evolves independently. The marching scheme
(or recurrence) (33) for the nth mode is then

%Uj o Uj—ko-ngjnv J=0,1,2,..., (53)

where the convolution coefficient v is given by the formula

At
v = / WAt —T)dr, 1>1, (54)
0
and we set v = 0. The system (53) for j =0,1,--- , N can be written in matrix-vector form
(~31-Vv")o" =, (55)

where I is the (N +1) x (N +1) identity matrix, V" € ROV+HDX(N+1) with entries vl =07y,
N

o" ={o} é-V:O, J" = {f]'};=0- The symmetric part of V" we denote by W", and often make
its dependence on N and At explicit, thus

0 v vy .. Uy
Vel T 1 | v} 0 FOL A VLA

W™(N; At) = —}_2() =35 ' ' Nt (56)
vy Un_q ... U7 0

5.1. Stability analysis

We now prove two key results. The first is that the forward Euler scheme is unconditionally
stable for any fixed time interval [0, 7] (Theorem 5). More precisely, this theorem permits the
solution to grow linearly in time. The second is that for At < 1, the L? norm of the solution
is bounded independently of T. We will require the following lemma.

Lemma 4. Fix T > 0. Then, for any N and At with NAt < T, and all n € Z, the spectral
radius p,(N; At) of the matric W™(N; At) has the bound

pr(N;AL) < Co(T) (57)
where, in terms of the definition (52),
T 1 2m 1—cos(s)
Cy(T) = / Y(T —7)dr = — e T ds < 1. (58)
0 m Jo
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Proof. Let n € Z. Since the integrand in (52), excluding the cosns factor, is non-negative,
we observe that |y, (t)| < yo(t), so |v]| < v for all I > 1. Using this, the Gershgorin circle
theorem [40, §3.3], and using the fact that the diagonal entries of W™ are all zero, we have

N+1

pn(N; AL) < maxZ|w |<2§: ]vl|<Zvl : (59)
7=1

Now setting t = NAt, we may collapse this sum into a single integral

N N o pAt At
Z Z/ 'yglAt—TdT—Z/ Y (NAt — (k — 1)At — 7)dr
=1 =1

N rkAt NAt
= Z/ Yo (NAt — 7)dr = / Yo(NAt — 7)dr = Co(NAY)
=1 Y (k—1)A 0

according to the definition (58) of the function C3. Combining the last two results we have

pn(IN; At) < Cy(NAt). To prove the expression in (58) we insert (52), interchange the order

of integration and apply the change of variables A = ! (;OS(S)) thus

Co(T) := ' T —71)dr = Til " 1-— 717COS(S)d d
= = 2(T—r)
>(T) /0 vo(T — 7)dr /0 Bl 7_)2/0 (1 —cos(s))e sdr

1 2w
T 4r

_ 1—cos(s)

e 2T ds<j, forall T >0 .

Finally, the above expression shows that Cy(7T') is a monotonically non-decreasing function of
T, so that p,(N;At) < Co(NAt) < Co(T). O

It is clear from (55) that to get a stability bound we will need to control the gap between
Co(T) and 3. This motivates the following.

Proposition 1.

Co(T) = ie —or ] (2;> , (60)

where I,,(+) is the modified reqular Bessel function of order n (see Appendiz). For T > 1,

1
53— Co(T) >

= 10T (61)

Proof. (60) follows from the integral representation of Iy(x) (A.2). (61) follows from the facts
that Io(z) < 1+ % [32, §10.25.2] and e~ < 1 — £ for T > 1. 0

Theorem 5. Suppose that T' > 1. Then for all n € Z,
o™l < 107[[ £ (62)

for all N, At such that NAt < T. That is, when I' is the unit circle S*, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0, 7.
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Proof. Since we are working in the Fourier domain, o™ and f™ are complex-valued. Thus, we
split (55) into two independent real systems

—i1-v") el =fr,
e )
where o' and o' are the real and imaginary part of ", respectively.
Multiplying both sides of the first equation in (63) by —(o*)T, we have
slolll? + () Viay = Sllap | + (o) ' What = —(o7) £ . (64)

Applying (57) on the left side (64) and the Cauchy—Schwartz inequality on the right side, we
obtain

(3 = CoD)) o l* < 3llo I + (7)) Whayt = (o) f7 < o171l

That is, finally applying Proposition 1,

1
< ———||f" <107 £ -
o211 < gy 121 < 10717
Similar result holds for ||o}"||. Combining the two inequalities gives (62). O

We now show that the dependence on T in (62) can be removed when the time step
satisfies At < 1. This is a physically reasonable requirement since we have assumed that the
diffusion coefficient is one, and the domain has of order unit area. We first provide a bound
on pnp(N; At) for n # 0 that is independent of NA¢.

Lemma 5. Let N and At > 0 be arbitrary, and let p,(N;At) be the spectral radius of
W™(N; At) defined in (56). Then for allm # 0,

1
N;At) < .

(65)

Proof. Clearly, it is sufficient to prove (65) for n > 0. For this, let us note that substituting

(52) into (54), exchanging the order of integration, and making the change of variables A =
1—cos(s)

2(Al—7) Ve obtain
1 2T 1—cos(s) -
" in fo e~ 2at  cos(ns)ds, =1,
/Ul = 1 21 _ 1—cos(s) 1—cos(s)

i Jo <e 2IAL —62(11>Af>cos(ns)ds, [>1.

By the integral representation (A.2) of I,,, we have

" %672Atlln|(72it)’ 1 =1,
= 1 1 — 50D AL 1
%(e 8t o) (q157) — €20 ”“I\n\(m))’ =1

From (66), defining f(z) := e *I,(x) and z; = 1/(2lAt), we consider the sum

(66)

N

N
Su =2 |vf'l = fl@1) + Y [f(ar) = flan)] - (67)
=1

=2
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By Lemma 9 (see Appendix), f(x) increases monotonically on [0, 7,] and decreases monoton-
ically on [ry, +00), with 7, the unique maximum. We now consider (67) on a case-by-case
basis.

(a) All z; lie on [0, 7y,]: Since z; < x;—1 and f(z) increases on [0,r,], we have

N
S < (1) = D (f(ar) = f(wi1)) = 2f(21) — f(z)
1=2

2

<2 .
< f(551)<2n+1

where the last inequality follows from (A.6).

(b) All 2; lie on [ry, 00): In this case, we have

1
n+1

N
S < fla) + > (fla) = flzimy) = flan) <
=2

(¢) @y >+ > @y =1y > Typg1 > -+ > e In this case, we have

Sn < fa1) + ) (f(x) = flai-))
= N
+ [ f(@m) = flemi)| = D (fl@) = fzi)
l=m+2

= f(xm) + |f(xm) - f(xm+1)| + f(xm+1) - f($N)
< f(xm) + [f(@m) — f@m)| + f(@mt1)

= 2max(f(zm), f(Tm+1))
2

< .
2n+1

By (59) we have

al 1
n(IV5 &%) Z ) +1’
completing the proof. O

Corollary 1. For all n #0,

lo" | < T———IIF" < 6[lF"]-
3 2|n|+1

Thus all non-zero modes are unconditionally stable. The zeroth Fourier mode is a bit
more subtle, and brings in a weak restriction on At, as follows.
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Lemma 6. Suppose that a = 0.05 and At < 1. Then col + WO 4+ aW? is positive definite if
o =172y (1) + La ~ 0.33085... (68)

Proof. Define the sequence y; = w? + aw]l = (v + av; 1 for j > 1 and yg = c2. Theorem 2
then shows that a sufficient condition for the positive semi- deﬁmteness of col + WO + aW!
is that the sequence {y;}jez, is convex. But y1 = % f(z1), y; = +(f(z;) — f(zj-1)) (5 > 1),
where f is the function defined in Lemma 13, and x; = 2jAt. That is, y; is the first order
difference of f. Furthermore, the convexity of {y;};cn is equivalent to the non-negativity of
the third order difference of f, which follows from the fact that f”/(x) > 0 for all z > 0 as
proved in Lemma 13. For j = 0, the convexity of the sequence requires that one choose co
such that

2+ Y2 =Yoo+ Y2 > 2y1. (69)

By the integral representation (A 2) of Iy, it is easy to see that e *Iy(z) is strictly decreasing.
Thus, we have e~ /2], ( ) >e” AT Iy (QM) for At < 1. Furthermore,

FhLz) <1
maxe 1(x) <3

by (A.6). Hence, (69) is achieved by choosing
1

r= 30 (1) + o2 = e (1 () + 1 (53))
for At < 1. O
Corollary 2. Suppose that At < 1. Then, for arbitrary N,

le®ll < 71l
Proof. Set a = 0.05. By Lemma 6, the smallest eigenvalue of W9 is bounded by

1
A > g—a)\ g—ap1>—cz—§a

min

Thus a simple bound using the value of ¢y from Lemma 6 is

1
oVl < (4= 3a) 1071 < 310”0 + (@) W00 = (o) f°

< [la®ll1£°1l,

completing the proof. ]

6. Higher dimensions

In dimensions d > 2, we consider the Dirichlet problem on the unit ball, with data specified
on the unit sphere S '. The unknown density ¢ is decomposed using the corresponding
spherical harmonics [29]

An,d

3 oY)

n=0m=1
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where

(n+d—3)!

and= 2n+d—2) =2

Here, a,q is the dimension of H, (891, the space of homogeneous polynomials of degree
n on R? restricted to S?!, while Y™ are spherical harmonics of degree n. When d = 3,

an,q = 2n+1, the inner summation is usually written as ) . _ . and the spherical harmonics
Y, (0, ¢) are defined by

27’L + 1 7’L — ]m| lel(COS 0) 7,m¢
- (n+ |m|)!

where P/"(cos6) is the associated Legendre polynomial [32, §18.3] of degree n and order m.
The spherical harmonics admit the following integral representation [29]

Qan d

Vo0 =" [ Praa(x vV ()dS(y), (70)
wqd Sd—1

where wy is the area of S4~1 defined in (25), and the P, q—1 are Gegenbauer polynomials [29

Chapter 2] (also called ultraspherical polynomials), defined by the Rodrigues formula

-y T (5 1 a

d—3
_ z —(1—t*)"z . (71)
20 T (n+ %) (1 —42)%° dt

Pn,d—l (t) =

The Funk-Hecke formula [29, Chapter 2, Theorem 2.39] states that
L fx2) Py - 2)dS(2) = Bog-1FPna-1(x ), (72)
S

where

1
m%FWﬂL&WMﬂm—w2ﬁ

and f is any measurable function such that

/mwuﬂ Pdt < oo

-1

In R3, this reduces to f € L[—1,1].
We compute the double layer heat potential nmth Fourier mode,

OGX -y, t—T)
L e as(y)

l-x-y _% m
- _/Sd—l 2d+17rd/2(t—7')1+d/26 =Y (y)dS(y)

Qn.d

= _?/Sdl Ynd(t = T)Png-1(x - 2)Y,"(2)dS(z)

Wd
= —Ynalt — 7)Y, (%) ,
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where, by analogy with (52),

1
Wd—1 _l-z —
ﬂ)/n,d(t) = 2d+171'd/2t(d+2)/2 /;1(1 - x)e 2t n,dfl(x)(l - xz)(d 3)/2dx . (74)

The third equality makes use of (70), (72), and exchanging the order of integration. The last
step follows again from (70). Notice that ~, 4 does not depend on the order m.

Since the {Y;™} form an orthonormal basis for functions in L2(S%"!) and (73) shows
that each spherical harmonic evolves independently under the action of the double layer heat
potential operator, we may consider the time evolution for each mode nm separately.

For the forward Euler scheme, we again assume that o(x,t) takes the constant value
0j(x) = o(x, jAt) over each interval [jAt, (j+1)At], j =0,1,.... Equivalently, each spherical
harmonic mode 0" (t) takes the constant value o7 = o™™(jAt) over the interval [jAZ, (j +
1)At], j = 0,1,.... A straightforward calculation leads to the following recurrence for the
nmth spherical harmonic mode, analogous to (53):

j—1
f%,ujva?_kuk:gj, j=0,1,2,..., (75)
k=0
where we use the abbreviations p; := o7™, g; = fjnm, and the matrix elements

At
ot = / Yn.d(IAL — T)dT, >0, (76)
0
and, as before, vy = 0.

6.1. Stability analysis
The normalization in (71) leads to [28, 30]

|Pra—1(2)| <1=FRyg-1(z), =e€[-11]
As the other terms in (74) are non-negative, we have
Yn,a(t —T)] < v0,a(t —7) , t—7>0.
An almost identical proof as in Lemma 4 leads to the following lemma.

Lemma 7. Fix T > 0. Then, for any N and At with NAt <T, and alln € Z, the spectral
radius ppa(N;At), of the symmetric Toeplitz matric W™(N; At) as defined by (56) with v}’
given by (76), has the bound

prd(N; At) < Cy(T)

where

Ca(T) := ' Pl it ) (1 — 22) 432 g < 1
¢ o 0 2d+17rd/2(T—T)(d+2)/2 Aoz T<73-

—1 e2(T-7)
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As before, we are also able to bound from below the gap between Cy(T') and 3, given a
weak condition on T'. For this, we interchange the order of integration and apply the change

of variable A = (1T ok giving

. U g (14 2)d3)/2 a2 00
a(T) = _, 2d+1df2 I -

2T

)\d/ze_’\d)\) dx

and

1 (1 + z)(@3)/2 E
1_oT N2e=2a\ | da.
2 d( ) 2d/2\/>]_—‘ (d2)/_ ll_x 0

Assume now 7' > 1. Then for z € [-1,1], 2% < 1. Thus, e™* > e~ ! for A € [0, %] and

» 2T
1 ! (1—|—x)(d 3)/2 /BT J
—CAT) > - M2\ | d
) = 2d/2fr(d2)/_ V- e Jo ’

)21 — 1) da

N[—=

M\m

 edod- 1\de— /

2

d 3)/2d£1?

M\g.

ed2d- 1\f1“ d-1) /

2

1_
= d/ COS
ed2?- 1\FF (452 T2
1
ed2d-1T (2) T2

where the last equality follows from an integral identity in [7, §3.62].

Armed with this polynomial control of the gap, and following the same reasoning as used
to show (62), we obtain the following theorem regarding the stability of the forward Euler
scheme in higher dimensions.

Theorem 6. Fiz d > 2, andT > 1. For alln=0,1,... and m=1,...,a,4,

v
3 —Cq(T)

for all N, At such that NAt < T. That is, when T is the unit sphere S4 1, the forward Euler
scheme for solving the second kind Volterra integral equation (16) is unconditionally stable on
any finite time interval [0,T].

lo™™[| <

£ < ez () T

7. Conclusions and further remarks

We have analyzed the stability of the simplest explicit, first-order accurate time marching
scheme for solving the Dirichlet problem for the heat equation in the unit ball, with data spec-
ified on the unit sphere S¢~1 C R¢, using second-kind Volterra boundary integral equations.
While finite difference methods require that the Courant number At/(Azx)? be bounded by
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ﬁ, we have shown that, for the Dirichlet problem, integral equation methods can be both
explicit and unconditionally stable for any fixed final time T'.

We have also shown that, when solving the heat equation on the unit disk in two dimensions
with unit diffusion constant, the scheme is stable for all time, so long as At < 1. Finally,
for Robin boundary conditions in one dimension, we have shown that stability follows if
At < 0.397 /K%, where r is the heat transfer coefficient. We conjecture that similar results
hold in higher dimensions as well.

One of the key ingredients in our proof is a tight rational function bound for the ratio of
modified Bessel functions of the first kind with large positive real argument, which may be
of interest in its own right for other physical applications. A second ingredient in our proofs
is a bound on the smallest eigenvalue of real symmetric Toeplitz matrices via the convexity
of the associate Fourier series sequence. This may be of interest in some signal processing
applications. It is worth observing that a critical element in our proof is the pointwise non-
positivity of the double layer heat kernel on the unit sphere S%~!. This property holds for
any convex domain. In fact, using the results in section 3.1, it is straightforward to extend
our stability proof in the L* norm on an arbitrary convex domain.

While this paper is purely analytic, we note that the numerical experiments in [43] are
consistent with the theory presented here. More detailed experiments will be reported in a
forthcoming paper [45] that considers the full initial-boundary value problem including forcing
terms.
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Appendix A. Properties of the modified Bessel functions of the first kind

The modified Bessel function of the first kind I, (x) is defined by the formula [32, Chapter
10]

oo (lz)%
L&) = 62" 2 gy a1y

It satisfies the recurrence relations [32, §10.29.2]
v v
1) = La(2) — C0(2), 1) = Loa(2) + Z0(2) (A1)

When v is fixed and  — oo [32, §10.30.4],

eCC

\V2mx ’

When v is an integer n, I,, admits the integral representation [32, §10.32.3]

I(z) = 1/ <% cos(nh)db. (A.2)
0

™

I,(x) ~ r € R.

The following results can be found in [46].
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Lemma 8. Let W, (z) = 2@ 4ng Sy = W2(z) — 2pW,(z) — 2. Then S, ,—1(z) is

Iy y1(2)
monotonically decreasing from 0 to —oo on (0,00) for v > 1/2,

1
vt fat = T < W) <v—Lliya2+(w+1)? (A.3)

and

v—1+22+ (v +1)2 <W, i (2) (A4)
forv >, with x € (0,00).
Lemma 9. Let n be a positive integer. Then

(a) There is only one zero Ty, for the equation

on (0,+00). Furthermore,

2
max(n? — 1, % +n) <1, <n?+n. (A.5)

(b) The function e *I,(z) increases monotonically on [0,r,] and decreases monotonically
on [ry,+00).

(¢) The mazimum value of e *I,(x) on [0,00) satisfies

1
s < .
ooy n(®) 2n +1

Proof. (a) Using the recurrence (A.1), we have

When % =1, Sn1= —n2. By the monotonicity and the range of Snn—1(2), Snn—1
takes the value —n? at only one point and we denote that point by r,.

Substituting z = r, into (A.3) and (A.4) with % = 1 and simplifying the resulting

expressions, we obtain (A.5).
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(b) We have

(e Ia(a)) = ¢ In2) (I:Eii . 1> |

Using (A.3), it follows that ﬁgg > 1 for z < n? — 1 and ﬁgi; < 1 for z > n? +n.

Combing these facts with (a), we have ﬁzgg > 1 for x < r, and ﬁgi; < 1 for x > r,.

That is, 2 (e7%I,(x)) > 0 for z < r,, and £ (e~%1,(x)) < 0 for > r,,, which completes
the proof of (b).

(c) By the identity §10.35.5 in [32], we have

l=¢e" (Io(x) + 2ilk(a;)> .
k=1

Section 10.37 of [32] states that for fixed x > 0, I, (x) is positive and decreasing for
0 < v < 00. Hence,

n
1>e® (In(:c) +2) In(a;)> = (2n+1)e "I, (),
k=1
which completes the proof.
O

The following lemma about differential inequalities can be found in [13, Chapter III, §4].
See also [35].

Lemma 10 (Petrovitsch 1901). Suppose that f(y,t) is continuous in an open domain D.
Suppose further that y is the solution to the Cauchy problem

y(t) = fy®).1), y(to) =0, (yo,to) € D.
(a) (Increasing t). Suppose that u satisfies the inequalities
u'(t) > fu(t),t), te (to,to+9) (6 >0)

u(to) = y(to)- (A7)
Then
u(t) > y(t), te [to,to+ 9] (A.8)
The inequality in (A.8) is reversed if both inequalities in (A.7) are reversed.
(b) (Decreasing t). Suppose that u satisfies the inequalities
u'(t) < fu(t),t), te(to—0d,to)(0>0) (A.9)
u(to) > y(to).
Then
u(t) > y(t), telto— 9t (A.10)

The inequality in (A.10) is reversed if both inequalities in (A.9) are reversed.
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Lemma 11. Let
go(z) = (4x — 3)Ip(x) — (4z — 1)I1(x). (
3

Then go(x) has a unique zero, denoted as x*, on (§,00). Furthermore, go(x) < 0 on [
and go(x) >0 on (z*,00).

;]>
—_
—_
N—

N[N
S
*
~—

Proof. Let r,(x) = L{:(la(?t) In particular,

_ o(z
a Il(IL’

~—

ro(zx) 5
From §10.37 of [32], we know that I,,(x) is positive and increasing on (0, c0) for fixed v(> 0)
and I,(z) is decreasing on 0 < v < oo for fixed x. Thus, r,(z) > 1 on (0,00) for v > 0. Let
dr —1
T 4r-3
Then it is clear that the sign of go(x) is determined by comparing ro(x) with lo(z). First,

lo()

limxﬁy lo(x) = 400 and thus lp(z) > ro(x) as z — %Jr. Second, the series expansion of [y(x)

and the asymptotic expansion of rg(z) are as follows:

13 9 27 81 1
lo(z) =1+ — + - - +0<),

2x 81:2+32m3 128 x4 51225 6

7“(ﬂ:)—l+i+ S 3 B2 (L
O™ " T 9y T Ra? T 8% T 1284% ' 3240 26 )"

Hence, ro(xz) > lp(xz) as * — oo. Combining these two facts, there is at least one point
z* € (3,00) where ro(z*) = lyp(z*). Or equivalently,

go(z*) =0.
By the recurrence relations (A.1), r, satisfies the following Riccati equation
2v+1
ry(x) =1+ () =15 (2).

In particular, for v = 0,
rooN 1 2
() = 1+ ~ro(a) — 3 (a).

We now calculate

fa) = (14 1o(0) ~ (e)) =~ <0 we (1.00)
By Lemma 10, we have
lo(x) <wup(z), =>a%; lo(x) > ro(x), =€ (%,x*)
Equivalently,
go(xz) >0, x>ua% go(x) <0, =x€ [Z,m*),
completing the proof. O
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Remark 9. Numerical computation shows that z* &~ 1.452165365078841.. ..
Corollary 3. Let

ho(z) = (x — 2)go(x) = (v — 2)[(4x — 3)Ilo(x) — (4x — 1)I1(x)], (A.12)
where go(x) is defined in (A.11). Then ho(z) >0 on [2,z*] and [2,00); ho(z) < 0 on [z*,2).

Lemma 12. Let

hi(x) = (42% — Tx) [ (x) — (42® — 9z + 3)Io(x). (A.13)
Then hyi(z) > 0 on [3,00).
Proof. Let z7 = @ = 1.843. .. be the larger root of 422 — 92 + 3. Then 422 — 92 +3 > 0

for > 27 and 422 — 9243 < 0 for z € [3,27). We break [3, 00) into several subintervals and
show the positivity of hji(x) on each subinterval.

(a) x € [x],00). Let

42 — Tx

wl@) = s o 13

3 (x—3)
(422 — 9z +3)%

(@) ~ (14 —uo(x) — ud(x)) = (A.14)

which is greater than zero if z > 3 and less than zero if v < 3. Atz = 3,u(3) = 2 = 1.25
and rg(3) = 1.23459... < 1.25 = up(3). Thus, Using Lemma 10 in the increasing
direction we have ro(z) < up(z) on [3,00); and using Lemma 10 in the decreasing
direction, we still have ro(z) < up(x) on [z}, 3). Equivalently, hi(z) > 0 on [z}, c0).

x € [%, z%]. On this subinterval, we have 42% — 7z > 0 and —42? + 92 — 3 > 0. Hence,
hi(x) > 0, since I;(z) and Ip(z) are always positive on [0, 00).

(c) z € [3,%]. By (A.14), we have uj(z) — (1 + 2ug(z) — ud(z)) < 0 on [2,I]. Also,

41
up(3) =2 < ro(2) = 2.8.... Using Lemma 10, we have ro(z) > uo(z), or equivalently
hi(z) >0 on [3, ].

O]

Lemma 13. Let fy(x) = e_%lo(%), filx) = e_%ll(i), f(z) = fo(x) + afi(x) with a = 0.05.
Then f"(x) >0 on (0,00).

Proof. Using the recurrence relation (A.1), we obtain
1 L 1
" —=
0 (z) = 7€ = ho <x> )
where ho(z) is defined in (A.12). Similarly,
1 2 1
{//(x) — ge = hy <x> ,

where hj(z) is defined in (A.13). Thus, in order to show that f”'(z) > 0 on (0,00), we only
need to show that ho(x) + ahi(z) > 0 on (0, 00).
We break it into several steps.
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(a) z € [0,1/4]. On this interval, 3 —4x > 2, 0 < 1 —4z < 1, 2 —x > 1.75, thus
ho(x) > 1.75(21y(z) — I1(x)) > 1.751p(x). And 42 — 7x > —1.5, 42> — 9z + 3 < 3, thus
hi(x) > —1.511(z) — 3Ip(z) > —4.51p(x). Combinging these results, we have

ho(z) + ahi(z) > (1.75 + 0.05 x (—4.5))Io(x) > 0.
(b) 1 <z m<05 On this interval, 3 — 4z > 1, 4o — 1

< 2
thus ho(z) > 1 5Ip(z). And 422 — 7z > —2.5,0 < 422 — 9 + 3 <
—2.5I(x) — Ip(z) > —3.5Ip(x). Combining these results, we have

0, > 1.5,
1, thus hl(x) >

ho(z) + ahy(z) > (1.5 +0.05 x (—3.5))Io(x) > 0.

(c) ng\/@ < x < 3/4. On this interval, 3 —4x > 0, 4o — 1 > 0.6, 2 — x > 1, thus
ho(x) > 0.611(z). And 42? — 7o > -3, —(42% — 9z + 3) > 0, thus hy(x) > —3I;(z).

Combining these results, we have

ho(x) + ahi(z) > (0.6 — 0.05 x 3)I1(x) > 0.
d) z € §,x* U [2,00). On these two subintervals, both hg(z) and hi(x) are positive by
4
Corollary 3 and Lemma 12. Thus hy(z) + ahq(z) > 0.

(e) z € (z*,2). We calculate

hi(z) = (z = 3)go(z),

where go(z) is defined in (A.11). By Lemma 11, go(z) > 0 on (z*,00). Thus, b (z) <0
on (x*,2). This shows that hi(z) > hi(2) ~ 0.901688 on (z*,2). On the other hand,
it is straightforward to show that gj(z) > 0 and g((z) < 0 on (z*,2). Hence, hj(z) =
g0 (x)(x — 2) + 2g4(z) > 0 on (z*,2), indicating that ho(x) achieves its minimum at
exactly one point. Numerical calculation shows that

min ho(z) = —0.043... > —0.044.
z€(x*,2)

Hence,

ho(z) +ahi(x) > min ho(z) + 0.05 x hy(2) > 0.

z€(z*,2)
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