
Streaming Complexity of SVMs

Alexandr Andoni
Columbia University, New York, NY, USA
andoni@cs.columbia.edu

Collin Burns
Columbia University, New York, NY, USA
collin.burns@columbia.edu

Yi Li
Nanyang Technological University, Singapore, Singapore
yili@ntu.edu.sg

Sepideh Mahabadi
Toyota Technological Institute at Chicago, IL, USA
mahabadi@ttic.edu

David P. Woodru�
Carnegie Mellon University, Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

Abstract

We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
In particular, given a data set (xi, yi) œ Rd◊{≠1, +1}, the objective function is F⁄(◊, b) = ⁄

2 Î(◊, b)Î2
2+

1
n

qn

i=1 max{0, 1≠yi(◊T
xi +b)} and the goal is to find the parameters that (approximately) minimize

this objective. This is a classic supervised learning problem that has drawn lots of attention, including
for developing fast algorithms for solving the problem approximately: i.e., for finding (◊, b) such
that F⁄(◊, b) Æ min(◊Õ,bÕ) F⁄(◊Õ

, b
Õ) + Á.

One of the most widely used algorithms for approximately optimizing the SVM objective
is Stochastic Gradient Descent (SGD), which requires only O(1

⁄Á) random samples, and which
immediately yields a streaming algorithm that uses O(d

⁄Á) space. For related problems, better
streaming algorithms are only known for smooth functions, unlike the SVM objective that we focus
on in this work.

We initiate an investigation of the space complexity for both finding an approximate optimum of
this objective, and for the related “point estimation” problem of sketching the data set to evaluate the
function value F⁄ on any query (◊, b). We show that, for both problems, for dimensions d = 1, 2, one
can obtain streaming algorithms with space polynomially smaller than 1

⁄Á , which is the complexity
of SGD for strongly convex functions like the bias-regularized SVM [12], and which is known to be
tight in general, even for d = 1 [1]. We also prove polynomial lower bounds for both point estimation
and optimization. In particular, for point estimation we obtain a tight bound of �(1/

Ô
Á) for d = 1

and a nearly tight lower bound of Â�(d/Á
2) for d = �(log(1/‘)). Finally, for optimization, we prove a

�(1/
Ô

‘) lower bound for d = �(log(1/‘)), and show similar bounds when d is constant.

2012 ACM Subject Classification Theory of computation æ Randomness, geometry and discrete
structures; Theory of computation æ Streaming, sublinear and near linear time algorithms; Theory
of computation æ Machine learning theory; Theory of computation æ Lower bounds and information
complexity

Keywords and phrases support vector machine, streaming algorithm, space lower bound, sketching
algorithm, point estimation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.50

Category APPROX

Related Version https://arxiv.org/abs/2007.03633

© Alexandr Andoni, Collin Burns, Yi Li, Sepideh Mahabadi, and David P. Woodru�;

licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2020).

Editors: Jaros≥aw Byrka and Raghu Meka; Article No. 50; pp. 50:1–50:22

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

50:2 Streaming Complexity of SVMs

Funding Alexandr Andoni: Supported in part by Simons Foundation (#491119) and NSF (CCF-
1617955, CCF- 1740833).
Yi Li: Supported in part by Singapore Ministry of Education (AcRF) Tier 2 grant MOE2018-T2-1-
013.
David P. Woodru� : Supported by the National Science Foundation under Grant No. CCF-1815840.

1 Introduction

The Support Vector Machine (SVM) optimization problem is a classic supervised learning
problem with a rich and extensive literature. In this work, we consider the SVM problem
in the space-constrained setting. Specifically, we focus on the bias-regularized SVM1. For
n labelled data points (xi, yi) œ Rd ◊ {≠1, +1}, with ÎxiÎ Æ 1, and (◊, b) œ Rd ◊ R the
unknown model parameters, the SVM objective function is defined as:

F⁄(◊, b) := ⁄

2 Î(◊, b)Î2

2
+ 1

n

nÿ

i=1

max{0, 1 ≠ yi(◊T xi + b)}, (1)

where ⁄ is the regularization parameter. The SVM optimization problem is then to minimize
the objective:

(◊ú, bú) := arg min
◊,b

F⁄(◊, b). (2)

This problem is of both theoretical and practical interest, and has received lots of attention
in the machine learning community. One of the main lines of work on SVMs has focused
on trying to find approximately optimal solutions quickly (see, e.g., [12], [3], [11], and the
references therein). Most notably, using a variant of stochastic gradient descent (SGD), one
can compute a solution (◊̂, b̂) which is at most Á away from the optimal F⁄(◊ú, bú) in O(1

⁄Á
)

SGD steps, each using a single randomly sampled data point (xi, yi) [12].
However, in many applications of SVMs, the number of data points is su�ciently large

that even storing all of the data may be prohibitively expensive. In this case, it may be
desirable to store a smaller summary of the data that is alone su�cient for optimizing the
SVM objective within a desired error tolerance.

This goal has been studied for related smooth objective functions, but not for non-smooth
objectives like SVMs. For example, [5] focuses on this problem for the more general setting
of Generalized Linear Models (GLMs), where F is defined as F = 1

n

q
n

i=1
„(yi, ◊T xi) for

an arbitrary function „. This includes the SVM objective. The authors of [5] show that if
„ is well-approximable by a low-degree polynomial, then one can stream through the data
points while keeping a small sketch of the data that is su�cient for minimizing the objective.
However, the space complexity depends exponentially on the degree of the approximating
polynomial, so it is only feasible for relatively smooth functions „.

In this work we study SVMs, the most common non-smooth GLM, and focus on space
complexity in the streaming setting. In addition to optimization, we also focus on the
problem of point estimation: sketching the data points so that, given (◊, b), we can output a
value within Á of F⁄(◊, b). While we use this as an intermediate step for achieving improved
optimization upper bounds in the low-dimensional setting, this problem is also of independent
interest. It occurs, for example, in estimating the GLM posterior distribution: the distribution
of the parameters (◊, b) given the observed data and some prior distribution over (◊, b) [5].

1 In the standard SVM formulation, the bias is not regularized, but the bias-regularized version is common
both in theoretical work and in practice. See, for example, [12].

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:3

1.1 Our Results

Our results are for the two considered problems, and include both upper and lower bounds.
We present the results for the point estimation problem independently. Then we present our
results for optimization, the upper bounds for which rely on our point estimation results.

Point estimation. First, we show that one can obtain a multiplicative (1 + Á)-factor approx-
imation for d = 1 that uses Õ(1/Á2) space. However, we then show that it is not possible to
get a multiplicative approximation algorithm for dimension d > 1 that uses space sub-linear
in n. Given this, we otherwise focus on the space complexity of additive ±Á approximation
streaming algorithms. For d = 1, we obtain space O(1/

Ô
Á), and for d = 2, we obtain

space O(Á≠4/5). We complement our algorithms with a lower bound of �(Á≠(d+1)/(d+3)) for
dimension d, for any sketching algorithm, which goes up to Á≠1 as we increase d. Note that,
for d = 1, our bounds are tight. For d = 2, our lower bound translates to �(Á≠3/5).

We also prove a lower bound of �(d/(Á2 polylog(1/Á))) for d = �(log(1/Á)), which is tight
up to polylog(1/Á) factors. Together with the O(1/⁄Á) upper bound achieved from SGD, this
shows that there is a strict gap between point estimation and optimization. This is also the
case for linear regression in the streaming model: while getting a multiplicative 1 ± Á point
estimation approximation for linear regression requires space �̃(Á≠2) [6], the (multiplicative)
optimization problem requires only �̃(Á≠1) space [4].

Optimization. First, using standard net arguments, we show how to use our point estimation
results to approximately minimize the SVM objective.

I Theorem 1. Suppose there is a streaming algorithm that, after seeing data {(xi, yi)}n

i=1
,

where ÎxiÎ Æ 1, can produce a sketch of size s that, given any (◊, b) such that Î(◊, b)Î Æ

2/⁄,
is able to output F̂ (◊, b) such that |F̂ (◊, b) ≠ F (◊, b)| Æ Á with probability at least 0.9. Then
there is also a streaming algorithm that, under the same input, will output (◊̂, b̂) with
|F⁄(◊̂, b̂) ≠ F⁄(◊ú

⁄
, bú

⁄
)| Æ Á with probability at least 0.9, while using space O(s · d log d/(⁄Á)).

Together with our point estimation results, we immediately obtain streaming algorithms
that, for dimensions one and two, obtain space polynomially smaller than 1

⁄Á
, which is the

complexity of SGD for strongly convex functions like the bias-regularized SVM [12], and
which is tight in general [1].

We also prove space lower bounds for optimization. First, we consider the high-dimensional
case when ⁄ = 10≠4 is a constant:

I Theorem 2. Let ⁄ = 10≠4 and d = O(log n) for n = �(Á≠1/2). Suppose there exists a
sketch such that, given a stream of inputs {(xi, yi)}n

i=1
, outputs some (◊̂, b̂) with probability

at least 0.9 such that F⁄(◊̂, b̂) Æ F⁄(◊ú, bú) + Á. Then such a sketch requires �(Á≠1/2) space.

We can adapt the lower bound to the low dimensional setting if we let ⁄ = poly(1/n).
Specifically, we show a somewhat weaker lower bound of �(Á≠1/4) for d = 2 as long as
⁄ = �(1/n2). Moreover, we are able to show the same �(Á≠1/2) bound for any d Ø 3 as long
as ⁄ = �(1/n). Note that ⁄ = 1/n is a reasonable setting that is often used in practice.

1.2 Related Work

Stochastic optimization methods. SGD for strongly convex functions, which includes the
bias-regularized SVM, has a sample complexity O(1

⁄Á
). Consequently, in the streaming

setting we can simply maintain O(1

⁄Á
) random elements from the stream, then at the end

APPROX/RANDOM 2020

50:4 Streaming Complexity of SVMs

run SGD, yielding a space complexity of O(d

⁄Á
). Moreover, this is tight for general Lipschitz,

strongly convex functions; there is an �(1

Á
) SGD sample complexity lower bound for this

function class [1].
Some stochastic optimization methods like Stochastic Average Gradient (SAG) [10] achieve

linear convergence, meaning that after T iterations F⁄(◊T) ≠ F⁄(◊ú) Æ O(flT) for some fl < 1.
However, in this case, fl ¥ 1 ≠ 1/n, so we would need T > n iterations, which is worse than
1

⁄Á
when n is su�ciently large.
Similarly, some stochastic optimization methods like Katyusha [2] achieve a sample

complexity that has a dependence on Á like 1/
Ô

Á. However, the sample complexity for such
methods also has a sample complexity that scales linearly with n, again making them worse
than 1

⁄Á
for the regime we care about.

Finally, note that if the elements of the stream are drawn IID from some distribution,
and the size of the stream, n, is su�ciently large, then we can simply run online gradient
descent (OGD) and use O(d) space. However, we focus on the general setting where we
cannot make any distributional assumptions.

Core-set and streaming algorithms for SVMs. Tsang et al. focuses on trying to speed
up SVM optimization via core-sets [13]: a subset of training points that are su�cient
for approximately optimizing the objective corresponding to the full training set. They
approximately solve a Minimum Enclosing Ball (MEB) problem that they show is equivalent
to the SVM. In the language of our paper, it shows an algorithm for achieving a ±Á additive
approximation for the SVM objective in the batch setting using space O(Á≠2). [9] adapts these
ideas to the streaming setting by showing a simple one-pass approximate MEB algorithm.
However, they only achieve a constant approximation, rather than one with a target error Á.
To the best of our knowledge, we are the first to analyze streaming SVM algorithms with
sub-constant approximation guarantees.

1.3 Techniques

Multiplicative approximation algorithm. First note that by considering the points labeled
+1 and ≠1 separately, the point estimation problem that we consider reduces to the following:
given a set of n points, the goal is to sketch them such that later, given a query hyperplane
denoted by H = (◊, b), one can estimate the sum of distances of the points on one side of H
to H. In one dimension, the points are positioned on the real line and the query is also a
value b on the real line and the goal is to compute

q
i
max{0, b ≠ xi}.

The idea behind the streaming algorithm is the following: we uniformly sample a 1/2i

fraction of the input points, for i = 1, 2, . . . , O(log n), and for each of the O(log n) sampling
rates, we store the smallest Õ(‘≠2) points that we have seen. Now given a query point q, we
want to estimate the sum of distances of points p < q to q. If there are fewer than Õ(‘≠2)
input points p less than q, then we have stored all of them and can compute this sum exactly.
Otherwise we can think of partitioning the input points p into geometric scales, in powers of
2, based on their distance to q. The main insight is if one of these scales contributes to the
overall sum, it must have a number nÕ of points in it of roughly the same order as the total
number of points pÕ even further away from q. This is because each such point pÕ contributes
even more than any point p in this scale to the sum. Consequently, if we choose i for which
1/2i ¥ 1/(nÕ‘2), then there will be about �̃(1/‘2) survivors in the sampling that are at this
distance scale, and we will have stored all of them. By separately estimating the contribution
of each scale and adding them together, we obtain our overall estimate. We note that to
achieve our overall Õ(‘≠2) space bound we need to obtain as crude of an additive error as

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:5

possible for scales that do not contribute as much as other scales to the overall objective. We
do this by separately first estimating the contribution of each scale up to a constant factor,
and then refining it appropriately.

Additive approximation algorithms. We also show additive approximation algorithms in
the low dimensional regimes. As our lower bound depends on the diameter of the points,
we assume without loss of generality that our point set has diameter 1. For d = 1, the
sketching algorithm groups the points into 2/

Ô
Á groups in a way that i) each group has

diameter at most
Ô

Á, and ii) each group has at most n
Ô

Á points in it. It is easy to verify
that such a grouping results in an additive approximation of Á. To make the algorithm
work in the streaming setting, we must maintain the groups as the points arrive. Note that
the partitioning based on the diameter can be done in advance. However in order to also
partition based on the number of points (and make sure each group gets at most n

Ô
Á points

in it), we create a binary tree for each original group (that has diameter
Ô

Á). Whenever a
group reaches its maximum size of n

Ô
Á, we create two children corresponding to that group

and further points arriving in the group will be assigned to one of the children. Note that it
is important that we cannot partition the previous points into the two children as we already
discarded them in the stream.

For d = 2, we maintain a quad tree on the points in [≠1, 1] ◊ [≠1, 1]. Whenever a cell
gets too many points we further partition it into four until its side length becomes too small.
We process every cell of the quad tree so that if the query (which is a line now) does not
collide with the cell, we can exactly compute the sum of distances of the points in the cell to
the line (using [5]). Ignoring the points in the cells that the line crosses, will result in an
algorithm with space usage of O(Á≠1). To push it down to O(Á≠4/5), we randomly sample
a point from each cell and for the crossing cells, we will use the single sampled point to
estimate the average distances of the points in the cell to the query line.

Finally, for the lower bounds in low dimensions, we develop reductions from the Indexing
problem. We show how to consider k = �(Á≠ d+1

d+3) positions inside a d-dimensional sphere,
where they correspond to a bit-string of length k by Alice. If her i-th bit in the string is 1,
then she will put n/k actual points in the corresponding positions, otherwise she does not
put any point there. We show that Bob can recover Alice’s input using hyper-plane queries.

Lower bound in high dimensions. We let b = 0 so that F (◊, 0) = 1

n

q
i
max{0, ◊ · xi}. This

is similar to the subspace sketch problem studied in [7], which considers approximatingq
i
„(◊·xi) for „(t) = |t| up to a multiplicative factor of (1+Á). Here we have „(t) = max{0, t}

instead (by flipping ◊) and an additive error Án. The proof in [7] turns the multiplicative
error into an additive error and so we can adapt the same approach in our current case.
Following the same approach, we can show an �(d/(Á2 polylog(1/Á))) lower bound when
d = �(log(1/Á)) for the point estimation problem. Below we sketch the main idea for the
proof, which is similar to that in [7].

We show an �̃(1/Á2) lower bound for d = �(log(1/Á)). The lower bound for general d
follows from the concatenation of �(d/ log(1/Á)) independent smaller hard instances.

In the remainder of this subsection let d = �(log(1/Á)) be such that n = 2d = �̃(1/Á).
Consider all the {≠1, 1}d vectors and let xi be the i-th {≠1, 1}-vector scaled by some scalar
ri. Define a matrix M œ Rn◊n, indexed by {≠1, 1}-vectors, as Mij = „(Èi, jÍ). Then we
have for ◊ œ {≠1, 1}d that

q
i
„(≠È◊, xiÍ) =

q
i
„(È◊, xiÍ) =

q
i
„(riÈ◊, iÍ) =

q
i
ri„(È◊, iÍ) =q

i
M◊,iri = ÈM◊, rÍ if all ri Ø 0, where M◊ denotes the ◊-th row of M . Our goal is to encode

random bits si in the scalars ri, such that obtaining ÈM, ◊Í within additive Án allows us to
recover as many bits si as possible.

APPROX/RANDOM 2020

50:6 Streaming Complexity of SVMs

First we allow ri to be negative and consider (Mr)◊. Let r =
q

i
si · Mi

ÎMiÎ2
, where

s1, . . . , sn are i.i.d. Rademacher random variables. It follows from a standard concentration
inequality that ÎrÎŒ Æ poly(d). If M had orthogonal rows, then ÈM◊, rÍ = s◊ÎM◊Î2, in
which case we can recover the bit s◊ from the sign of ÈM◊, rÍ, provided that ÎM◊Î2 is larger
than the additive error Án.

However, M does not have orthogonal rows. The argument above still goes through so
long as we can identify a subset R ™ [n] = [2d] of size |R| = �(2d/ poly(d)) such that the rows
{Mi}iœR are nearly orthogonal, meaning that the ¸2 norm of the orthogonal projection of Mi

onto the subspace spanned by other rows {Mj}jœR\{i} is much smaller than ÎMiÎ2. To this
end, we study the spectrum of M using Fourier analysis on the hypercube, which shows that
the eigenvectors of M are the rows of the normalized Hadamard matrix, while the eigenvalues
of M are the Fourier coe�cients associated with the function g(s) = „(d ≠ 2wH(s)), where
wH(s) is the Hamming weight of a vector s œ {0, 1}d. It can be shown that M has at least
�(2d/ poly(d)) eigenvalues of magnitude �(2d/2/ poly(d)). For the ◊’s which correspond to
those eigenvalues, we have ÎM◊Î2 = �(2d/2/ poly(d)) so that ÎM◊Î2 = �(Án) for our choice
of n and d, as required by the argument.

Recall that we require ri Ø 0. Since ÎrÎŒ Æ poly(d) with high probability, we can just
shift each coordinate of r by a fixed amount of poly(d) to ensure that all entries of r are
positive. We can still obtain ÈM◊, rÍ with an additive error O(Á2d poly(d)), since the amount
of the shift is fixed and bounded by poly(d).

Last, rescaling ◊ and xi’s to unit vectors loses poly(d) = poly(log(1/Á)) factors in the
lower bound and we continue to have an �(1/(Á2 polylog(1/Á))) lower bound.

Optimization lower bound. We prove optimization lower bounds by reducing from the
Indexing problem: Alice encodes points at specific locations on the unit sphere, then Bob
uses the optimization sketch to decode whether a point was added at some particular location.
The challenge is that Bob must be able to reason about a single data point when given access
to an approximate optimum corresponding to an entire dataset. The key idea in getting this
to work is for Bob to add some additional points with the following property: if the location
being queried does not contain a point, then the added points are the only support vectors,
i.e. (◊ú, bú) is entirely determined by the added points, whereas if the the location being
queried does contain a point, then (◊ú, bú) is entirely determined by the added points and
the point at that location. Hence, (◊ú, bú) can take on exactly two possible values, and does
not depend on any of the remaining points in the dataset. Moreover, the strong convexity of
F⁄ allows us to upper bound Î(◊ú, bú) ≠ (◊̂, b̂)Î in terms of Á. We make this precise in the
following lemma, which we will refer to multiple times later on:

I Lemma 3. If F⁄(◊̂, b̂) Æ F⁄(◊ú, bú) + Á, then Î(◊̂, b̂) ≠ (◊ú, bú)Î2 Æ

2Á/⁄.
By exactly characterizing what (◊ú, bú) is in these two possible cases, and showing that

the gap is more than 2

2Á/⁄, we show that Bob can distinguish these two situations and
decode the bit. The analysis is delicate, requiring a carefully chosen construction for the
proof to go through.

Open Problems. For the case of d = 1, we have matching upper and lower bounds for
(additive) point estimation of �(Á≠1/2). This also translates into an optimization upper
bound of O(Á≠1/2), the best upper bound we know of for this setting. However, we have
no optimization lower bound for d = 1. Instead, we have an optimization lower bound of
�(Á≠1/4) for d = 2 and �(Á≠1/2) for d Ø 3. Moreover, for optimization in high dimensions,
there remains a gap between the �(Á≠1/2) lower bound and O(1/Á) upper bound. It remains
to close all of these gaps.

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:7

Also, while in this work we focus on linear SVMs, often times non-linear kernels are
preferred in practice. This raises the question of whether we can extend our results to this
setting. One approach is to use random feature maps that allow one to convert a kernel SVM
problem into a linear SVM problem [8]. However, this increases the dimension significantly,
so that sampling and running SGD is more e�cient than optimization via point estimation.2

2 Point Estimation

In this section, we study the streaming complexity of the point estimation problem. Specific-
ally, the algorithm sees the data points (xi, yi), for 1 Æ i Æ n, one by one. The goal is to
keep a sketch of the data such that later, given the query parameters (◊, b), it can output an
estimate of the SVM objective function F (◊, b).

Setup for point estimation. We can simplify the presentation by focusing on a slight
simplification of the SVM objective (without loss of generality). First, we note that, since
yi œ {+1, ≠1}, we can estimate the contribution from xi’s with yi = +1 and yi = ≠1
separately. Hence, for point estimation it is enough to assume that yi = +1, as well as that
⁄ = 0 (since the regularization can be computed independently of the data). Furthermore,
we can just work with the following related objective:

F (◊, b) := 1
n

nÿ

i=1

max{0, b ≠ ◊ · xi}, (3)

by adjusting b accordingly. Hence we focus on estimating the function from Eqn. (3) for the
rest of this section.

Note that when d = 1, it is enough to consider the case of ◊ = +1. First, because
for ◊ œ (0, 1), we can rescale the output of a sketch (that uses ◊ = +1 and accordingly
rescaled b). Second, because the case of ◊ œ [≠1, 0) is precisely symmetric, so one can
just keep two sketches, one for each of ◊ œ {≠1, +1}. Note that the objective simplifies to
F = 1

n

q
n

i=1
max{0, q ≠ xi} where q = b. We will call the value q the query.

2.1 Multiplicative (1 + Á) approximation algorithm for d = 1
Here we consider the case of d = 1: We are given a set of n points xi œ R, and given any
query q œ R, the goal is to approximate

q
i:xiÆq

(q ≠xi) up to a multiplicative 1+Á factor. To
analyze the bit complexity of the problem, we assume the points are integers between 1 and
W . A simple sketching algorithm is given in the full version. Here we present a streaming
algorithm for the problem.

Streaming. Here we assume that the values x1, . . . , xn are given in a stream in this order,
and we are allowed to make a single pass over it, and the query q is given at the end of the
stream. Note that xi’s are not necessarily sorted, and for simplicity, we assume all xi’s are
distinct. The algorithm maintains the following sketch throughout the stream.

2 As described in [12], one can use adapt SGD to work for kernelized SVMs. This involves tracking dual
variables –i, which we can do with the same space complexity of O(d

⁄Á) as before.

APPROX/RANDOM 2020

50:8 Streaming Complexity of SVMs

Sketch. The sketch consists of two collections of sets of samples as described below. The
first collection is used to get a crude (constant factor) approximation of the contribution
of each contributing interval as defined later, and the second collection is used for a more
precise approximation.

For each 0 Æ i Æ log n, sample every point with probability 1/2i, and preserve the
m1 = C1Á≠1 log2 W points with the smallest x value in the set Ei, where C1 is a constant
to be specified later.
For each 0 Æ i Æ log n, sample every point with probability 1/2i, and preserve the
m2 = C2Á≠2 log W points with the smallest x value in the set Si, where C2 is a constant
to be specified later.

I Observation 4 (Space). The sets Ei and Si can be maintained in a stream. Let M =
max{m1, m2}, then the space usage of the algorithm is O(log n·M ·log W) = O(log n·log

2
W

Á
(1

Á
+

log W)) bits.

Next we describe the query processing algorithm. The analysis is deferred to Appendix A.

Query algorithm. Let p be the largest value in S0 fi E0. Given the query point q œ R, we
proceed as follows.

If q Æ p, then we can report an exact solution using the corresponding sample set: e.g. if
p œ S0, then we output

q
xœS0,xÆq

(q ≠ x).
Otherwise, we group the points based on their distance to q and estimate the contribution
of each group separately. More precisely, let D = q ≠ p, which is a positive number,
and for each 1 Æ j Æ log D, define the interval Rj = (q ≠ D

2j≠1 , q ≠ D

2j]. For notational
convenience, let R0 be the interval covering S0 fl E0 which ends at the point p. Finally
for each 0 Æ j Æ log D, let tj = |P fl Rj | be the number of points in the interval Rj , and
Tj = |P fl (

t
k<j

Rk)| be the number of points to the left of interval Rj .
Let iÕ(j) be the largest i such that Ei contains at least log D points from Rj . If no such
iÕ exists, let iÕ(j) = ≠1. The value iÕ(j) shows which sampled set (EiÕ(j)) we should use
for our crude approximation. As we show in Lemma 17, if iÕ(j) = ≠1, the contribution of
the points in Rj can be ignored).
Let „j = min{1,

|EiÕ(j)flRj |
|EiÕ(j)fl(fik<jRk)| }. This value is used to approximate the ratio of the

points in Rj to the points that are to the left of Rj , i.e., „j ¥ tj

Tj
. This is verified in

Lemma 18.
We set the value of i(j) as follows.

If iÕ(j) = ≠1 or „j Æ Á

log W
, then set i(j) = ≠1. In this case, the contribution of Rj

can be ignored.
Otherwise, if „j Ø 1

log W
, then set i(j) to be the largest i such that Si contains at least

1/Á2 points from Rj . If no such i exists let i(j) = ≠1. This case in analyzed in Lemma
19 and Lemma 20.
Finally, if Á

log W
Æ „j Æ 1

log W
, then set i(j) to be the largest i such that Si contains at

least („j log W/Á)2 points from Rj . This case in analyzed in Lemma 21 and Lemma
22.

Report
q

jÆlog D,i(j) ”=≠1

q
xœSi(j)flRj

2i(q ≠ x). That is for all sets whose contribution is
significant (equivalently i(j) ”= ≠1) we estimate their contribution using sample set Si(j).

We then have the following results.

I Lemma 5 (main lemma). This algorithm returns a (1 + O(Á)) multiplicative approximation.

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:9

I Corollary 6. There exists a one pass streaming algorithm that computes a (1 + Á) multi-
plicative approximation for point estimation variant of the problem in one dimensional case.
Moreover, if the points come from [W], the space usage of the algorithm is O(log

2
n·log W

Á
(log n+

1/Á)) bits.

2.2 Lower Bounds

We now show that one cannot hope to get a sketch with multiplicative approximation in
higher dimensions than one with a bound independent of n. In fact we show the following
additive approximation lower bound for any sketching algorithm (and hence streaming
algorithm as well).

I Theorem 7. For any d Ø 1, Á œ (0, 1), and n Ø 1/Á, there exists an instance of the
problem, where the point set has diameter O(1), such that getting an algorithm with additive
approximation factor Á, requires space of �(Á≠(d+1)/(d+3)) bits.

Moreover, getting a (1 + Á)-multiplicative approximation for d Ø 2 requires �(n) space.

The proof is given in Appendix B. We note that while this theorem formally applies to
the simplified objective, it immediately translates to the SVM objective as well as we only
use points with one label (when the problems are exactly equivalent).

The preceding theorem gives at most an �(1/Á) lower bound, leaving a quadratic gap
from the simple random sampling algorithm of Õ(d/Á2) bits. In fact, for high dimensions
d = �(log(1/Á)), we can prove a lower bound of �̃(d/(Á2 polylog(1/Á)) bits, tight up to
logarithmic factors. We state the theorem below and give the proof in the full version.

I Theorem 8 (high-dimensional). There exist constants C œ (0, 1] and Á0 > 0 such that
the following holds. Let d0 = 2 log2(C/(Á polylog(1/Á)). For any Á œ (0, Á0), d Ø d0,
n Ø (d/d0)2d0 , any algorithm that gives an additive Á-approximation for the point estimation
problem with probability at least 2/3 requires �

!
d/(Á2 polylog(1/Á))

"
bits.

2.3 Additive approximation algorithms

We now design streaming algorithms that achieve an additive Á-approximation to the objective
Eqn. (3). We also generalize these results to a slightly modified objective in the full version.
We start with dimension d = 1.

I Theorem 9. There exists a one pass streaming algorithm for the point estimation variant
of the problem in the one dimensional regime, that achieves an additive error of Á, space of
O(Á≠1/2

log(1/Á)) words, and that succeeds with constant probability per query.

Recall that for d = 1, the objective simplifies to F (q) = 1

n

q
n

i=1
max{0, q ≠ xi}. We

describe a sketching algorithm that produces a sketch of size O(1/
Ô

Á) that is able to answer
point estimation queries to this F . Later, we show how to adapt this algorithm to the
streaming setting.

Let m = (1/
Ô

Á) and consider two sets of m points. First consider Y1, . . . , Ym such that
Yi is at position i/m. Moreover consider m points X1, . . . , Xm such that Xi is at position
x(i·n)/m, where we assume that xi’s are in a sorted order, i.e., x1 Æ · · · Æ xn. Now sort these
2m points and name them Z1, . . . , Z2m. For each i Æ 2m we store three numbers: i) Zi itself,
ii) si, the sum of the distances of the points to the left of Zi to the point Zi, and iii) ci, the
number of points xi to the left of Zi.

Given a query q œ [0, 1], we will find i such that Zi Æ q < Zi+1. We will return
si + ci · (q ≠ Zi). Clearly for the the points that are to the left of Zi this distance is computed
correctly. The only points that are not computed in the sum are part of the points in the

APPROX/RANDOM 2020

50:10 Streaming Complexity of SVMs

interval [Zi, Zi+1], but we know that there are at most n
Ô

Á of them (by our choice of the
Xi’s) and their distance to q is at most (Zi+1 ≠ Zi) Æ

Ô
Á (by our choice of Yi’s). Therefore

they introduce an average error of at most Á as we require.

Streaming. We adapt the above algorithm to the streaming setting as follows. We keep a
binary tree, where each node corresponds to an interval in [≠1, 1] (the domain of xi). The
root corresponds to the entire interval [≠1, 1], and the two children of a node/inverval are
the 2 half correspondingly (applied recursively). Initially, we start with a tree of height
log2 1/

Ô
Á, where the leaves correspond to intervals of length precisely

Ô
Á (assuming it’s a

power of two, w.l.o.g.).
As we stream through the points xi, we add the information about the point xi to the

leaf corresponding to the interval containing xi. In particular, each node v, with associated
interval Iv, keeps a count of points cv, as well as sv which is the sum, over of the points
accounted in cv, of their distance to the right border of the interval.

We may also expand this leaf v to add its two children (v ceases to be a leaf). The leaf is
split when cv reaches value

Ô
Án. The new children start with their counters equal to 0. One

exception is that if the depth of the node is more than 3 log(1/Á) (the interval’s diameter is
< Á), in which case we don’t do the expansion.

To answer a query q œ [≠1, 1], we sum up, over all nodes v (internal nodes and leaves)
whose interval Iv is entirely to the left of q, the quantity sv + cv · (q ≠ Iv), where q ≠ Iv is the
distance from q to (the rightmost endpoint of) Iv. The analysis is given in Appendix C.1.

Now we study dimension d = 2. We now develop a streaming algorithm for sketching
a set of points in the 2D plane such that given any query (a�ne) line in the plane, one
can approximate the cost. To simplify the ensuing notation, we denote the set of points by
p1 = (x1, y1), . . . , pn = (xn, yn) œ [0, 1] ◊ [0, 1], and the query by a line {x : ◊T x = b}, which
we denote by L = (◊, b). Recall the assumption that Î◊Î Æ 1, we may assume that Î◊Î = 1.
Our goal is equivalent to reporting the sum of distances of the points on one side of L to L.
Henceforth we denote the distance from point p to line L as D(p, L).

I Theorem 10. There is a streaming algorithm for the point estimation problem in two
dimensions, that with constant probability, achieves additive error Á, with sketch size O(Á≠4/5)
words.

The following shows how to get an O(1/Á)-size sketch with an additive error of O(Á5/4),
and at the end we just replace ÁÕ = �(Á4/5) to prove the above theorem.

We use a quad-tree over the unit square [0, 1] ◊ [0, 1], where each node is associated with
a number of points (each point is associated with exactly one node of the quad-tree). Thus
each node v contains a counter cv for the number of associated points, a randomly chosen
associated points (chosen using reservoir sampling), as well as a sketch Sv to be described
later. Initially, the quad-tree is of depth log(1/

Ô
Á) and all counters/sketches are initialized

to zero. When we stream over a point pi, we associate it with the corresponding leaf of the
quad-tree (process defined later), unless the counter cv is already Á · n and the depth is at
least 2 log(1/Á) (i.e., the side length is at least Á2). In that case the leaf v is expanded by
adding its 4 children, which become new leaves (with counters initialized to 0).

When we associate a point with a node v, we increment cv and update the sketch Sv

on the associated points. The sketch Sv for the associated points, say termed Pv, allows us
to compute, for any query line L = (◊, b), the sum

q
pœPv

(b ≠ ◊T p). The sum
q

pœPv
◊T p

can be computed in a streaming fashion using the sketch from [5]. In particular, the sketch
actually consists of two counters: Xv, the sum of the x coordinates, and Yv, the sum of the
y coordinates.

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:11

Query algorithm. Given a query line L, we distinguish contribution from points in two
types of quad-tree nodes: nodes that do not intersect the line and those that do. For the first
kind, we can just use the sketch Sv to estimate the distance to the line, without incurring any
error. More precisely we have that

q
pœPv

D(p, L) =
q

pœPv
(b ≠ Èp, ◊Í) = cvb ≠ È(Xv, Yv), ◊Í.

Note that this is included in the final sum i� the entire node lies in the halfplane Èx, ◊Í Æ b.
For the second kind of nodes, we estimate their contribution as follows. For each

non-empty node v, with the random sample rv, we add to the final sum the quantity
(1/n) · cv · max{0, b ≠ ◊T rv}.

The analysis is deferred to Appendix C.2.

3 Optimization

In this section we consider the problem of finding the (approximate) optima for the SVM
objective in the streaming setting. First, we show that a streaming solution for the point
estimation problem immediately leads to a solution for the optimization problem, with only
a O(d log 1/Á) loss in space complexity. Second, we give lower bounds for the optimization
problem, showing a (di�erent) polynomial dependence on 1/Á is still required for dimension
d > 1.

As before, we consider the SVM optimization problem in which the bias is regularized:
min◊,b F⁄(◊, b), where F⁄ is as defined in (1). Without loss of generality, we assume that the
inputs are contained in a ball of radius 1, i.e., ÎxiÎ Æ 1, and that yi œ {≠1, +1}.

Recall that [12] show that O(1/(⁄Á)) random samples (xi, yi) are enough for computing
an Á-approximate optimum (by running SGD). This can be seen as a streaming algorithm
with space complexity O(d/(⁄Á)). We show that, given an e�cient streaming algorithm for
point estimation, we can solve the optimization problem with only a minor blowup.

I Theorem 11. Suppose there is a streaming algorithm that, after seeing data {(xi, yi)}n

i=1
,

where ÎxiÎ Æ 1, can produce a sketch of size s that, given any (◊, b) such that Î(◊, b)Î Æ

2/⁄,
is able to output F̂ (◊, b) such that |F̂ (◊, b) ≠ F (◊, b)| Æ Á with probability at least 0.9. Then
there is also a streaming algorithm that, under the same input, will output (◊̂, b̂) with
|F⁄(◊̂, b̂) ≠ F⁄(◊ú

⁄
, bú

⁄
)| Æ Á with probability at least 0.9, while using space O(s · d log d/(⁄Á)).

The proof of this theorem is a standard net argument and is given in the full version.
Recall that our point estimation results assume Î(◊, b)Î Æ 1, which can be adapted to

Î(◊, b)Î Æ R by replacing ‘ with ‘/R. Letting R =

2/⁄, the above theorem implies that we
get an optimization algorithm for d = 1 that uses Õ(Á≠1/2⁄≠1/4) space, and an optimization
algorithm for d = 2 that uses Õ(Á≠4/5⁄≠2/5) space. Note that this has a polynomially better
dependence on both Á and ⁄ relative to the O(1/⁄Á) bound that we get from SGD.

Lower bounds. We start with the high-dimensional case. Suppose there exists a sketch
such that, given a stream of inputs {(xi, yi)}n

i=1
, ÎxiÎ2 Æ 1, with probability at least 0.9

outputs some (◊̂, b̂) such that F⁄(◊̂, b̂) Æ F⁄(◊ú, bú) + Á, where F⁄(◊, b) := ⁄

2
(Î◊Î2 + b2) +

1

n

q
n

i=1
max{0, 1 ≠ yi(◊T xi + b)}. For now, suppose ⁄ = 10≠4 and d = O(log n). Later, we

show a similar lower bound for low dimensions when ⁄ = �(1/n).

I Theorem 12. Such a sketch requires �(Á≠1/2) words of space.

Proof idea: We will reduce from the Indexing problem in the one-way communication
model. At a high level, we will argue that we can query whether a point exists at a given
location on the unit sphere by adding additional points with the property that the optimal

APPROX/RANDOM 2020

50:12 Streaming Complexity of SVMs

parameters are determined entirely by the added points and the point being queried (if it
exists). This yields a separation in the optimal parameters in these two cases, which we will
argue (via strong convexity) is distinguishable using such a sketch.

Specifically, suppose Alice is given a bit string b œ {0, 1}n/2 which she wants to encode.
Let T = {v1, . . . , vn} be a subset of the unit sphere in d dimensions satisfying ’v1 ”= v2 œ T ,
vT

i
vj < 1 ≠ 10”, where ” will be specified later, with |T | = n. For ” = 1

100
, such a set exists

for d = poly(log n). If bi = 0, Alice adds (vi, ≠1) to the sketch S; otherwise, if bi = 1, Alice
adds (vn/2+i, ≠1) to S. Alice then sends the sketch to Bob, who decodes bq for q œ [n

2
] by

querying whether a point exists at location xq. In particular, Bob adds n

4
copies of (x–, ≠1),

and n

4
copies of (x— , +1), where x– := (1 ≠ ”)xq and x— := (1 + ”)xq. Let (◊̂, b̂) be the

output of the sketch after doing so. Define ◊0 := 2⁄(1+”)+”

2⁄(1+(1+”)2)
and ◊1 := 2⁄(1+”)+”(1+

1
n)

2⁄(1+(1+”)2)
. If

Î◊̂ ≠ ◊0Î < Î◊̂ ≠ ◊1Î then Bob outputs “bi = 0”; otherwise, Bob outputs “bi = 1”.

3.1 Preliminaries for the lower bound

We introduce some standard facts about the SVM objective. We can rewrite the SVM
objective as a constrained optimization problem:

min
◊,b

⁄

2 Î(◊, b)Î2

2
+ 1

n

nÿ

i=1

“i (4)

subject to “i Ø 0 and “i Ø 1 ≠ yi(◊T xi + b).
The corresponding Lagrangian is then:

min
◊,b,“,÷,–

L := ⁄

2 Î(◊, b)Î2

2
+ 1

n

nÿ

i=1

“i ≠
nÿ

i=1

“i÷i +
nÿ

i=1

‹i[1 ≠ “i ≠ yi(◊T xi + b)] (5)

subject to: “i Ø 0, “i Ø 1 ≠ yi(◊T xi + b), ÷i Ø 0, and ‹i Ø 0.
The KKT conditions are:

÷i“i = 0 (6)
‹i(1 ≠ “i ≠ yi(◊T xi + b)) = 0 (7)

◊ú = 1
⁄

nÿ

i=1

‹iyixi (8)

bú = 1
⁄

nÿ

i=1

‹iyi (9)

÷i = 1
n

≠ ‹i (10)

“i = max{0, 1 ≠ yi(◊T xi + b)} (11)
÷i Ø 0, ‹i Ø 0 (12)

3.1.1 Notation

We will characterize the optimal solutions for the two scenarios (there exists a point at xq or
there does not) for the case that the dimension is d = 1. We will later show how this provides
results for d > 1. We will specify ” later, but will always maintain the relation ⁄ = ”2.

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:13

Let n = 1

20
Ô

Á
, and define a set S0 of n points as follows:

n

4
points are x– := 1 ≠ ” with y– := ≠1.

n

4
points are x— := 1 + ” with y— := +1.

The remaining n

2
points are not support vectors and are otherwise arbitrary; i.e. are such

that 1 ≠ y((◊ú
0
)T x + bú

0
) < 0, where

(◊ú
0
, bú

0
) = arg min

(◊,b)

F (0)

⁄
(◊, b) := ⁄

2 (Î◊Î2 + b2) + 1
n

ÿ

(x,y)œS0

max{0, 1 ≠ y(◊T x + b)} (13)

Observe that such points exist as long as ◊ú
0

”= 0, which is easy to show.

Define “(0)

– := max{0, 1 ≠ y–((◊ú
0
)T x– + bú

0
)} = max{0, 1 + ◊ú

0
(1 ≠ ”) + bú

0
} and “(0)

—
:=

max{0, 1 ≠ y—((◊ú
0
)T x— + bú

0
)} = max{0, 1 ≠ ◊ú

0
(1 + ”) ≠ bú

0
}.

Similarly, define S1 to be the set of n points that is exactly the same as S0, except
that instead of n

2
points that are not support vectors, there are n

2
≠ 1 points that are not

support vectors and one additional point at xq := 1 with yq := ≠1. Similarly define F (1)

⁄
,

(◊ú
1
, bú

1
), “(1)

– , and “(1)

—
to be the analogous quantities where S0 is replaced with S1, and let

“(1)

q := max{0, 1 ≠ y—((◊ú
1
)T xq + bú

1
)} = max{0, 1 + ◊ú

1
+ bú

1
}. We will also sometimes use the

notation “–(◊, b) := max{0, 1 ≠ y–(◊T x– + b)}, and similarly for “—(◊, b).

3.1.2 Lemmas

Next, we show some properties of the optimal solutions in each of the two cases.

I Lemma 13. Suppose ” < 1

100
and n Ø 1

”2 . Then we have that “(i)

– > 0 and “(i)

—
= 0 for

i œ {0, 1}.

Proof. To see that “(i)

– > 0 and “(i)

—
= 0 for i œ {0, 1}, we will rule out the other possibilities.

B Claim. Suppose ” < 1

7
and n Ø 1

”2 . Then we cannot have “(i)

—
> 0.

Suppose, for the sake of contradiction, that “(i)

—
> 0, and let (◊ú

i
, bú

i
) be the corresponding

optimal parameters. First consider i = 0. Then since “(0)

—
> 0, by the KKT conditions

we have that the dual variables corresponding to each of the n

4
copies of x— , call them ‹— ,

satisfy ‹— = 1

n
. Moreover, note that this is the maximal value possible for the dual variables.

Additionally, for points that are not support vectors, the dual variables are ‹i = 0. The KKT
conditions then imply:

◊ú
0

= 1
⁄

nÿ

i=1

‹ixiyi Ø 1
⁄

3
n

4
1
n

(1 + ”) ≠ n

4
1
n

(1 ≠ ”)
4

= ”

2⁄
= 1

2”
(14)

and bú
0

= 1

⁄

q
n

i=1
‹iyi Ø 0. But this implies that 1≠◊ú

0
(1+”)≠bú

0
Æ 1≠ 1

2”
(1+”) = 1

2
(1≠ 1

”
) < 0

(since ” < 1), which contradicts that “(0)

—
> 0.

Next, consider when i = 1. This time, we also have xq as a support vector. Again using
the fact that the corresponding dual variable is at most ‹q Æ 1

n
, we have:

◊ú
1

= 1
⁄

nÿ

i=1

‹ixiyi Ø 1
⁄

3
”

2 ≠ 1
n

4
Ø 1

⁄

3
”

2 ≠ ”2

4
Ø 1

⁄

3
”

2 ≠ ”

4

4
= 1

4”
(15)

and bú
1

= 1

⁄

q
n

i=1
‹iyi Ø ≠ 1

⁄n
. But this implies that 1≠◊ú

1
(1+ ”)≠ bú

1
Æ 1≠ 1

4”
(1+ ”)+ 1

”2n
Æ

1

4
(3 ≠ 1

”
) + 1 < 0, contradicting that “(1)

– > 0 and proving the claim.

APPROX/RANDOM 2020

50:14 Streaming Complexity of SVMs

B Claim. It cannot hold that “(i)

– = “(i)

—
= 0 for either i œ {0, 1}.

First consider i = 0. We will show that in this case ◊ú
0

= 1

”
and bú

0
= ≠ 1

”
. By assumption,

we know that 1 + ◊ú + bú ≠ ◊ú” Æ 0 and 1 ≠ (◊ú + bú) ≠ ◊ú” Æ 0. Summing these implies that

1 ≠ ◊ú
0
” Æ 0 ∆ ◊ú

0
Ø 1

”
(16)

Combining this last result with “(0)

– = 0:

0 Ø 1 + ◊ú
0
(1 ≠ ”) + bú

0
Ø 1 + 1

”
(1 ≠ ”) + bú

0
= 1

”
+ bú

0
∆ bú

0
Æ ≠1

”
(17)

We have that ◊ = 1

”
and b = ≠ 1

”
satisfy “–(◊, b) = “—(◊, b) = 0. By these last two equations,

they are also clearly the smallest norm values satisfying these; hence they indeed minimize
the overall optimization problem. But then F0(◊, b) = ⁄

2
(2

”2) = 1. But since we also have that
F0(0, 0) = 1, this cannot be the optimal solution, so we indeed cannot have “(0)

– = “(0)

—
= 0.

Now consider when i = 1. By the same argument as before, we must again have that if
“(1)

– = “(1)

—
= 0 then ◊ú

1
Ø 1

”
and bú

1
Æ ≠ 1

”
. Observe also that F1(◊, b) = F0(◊, b) + 1

n
“q(◊, b) Ø

F0(◊, b). Hence:

F1(◊ú
1
, bú

1
) Ø F0(◊ú

1
, bú

1
) = ⁄

2 (2 1
”2

) = 1 (18)

which again contradicts the optimality of (◊ú
1
, bú

1
) since F1(0, 0) = 1. The proof of the claim

is complete.
Since under the assumption of the lemma we cannot have “(i)

– = “(i)

—
= 0, and we cannot

have that “(i)

—
> 0, we must have that “(i)

– > 0 and “(i)

—
= 0, concluding the proof. J

Next, we show what the optimal parameters are in this case.

I Lemma 14. Suppose that “(0)

– > 0 and “(0)

—
= 0. Then we have:

◊ú
0

= 2⁄(1 + ”) + ”

2⁄(1 + (1 + ”)2) (19)

and bú
0

= 1 ≠ (1 + ”)◊ú
0
.

Similarly, if “(1)

– > 0 and “(1)

—
= 0. Then we have:

◊ú
1

=
2⁄(1 + ”) + ”(1 + 1

n
)

2⁄(1 + (1 + ”)2) (20)

and bú
1

= 1 ≠ (1 + ”)◊ú
1
.

Proof. First, observe that for i œ {0, 1} we not only have “(i)

—
= max{0, 1≠(◊ú

i
+bú

i
)≠◊ú

i
”} = 0,

but also have that

1 ≠ (◊ú
i

+ bú
i
) ≠ ◊ú

i
” = 0 (21)

To see this, suppose otherwise, that 1≠(◊ú
i

+bú
i
)≠◊ú

i
” < 0. Then there exists some 0 < ◊Õ < ◊ú

i

such that we still have 1 ≠ (◊Õ + bú
i
) ≠ ◊Õ” = 1 ≠ ◊Õ(1 + ”) ≠ bú

i
< 0. Moreover, this can only

decrease the regularization term, ⁄

2
◊2, and can only decrease the “(i)

– = max{0, 1+◊(1≠”)+b}
term. In the case that i = 1, this can also only decrease the “(1)

q = max{0, 1 + ◊ + b} term.
Either way, this contradicts the optimality of ◊ú

i
. Hence, bú

i
= 1 ≠ ◊ú

i
(1 + ”).

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:15

For i = 0, plugging this in and simplifying, we can rewrite the optimization problem as:

min
◊

⁄

2 (◊2 + (1 ≠ ◊(1 + ”))2) + 1
2(1 ≠ ◊”) (22)

Di�erentiating with respect to ◊ and setting the expression equal to zero,

0 = ˆ

ˆ◊

5
⁄

2 (◊2 + (1 ≠ ◊(1 + ”))2) + 1
2(1 ≠ ◊”)

6----
◊=◊

ú
0

= ⁄

2 (2◊ú
0

≠ 2(1 ≠ ◊ú
0
(1 + ”))(1 + ”)) ≠ ”

2

= ⁄◊ú
0
(1 + (1 + ”)2) ≠ ⁄(1 + ”) ≠ ”

2
from which we can solve for ◊ú

0
and obtain that

◊ú
0

= 2⁄(1 + ”) + ”

2⁄(1 + (1 + ”)2) .

Similarly, for i = 1, we can rewrite the optimization problem as:

min
◊

⁄

2 (◊2 + (1 ≠ ◊(1 + ”))2) + 1
4(1 + ◊ + 1 ≠ ◊(1 + ”) ≠ ◊”) + 1

n
(1 + ◊ + 1 ≠ ◊”) (23)

We can again di�erentiate with respect to ◊ and set the expression equal to zero, then solve
for ◊ú

1
, yielding the desired expression. J

We now adapt these results to the case that we care about: when d > 1 and there are
points other than just x–, x— , and xq.

First, note that when d > 1 and the only possible support vectors are x–, x— , and xq,
◊ú

i
œ Rd is parallel to xq. Hence, ◊ú

i
reduces to the one-dimensional case, and is simply

projected onto xq. For d dimensions, we can thus replace what was previously ◊ú
i

œ R with
(◊ú

i
)T xq œ R, where ◊ú

i
, xq œ Rd.

Recall that up to this point we have been assuming that the remaining n

2
or n

2
≠ 1 points

that were added by Alice are not support vectors. We will now show that this is the case.
Redefine S0 to be the set of points including n

4
copies of (x–, ≠1), n

4
copies of (x— , +1), and

n

2
arbitrary points {vi}n/2

i=1
, but this time with the requirement that vT

i
xq < 1 ≠ 10”, ’i œ [n

2
].

Similarly, let S1 be the set of points including n

4
copies of (x–, ≠1), n

4
copies of (x— , +1), one

copy of (xq, ≠1) and n

2
≠ 1 arbitrary points {vi}n/2≠1

i=1
, all satisfying vT

i
xq < 1 ≠ 10”.

Define

F (0)

⁄
(◊, b; ⁄) := ⁄

2 (Î◊Î2 + b2) + 1
n

ÿ

(x,y)œS0

max{0, 1 ≠ y(◊T x + b)} (24)

and

F (1)

⁄
(◊, b; ⁄) := ⁄

2 (Î◊Î2 + b2) + 1
n

ÿ

(x,y)œS1

max{0, 1 ≠ y(◊T x + b)} (25)

Finally, let (◊ú
i
, bú

i
) = arg min

◊,b
F (i)

⁄
(◊, b) for i œ {0, 1}.

I Lemma 15. Suppose ⁄ = ”2, ” < 1

7
and n Ø 1

”2 = 1

⁄
. Then for both S0 and S1, none of

the points v satisfying vT xq < 1 ≠ 10” are support vectors. Moreover, we have

◊ú
0

=
3

2⁄(1 + ”) + ”

2⁄(1 + (1 + ”)2)

4
xq (26)

APPROX/RANDOM 2020

50:16 Streaming Complexity of SVMs

◊ú
1

=
32⁄(1 + ”) + ”(1 + 1

n
)

2⁄(1 + (1 + ”)2)

4
xq (27)

and bú
i

= 1 ≠ Î◊ú
i
Î(1 + ”) for both i œ {0, 1}.

Proof. By the preceding discussion and lemmas, it su�ces to show that for (v, ≠1) œ Si

such that vT xq < 1 ≠ 10”, (v, ≠1) is not a support vector. This implies that (◊ú
i
, bú

i
) does not

depend on such v, so that the equations for the optimal parameters from before (adapted
slightly for d > 1) indeed hold. For this, it su�ces to show that for the (◊ú

i
, bú

i
) described

above, we have 1 + ((◊ú
i
)T v + bú

i
) < 0 when vT xq < 1 ≠ 10”.

For the given ”, ⁄, and n, one can easily verify that for both i = 0 and i = 1 we have
Î◊ú

i
Î Ø ”

5⁄
. Moreover, since bú

i
= 1 ≠ (1 + ”)Î◊ú

i
Î and (◊ú

i
)T xq = Î◊ú

i
Î, we have:

1+(◊ú
i
)T v+bú

i
Æ 1+(1≠10”)Î◊ú

i
Î+1≠(1+”)Î◊ú

i
Î = 2≠11”Î◊ú

i
Î Æ 2≠11”

”

5⁄
= 2≠ 11

5 < 0

proving the claim. J

3.2 Proofs of Main Results

We now use the preceding lemmas to complete the proof of Theorem 12.

Proof. Let n = 1

20
Ô

Á
, and let xq be the point being queried by Bob. If xq was added to

the set by Alice, then i := bq = 0; otherwise, i := bq = 1. Let (◊̂, b̂) be the output of
the sketch. Then using the guarantee of the sketch and of strong convexity, we have that
Î(◊̂, b̂) ≠ (◊ú

i
, bú

i
)Î Æ

Ò
2Á

⁄
. Hence, to distinguish these two scenarios, it su�ces to show that

Î(◊ú
0
, bú

0
) ≠ (◊ú

1
, bú

1
)Î > 2

Ò
2Á

⁄
. Indeed,

Î(◊ú
0
, bú

0
) ≠ (◊ú

1
, bú

1
)Î Ø Î◊ú

0
≠ ◊ú

1
Î = 1

n

”

2⁄(1 + (1 + ”)2) Ø ”

5⁄n
= 20”

Ô
Á

5⁄
= 4

Ú
Á

⁄
> 2

Ú
2Á

⁄
,

proving the claim. J

Now we extend this result to the low-dimensional case. When d is a constant, the above
lower bound cannot be directly applied because there does not exist a set T of size |T | = n
such that ’v ”= vÕ œ T , vT vÕ < 1≠10” when ” is a constant. However, we can adapt the lower
bound to the low dimensional setting if we let ” be sub-constant. Since we always maintain
the relationship that ⁄ = ”2, this means that ⁄ also scales with 1

n
. Note that ⁄ = �(1

n
) is

often used in practice.

I Theorem 16. For d = 2 and ⁄ = �(1

n2), a sketch as defined above requires space �(Á≠1/4).
For d Ø 3 and ⁄ = �(1

n
), such a sketch requires space �(Á≠1/2).

Proof. First, note that if n = O(”≠(d≠1)) for d > 1, then there exists a subset T of the unit
sphere in Rd satisfying ’v ”= vÕ œ T , vT vÕ Æ 1 ≠ 10”. Alice will use such a set to encode bits.

In the high dimensional lower bound construction, the constraints we had on the points
were ” < 1

7
and n Ø 1

”2 = 1

⁄
. Moreover, for the final step of the analysis, we needed that

”

5⁄n
= 1

5”n
> 2

Ò
2Á

⁄
= 2

Ô
2Á 1

”
, which is always satisfied for n Æ 1

20
Ô

Á
(regardless of ⁄ and ”,

as long as ⁄ = ”2). Additionally, for the construction we must also have n Æ �(”≠(d≠1)).
Hence, for d = 3, by letting ⁄ = 1

n
= �(Á1/2), all of these constraints are satisfied, so that

we again get a 1Ô
Á

lower bound. For d = 2 and ⁄ = �(Á1/2), this also implies that we can
encode �(”≠(d≠1)) = �(Á≠1/4) bits. J

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:17

References

1 Alekh Agarwal, Peter Bartlett, Pradeep Ravikumar, and Martin J. Wainwright. Information-
theoretic lower bounds on the oracle complexity of convex optimization. International Confer-

ence on Neural Information Processing Systems (NIPS), 2009.
2 Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.

Symposium on Theory of Computing (STOC), 2017.
3 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical

risk minimization: Kernel methods and neural networks. In Advances in Neural Information

Processing Systems (NIPS), 2017.
4 Kenneth L. Clarkson and David P. Woodru�. Numerical linear algebra in the streaming model.

Symposium on Theory of Computing (STOC), 2009.
5 J. H. Huggins, R. P. Adams, and T. Broderick. PASS-GLM: polynomial approximate su�cient

statistics for scalable Bayesian GLM inference. International Conference on Neural Information

Processing Systems (NIPS), 2017.
6 T. S. Jayram and David P. Woodru�. Optimal bounds for johnson-lindenstrauss transforms

and streaming problems with subconstant error. ACM Transactions on Algorithms, 2013.
7 Yi Li, Ruosong Wang, and David P. Woodru�. Tight bounds for the subspace sketch problem

with applications. In Proceedings of SODA, 2020.
8 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. International

Conference on Neural Information Processing Systems (NIPS), 2007.
9 Piyush Rai, Hal Daumé III, and Suresh Venkatasubramanian. Streamed learning: One-pass

svms. International Joint Conference on Artificial Intelligence (IJCAI), 2009.
10 Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic

average gradient. Mathematical Programming, 2017.
11 Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.
12 Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-

gradient solver for svm. International Conference on Machine Learning (ICML), 2007.
13 Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm

training on very large data sets. Journal of Machine Learning Research (JMLR), 2005.

A Analysis of the streaming algorithm for (1 + Á)-multiplicative

approximation in the case of d = 1

First, it is clear from the algorithm description that in the case of q Æ p, the algorithm
produces an exact solution. To show the correctness in the otherwise case, as stated in the
description let tj be the number of points in P that fall in the interval Rj , and let Tj be
the number of points that fall to the left of Rj , i.e., Tj = |{x œ P : x Æ q ≠ (D/2j≠1)}| =
|
t

k<j
Rk| and note that Tj Ø max{|S0|, |E0|} Ø 2 log W

Á
max{log W + 1/Á}. Moreover, let

V =
q

xœP,xÆq
(q ≠ x) be the value of the solution and Vj =

q
xœP flRj

(q ≠ x) be the
contribution of the points in Rj to the solution.

I Lemma 17 (If Not Enough Samples, Set Doesn’t Contribute). If tj < log D, then iÕ(j) = ≠1.
Moreover, if iÕ(j) = ≠1, then with high probability tj

Tj
Æ 2Á

log W
.

Proof. For the first claim, note that for such j, even if we sample the points with probability
1, we don’t get log D points in Ei, and thus iÕ(j) = ≠1.

Now suppose iÕ(j) = ≠1. If tj Æ 2 log D, then since Tj Ø log2 W/Á, we have that
tj

Tj
Æ 2Á

log W
. Otherwise, let iÕ be such that 2≠(i

Õ
+1) Æ 2 log D

tj
Æ 2≠i

Õ . Now, if we sample every
point in Rj with probability 2≠i

Õ , in expectation, we sample tj2≠i
Õ points which is between

2 log D and 4 log D. Moreover, since tj Ø 2 log D, we can use Cherno� bound, proving that

APPROX/RANDOM 2020

50:18 Streaming Complexity of SVMs

with high probability the number of samples is between log D and 8 log D. Therefore, since
the final sample EiÕ does not contain log D points from Rj , it means that it contains at least
m1 ≠ 8 log D Ø m1/2 = C1 log

2
W

2Á
points from fik<jRk (for su�ciently large constant C1).

On the other hand, the expected number of sampled points from
t

k<j
Rk is Tj2≠i

Õ which
with high probability (using Cherno� again) should be at least m1/4 Ø C1 log

2
W

4Á
. Therefore,

we get that

Tj Ø 2i
Õ C1 log2 W

4Á
Ø tj

4 log D
· C1 log2 W

4Á
Ø C1tj log W

16Á

Thus for C1 Ø 8, we get that tj

Tj
Æ 2Á

log W
J

I Lemma 18 (If Enough Samples, Get Initial Constant Factor Approximation). If iÕ(j) ”= ≠1,
then „j approximates min{1, tj

Tj
} by a constant factor.

Proof. By Lemma 17, we know that tj Ø log D.
First note that if Tj Æ tj , with high probability the number of sampled points from
fik<jRk is less than 2 times the number of sampled points from Rj , and therefore,
„j Ø 1/2, and the lemma is proved.
Second, note that if tj

Tj
Æ Á

2C1 log W
· log D

log W
, then the number of sampled points from

fik<jRk with high probability (using Cherno�) is at least 1

2
· Tj

tj
·log D Ø log D

2
· 2C1 log

2
W

log DÁ
Ø

C1 log
2

W

Á
= m1 which is a contradiction, because then we would not have picked log D

points in EiÕ(j) from Rj .
In the otherwise case, we show that the sample EiÕ(j) su�ces to get a constant factor
approximation to both values tj and Tj (and hence, tj/Tj). First, to see the latter, note
that Tj Ø tj and therefore with high probability (using Cherno�) we get at least log D

2

samples from fik<jRk in the set EiÕ(j) which are chosen uniformly at random. This is
enough for computing a constant factor approximation of Tj with high probability.
Second, if EiÕ(j) only contains samples from the first tj/8 fraction of the points in Rj ,
then with high probability, there would still be log D samples from Rj in EiÕ(j)+1 (this
is because with high probability, we only get less points from

t
k<j

Rk in EiÕ(j)+1 and
still at least log D points from Rj in it). However, this contradicts the choice of iÕ(j).
Therefore, we get a uniform sample of size �(log D), from a constant fraction of the
points in Rj , meaning that we can approximate tj up to a constant factor with high
probability. Therefore, „j will be a constant approximation to the value of min{1, tj

Tj
}.
J

The following two lemmas analyze the case of „j Ø 1

log W
.

I Lemma 19 (Enough Samples are Found From Large Contributing Sets). If iÕ(j) ”= ≠1 and
„j Ø 1

log W
, then we have i(j) ”= ≠1.

Proof. Note that by Lemma 18, „j is a constant factor approximation for min{1, tj/Tj}
which means that either tj Ø �(Tj) or tj Ø �(Tj/ log W) as „j Ø 1/ log W . Let C3 be the
constant in this inequality, i.e., tj Ø Tj/(C3 log W). Moreover, as Tj Ø |S0| = C2 log W

Á2 , we
get that tj Ø C2

C3Á2 Ø 2/Á2 for C2 Ø 2C3.
Now let i be such that 2≠(i+1) Æ 2/(Á2tj) Æ 2≠i. This means that by sampling the points

with rate 2≠i, in expectation, we sample 2≠itj Ø 2/Á2 points from Rj and moreover, with
high probability we will sample at least 1/Á2 points from Rj (here we used the fact that
since iÕ(j) ”= ≠1, we have tj Ø log D and thus we can apply Cherno� bound). Furthermore,

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:19

in expectation, we will sample 2≠iTj Æ 4Tj/(tjÁ2) Æ 4C3 · log W/Á2 points from intervals
R0, . . . , Rj≠1. Therefore, since we keep m2 = C2 log W/Á2 smallest sampled points in Si, by
choosing C2 large enough, i.e., C2 Ø (4C3 + 2), we will store all sampled points of Rj in Si

as well. Therefore, i(j) ”= ≠1. J

I Lemma 20 (Large Contributing Sets have Small Relative Error). If iÕ(j) ”= ≠1 and „j Ø 1

log W
,

then we have that
q

xœSi(j)flRj
2i(q ≠ x) is a (1 + 2Á) approximation of Vj.

Proof. As in the previous lemma, let i be such that 2≠(i+1) Æ 2/(Á2tj) Æ 2≠i. Therefore,
by similar arguments to the above lemma, we know that i(j) Ø i, which further means that
all sampled points from Rj are kept in Si(j). We thus get a uniform sample of size at least
1/Á2 from the interval Rj , which is enough for an additive Átj(D/2j≠1) approximation as
every point in the interval is contributing at least D/2j≠1. On the other hand, we have
that Vj Ø tjD/2j . Thus this additive approximation translates to a (1 + 2Á) multiplicative
approximation. J

The following two lemmas analyze the case of Á

log W
Æ „j Æ 1

log W
.

I Lemma 21 (Enough Samples are Found from Small Contributing Sets). If iÕ(j) ”= ≠1 and
Á

log W
Æ „j Æ 1

log W
, then if Vj Ø V (Á/ log W), we have i(j) ”= ≠1.

Proof. Note that Vj Ø V (Á/ log W) means that tj Ø Tj(Á/ log W), as otherwise if tj <
Tj(Á/ log W), we have that the total contribution of Rj is at most Vj Æ tjD/2j≠1, while
we have that V Ø TjD/2j≠1; which means that Vj Æ Tj(Á/ log W)D/2j≠1 Æ (Á/ log W)V ,
which is a contradiction.

Now let i be such that 2≠(i+1) Æ 2(„j log W)2/(Á2tj) Æ 2≠i 3. This means that in
expectation, we sample 2≠itj Ø 2(„j log W/Á)2 points from Rj and moreover, with high
probability we will sample at least („j log W/Á)2 points from Rj . Furthermore, in expectation,
we will sample 2≠iTj Æ 4Tj(„j log W)2/(tjÁ2) Æ 4„ log2 W/Á2 Æ 2 log W/Á2 points from
intervals R0, . . . , Rj≠1, where in the last inequality we used the fact that „j Æ 1/ log W .
Therefore, since we keep m2 Ø 6 log W/Á2 smallest points in Si, we will store all sampled
points of Rj in Si. Therefore, i(j) ”= ≠1. J

I Lemma 22 (Small Contributing Sets have Small Additive Error). If iÕ(j) ”= ≠1 and Á

log W
Æ

„j Æ 1

log W
, then if Vj Ø V (Á/ log W), we have that

q
xœSi(j)flRj

2i(q ≠ x) is a Á

log W
additive

approximation of V .

Proof. As in the previous lemma, let i be such that 2≠(i+1) Æ 2(„j log W)2/(Á2tj) Æ 2≠i.
Therefore, by similar arguments to the above lemma, we know that i(j) Ø i, which further
means that all sampled points from Rj are kept in Si(j). We thus get a uniform sample of size
at least („j log W/Á)2 from the interval Rj , which is enough for an additive Á

„j log W
tj(D/2j≠1)

approximation as every point in the interval is contributing at least D/2j≠1. However, as
V Ø TjD/2j≠1, this translates to a Á

„j log W

tj

Tj
V = Á

log W
V additive approximation. J

We now restate and prove Lemma 5 and Corollary 6.

I Lemma 23 (Lemma 5). The algorithm returns a (1 + O(Á)) multiplicative approximation.

3 Note that again by the conditions of the lemma on „j , the fact that „j approximates tj/Tj , and the
fact that Tj Ø C2 log W/Á

2, this value is always at most 1 and therefore such i exists.

APPROX/RANDOM 2020

50:20 Streaming Complexity of SVMs

Proof. Let us consider the following cases separately.
For j = 0, we get the exact contribution of the points in R0.
For j where iÕ(j) = ≠1, we know by lemma 17 that tj

Tj
Æ 2Á/ log W . Therefore the total

contribution of all Vj for such j is at most 2ÁV .
Moreover, whenever i(j) = ≠1, using Lemmas 19 and 21, we know that Vj Æ V (Á/ log W).
Summing over all such j, we get a total additive error of ÁV .
Now consider all j Ø 1 such that „j Ø 1

log W
. By Lemma 19 and Lemma 20, we get a

(1 + 2Á) multiplicative approximation of their contribution.
Finally consider all j Ø 1 such that Á

log W
Æ „j Æ 1

log W
. If Vj Ø V (Á/ log W), by lemma

22, we get an additive Á

log W
V approximation of their contribution. Summing over all

such j, this will give a (1 + Á) multiplicative approximation.
However if Vj < V (Á/ log W) and i(j) ”= ≠1 for such j, it means that we have sampled
points in Rj with probability 2≠i(j) and potentially kept only some of them in Si(j)

this only causes an under estimation of the contribution of Rj . However, the samples
that the algorithm has chosen to keep in Si might be biased towards the smaller end
of the interval, i.e., D/2j≠1, however this can only cause an over estimation by a factor
of 2. Therefore, for such a j, we have 0 Æ

q
xœSi(j)flRj

2i(q ≠ x) Æ 2(1 + Á)Vj . Again
because Vj Æ V Á/ log W , the total error of such j will be at most a multiplicative (1 + Á)
factor. J

I Corollary 24 (Corollary 6). There exists a one pass streaming algorithm that computes
a (1 + Á) multiplicative approximation for point estimation variant of the problem in one
dimensional case. Moreover, if the points come from [W], the space usage of the algorithm is
O(log

2
n·log W

Á
(log n + 1/Á)) bits.

Proof. Note that in the above algorithm we do not need to consider Rj for which j Ø
log n2 = 2 log n, as the overall contribution of such points to the solution is as most D/n
whereas the value of the solution is at least D. Thus we can bound one of the log W in the
bound of Observation 4 by log n. J

B Multiplicative point estimation lower bound

Proof. We prove this theorem by a reduction from the standard Augmented Indexing
problem. In this problem, Alice is given a bit string s of length m and Bob has an index
i œ [m] as well as bits s1, . . . , si≠1. The goal is for Alice to send a message to Bob so that he
can recover si, the ith bit in Alice’s string. It is a standard fact that this requires �(m) bits.

Case of d = 1. First consider the one dimensional case and let r = 1/
Ô

Á. Suppose that
Alice holds a string of length r, termed s1 . . . sr. From that, she will construct an instance
of our point estimation sketching problem. For each 0 Æ i < r, if her ith bit is one, she
will put n/r = n

Ô
Á points in position 3i/r = 3i

Ô
Á. Otherwise if the bit is 0, she will not

put any point there. Thus all points will be positioned in [0, 1) with the diameter less
than 1.
To learn the ith bit, Bob will query the presumed sketch with b = 3(i + 1)

Ô
Á, obtaining

a value v. Bob will subtract the contribution from the points associated with the first
i ≠ 1 bits. Note that the resulting value is 1

n
· si · n

Ô
Á · 3

Ô
Á, up to an additive error Á.

Therefore it is possible to recover the value of the encoded bit. Hence the one-dimensional
point estimation problem cannot be solved in space less than �(r) = �(1/

Ô
Á).

A. Andoni, C. Burns, Y. Li, S. Mahabadi, and D. P. Woodru� 50:21

Case of d = 2. Next, consider the two dimensional case, and for parameters s and r (to be
specified later), consider the s ◊ r potential positions inside a circle of unit radius. More
specifically, for 1 Æ i Æ s, 1 Æ j Æ r, the (i, j)-th position is the point at angle 2fii/s and
at radius 1 ≠ j≠1

2r
. These positions correspond to the sr bits in the index problem held by

Alice. For the ((j ≠ 1)s + i)-th bit in her bit-string, Alice will put n/(sr) actual points at
the (i, j)-th position described above i� the corresponding bit is equal to 1. She will then
send her point set to Bob.
Bob can recover any bit of Alice using hyperplane queries. Specifically, in order to figure
out the ((j ≠ 1)s + i)-th bit of Alice, Bob can ask the hyper-plane corresponding to
◊ = 2fii/s and b = 1 ≠ j/(2r); and subtract the contribution of points corresponding to
bits up to ((j ≠ 1)s + i). Note that, if there is no point at that location, the result should
be 0, otherwise it should be (n/(sr)) · (1/(2r)). Thus, if the algorithm has an additive
approximation less than 1

3
(n/(sr)) · (1/(2r)), it can correctly recover the respective bit in

Alice’s input.
Also, note that the above means that no multiplicative approximation is possible unless
Alice sends s bits. But setting s = n and r = 1, this will require Alice to send all her
input to Bob.
Note that for the hyperplane to include only the ith point from the tier j circle, we
need to set r so that 1/(2r) ¥ (1 ≠ cos(2fi/s)) ¥ 2fi2/s2. Thus we need additive
approximation �(n/s5). We set s = Á≠1/5, and get that the total size of the sketch is at
least �(sr) = �(Á≠3/5).

Case of d > 2. To generalize the result to higher dimensions, we put s points uniformly on
the d ≠ 1 dimensional unit sphere and repeat this for r di�erent radii as before. More
precisely, using we put an ¸-net on the surface of the unit sphere. It is a standard fact
that we can have s = �(1/¸)d≠1 points on the surface so that their pairwise distance is at
least ¸. Similar to the two-dimensional case, we have that (1/2r) ¥ (1 ≠ cos(O(fi/¸))) ¥
O(1/¸2). Therefore, the additive approximation the algorithm can tolerate is n

sr
· 1

2r

which should be at most nÁ and therefore, we get that Á = 1/(sr2). Inserting the
values of s and r using the value of ¸, we get that Á = ¸d+3. As the space lower bound
for the index problem is �(sr), we get that the space requirement for our problem is
sr = 1/(Ár) = ¸2/Á = Á2/(d+3)/Á = Á≠ d+1

d+3 . J

C Additive point estimation upper bounds

C.1 d = 1

Proof. We now argue the correctness and space complexity of the algorithm given in
Theorem 9. For correctness, the output of a query q accounts for all the data points entirely
to the left of the interval Iv(q), where v(q) is the unique leaf v(q) with q œ Iv(q). Hence the
error comes entirely from the unaccounted points in v(q) as well as the predecessors of v(q).
By construction any (non-empty) predecessor has diameter

Ô
Á and contains less than

Ô
Án

points, or, alternatively, has diameter less than Á (for expansion exception). Hence the error
is Æ Á for each predecessor, and O(Á log 1/Á) overall. As usual, we can rescale Á to obtain
error Á and correspondingly larger space.

For space complexity, note that the space is proportional to the size of the tree. The
tree has size at most O(1/

Ô
Á) since each leaf is either one of the original 2/

Ô
Á one or has a

parent node with
Ô

Án points. J

APPROX/RANDOM 2020

50:22 Streaming Complexity of SVMs

C.2 d = 2
Proof. We now analyze the procedure described in Theorem 10. It is clear that the total
space usage of the algorithm is at most order of the size of the quad-tree. The size of the tree
is bounded by O(1/Á) as follows. First, there at most O(1/Á) of the original nodes. Second,
each new children created has the property that its parent got associated with Án points,
hence at most 4/Á such children can be ever created.

We now analyze the error of the sketching algorithm. For the nodes that do not cross the
line L, the distances of their points are computed exactly. So we only need to argue about
the crossing nodes. First of all, note that we can ignore all leaves with more than Án points
at them as their diameter is less than 2Á2.

Let C be the set of leaves that cross the query line and have diameter at least 2Á2 (and
hence less than Án associated points). It is immediate to check that, in expectation, our
estimator outputs the correct value; in particular for Pv the set of points associated to a
node v:

E
C

ÿ

vœC
cv · max{0, D(rv, L)}

D
=

ÿ

vœC

ÿ

pœPv

1
cv

cv ·max{0, D(p, L)} =
ÿ

vœC

ÿ

pœPv

max{0, D(p, L)}.

Thus we only need to argue that it concentrates closely around its expectations, with constant
probability. Let us compute the variance. The point in each (non-empty) node is chosen
independently at random. Thus we can sum up the variances of each node. Consider a node
v with side length ¸ Ø Á2. Then we have that

Var [cv · max{0, D(rv, L)}] Æ
cvÿ

i=1

1
cv

· (cv · ¸)2 Æ c2

v
¸2 Æ (nÁ)2¸2.

Now note that any line can intersect only (1/¸) nodes with side length ¸, and thus the total
variance of all nodes with side length ¸ is at most (nÁ)2¸. Hence, the total variance over
all nodes (over all levels) is at most O(n2Á2

Ô
Á). Overall, the standard deviation is at most

O(nÁ5/4). By Chebyshev’s bound, the reported answer has an additive error of O(nÁ5/4)
with constant probability.

As stated before, replacing ÁÕ = �(Á4/5) we get that the algorithm is providing an additive
ÁÕ approximation using space Õ((ÁÕ)≠4/5), completing the proof of the result. J

