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ABSTRACT

The performance and availability of cloud and content providers
often depends on the wide area networks (WANs) they use to in-
terconnect their datacenters. WAN routers, which connect to each
other using trunks (bundles of links), are sometimes built using
an internal Clos topology connecting merchant-silicon switches.
As such, these routers are susceptible to internal link and switch
failures, resulting in reduced capacity and low availability. Based
on the observation that today’s WAN routers use relatively sim-
ple trunk wiring and routing techniques, we explore the design of
novel wiring and more sophisticated routing techniques to increase
failure resilience. Specifically, we describe techniques to 1) optimize
trunk wiring to increase effective internal router capacity so as to
be resilient to internal failures, 2) compute the effective capacity un-
der different failure patterns, and 3) use these to compute compact
routing tables under different failure patterns, since switches have
limited routing table sizes. Our evaluations show that our approach
can mask failures of up to 75% of switches in some cases without
exceeding routing table limits, whereas competing techniques can
sometimes lose half of a WAN router’s capacity with a single failure.
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Figure 1: Globally-distributed WANs and WAN routers.

1 INTRODUCTION

Large cloud and content providers (like Google, Facebook, Net-
flix, and Microsoft) are expanding their own wide-area networks
(WANSs) to meet service-level latency and throughput objectives
and to achieve high availability, all at low cost. These globally-
distributed WANSs consist of dozens of sites [19, 25]. At each site
(Figure 1), one or more WAN routers forward (a) ingress and egress
traffic to one or more datacenters at the site and (b) transit traffic
between WAN sites. To achieve this, each WAN router connects to
datacenters and to WAN routers at the same or other sites using
trunks, which are logical collections of physical links that provide
high aggregate capacity [34].

The design of the WAN topology and its routing is crucial to the
performance and availability of the entire WAN. WANs must carry
large traffic volumes, often in the terabits per second (Tbps), so they
incorporate novel router designs that achieve high performance
and high utilization at low cost. However, the effect of small fail-
ures within WAN routers, or within trunks, can disproportionately
degrade the capacity of WAN routers, resulting in lower service
availability or in degraded user-perceived performance. In this pa-
per, we focus on the failure resilience of a common type of WAN
router designed using a non-blocking Clos [12] topology.

Clos-Based WAN Routers. In the last decade, some content
providers and router vendors have designed high-aggregate-
capacity WAN routers by arranging merchant-silicon switching
chips (e.g., the Broadcom Trident series [24], Arista 7050X3
series [21]) in a topology shown in Figure 1. In this topology, traffic
ingresses and egresses the WAN router at external ports attached
to the lower half of the lower layer of switches (also called layer-1
or L1 switches). Incoming traffic traverses internal links, bounces
off layer-2 or L2 switches, and then exits an external port towards
a datacenter border router or another WAN router. The use of
commodity merchant silicon ensures low cost, and the design of
the topology ensures non-blocking performance; a non-blocking
switch or router can satisfy any traffic matrix, which specifies the
volume of traffic between each ingress-egress trunk pair.

The aggregate capacity of the Clos-Based WAN router (hence-
forth, simply WAN router) is a function of the number of switches
used, which itself is a function of the switching chip radix (the num-
ber of switch ports) and the per-port capacity. With a 16-port switch,
the WAN router will require 16 L1 switches and 8 L2 switches to
achieve the non-blocking property and will have 128 full-duplex
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Figure 2: A Clos-based WAN router with three trunks. At left, we
show how two units of traffic can be routed from trunk C to trunk
A. When a single link fails, only 50% of the demand is satisfied.

external ports [19]. If each port can support 40 Gbps of traffic, the
entire WAN router has a capacity of 5.12 Tbps.

Internal Routing in Clos-Based WAN Routers. Today, WAN
routers use a simple internal routing strategy. For example, consider
Figure 2 which depicts a smaller WAN router constructed using
4-port switches. This router interconnects three external trunks,
A, B and C with, respectively, 2, 2, and 4 links. Each link in this
topology, whether internal or external, has one unit of capacity.
Suppose that 2 units of traffic enter trunk C destined for A. The
ingress L1 switch uses ECMP-based forwarding, in which ingress
traffic is evenly load-balanced across the two internal links towards
two L2 switches. These L2 switches each then forward the traffic
to the switch connected to trunk A’s links.

The Impact of Internal Failures in a WAN Router. In a WAN
router, one or more L1 or L2 switches and/or one or more internal
links can fail (external links can also fail, and, while we do not
consider such failures in this paper, our approach extends to this
case (§7)). Such a failure can reduce the effective capacity of the
switch. In Figure 2, the failure of a single internal link (out of a total
of 8 internal links) reduces the router’s effective capacity by 50%,
and the router only satisfies one unit of the demand from C to A.

To understand how this example generalizes to more realistic
settings, Table 1 shows the reduction in effective capacity in a
128-port switch with 4 trunks for different failure configurations.
Specifically, the table shows the maximum reduction in effective
capacity across all possible traffic matrices, using a methodology
developed in this paper and described later. A 128-port switch has
8 L2 switches, 16 L1 switches, and 128 internal links. As Table 1
shows, a single internal link failure can reduce effective capacity
by 50%, and four concurrent link failures (out of 128) can result
in an effective capacity of a quarter of the original capacity. L1
switch failures can be equally catastrophic: removing 2 out of 16
L1 switch failures can reduce the effective capacity to zero for this
trunk configuration. However, the WAN router degrades gracefully
with L2 switch failures: each L2 switch failure reduces capacity by
1/ 8th, as it should.

Content and cloud providers strive to simultaneously achieve
high utilization (especially in a WAN where the cost of wide-area
links are high [25]) and high availability (to satisfy service-level ob-
jectives). To achieve this, WAN routers must mask as many failures
as possible, and gracefully degrade when not. This motivates our
search for techniques to improve the resilience of WAN routers.
Towards Better Failure Resilience in WAN Routers. Ideally,
a WAN router should be able to completely mask internal failures.
However, there are limits to failure masking. For example, when

Sucha Supittayapornpong, Barath Raghavan, and Ramesh Govindan

Figure 3: By carefully wiring trunks, and forwarding ingress traf-
fic out on L1 switches whenever possible, a WAN router can mask
failure of an internal link.

an L1 switch fails, capacity will necessarily degrade since its ports
cannot ingress or egress traffic. Similarly, if enough L2 switches or
internal links fail, it may not be possible to mask these failures. In
these cases, we require that capacity degrade gracefully: the loss in
capacity should be proportional to the fraction of failed hardware
resources (links or switches).

To understand how to achieve these requirements, consider Fig-
ure 3 which explains how we can mask the single link failure in
Figure 2. Figure 3 illustrates that, to minimize the impact of fail-
ures, we can: (a) carefully arrange trunks across the WAN router’s
external ports, and (b) route traffic at L1 switches when possible.
These techniques can avoid the capacity degradation of Figure 2.
For example, trunk A now connects to the first and third (from the
left) L1 switch, instead of only the first L1 switch. This permits the
first L1 switch to forward traffic from C to A and send less traffic
up to the L2 switches. This early forwarding reduces the upflow
(total traffic from L1 switches to L2 switches) and can completely
mask the single link failure.

Contributions. Our paper leverages the above two insights to de-
sign topology and routing schemes to maximize failure masking
and ensure graceful degradation in WAN routers. Indeed, our ap-
proach can mask all L2 and link failures in Table 1, and gracefully
degrade L1 switch failures. To achieve this, our paper makes three
contributions.

Our first contribution (§2) is the design of minimal-upflow trunk
wiring. Re-arranging the ports assigned to each trunk (the trunk
wiring) permits early forwarding of traffic between two trunks at
the L1 switch, without even traversing internal links. However,
early forwarding is not always possible: some traffic (the upflow)
needs to traverse L2 switches. Intuitively, minimizing the upflow
can improve the ability of the WAN router to sustain capacity in the
face of L2 and internal link failures. Given a trunk configuration,
we study how to minimize the total upflow from L1 to L2 switches.
The challenge in doing this is that, in practice, while trunk configu-
rations change on day, week, or month timescales, the inter-trunk

Effective capacity

No. failures | Link | L2 switch | L1 switch
1 50.0% 87.5% 50%
2 48.3% 75.0% 0%
3 25.0% 62.5% 0%
4 24.1% 50.0% 0%

Table 1: Effective capacity of a 128-port WAN router with 4 trunks
consisting of (16, 32, 32, 48) links under different failures.
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traffic matrix can change more frequently. Thus, we need to de-
termine a trunk wiring that minimizes upflow across all possible
traffic matrices. Simply enumerating all possible traffic matrices is
infeasible at the scale of today’s WAN routers. Instead, we observe
that, given a trunk configuration, we can enumerate a smaller set of
extreme traffic matrices that dominate the set of all traffic matrices.
Using this observation, we develop a mixed-integer linear program
(MILP) formulation for the minimal-upflow trunk wiring problem.
We also prove that, for some trunk configurations, it is possible
to derive minimal-upflow trunk wiring without solving an MILP.
While our MILP formulation scales to reasonable problem sizes,
it hits scaling limits for 512-port WAN routers built from 32-port
switches. For these larger routers, we develop a fast heuristic for
trunk wiring that achieves the minimal upflow almost every time.

Our second contribution (§3) is the design of a method to com-
pute effective capacity under failures. Specifically, given a minimal-
upflow trunk wiring, we need a way to determine, for, say, failures
of links or of L1/L2 switches, the maximum capacity reduction in
the WAN router across all possible traffic matrices. This is necessary
because, in practice, a traffic engineering algorithm such as the one
used in [19, 25] requires an estimate of the residual router capacity
for a given failure pattern. Because traffic engineering needs to be
fast, it may be infeasible to run an algorithm to determine the max-
imum capacity reduction across all traffic matrices when a set of
failures occurs. Instead, we seek to pre-compute capacity reduction
for each failure pattern, but the number of possible failure patterns
can be prohibitively large. We show, however, that the symmetry
in WAN routers permits the enumeration of a small number of
canonical failure patterns, and any failure pattern is isomorphic to
one of these canonical failure patterns. We develop an algorithm to
determine a canonical failure pattern from any given failure pat-
tern and use it to enumerate all canonical failure patterns. We then
devise easily parallelizable optimization formulations to determine
the effective capacity under failure.

Our third contribution (§4) is to develop compact forwarding
tables for a minimal-upflow trunk wiring and a given failure pattern.
While today’s switches use ECMP, in which traffic is evenly load-
balanced across links, our approach requires a weighted version of
ECMP (called WCMP [40]). Unfortunately, today, the way WCMP
is achieved in chips can inflate forwarding table sizes, and switches
have limited forwarding tables. To meet table size constraints, one
can quantize the weights for different flows, which can potentially
result in lower effective capacity than computed in §3. We show
that it is possible to optimize compact forwarding tables to achieve
minimal-upflow trunk wiring without sacrificing effective capacity
under failures, and provide scalable approximations for this problem.

Our evaluations (§5) show that our approach can mask up to
6 concurrent link or L2 switch failures in a WAN router, while a
baseline wiring strategy that uses ECMP or WCMP cannot even
mask a single failure. Our approach can tolerate failures of up to
half of the L1 switches, but the baseline wiring can only tolerate 1-3
such failures. Random wiring is less effective than our approach,
often having an upflow 2-3x higher, with correspondingly lower
resilience. We also demonstrate that our approach’s resilience does
not require exceeding hardware table limits. Finally, we show that
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Figure 4: Overview of our approach.

our optimizations for using extreme traffic matrices and canonicaliz-
ing failure patterns are effective: the latter can reduce computational
complexity by 3-5 orders of magnitude.

Putting It All Together. Our contributions collectively result in
the processing pipeline shown in Figure 4. The input to the first
stage of the pipeline is a trunk description used to determine a
minimal-upflow wiring. The next stage in the pipeline takes this
wiring, together with a failure pattern, and produces the effective
capacity of the WAN router under that failure pattern. This effective
capacity is then used to optimize compact routing tables.

Implications. As cloud and content providers simultaneously
strive to achieve high utilization, high availability, and low cost,
they need tools that enable them to make these tradeoffs in a
principled way. In the WAN setting, our work shows that it is
possible to mask significant failures (i.e., tolerate failures without
losing capacity). Using our approach, they may also be able to
reduce cost by reducing the number of L2 switches and internal
links (in today’s WAN routers, internal links use expensive optics).

Ethics. This work does not raise any ethical issues.

2 MINIMAL-UPFLOW TRUNK WIRING

In this section, we explore the first challenge: how to find the
minimal-upflow wiring for a set of trunks in a WAN router.

2.1 Background

By virtue of being at the top of the routing hierarchy, WAN routers
carry large volumes of aggregate traffic, often up to terabits per
second. However, low-cost commodity switching chips offer per-
port speeds of 40 Gbps to 100 Gbps. To meet capacity requirements
using these chips, WAN routers must have a large number of ports.
In Google’s B4, routers have 128 or 512 ports. Moreover, the physical
topology of WANS is sparse. WAN routers interconnect data centers
in large metropolitan areas; since long-distance cables are expensive,
each WAN router usually connects to a small number of other
WAN routers. The sample topology in [25] shows a WAN router
connected to 4-5 other WAN routers.

Thus, multiple ports on a WAN router connect to corresponding
ports on an adjacent WAN router; this collection of physical links is
trunk. All the links in a trunk are of the same capacity (e.g., 40 Gbps)
because all L1 and L2 switches use the same type of switching chip
(e.g., a 16x40 Gbps chip). A router receives traffic on one trunk and
may forward this traffic to one or more other trunks. When doing
so, it evenly splits outbound traffic across all links in the trunk
between the two routers. This uniform splitting enables better uti-
lization of trunk links, and allows a traffic engineering algorithm
to abstract the WAN router as a single node with a fixed capac-
ity [25]. All our techniques in this and subsequent sections model
this crucial constraint. More important, this even split maximizes
early forwarding opportunities.
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Figure 5: Upflow depends both on trunk wiring and traffic ma-
trix.

Operators configure trunks when commissioning a router, and
occasionally reconfigure them afterwards. However, trunk reconfig-
uration happens at timescales of weeks or months, since it requires
manual labor to rewire the links on a trunk.

2.2 Goal and Challenges

Figure 3 shows how carefully wiring the trunks across the external
ports of a WAN router can improve resilience by permitting early
forwarding, which reduces upflow. Upflow (defined more formally
below) is the aggregate traffic sent from L1 switches to L2 switches.
In this section, we ask: How can we design scalable methods to
compute the trunk wiring pattern that minimizes upflow?

This question is challenging because upflow depends not just on
the trunk wiring but also on the trunk-to-trunk traffic matrix (the
(i, j)-th entry in a traffic matrix represents the total traffic from
trunk i to trunk j). Figure 5 shows an example that illustrates this
(we omit the detailed upflow calculations for brevity). The topology
on the left and in the middle have different wiring but the same
traffic matrices, and have different upflow. The middle and the right
topologies have the same trunk wiring but different traffic matrices,
and also have different upflow. Unfortunately, traffic matrices at a
WAN router can change frequently based on changes in applica-
tion demand: numbers from [25] suggest that traffic engineering
(TE) computations run once every 2.4 mins on average. Each such
computation can potentially change the traffic matrix at the router.
At these timescales, it is infeasible to re-wire trunks in response to
each such change because trunk wiring is a manual operation.

The rest of this section describes an optimization formulation,
and associated scaling methods to compute a minimal-upflow trunk
wiring that addresses this challenge by computing a wiring that
minimizes the maximum upflow across all possible traffic matrices.

2.3 Formalizing Upflow

Input and Output. The input to our algorithm is a set
{Mj,...,Mk} of K trunks. We call this set a trunk set, where
the k" trunk has My links, for k € K and K = {1,...,K} is an
index set. The output of the algorithm is a matching (association)
between external ports of the WAN router and links in each trunk
that minimizes upflow (the minimal-upflow trunk wiring). Recall
that WAN router external ports are all connected to L1 switches.

Traffic Matrix. A traffic matrix T = [t;j] kxk is a K-by-K matrix
containing traffic rate t;; going from a trunk i to a trunk j for
every i, j € K. We normalize the traffic rate t;; by the link capacity
without loss of generality, since every link in a trunk has the same
capacity. We assume t;; = 0 forall i € K, i.e., that no traffic received
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on a trunk exits on the same trunk. Finally, let 7~ be the set of all
possible traffic matrices for a given trunk set {My}.

Defining Upflow. We call the normalized aggregate rate of traffic
sent from L1 switches to L2 switches the upflow. To formalize
upflow, let £1 and £ be the sets of L1 switches and L2 switches
respectively. In a Clos-based WAN router, the number of L1 switches
is twice as many as L2 switches. Let P denote the number of external
ports in each L1 switch. As described above, the upflow at each L1
switch depends on the traffic matrix and how trunks connect to
the WAN router. Specifically, let wg be the number of links from
trunk k wired to switch s for all s € L1 and all k € K, and let w
be a vector of these wg’s. We call w a trunk configuration. Given
a traffic matrix T = [t;;] € 7, the upflow rate (or, simply, upflow)
for traffic from trunk i to j at switch s is

wsitij  Wsjlij

M; M;

] forall s € £1, (i, j) € K2, (1)
+

where [a]+ = max(a, 0) is a positive projection. This formulation
relies on the observation that the total traffic on a trunk is evenly
split across its constituent links. Then, the first term on the right
hand side measures the fraction of incoming traffic on trunk i des-
tined to trunk j that arrives at switch s. The second term measures,
at switch s, the fraction of trunk j’s outgoing capacity for traffic
from trunk i. The two terms together determine how much of the
incoming traffic on trunk i cannot be “early forwarded” (i.e., how
much must traverse L2 switches). It follows then that the total up-
flow to L2 switches for a given trunk configuration w and a traffic

matrix T is:
UwT)= > > > ul(wT). 2)

seLiieK jeK

Minimizing Upflow. Our approach tries to minimize total upflow
because, in doing so, it reduces the internal capacity required in the
WAN router, thereby enabling the router to mask many failures of
internal links or L2 switches. Because upflow depends on the traffic
matrix, we attempt to find that trunk wiring configuration w that
minimizes the maximum upflow across all possible traffic matrices:

min maxU(w,T), (3)
weW TeT

W is a feasible set of wiring constraints, defined as:

_ |L1IXK  Dkek Wsk < P foralls € £
(W_{WSkEZJr © Yser, Wk =My forallke K [’

where Z, a set of non-negative integers. The first constraint en-
sures that the wiring at a switch does not exceed the number of
external ports P, and the second ensures that each link in every
trunk connects to a port.

2.4 Scaling

Extreme Traffic Matrices. Unfortunately, this formulation is in-
tractable because there can be infinitely many traffic matrices in 7.
We observe that there is a simpler solution: it suffices to examine a
smaller set of extreme traffic matrices, denoted by &, rather than
the full set of all possible traffic matrices 7. To understand why,
consider that when a WAN router is non-blocking, traffic rates,
going in and out of the router, are only limited by trunk capacity



Towards Highly Available Clos-Based WAN Routers

Space of RX*¥

Traffic set 7 —

Practical traffic set —

Figure 6: Traffic set and extreme traffic set.

(the aggregate rate of trunk’s links). Since each link has the same
capacity, we can represent each link as having unit capacity, so the
number of links in each trunk constrains the space of all possible
traffic matrices 7:

2jextij <M forallieXK
T =1T eR{K Yiextij <M; foralljeX , (4
tii =0 foralli e K

where Ry is a set of non-negative real numbers. The set 7~ bounds
all feasible traffic matrices, as shown in Figure 6.

This set is a convex polytope, because constraints in Equation 4
are affine functions [6, 9]. For example, for a WAN router with a
trunk set (2, 2, 4), 6 affine constraints define 7. One of them is
t12 + t32 < 2 and implies the total (normalized) rate to the second
trunk is at most 2, even though the third trunk can send at most 4.

Using Extreme Traffic Matrices. The vertices of this convex
polytope represent the extreme traffic matrix set & (Figure 6). In
§A.1, we prove that it suffices to use & instead of 7~ in our opti-
mization formulation of Equation 3, as follows:

min maxU(w,T). (5)
weW Te&

We can transform this formulation into an MILP problem, and

use an off-the-shelf MILP solver for reasonable problem sizes, e.g.,
128-port router with 4 trunks (§5). Larger WAN routers, or those
with more trunks, need other scaling techniques, described next.
Symmetric Trunk Sets. For some trunk sets, we can obtain the
minimal-upflow trunk wiring without using an MILP solver. Con-
sider a WAN router with 128 ports and 16 L1 switches, and four
trunks with (16, 32, 32, 48) links respectively. Now, suppose we wire
each L1 switch with one link from the first trunk, 2 each from the
second and third trunk, and 3 from the fourth trunk. It turns out
that this trunk configuration achieves zero upflow across all traffic
matrices. More generally, we say that a trunk set is symmetric if
the number of links in each trunk is a multiple of the number of
L1 switches. Specifically, a symmetric trunk set has My = ay | L1]
when ay. is some positive integer for every k € K. In §A.2, we
prove that the upflow for any symmetric trunk set is zero across
any traffic matrix, so in these cases, computing upflow does not
need Equation 5.
Approximating Minimal-Upflow. As the size of a WAN router
increases, the number of L1 switches | £1] increases. Also, a 128-port
WAN router could serve more than 5 trunks. These two factors rep-
resent scaling challenges since the number of auxiliary constraints
in Equation 5 increases as O (|L1 | ZKZ) (see §A.3 for a proof), which
can cause solvers to exceed memory limits.

We have developed an approximation with better scaling behav-
ior based on two ideas. The first is to approximate all the extreme
traffic matrices by T, a matrix whose entries are element-wise max-
ima across all the extreme traffic matrices. The second applies our
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observation that the minimal-upflow wiring usually tries to evenly
distribute links of a trunk across all L1 switches: we only explore
trunk configurations W such that the number of links from a trunk
assigned to two different L1 switches differ by no more than 1.

§A.4 lists this formulation in which the number of auxiliary
constraints scales as O(] L] K?). §5 shows that this formulation
yields a wiring that match the optimal wiring obtained from the
formulation in Equation 5 for most of the trunk sets we have been
able to evaluate.

3 EFFECTIVE CAPACITY UNDER FAILURE

In this section, we discuss how to define, and compute, the effective
capacity of a WAN router under failures.

3.1 Background

Minimizing upflow can make a WAN router resilient to failure, but
it is important to quantify this resilience. To do so, we compute the
effective capacity of the WAN router under (concurrent) failure of
components. This effective capacity is an input to traffic engineering
(TE) algorithms, such as those used by Google’s TE Server [25],
which use the effective capacity to route traffic demands based on
application needs (e.g., latency, traffic demand). It is also an input
to our next step, computing compact forwarding tables (§4).

At run time, when a set of failures occurs in a WAN router, it
may be possible to compute an estimate of the effective capacity,
required for TE calculations. However, it is desirable in our setting
to pre-compute this effective capacity for as many failure patterns
as possible, because while computing the effective capacity of a
given failure pattern is inexpensive (as we show below), the next
step of our approach, computing compact forwarding tables (§4)
requires an MILP formulation that can delay convergence of TE
algorithms if run online. To ensure fast TE convergence [19], we
pre-compute effective capacity and routing tables (in §4).

3.2 Goal and Challenges

Our goal in this section is to determine, for any given trunk con-
figuration, the effective capacity when multiple internal links, or
L1 or L2 switches fail concurrently. This problem is challenging
because, if we want to pre-compute this effective capacity, we have
to explore all possible concurrent failure scenarios, which increase
exponentially. The second challenge is to define effective capacity
precisely. A WAN router, by design, is non-blocking: it can sup-
port any possible traffic matrix. When failures occur, it may not be
possible to support some traffic matrices.

We describe, for ease of exposition, separate algorithms for de-
termining effective capacity (a) under L2 and internal link failures
and (b) under L1 failures. This is because the characteristics of these
failures are different: an L1 failure disables some ingress and egress
trunk links, but a link failure or an L2 failure does not. We defer
the discussion of L1 failures to §A.7. In §A.8, we describe a com-
bined algorithm that estimates effective capacity under arbitrary
combinations of internal link and L1/L2 switch failures.

At a high-level, to pre-compute the effective capacity under L2
and internal link failures, our approach enumerates all possible
failure scenarios, and for each computes the effective capacity (and
routing tables (§4)).
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Figure 7: Link-failure model and canonicalization.

3.3 Modeling Link and L1 Switch Failures

When concurrent internal links fail, we model this as a graph G in
which all the L1 and L2 switches are nodes and only the failed links
are edges in the graph. Figure 7 shows an example with a single
link failure. This graph represents a failure pattern. This approach
can also model L2 switch failures; when an L2 switch fails, we mark
all incident internal links in that switch to have failed. The total
number of possible patterns is 21 L1 Lol

Graph Canonicalization and Isomorphism. To address this ex-
ponential complexity, we leverage the symmetry in WAN router
topologies, and use graph canonicalization [29] which reduces a
graph to an isomorphic canonical form. Two graphs are isomorphic
when they are permutations of one another. For example, the mid-
dle and right failure patterns in Figure 7 are isomorphic because one
can swap the rightmost L1 nodes (and L2 nodes) of either pattern
to arrive at the other pattern. A canonical form of a graph G is a
graph i/ (G) that is isomorphic to G, such that every graph that is
isomorphic to G has the same canonical form as G, and any two
non-isomorphic graphs have different canonical forms. Canonical-
izing failure patterns can result in fewer patterns to search and is
crucial to scaling the pre-computation of effective capacity.

A Polynomial Time Algorithm. While it is not known whether
polynomial time algorithms exist for general graph canonization,
we have developed a polynomial time algorithm for Clos topologies.
Our algorithm leverages the fact that Clos topologies are bipartite.
Given a failure graph, the algorithm reorders links and nodes so that
all links are on the left (to the extent possible). This transformation
results in a canonical failure pattern. For example, in Figure 7, if
there is a single failed link between the second L1 switch and the
second L2 switch, by reordering the first and second L1 (respectively
L2) switches, we can arrive at the canonical failure pattern where
the failed link is between the first L1 switch and the first L2 switch
(the pattern shown in Figure 7). From this example, it is tempting
to assume that all single link failures are isomorphic, by symmetry.
But this is not the case, because isomorphism must also take into
account the trunks to which external links belong. For example, the
failure pattern in Figure 7 is not isomorphic to one between the 3rd
L1 switch and the 2nd L2 switch. Our canonicalization algorithm
(§A.5), takes these dependencies into account.

With this algorithm, suppose we wish to determine the effective
capacity for a failure pattern G: we first compute ¢ (G), then use
the pre-computed effective capacity for ¢ (G). We now discuss how
to compute effective capacity.

3.4 Effective Capacity

Given a trunk set, 7" is the set of all possible traffic matrices for
that trunk set. By design, a WAN router (in the absence of failure)
is non-blocking for all T € 7. One way to define effective capacity
is to enumerate the set of traffic matrices that the WAN router can
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support for each failure pattern. This is computationally challeng-
ing, and also complicates traffic engineering algorithms that must
constrain their path computations to match these traffic matrices.
For this reason, we use a simpler definition of effective capacity.
Consider the set of all traffic matrices 07 : every traffic matrix T € 7~
is scaled element-wise by a scaling factor 6 € [0, 1]. We say that
the effective capacity of the WAN router is the largest 6 such that
the router is non-blocking for every matrix in 87". Defining effective
capacity this way allows us to keep the TE algorithm unchanged; we
can simply scale the capacity of each trunk incident on the WAN
router by 6 and run the TE algorithm to generate the paths.

Computing Effective Capacity. We obtain 6 by solving an over-
loaded multicommodity flow problem [3, 8]. However, in formulat-
ing this, we need to be consistent with current practice in WANSs,
which splits traffic evenly across all links in a trunk (§2). Thus, the
formulation must constrain the problem to ensure uniform splitting
of traffic both on incoming traffic and on outgoing traffic. Equally
important, we must find the effective capacity across all possible
traffic matrices and all possible failure patterns. The input to the
formulation includes a trunk set { M }, a trunk configuration {wg },
a traffic set 7, and a set of link-failure patterns 7.

The output is the effective capacity 6, defined using a min-max
optimization objective:
O(F,T) =

min min max 6 where
FeFTeT 0eO(F.T)

Za€£1 r;]b = Za€£1 rllyja Vb E La.(1,)) € LS
Yber, r;ja +0tijwai/Mi = Yper, r;jb +0tijwaj/M;
Yae L1,(i,j) € K?
0: Tjener <Il(ab) ¢ Fl
V(a,b) € L1 x LU Ly x Ly
o) e Ry Vae L1,be Ly (i )) € K?
6 ¢[0.1]

(6)

This formulation finds the smallest 8 across every pair of traffic
matrix and failure pattern. For each pair, it computes the largest
0 satisfying the constraints in ©(F, T). The first two constraints
ensure flow conservation at L2 switches and L1 switches. The sec-
ond one also imposes uniform splitting of ingress and egress traffic
on each trunk. The third describes the link capacity under a given
failure scenario, where I [-] is an indicator function. The last two
constrain the range of decision variables.

As in §2, this formulation is also intractable because the traffic
matrix set 7 is infinite. Here too, we can leverage the fact 7~ forms
a convex polytope, and use the extreme traffic matrices in this
polytope to compute effective capacity. We prove this in §A.6.

It follows then that we can find the effective capacity by con-
sidering every pair of (a) canonical failure pattern F € ¥ and (b)
extreme traffic matrix T € &. For each such pair, we solve the linear
program maxgeg(F,T) 0. Using the canonical failure patterns and
the extreme traffic matrices reduces the complexity of the optimiza-
tion significantly. Furthermore, we can parallelize the computation
of effective capacity for each canonical pattern and each extreme
traffic matrix, so this computation scales well. We defer the discus-
sion of L1 switch failures and arbitrary combinations of failures to
§A.7 and §A.8 respectively.
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Figure 8: WCMP routing uses a multipath table. In today’s
switches, these tables have limited sizes.

4 COMPACT FORWARDING TABLES

In this section, we describe how we derive compact forwarding
tables to minimize upflow in the presence of failures.

4.1 Background

As described in §1, WAN routers today use ECMP [20] to forward
traffic: each L1 switch splits incoming traffic evenly across all links
to L2 switches. However, our approach may require an uneven
traffic split because, at an L1 switch, some fraction of incoming
traffic may be subject to early forwarding, while the rest of the
traffic needs to traverse L2 switches.

Prior work has described a weighted version of ECMP, called
WCMP [40], which assigns weights in proportion to the desired
traffic split ratio. Today’s switches implement WCMP using a mul-
tipath table (Figure 8): they assign each split entries in this table
in proportion to its weight. For example, if tunnel A should split
traffic across tunnels B and C as 3 : 2, the multipath table will have
5 entries as shown. The switch hardware will evenly split the traffic
across these 5 entries, achieving the desired 3 : 2 traffic split.

Unfortunately, modern switches have limited multipath table
entries, and arbitrary weight ratios can exceed table capacity. For
example, a weight ratio of two relatively prime numbers 233 : 767
requires 1000 entries.

4.2 Goal and Challenges

Motivated by this, we design compact forwarding tables by minimiz-
ing the number of entries needed for multipath tables for a given
trunk configuration, a failure pattern, and effective capacity.

Our design must address two challenges. First, it must preserve
early forwarding opportunities in order to minimize upflow. (One
way to compact the forwarding table is to adjust weights at the cost
of increased upflow, but this would negate the benefits of computing
the minimal-upflow wiring in §2). Second, the resulting forwarding
table must ensure that the WAN router remains non-blocking across
all traffic matrices; computing and modifying WCMP weights in
response to traffic matrix changes is infeasible both computationally
and operationally since traffic matrices change quickly over time.

4.3 Compacting Forwarding Table

Input and Output. The input to our algorithm is a trunk wiring
configuration {w} (from §2), a failure pattern F and effective ca-
pacity (from §3). The output is a set of integer WCMP [40] weights
that ensures non-blocking behavior under any traffic matrix for
that failure pattern and uses the fewest multipath entries.

Decoupling Traffic Matrices from WCMP Weight Calcula-
tions. Conceptually, it seems difficult to compute WCMP weights
that would ensure non-blocking behavior across all traffic matrices.
However, given a trunk configuration {w}, the proportion of traffic

SIGCOMM ’19, August 19-23, 2019, Beijing, China

sent from an L1 switch to an L2 switch, or vice versa, for a given
pair of trunks, is independent of the traffic matrix. To understand
why, consider the following two quantities defined for traffic from
trunk i to trunk j:

ud (w,T) = tij [wsi/M; = wsj/M;], = tiji]

d;j(w, T) = tij [Wsj/Mj - Wsi/Mi]+ = t,»joAl;].
The first quantity is the upflow volume from switch s, for a given
traffic matrix T and a given wiring {w}: i.e,, it measures the total
volume of traffic at switch s sent up to L2 switches. The second
quantity is the downflow volume at s: the total volume at s received
from L2 switches forwarded on a trunk j at switch s.

Notice that both of these quantities have two components: a
traffic matrix component t;; and a (respectively) upflow fraction i
or a downflow fraction oAl;] Our key insight is that WCMP weight
calculations can be designed independent of traffic matrix by basing
the weight calculations on upflow and downflow fractions. (As an
aside, a TE algorithm does not compute a traffic matrix but routes
tunnels (or tunnel groups [25]) on trunks. Thus, trunk i might
carry traffic for multiple tunnels. For some tunnels, traffic will exit
the WAN router using trunk j. We have abstracted this detail by
describing the total volume of such traffic using the term t;).
Minimizing Multipath Table Entries. To minimize multipath
table entries we observe that, at a given switch s, for traffic between
trunks i and j, if the upflow fraction is non-zero, there cannot be any
downflow. This is by design: if there is upflow, it means that all the
links of trunk j at s are used for early forwarding, so there is no
capacity left for traffic from other switches to exit on trunk j at s.

Flow Counts. Thus, at each switch we can define a quantity
called the flow count vy as follows:

B ﬁ;}/a,’j ,ﬂéj>0
ij _ ) ij ~ij . 2
of =3 d)faij ,d) >0 Vs € L1, (i, j) € K*.
0 , otherwise

which is either the upflow fraction or the downflow fraction de-
pending on the trunk wiring. For a reason described below, we scale
these fractions by the fractional greatest common divisor (FGCD)
ajj of each traffic pair (i, j) across L1 switches, so that all 0y values
are integers, hence the name flow count.

An Example. Figure 9 illustrates this idea for a trunk pair (C, A)
and two different values of traffic between these trunks tc 4. In the
example on the left, the incoming traffic on the rightmost L1 switch
is 1 unit, and the switch forwards 3/4ths to the L2 layers (early
forwarding the rest), which is evenly distributed across the other
three L1 switches. In the example on the right, the incoming traffic
is half that. Despite this, the upflow/downflow fractions and the
flow counts are the same in all cases.

Now, suppose at switch s the flow count for trunk pair (i, j)
corresponds to an upflow. Consider two other switches s; and sy
have (downward) flow counts. To compute the WCMP weights
across the network, we solve an optimization that determines how
to route these (upflow) flow counts from L1 switches (e.g., s) to L2
switches, and subsequently from L2 switches to the corresponding
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Figure 9: Fraction of different volumes is the same and is con-
verted to flow count by FGCD.
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Figure 10: Compact routing does not assign unnecessary weights
to multiple ports.

L1 switches (e.g., s1 and s3) which have “available” downward flow
counts.

The key intuition for why our approach compacts routing tables
rests on the observation that, when “matching” the upflow flow
counts to the downflow flow counts, we can avoid splitting the
traffic unless not doing so would reduce the effective capacity. Fig-
ure 10 illustrates this and shows which switch ports have associated
WCMP weights for forwarding traffic from B to A. Without our
approach (left), the second L1 switch splits its traffic (i.e., divides
its upflow) on both internal ports. This assignment uses 2 entries
in the multipath table. Instead, the compact routing (right) realizes
that this multiple-interface assignment is unnecessary and only
uses the port connected to the first L2 switch, resulting in fewer
WCMP entries.

The Optimization Objective. Thus, at a high-level, our opti-
mization objective is to match the upflow and downflow counts,
subject to the effective capacity constraint. To formalize this, let

ij
*ba .
a for trunk pair (i, j). Let’s define X;J as the sum of these values

represent the total flow count from L2 switch b to L1 switch

across all L1 switches a. We make two observations. First, that Xll;j
is proportional to the number of multipath table entries at L2 switch
b for trunk pair (i, j). To see why, consider a trunk pair (i, j) whose
X, 1/ yvalue is 10. Now, assuming that switch b forwards these 10 flow

counts to L1 switches, any split with integer weights of these X 1
flow counts can at most be 10. Second, we observe that L2 switches
will need more WCMP entries in our approach than L1 switches for
internal links (overall, L1 switches need more entries because they
need to handle egress links as well, §5.4). An L1 switch may not see
traffic for all trunk pairs (i, j), but an L2 switch may see traffic for
all trunk pairs (i, j) with non-zero upflow (because, in general, an
L1 switch must distribute the upflow across L2 switches to ensure
the effective capacity constraint).

These observations motivate our optimization objective: to find
flow count assignments x;Ja and x”b which minimize maximum
total flow count at an L2 switch, across all possible traffic matrices,
for a given failure pattern. We present the optimization formulation
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in §A.9. In §A.9, we also discuss an important detail: computing
WCMP weights for egress links in L1 switches (our formulation
focuses on weight assignments for internal links).

Scaling. To this formulation, we apply two scaling techniques
discussed in previous sections. First, we replace every occurrence
of the infinite traffic matrix set 7~ with the finite extreme traffic
matrix set &, resulting in an MILP problem solvable by an off-the-
shelf solver. Second, we run the optimization only for canonical
failure patterns.

Improved Scaling with an Approximate Solution. Even so, our
formulation does not scale well to 512-port routers. To address
this, we use the same approximation technique as in §2: instead
of iterating over all extreme traffic matrices, we evaluate for one
matrix whose elements are the element-wise maximum across all
extreme matrices in &.

5 EVALUATION

In this section, we compare the resilience of our approach to other
approaches both for 128 and 512-port switches, explore the efficacy
of our routing table compaction, and quantify the benefits of our

techniques to scale the computations?.

5.1 Methodology

Goal. We compare our approach against a baseline wiring scheme
that sequentially assigns external ports to each trunk one by one.
For example, in a 128-port WAN router with 16 L1 switches each
with 8 egress ports, a trunk set (8,32, 32,56) would be assigned
as follows: the first trunk connects to all the egress ports on the
leftmost L1 switch, the next trunk connects to egress ports in the
next 4 L1 switches, and so on. For this baseline wiring, we evaluate
both ECMP (which splits traffic from L1 to L2 switches evenly) and
WCMP (which weights the traffic split using the algorithm in §4).
We also compare against a random wiring that randomly assigns
external ports to trunks. For this strategy as well, we evaluate ECMP
and WCMP based routing. Overall, we explore a space defined by
two dimensions: a routing strategy dimension consisting of two
alternatives (ECMP and WCMP), and a wiring dimension with three
alternatives (our approach, baseline wiring, and random wiring).

Metrics and Methodology. To understand the efficacy of our ap-
proach, we use three metrics: upflow (§2), effective capacity (§3),
and table size (§4). We also quantify the benefits of our optimiza-
tions: finding extreme traffic matrices, the upflow approximation,
failure pattern canonicalization, and routing approximation. Our
evaluations use two sizes of WAN routers. In a 128-port WAN router,
each switch has 16 ports, and there are 16 L1 and 8 L2 switches.
For this router, we evaluate all possible trunk sets with four trunks
where the number of links in each trunk is divisible by 8. There are
34 such trunk sets, shown on the x-axis in Figure 11. In a 512-port
WAN router, each switch has 32 ports, and there are 32 L1 switches
and 16 L2 switches. For this router, we evaluate all possible trunk

LOur code is available at https://github.com/USC-NSL/Highly- Available- WAN-Router.
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Figure 11: Upflow in a 128-port router with 4 trunks.

sets with 5 trunks (there are 480 such sets), where the number of
links in each trunk is divisible by 16.

Implementation. Our experiments use the cdd [16] library to gen-
erate the extreme traffic set. We use Gurobi [28] to solve all LP and
MILP problems, and Open MPI [33] to parallelize our computations.

5.2 Resilience: 128-port WAN Router

Figure 12 (left) quantifies resilience by showing the effective capac-
ity for our approach over different trunk sets, under link failure
and L2-switch failure (§3) and under L1-switch failure (§A.7).

Upflow. To understand the results Figure 12, it is important to first
understand the efficacy of minimal-upflow trunk wiring. Figure 11
shows the upflow across all the trunk sets in a 128-port router.
We use Equation 5 to compute upflow for our approach, random
wiring, and baseline wiring. Baseline wiring does not employ early
forwarding, but random wiring does. Our optimal wiring approach
leads to the lowest upflow rate in all scenarios because it spreads
links from the same trunk across L1 switches and maximizes early
routing opportunities to minimize upflow. Trunk sets where each
trunk has a multiple-of-16 links have no upflow, a consequence
of Theorem A.2. By comparison, baseline wiring has an upflow
that is sometimes 10X higher. With baseline wiring, the upflow can
vary with trunk set. Some trunk sets have more constrained traffic
matrices than others: for example, in the trunk set (8, 8, 8, 104) the
largest trunk can send at most 24 (normalized) units of traffic even
though the trunk capacity is 104. Finally, random wiring yields
upflow (averaged over 100 random wirings for each trunk set) that
is 2-3X worse than optimal.

Link Failures. The upper left plot of Figure 12 plots the resilience
of trunks across link failures. The resilience varies by trunk set,
but instead of plotting resilience across all trunk sets, we group
them into 4 classes by their upflow: these classes demonstrate
qualitatively different behaviors.

Our approach is able to completely mask up to six link concurrent
link failures across all trunk sets, and the effective capacity only
drops below one after the 7th failure. This is because the maximum
upflow across all trunk sets, in Figure 11, is well below 32. In a
128-port WAN router, there are 16 L1 switches and 8 internal links
between a pair of L1 and L2 switches. Each switch has at most
2 units of upflow (since the total upflow is less than 32), which
requires 2 links to carry the upflow (per L1 switch), so the router
can tolerate up to 6 failures.

There are 4 classes with respect to link failures. Trunk sets with
zero upflow always have an effective capacity 1 under any link
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Figure 12: Minimal-upflow wiring (left) vs. Baseline wiring with
WCMP (right).
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Figure 13: Baseline wiring with ECMP routing.

failure. Any trunk set with upflow in (0, 16] starts to degrade after
7 link failures. Similarly, any trunk set with upflow in (16, 32] starts
to degrade after 6 link failures. These trunk sets differ slightly in
the drop in effective capacity resulting from the 7t failure because
of the way the trunk sets are configured. Finally, every trunk set
with non-zero upflow has effective capacity 0 under 8 failures: no
128-port WAN router can ensure non-blocking behavior under the
worst-case failure pattern with 8 concurrent link failures (which
occurs when all uplinks on an L1 switch fail).

By comparison, baseline wiring with WCMP cannot mask a single
failure (top right figure in Figure 12). The effective capacity in this
case is independent of the trunk set. The WAN router capacity
degrades gracefully under failure: every link failure drops capacity
by 1/8". Baseline wiring with ECMP performs worse than baseline
wiring with WCMP. Table 1 shows the resilience of baseline wiring
with ECMP for up to four failures: effective capacity drops by 50%
with a single failure, and by nearly 3/ 4™ with 4 failures. While
it might be tempting to conclude that routers should implement
WCMP to increase failure resilience, we note that an alternative
strategy which treats each link failure as the failure of the corre-
sponding L2 switch has the same resilience as baseline wiring with
WCMP, so there is really no incentive to deploy WCMP for link
failure resilience.
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L2 Switch Failures. Resilience to L2-switch failures (center left of
Figure 12) is identical to that for link failures. An L2 failure removes
1 link from each L1 switch, so our upflow-based categorization still
applies. Here too, there are four classes categorized by the value of
upflow, and baseline wiring with WCMP (middle right of Figure 12)
and ECMP (Figure 13) provide no masking and have identical behav-
ior: with each L2 failure, capacity drops by 1/ 8th. Random wiring
with WCMP (Figure 14), is more resilient than baseline wiring, but
has lower effective capacity than minimal-upflow wiring across
all failure configurations. For example, minimum upflow wiring
ensures full effective capacity with 6 concurrent failures when total
upflow is 32. However, random wiring, for the same setting only
has an effective capacity of 0.3. The effective capacity of random
wiring with link failure is identical to L2 switch failure, so we have
omitted a description of the former.

L1 Switch Failures. No approach can mask L1 failures, since these
reduce trunk capacity in addition to internal capacity. However, our
approach degrades much more gracefully than competing approaches,
but the behavior depends on the trunk set configuration. Our 34
trunk sets fall into four classes (lower left of Figure 12) with quali-
tatively different behavior. These sets depend on two factors: the
size of the smallest trunk in the trunk set (either 8, or larger), and
whether the minimal-upflow wiring (§2) wires the trunks uniformly
across the L1 switches or not. Non-uniform wiring introduces a
little asymmetry with a slightly different resilience.

When the minimum trunk size is 8, because our approach spreads
the links of these trunks across 8 L1 switches, they can tolerate up to
8 L1 switch failures, with each failure degrading capacity by 1/8%,
as shown by the line “Trunk size = 8”. With non-uniform wiring
with a minimum trunk size of 8, our approach can tolerate up to 7
failures resulting from non-uniform spreading of the wires (only
7 L1 switches connect to the 8-wire trunk). For a similar reason,
trunk sets with a minimum of 16 links in each trunk can tolerate
up to 15 L1 switch failures, with capacity drops of around 1/16'! at
each step (there are slight variations resulting from non-uniformity
described earlier).

By contrast, baseline wiring with ECMP (Figure 13) or WCMP
(bottom right of Figure 12) can only tolerate up to 4 L1 switch fail-
ures, and, for some trunk configurations, may have zero capacity
even with a single L1 switch failure. Finally, random wiring with
WCMP (Figure 14), performs generally worse than minimal-upflow
wiring: the latter generally degrades gracefully, but the capacity
degradation in the former is more dramatic (e.g., for the uniform
wiring case).

Simultaneous L1 and L2 Switch Failures. Our approach can
handle simultaneous failures of links, L1 switches, and L2 switches
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Figure 15: Effective capacity of trunk set (16, 24, 24, 64) under
simultaneous L1 and L2 switch failures.
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(§A.8). To demonstrate this, Figure 15 shows effective capacity
resulting from simultaneous failure of L1 and L2 switches for a
specific trunk set in the L2-category “Upflow in (16, 32)” and L1-
category “Non-uniform, Trunk size > 8”. The effective capacity is a
combination of the results from those categories: for instance, the
dip in effective capacity for the 7th L2 switch failure in Figure 12 is
also visible in this plot.

5.3 Resilience: A 512-port WAN Router

Figure 16 shows the effective capacity of 512-port router trunk sets
under L1 and L2 switch failures. For this router, there are 480 trunk
sets. In computing the effective capacity, we use the approximation
formulation (§2) to compute the minimal-upflow wiring. That we
are able to obtain these results demonstrates the scalability of our
approximation: in §5.5, we quantify the optimality gap introduced
by the approximation. We have also computed effective capacity for
random wiring for a 512-port router. These results are qualitatively
similar to those for the 128-port router, so we omit them for brevity.

L1 Switch Failures. Our trunk sets exhibit three qualitatively dif-
ferent classes of behavior. These classes depend on two factors: the
minimum trunk size in a trunk set, and whether the optimal wiring
spreads a trunk’s links uniformly across L1 switches or not. When
trunks are uniform, degradation is graceful, but, for obvious rea-
sons, when the minimum trunk set size is 16, the trunk set can only
tolerate up to 16 failures. With non-uniform wiring, the degradation
is steeper for the first few failures as a result of asymmetry.

L2 Switch Failures. As with the 128-port case, we observe four
qualitatively different types of behavior with L2 switch failures.
Every trunk set with zero upflow can mask all L2 switch failures.
Every trunk set having upflow in (0, 32] requires one internal link
per L1 switch to carry traffic, so can sustain 15 L2 switch failures.
Every trunk set with 64 units of upflow requires 2 L2 switches
to carry traffic, so the effective capacity becomes 0.5 when 15 L2
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Baseline Random Optimal Optimal
Router ECMP ECMP ECMP WCMP
No failure | No failure | No failure (No, L1, L2)
128 ports 48 186 192 (64, 388, 64)
512 ports 128 640 640 (346, 3310, 346)

Table 2: Maximum number of multipath entries at any switch,
across all trunk sets.

switches fail. For trunk sets with upflow in (32, 64), the effective ca-
pacity is slightly better than the 64-unit upflow case due to slightly
lower upflow.

Link Failures. As with the 128-port router, we find that the re-
silience under link failure is similar to that under L2 switch failures,
so we omit this graph for brevity.

5.4 Compact Routing Tables

We now show that our routing table compaction technique (§4)
results in tables that do not exceed hardware routing table limits. To
do this, we compute, for the two sizes of routers, the largest table
size at any switch, across all trunk sets, for any combination of L1
failures, and (separately) for any combination of L2 failures that
are completely masked. For the 512-port router, we compute the
tables using the scaling approximation (§4).

Table 2 shows the table sizes. For calibration, the hardware limit
on the multipath table in modern switches is 65K [32]. Our approach
(last column) uses at most 388 and 64 entries for a 128-port router
and at most 3310 and 346 entries for a 512-port router under L1 and
L2 failures. We also see that the routing table sizes are relatively
insensitive to L2 failures because the optimization assigns WCMP
weights sparsely to minimize table sizes: every L1 switch sends
traffic over a few links to L2 switches, and other links that do not
carry traffic are not assigned WCMP weights. So, when a link with
non-zero weight fails, our algorithm moves, to another active link,
the weights assigned to that link without increasing table sizes.

ECMP with baseline wiring in the absence of failures (first col-
umn) uses fewer entries, because links of the same trunk connect
to the same L1 switch, which permits grouping of entries (an L2
switch only needs 1 entry per cross-trunk pair and per L1 switch).
The grouping is less effective for arbitrary wiring (two middle
columns). Random wiring requires 186 and 640 entries, while the
minimal-upflow wiring requires 192 and 640 entries for 128-port
and 512-port routers. Our routing optimization compacts the en-
tries (in the last two columns) from 192 to 64 for a 128-port router
and from 640 to 346 for a 512-port router in the absence of failures
by assigning weights sparingly.

5.5 Impact of Optimizations

The Importance of Routing Optimizations. Minimal-upflow
wiring, together with early forwarding, alone does not provide high
resilience; our WCMP routing is also necessary. To demonstrate this,
we conduct an experiment on a 128-port router with no failures. For
minimal-upflow wiring, we configure routing tables to use early
forwarding when possible, but use ECMP routing to split traffic
equally to L2 switches for upflow traffic and egress ports for early
forwarding traffic. Figure 17 shows the resulting effective capacity
across all trunk sets. Our minimal-upflow wiring together with
compact routing tables achieves an effective capacity of 1 across all
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trunk sets (not shown in the figure). However, the simpler routing
technique that uses ECMP is able to achieve full capacity for only
5 of the trunk sets, whose upflow is zero, with minimal upflow
wiring, and much lower effective capacity with random wiring.

Canonicalization. Canonicalizing failure patterns often reduces
the number of link failures by orders of magnitude. Figure 18 shows
the average numbers of canonical forms across our 34 trunk sets
under different numbers of link failures (y-axis is in log scale). With
7 failures, the reduction is a 5 order of magnitude, from 10 to 10°.

Upflow Approximation. For the 128-port router, our upflow ap-
proximation (§2) matches the optimal upflow computed using the
formulation of Equation 5 for all but 4 of the trunk sets (Figure 11).
For those 4 cases, the differences are extremely small. To demon-
strate that our approximation helps compute upflow with larger
WAN routers and trunk sets, Figure 19 shows the upflow across all 5-
trunk trunk sets (480 such combinations) for a 512-port WAN router.
The resulting upflow is 20-30x lower than the baseline wiring.

Finally, our approximation noticeably speeds up upflow computa-
tion (Table 3). For The 4-trunk cases, the formulation of Equation 5
can take up to 38 min to find the minimal upflow using a multi-core
desktop (20 cores 2 Intel Xeon CPU E5-2650 @ 2.30GHz), while
our approximation can compute this in a fraction of second. It can
also compute upflow for some 5 trunk configurations when the
formulation of Equation 5 does not even complete.

Large providers may have resources to compute minimal-upflow
wiring using Equation 5. When using a cluster of say 500 multicore
machines, the computation for 4-trunk trunk sets can complete
in 10s of minutes because the number of extreme traffic matrices
range from 200 to about a 1000 (Figure 20).
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Trunk Set Optimal | Approximation
(8, 8, 56, 56) 9 min. 0.21 sec.
(24, 24, 32, 48) 38 min. 0.16 sec.
(96, 96, 96, 112, 112) - 0.88 sec.
(96, 96, 96, 96, 128) - 0.63 sec.

Table 3: Micro benchmark of wiring approaches.
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Computing Effective Capacity. Computing effective capacity of
a link failure pattern takes 30 seconds on a single core of a multi-
core machine. This means that the total time largely depends on the
number of failure patterns. We can estimate this time from Figure 18.
For example, finding effective capacities of all combinations of 7
link failures would take about 5.8 hours on a single 24 core machine
in the presence of canonicalization. Without the optimization, it
would take about 66 years.

Computing Routing Tables. Calculating a routing table is also
well within the compute power available to cloud and content
providers. It takes at most 2 minutes for a given trunk wiring and a
2-link failure pattern for a 128-port WAN router, across all possible
trunk sets and 2-link failure combinations.

Routing Approximation. For the 512-port router, we were unable
to find optimal routing tables using our compute cluster. However,
our approximation formulation (§4) completed in a few minutes
for this size of router. Figure 21 shows the optimality gap for our
approximation for a 128-port router. It reports, for each trunk set,
the maximum number of L2 switch failures which preserve full
capacity. We observe that the approximation underestimates this
quantity by at most 2, relative to the optimal.

6 RELATED WORK

Prior work has considered fault tolerance in multi-stage switching
networks [2] (and references therein). This line of work considers
interconnection networks where, unlike our setting, (a) packets
traverse the network in one direction from the first stage and exit
at the last stage so early forwarding opportunities do not exist,
and (b) do not incorporate trunks. Since early forwarding is not
possible, designers over-provision the networks [1, 11, 14, 15, 26,
30, 35, 36], by replicating stages, links, or the entire network. Our
work achieves fault tolerance without over-provisioning.

Our work might apply to FatTrees [4] and F10 [27]. The latter
focuses on limiting the blast radius of failures in datacenters by
carefully striping a Clos; it is complementary to our work that seeks
to improve failure resilience by adapting trunk wiring and routing
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to provide non-blocking behavior in the presence of failures. We do
not know of WAN routers that incorporate other topology designs?
proposed for datacenters, such as FatClique [39], random graphs:
Jellyfish [37], Xpander [38], and server-centric designs: BCube [17],
DCell [18], so our work focuses on Clos-based WAN routers.

Our work draws inspiration from Google’s original B4 net-
work [25] and more recent incarnation [19]. The B4 network
uses various complementary techniques to improve availability
including side-links between WAN routers at a site to increase
resilience. Our work can be directly applied to these WAN routers
to further improve overall resilience.

Prior work [40] formulated a non-linear integer optimization to
minimize over-subscription in asymmetric topologies while fitting
WCMP entries within table limit constraints. Our work consid-
ers a different problem: finding WCMP weights for non-blocking
behavior of a WAN router.

Finally, our formulations and proof techniques draw inspiration
from ideas from robust validation [10], robust optimization [5, 7],
linear programming [8], and convex analysis [6, 9]. Robust valida-
tion [10] approximates solutions of max-min problems in robust
optimization [5, 7]. Instead, our work finds the exact solutions by
leveraging the convex polytope property of traffic matrices.

7 DISCUSSION

External Link Failures. External links can fail in practice. Our
work extends easily to cope with such failure in two different sit-
uations. A total trunk failure, in which every link of a trunk fails,
neither decreases effective capacity nor changes internal routing.
Therefore, our approach applies directly. However, a partial trunk
failure, where some links in a trunk fail, requires recalculation of
effective capacity and routing (§A.10), which can be pre-computed.

Non-Uniform Internal Path Length. Because some incoming
traffic on a trunk can be early forwarded, flows within a trunk may
experience slightly different latencies. However, packets within
a flow do not experience re-ordering because WCMP hashes all
packets in a flow to the same path.

Cell-Based Routing. Some multi-chip routers, such as Star-
dust [41] designed from Broadcom Jericho2 [22] and Ramon [23]
chips, use cell-based routing. In this approach, the router’s ingress
ports divide packets into fixed size cells and spray them uniformly
across the fabric, re-assembling the packet at the egress ports. For
such routers, our optimal wiring can increase effective capacity
(e.g., over random wiring in Figure 17) but, because it is yet unclear
how to do weighted forwarding in these fabrics, it remains an open
question how to compute WCMP-like forwarding tables for them.

8 CONCLUSION

This paper discusses an approach to optimizing trunk wiring and
forwarding weights to increase the resilience of WAN routers in
large content- and cloud-provider networks. Based on the observa-
tion that early forwarding in L2 switches can create excess internal
capacity in the WAN router, enabling it to be more resilient to
internal failures, we formulate an efficient optimization to derive
the minimal-upflow trunk wiring. Then, given this wiring and an

%In general, the topology of a WAN router can be arbitrary, but it must have non-
blocking behavior under some routing scheme.
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arbitrary failure pattern, we devise an efficient optimization to
compute the effective capacity under failure, and finally describe a
technique to compute compact forwarding tables that can ensure
non-blocking behavior subject to this effective capacity. Our evalu-
ations show that our approach can greatly increase the resilience
of WAN routers without sacrificing a precious resource in today’s
switches, routing tables.
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A APPENDICES

Appendices are supporting material that has not been peer reviewed.

A.1 Using Extreme Matrices for
Minimal-Upflow Wiring
THEOREM A.1. The following equation holds:
min maxU(w,T) = min maxU(w,T).
weWTeT weW Te&E
Proor. Given a fixed wiring w, we first show that
maxpe7 U(w,T) = maxregU(w,T). From the definitions
of upflow in Equation 1 and Equation 2 with a constant w,
the optimization maxrcyU(w,T) is a linear program with a
compact (closed and bounded) feasible set, and optimal solutions
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exist at the boundary, including extreme points, of the traffic
set 7. Therefore, some of these optimal solutions are extreme
points in the extreme traffic set &, a well-known result in Linear
programming [6, 8]. This is equivalent to solving maxreg U(w, T),
which directly gives an optimal extreme point. Finally, since
maxteq U(w,T) = maxyeg U(w, T) for any given w, it follows
that min,,cqy maxreqgU(w,T) = min,,cqy maxreg U(w,T),
which proves the theorem. O

A.2 Symmetric Trunk Sets

THEOREM A.2. For a symmetric trunk set with {ay }rcq and ax
is some positive integer, the trunk wiring that uniformly distributes
links of each trunk over L1 switches, such that w:k = ay for every
s € L1 and k € K, optimally solves problem in Equation 3. Further,
the total upflow is always 0.

Proor. Given a symmetric scenario with {ay }rcx, the upflow
rate in Equation 1 under any traffic matrix T is
aitij 3 ajtij _
ai|lLa|  ajlLal ],
Therefore, the total upflow is 0, the maximum total upflow is also 0,
i.e., maxpeq U(w*, T) = 0, and the wiring is optimal, since every
total upflow is at least 0. O

u;'j(w*,T) = 0.

A.3 Number of Auxiliary Constraints
LEmMMA A.3. The number of auxiliary constraints for formulation
in Equation 5 increases like O (|.L1| ZKZ).

Proor. Every upflow rate in Equation 1 requires an auxiliary
constraint for the positive projection. From the total upflow in Equa-
tion 2, every extreme traffic matrix requires O(K? | £1|) auxiliary
constraints.

The number of extreme traffic matrices can increase exponen-
tially in the square of trunks as |§| = O (ZKZ). This bound is a
consequence of [31] that the number of extreme points is upper

bounded by O ((p—tngJ—l))’ where d = K? — K is the dimensions
of the traffic matrix, and p = d + 2K is the number of constraints

from positivity and Equation 4. It follows that
K?%/2+3K/2 :
1€l <0 / / so(sz).
K2/2-K/2
Note that the last inequality uses an approximation of binomial
coefficients in [13]. Therefore, the number of auxiliary constraints
increases like O (KZ | L] 2K2) =0 (|L1| ZKZ), O

A.4 Approximating Minimal-Upflow Wiring

min U(w, 1) where
weW
T= [Z'ij]a f,’j = r]{]é:lé(tij V(i j) € Vi

. M | [ Mg
W =W — |, | —=1}.,V keXK
“{Wskeﬂuqu “m” selike }
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Figure 22: Steps in the canonical-form resolution.

A.5 Polynomial Time Canonicalization

Algorithm 1 outputs a canonical form of a given failure pattern.
Figure 22 shows an example of the steps performed by the algorithm:
recall that a link in this graph corresponds to a failed link in a WAN
router. Intuitively, the algorithm (Algorithm 1) leverages the fact
that the topology is bi-partite and re-orders nodes and links in a
deterministic fashion to arrive at a canonical form.

In the first step (Lines 1-3), the algorithm re-orders L1 switches.
In Line 1, it groups L1 switches by similarity of trunk link distribu-
tion, e.g., switches a; and ay belong to a group because they have
links to the same two trunks (A and C) and switches a3 and a4
belong to the (B, C) group in Figure 22. In creating groups, only the
number of links to each trunk matters. So, if one 4-port L1 switch
has links in this order (A, A, B, C) and another in this order (A,
B, C, A), they belong to the same group, but another switch with
links (A, B, B, C) does not belong to that group. In Lines 2 and
3, the algorithm sorts nodes within a group in descending order
according to the number of failed links (or cardinality) associated
with the node. The sort moves nodes with more failed links to the
left within each group.

In the next step (Lines 4 and 5), the algorithm attempts to re-
order L2 switches in a canonical order. To do this, it defines a label
for each L2 switch. This label captures the link wiring from that
switch, while preserving group structure. The label is an ordered
list of tuples, where each tuple represents a group and enumerates
the cardinality of each L1 switch in the group in descending order.
For example, consider the L2 switch b3 in Figure 23. Its label is
((0,0,0,0), (2,1,0,0)) because it has no links to the first group, but
has links to a5 and ag. The first two elements in the second tuple
are 2 and 1, which are the cardinality of as and ag respectively. Line
4 assigns these labels, and Line 5 re-orders L2 switches lexicograph-
ically in descending order of labels. This is shown in the 3rd step
in Figure 22, which moves b to the left.

The third step of the algorithm (Lines 6-10) attempts to re-
arrange L1 switches within the same group and with the same
cardinality by the rank of the L2 switch they are connected to. To
achieve this, we “back propagate” the tuples from the L2 switches
to the corresponding groups (Line 9), then, among all switches
with the same cardinality (Line 7), we re-order them in descending
lexicographic order (Line 10). This results in the fourth graph in
the first row of Figure 22. This is the canonical form of the original
failure graph.

The second row of Figure 22 shows another failure pattern that
reduces to the same canonical form (this pattern does not require
the third step).

SIGCOMM ’19, August 19-23, 2019, Beijing, China

Algorithm 1: Canonical-form resolution

Input :Graph F
Output: Canonical form ¢ (F)
1 Group L1 nodes by their trunk wiring.
2 for each group of L1 nodes do
3 L Sort nodes in descending order by their cardinality
4 Label each L2 node by a tuple of L1 tuples, where each L1
tuple is an L1 group of sorted (in descending order)
L1-node cardinalities associated with the L2 node.
5 Sort L2 nodes in descending order by their label.

o

for each group of L1 nodes do
Group L1 nodes by their cardinality to subgroups.

=

o

for each subgroup of L1 nodes do
9 Label each node by a tuple of L2 node indices.
Sort nodes in descending order by their label.

(1,0,0,0),(0,0,0,0))  ((0,0,0,0),(2,1,0,0))
((1,0,0,0),(0,0,0,0))  ((0,0,0,0),(2,1,0,0))

PP

(=) (- ()
1 1 0 0 2 1 1 0
Figure 23: L2 label and L1 node’s cardinality. Each L1 tuple in an
L2 tuple is the sorted cardinalities of L1 nodes that the L2 node
connects to. Unconnected L1 node corresponds to 0 in an L1 tu-
ple.

A.6 Using Extreme Traffic Matrices for
Effective Capacity
THEOREM A.4. The following equality holds:

minmin max 6 =minmin max 6
FeFTeT 0eO(F,T) FeFTeE OecO(F,T)

Proor. Given a fixed F, we first prove that

min max 6 =min max 0. (7)

TeT 0€O(F,T) Te& 0eO(F.T)
Let 0" = maxgeg(F,7+) 0 be an optimal solution of the left hand side
attained at traffic matrix T* € 7. We will show by contradiction
that at least one extreme traffic T € & leads to this ™. Specifically,
0" = minycg maxgeg(r,r) 0- Suppose there is no such extreme
point. Let 6> 06*andf = minreg maxgeg(r,r) 0 be the minimum
achieved by the extreme traffic set &. Caratheodory’s theorem [6]
implies there exists |K|? + 1 extreme points {Ty} in the extreme
traffic set & such that

%2 +1 %2 |+1
T* = Z ATy, Z =1 Acel01] Vx.
x=1 x=1

Then, it is possible to construct # from a convex combination
of {ry} derived from 0, {T} and {Ax} such that all constraints in
Equation 6 are satisfied by 0,# and T*. This means the feasible set
O(F, T*) contains 0, and we have maxgeg(r,1+) 0 = 0" 2 0, which
is a contradiction. Thus, there exists an extreme traffic T, € & that
0" = maxgeg(F,1,) 0> and the equality in Equation 7 holds. Since
the equality holds for any F, it also holds at the minimum. O
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Figure 24: An L1-switch failure can reduce capacity on some
trunks.

A.7 Failure of L1 switches

Unlike internal link or L2-switch failures, an L1-switch failure not
only disables internal links, but also reduces capacity of trunks
whose links connect to the switch, as shown in Figure 24. As a
result, computing the effective capacity uses a slightly different
formulation from the L2-switch case, but our definition of effective
capacity is the same: we define the effective capacity as the fraction
y by which we scale the capacity of each trunk incident on a WAN
router, such that the router is non-blocking under any set of traffic
matrices with the reduced-capacity trunks.

Specifically, let H be the set of L1-switch failures, and My (H) be
the number of trunk k’s active links under a failure H for H € H.
The effective capacity y is obtained by solving:

min min max where
HeHTeT yel'(H, T)
~ . vZitip <Mj(H) VjeX
I'(H,T) = {y efo1]: yYtii < Mi(H) \Viek

As in the previous section, we leverage the fact that the set of all
traffic matrices is a convex polytope, and only consider the (finite)
set of extreme traffic matrices & (Theorem A.5). Algorithm 2 depicts
our algorithm, which iterates over every combination of failure
pattern and extreme traffic matrix. Note that, in Algorithm 2, the
number of operational trunk links {M ()} can be derived from
{My} and {wg}.

THEOREM A.5. The following equality holds:

min min max = min min max
HeHTeT yel' (H,T) HeHTeEyel'(HT)

Proor. The proof is similar to Theorem A.4 and is omitted. O

Algorithm 2: Finding effective capacity y

Input :{Mp}, {we}, & H
Output:Effective capacity y

1y«1

2 for (H,T) € Hx & do

3 fori e K do

4 if Zje?( tij > M;(H) then
M; (H) ]

2 jex Lij

6 if ZjE’K tji > MI(H) then

M (H)
: y e miny. g%

5 Yy < min [y,

A.8 Effective Capacity Under Arbitrary
Combinations of Failures

To compute the effective capacity under an arbitrary combination of
internal link and L1/L2 switch failures, let £1(H) be the remaining

Sucha Supittayapornpong, Barath Raghavan, and Ramesh Govindan

L1 switches under L1-switch failure pattern H, i.e., £1(H) = L1\H.
The effective capacity under given failure sets ¥ and H is a solution
of the following optimization:

min minmin max « where Q(F,H,T)=

HeHFeFTeT weQ(F,HT)
ZaEJ:l(H) r;]a Vb € .Eg (l ]) € 7(2

= e, Moy + Olij 31 (1 M; (H)
,Va € L1(H), (z j) e K2

ijo_

ZaE£1(I'iI]) Tab =
_Wai

Lbe s T + OLij 77,00 =

Nijene i, <1l(ab) ¢ F]

@ Y(a,b) € (L1(H) x L2) U (L2 X L1(H))
o Yiex tij < Mj(H) VieXK
")ZJE‘KtUSMz(H) VieK

i rU eR, Nae L1(H),be £, (i, j) e K?

ab’

[0 1]
The set Q(F, H, T) is similar the set ©(F, T) except that failed L1
switches in H are not considered in Q(F, H, T). This reflects in the
usage of £1(H) and My (H).

As before, the convex polytope property of the traffic set 7~ can
be used to simplify the optimization to

min min min max .
HeHFeFTeE weQ(F,HT)

THEOREM A.6. The following equality holds:

= min min min max
HeH FeFTeE weQ(H,F,T)

min min min max
HeHFeFTeT weQ(H,F,T)

ProoF. The proof is similar to Theorem A.4 and is omitted. O

A9 Compact Forwarding Table Formulation

The Formulation. Our compact forwarding table optimization
seeks to find flow count assignments xb and x“ b such that the
maximum total flow count assignment at an L2 switch is minimized:

ij
Z *ba

acly (i,j)ek?

min max where ®(F,7) =

() €@(F,T) be L,

Zae[‘/ x Zagil/ X j Vb€ Lo, (i, j) € K?
ZbELz J _ﬂﬂlajﬂ[ae-[l]] ,Vae.Ll,(i,j) 67(2
YbeL, Xy, = Hog1la € LY Vae £31.(i.)) e K

(o) : iy e OF)ijxg iy < pl[(a.b) & F)

- NV(ab) e L1X Ly, TeT
Sijyexe O(B)tijx, i < pl[(ab) & F]
V(a,b) e L1 x Ly, TeT

V(a,b) € L1X L2, (i, j) € K?

In the formulation, the first constraint ensures flow count con-
servation at each L2 switch for each trunk pair. We define £ and

I x;Jh, x” € Zy

LY respectively be the set of L1 switches with upflow flow count
and the set of L1 switches with downflow flow counts. The second
and third constraints ensure conservation between flow counts at
a switch having upflow and downflow respectively. In some cases,
these flow counts may cause a link to exceed its capacity, in which
case we scale the flow counts by a factor p. The fourth and fifth
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Figure 25: WCMP weights are derived at an L1 switch and an L2
switch.

constraints limit the flow counts on each internal link by link ca-
pacity. In this step, we also scale the traffic matrix by the effective
capacity 0(F) for the given failure pattern, as computed in §3. The
last constraint defines the domain of the variables.
Computing WCMP Weights for Egress Links in L1 Switches.
As discussed above, the assigned flow counts {xllja } from the com-
pact routing optimization can be directly used as WCMP weights in
L2 switches. However, at an L1 switch, {xlajb} (also an output of the
optimization) only assigns flow counts to links to L2 switches. L1
switches also have egress links and these must be considered when
assigning weights at L1 switches. The rate of egress traffic from trunk
i to trunk j at an L1 switch s is tjjws;j/M;, and each switch port
carries t;j/M;. Then, the egress fraction is 1/M; per switch port.
WCMP weights can be derived from these egress fractions and
the upflow fractions. At an L1 switch s, the FGCD of the fractions per

trunk pair (i, j) is FGCD (I/Mj, {aijx;i Yber, ) WCMP weights are
the fractions divided by that FGCD. This is illustrated in Figure 25

which shows the WCMP weights assigned to the rightmost L1
switch as 2 and 1 for upflows and 1 for early forwarding.

A.10 Partial External Trunk Failure

We can extend our approach to handle partial external trunk fail-
ures, in which one or more links in a trunk can fail. Such a failure
can increase upflow because traffic on the failed links is evenly dis-
tributed over the remaining links of the same trunk. The increased
upflow requires re-calculating (a) traffic matrices, (b) effective ca-
pacity, and (c) routing tables.

Traffic Matrices. When some external links fail, the capacity of
the trunk associated with the failed links decreases, from Mj to,
say, M]é. This change in capacity changes the set of traffic matrices
Equation 4 so we need to re-compute the extreme traffic set for the
new trunk set {MIQ}.

External Link Failure Pattern. An external link failure affects
how traffic flows internally in the router, since there can be no
ingress or egress traffic on the failed link. We assume a given wiring
cannot be rewired, so an external link failure “removes” the failed
links from the wiring and yields a residual wiring that contains only
active links. For example, in Figure 25, if the link connecting trunk
A and the leftmost L1 switch fails, the residual wiring at the switch,
say 1, is (W{A, W{B, w{c) = (0,1,0). Now, for a given minimum-
upflow wiring, each external link failure pattern can induce a new
residual wiring and for each such residual wiring, we would need
to pre-compute effective capacity and routing tables.

To reduce the space of residual wirings, we can canonicalize each
external failure pattern (in much the same way as we canonicalize
internal failures §3.3), so we would only need to consider as many
residual wirings as the number of canonical patterns. Specifically,
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Figure 26: Steps in the canonical-form resolution for external
failure.

given an external failure pattern Q, Algorithm 3 can find a canonical
form ¢’ (Q) of the external failed links. Figure 26 shows an example
of applying this algorithm to the external failure pattern on the left.
The first step labels each L1 node by the number of failed external
links it associated with. For example, the first L1 switch a; has a
failed link from trunk C. So, the algorithm assigns it a label (0, 0, 1).
Steps 2-4 group L1 nodes that have the same wiring and sort the
nodes according to their label in descending order. For example,
ay becomes the leftmost L1 switch in its group {aj, az}. Intuitively,
the algorithm moves failed links to the left within each L1 group.

Algorithm 3: Canonical-form resolution for external fail-
ure

Input :Graph Q

Output: Canonical form ¢’ (Q)

1 Label each L1 node by the numbers of trunk’s failed links.
2 Group L1 nodes by their trunk wiring.

for each group of L1 nodes do

4 L Sort nodes in descending order by their labels.

@

Once canonical forms are available, the residual wiring w’ is

just the original wiring w with failed links in the canonical form
¥’ (Q). Each residual wiring is then used to generate internal failure
patterns (§3.3).
Effective Capacity and Routing. Under external link failure, the
steps above generate a new trunk set {Mlg}, residue wiring w’,
a traffic set 7/, an extreme traffic set &/, and a set of internal
failure patterns #”. They are the inputs to an effective capacity
calculation, which is a modified version of the optimization in §A.8.
Intuitively, the modified version replaces ({My}, w, 7, &, F) with
({Mlé Lw!, 77, &, F'), and it assumes that all internal and external
links of an L1 switch fail if the switch fails. After obtaining the
effective capacity, a compact routing table could be optimized by
computing flow counts and solving the formulation in §A.9 using
the new effective capacity, 77/, &', and ¥”.
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