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Uncertainty Visualization of 2D Morse Complex
Ensembles Using Statistical Summary Maps
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Abstract—Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely
applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data
uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse
complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that
arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying
structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of
statistical summary maps — the probabilistic map, the significance map, and the survival map — to characterize the uncertain behaviors
of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.

Index Terms—Morse complexes, uncertainty visualization, topological data analysis

1 INTRODUCTION

ISUALIZATIONS play an integral role in effective data
Vstorytelling and decision-making. Understanding the
effects of data uncertainty on visualizations has been recog-
nized as one of the top research challenges [1], [2], [3], [4].
In this paper, we focus on the notion of aleatoric uncertainty,
which arises due to randomness in data acquisition and
processing, and “can not be reduced or removed by model
improvements or increases in measurement accuracy” [5].
Uncertainty visualization focuses on improving our ability
to reason about the data by communicating their aleatoric
uncertainties [5], and it has been shown to be effective in
practice [6]. A common practice to mitigate the effects of
uncertainty is to combine multiple simulations of a phe-
nomenon (e.g., with varying parameters and/or different
instruments) into an ensemble dataset; see [7] for a survey
on ensemble visualization.

In this paper, we investigate uncertainty in Morse com-
plexes for an ensemble of 2D scalar fields. Morse complexes
and Morse-Smale complexes [8] are topological descrip-
tors based on Morse theory [9], [10] that provide abstract
representations of the gradient flow behavior of scalar
fields [11]. Morse complexes [8] are the building blocks for
Morse-Smale complexes, which have shown great utility in
numerous scientific applications, from identifying burning
regions in combustion experiments [12] to counting bubbles
in mixing fluids [13]. They also appear in partition-based
regression [14], [15] and statistical inference [16].

Given a Morse function f defined on a manifold M,
f M — R, the Morse complex (and Morse-Smale complex)
of f decomposes M into regions (referred to as cells) with
uniform gradient behavior (see Sec. 2 for definitions). Morse
and Morse-Smale complexes have been extensively studied
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under both piecewise-linear (PL) and combinatorial settings
(see Sec. 3). However, visualization of these topological
descriptors in the face of uncertainty remains challenging.

The uncertainties of Morse complexes capture informa-
tion about their accuracy, reliability, and variability [1]. In
terms of accuracy, Gyulassy et al. [17] have introduced algo-
rithms that improve upon the geometric quality of Morse-
Smale complexes. Their algorithms are shown to produce
the correct results on average, and the standard deviation
approaches zero with increasing mesh resolution. In terms
of variability, Thompson et al. [18] have briefly mentioned a
Monte Carlo sampling method to quantify variations in the
boundaries of Morse cells.

Motivated by limited prior work in encoding uncertainty
of topological descriptors [19], [20], we study the uncer-
tainty in Morse complexes for an ensemble of 2D scalar
fields. Suppose n ensemble members are given as scalar
fields defined on a shared 2D domain, f1,---, f, : M — R,
where M C R%. We study an ensemble of Morse complexes
My, -+, M,, computed from these functions. We assume
that each ensemble member f; is drawn from some distri-
bution that is concentrated around a (potentially unknown)
ground truth function f, i.e., fi(z) ~ f(z) £ ¢;(z) for any
x € M (for some €;(z) > 0).

In this work, we propose vector-valued statistical sum-
mary maps for encoding and visualizing structural varia-
tions of Morse complexes. Specifically, we introduce three
types of statistical summary maps to characterize the un-
certain behavior of gradient flows and to be utilized in
uncertainty visualization for an ensemble: the probabilistic
map, the significance map, and the survival map. We give
an overview of our computational pipeline in Fig. 1 using a
toy example from the Ackley function [21].

In our first type of statistical summary map, the proba-
bilistic map P : M — R", we quantify the uncertainty based
on the destination of gradient flows. We assume that by
combining persistence simplification [22], [23] with certain
labeling strategy (e.g., via k-means clustering, mandatory
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Fig. 1. An overview of our computational pipeline with the Ackley dataset: (a) A 3D visualization of the ground truth Ackley function; (b) an input
ensemble of 2D Morse complexes associated with the functions sampled with noise from the ground truth; (c) mandatory local maxima of the
ensemble; (d) the Morse complex of the ground truth function; (e) the Morse complex of the mean field; (f-i) two ensemble members before (left)
and after (right) persistence simplification; (j-I) a probabilistic map visualized using color blending (j) with certain (k) and uncertain regions (l); (m-o)
a significance map visualized with its point-wise mean (m), variance (n), and entropy (0); and (p-r) a survival map visualized with its point-wise mean
(p), variance (q), and entropy (r) for the input ensemble. For the yellow-blue diverging colormap, blue means low and yellow means high value.

critical points [24], or Morse mapping [25]), the local max-
ima of each ensemble member share the same set of labels,
denoted as [I] = {1,2,---,l}. For the Ackley dataset, we
have | = 9 maxima after persistence simplification (see
Figs. 1d-i). Given such a shared labeling, for each point
2 € Min the domain, we compute a probability distribution
of its gradient destination across the ensemble. We visualize
the probabilistic map using color blending (i.e., weighted
mean values) in Figs. 1j-I, where each color represents a
distinct label; see Sec. 4 for details.

In our second type of statistical summary map, the
significance map 7 : M — R", we quantify the uncertainty
based on the persistence associated with the destination
of gradient flows. We assign a significance measure to each
point x € M, which is the persistence value of a maximum
to which the gradient flow originating at x terminates.
We visualize the significance map using point-wise mean,
variance, and entropy in Figs. 1m-o, respectively; see Sec. 5
for details.

In our third type of statistical summary map, the survival
map S : M — R", we study directional changes of gradient
flows as a result of persistence simplification. We assign
a survival measure for each point £ € M based on how
frequently it changes its gradient destinations during a
hierarchical simplification process. We visualize the survival
map (Figs. 1p-r) using its point-wise mean, variance, and
entropy; see Sec. 6 for details.

Contribution. In summary:

e We quantify the uncertainties in gradient behaviors
across a 2D Morse complex ensemble using a proba-

bilistic map P, a significance map Z, and a survival
map S.

s These vector-valued statistical summary maps cap-
ture the uncertainty based upon the variations
among gradient destinations (P), the persistence of
these destinations (Z), and the directional changes of
gradient flows (S), respectively.

e These maps employ information obtained during
persistence simplification of each ensemble member
at a fixed scale (P and Z) and across all scales (S),
respectively.

e We apply various uncertainty visualization tech-
niques, such as mean-, variance-, and entropy-
based visualization, as well as interactive probability
queries [26] to our statistical summary maps, to un-
derstand the Morse complex structural uncertainty
in synthetic and simulation datasets.

2 TECHNICAL BACKGROUND

Our approach has two technical gradients, namely Morse
complexes and persistence simplification.

Morse complexes. We focus on the construction of 2D Morse
complexes. For simplicity, let M C R? be a 2D smooth
manifold with a boundary (we further ignore the boundary
condition for most of our discussion). Let f : M — R be
a Morse function; V f denotes its gradient. A point x € M
is considered critical if V f(z) = 0; otherwise it is reqular.
At any regular point z, the gradient is well defined, and
integrating it in both ascending and descending directions
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traces out an integral line, which is a maximal path whose
tangent vectors agree with the gradient [27]. Each integral
line begins and ends at critical points. The descending man-
ifold surrounding a local maximum is defined as all the
points whose integral lines end at the local maximum. The
descending manifolds decompose the domain into 2-cells,
whereas critical points are the 0-cells, and integral lines
connecting the critical points are the 1-cells. As illustrated in
Fig. 2a, these cells form a complex called a Morse complex
of f, denoted as M = My (whenever f is clear from the
context). In particular, all the points inside a single 2-cell
have their local gradient flows (integral lines) ending at the
same local maximum (Fig. 2b).

Fig. 2. (a) Descending manifolds forming the Morse complex of f.
Colored regions are 2-cells, gray lines are 1-cells. (b) A zoomed-in view
of a 2-cell. The white arrows in (b) depict the gradient flows. Red, blue,
and gray points are 0-cells that denote local maxima, local minima, and
saddles, respectively.

Persistence and persistence simplification. Persistent ho-
mology is a tool in topological data analysis for quanti-
fying the significance of topological features. It is widely
used for data de-noising through persistence simplifica-
tion [22]. In visualization, persistence has been used to
simplify topological structures, such as Morse and Morse-
Smale complexes [8], [28]. For a 2D scalar function, we create
a hierarchical Morse complex [22] by simplifying persistence
pairs (in this case, maximum-saddle pairs) in the order of
increasing persistence values [23]. Persistence assigned to
each critical point in the complex intuitively describes the
scale at which a critical point disappears through simplifi-
cation. Persistence pairs can be simplified by successively
canceling pairs of critical points connected in the complex
with minimal persistence while avoiding certain degenerate
situations (see [23] for implementational details).

Fig. 3 illustrates the process of persistence simplification
for a 2D Morse complex. A saddle-maximum pair (z,x)
with the minimal persistence in Fig. 3a is simplified in
Fig. 3c (the respective 2D views are shown in Fig. 3b and
Fig. 3d). The process merges the orange cell into the green
cell. The gradient flows of all points in the orange cell
change their destination from x to y.

3 RELATED WORK

Representations of Morse-Smale complexes. Morse and
Morse-Smale complexes are defined for functions on smooth
d-manifolds. Moving from the smooth category to the dis-
crete category requires considerable effort to ensure struc-
tural integrity and to simulate differentiability [8]. In gen-
eral, Morse and Morse-Smale complexes can be represented

() (d)

Fig. 3. A 2D Morse complex before (a, b) and after (c, d) persistence
simplification. Both 3D (a, ¢) and 2D views (b, d) of the Morse complexes
are shown. A saddle-maximum pair (z, z) in (a) is simplified in (c). White
arrows depict the gradient flows.

explicitly or implicitly [23]. The first, an explicit represen-
tation, is computed in 2D [8] and 3D [29] for piecewise
linear (PL) functions defined on triangulated domains. The
second, an implicit representation, originates from Discrete
Morse theory [30] where a Morse-Smale complex is implic-
itly represented by a combinatorial gradient field [23]. We
present our results for the explicit representations of Morse
complexes, although our methods do not depend upon the
choice of the representation. Note that in image analysis, the
watershed algorithm [31] is analogous to the computation of
Morse complexes in low dimensions.

Uncertainty visualization of critical points and gradient
fields. The critical points and induced gradient field of a
scalar function characterize the structure of its correspond-
ing Morse complex. A few recent works have focused on
data uncertainty and its effects on the critical points and
gradient fields. Mihai and Westermann [32] proposed likeli-
hood visualizations of the critical points for an uncertain
scalar field, which was extended to Gaussian-distributed
uncertain scalar fields by Liebmann and Scheuermann [33].
Huettenberger et al. [34] exploited the idea of Pareto opti-
mality for predicting the positions of local extrema for mul-
tifield data. Guinther et al. [24] devised mandatory critical
regions as a way to segment the domain of uncertain data,
where at least one critical point of an unknown underlying
function is guaranteed to exist within a mandatory critical
region. Favelier et al. [35] developed persistence-based clus-
tering of ensemble members followed by mandatory critical
regions for visualizing positional uncertainties of critical
points. In this work, we leverage the idea of mandatory
critical regions in our probabilistic map (Sec. 4).
Pfaffelmoser et al. [36] analyzed the variability in gra-
dient fields induced by uncertain scalar fields, where gra-
dients are computed using the notion of central differences.
Otto et al. [37], [38] proposed Monte Carlo gradient sam-
pling for visualizing variations of pathlines in 2D and 3D
uncertain vector fields. Bhatia et al. [39] studied edge maps for

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3022359, IEEE

Transactions on Visualization and Computer Graphics

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

error analysis of uncertain gradient flows. Nagraj et al. [40]
proposed a measure to quantify gradient uncertainty for
multifield data.

Uncertainty visualization of topological descriptors. A
major challenge in visualizing topological descriptors is to
encode data uncertainty. Various uncertainty visualization
techniques [41], [42], [43] have been proposed to explore
structural variations of contour trees for noisy data. Recent
work by Yan et al. [20] studied structural averages of merge
trees in the context of uncertainty visualization. The analysis
and visualization of topological variations in the context of
uncertain data remains an open research challenge [19].

Several studies have addressed challenges associated
with level sets visualization in the face of uncertainty,
including contour boxplots [44], probabilistic marching
cubes [45], [46], and level set extraction from uncertain data
[47], [48], [49]. Multicharts for comparative 3D ensemble
visualization [50], dynamic volume lines [51], Gaussian
mixture data representations [52], and statistical volume vi-
sualization [53] are a few important contributions in volume
rendering for visualizing uncertainty.

4 PROBABILISTIC MAP

Using the probabilistic map P : M — R”, we quantify
the uncertainty based on the destinations of gradient flows.
Specifically, for each point x € M in the domain, we com-
pute a probability distribution of its gradient destination
across the ensemble. Given an ensemble of Morse complexes
My, -+, M,,, we combine persistence simplification with a
certain labeling strategy to obtain a shared label set for local
maxima of the ensemble members. Let [[] = {1,2,---,1}
denote such a label set. In other words, for each ensemble
member M;, its local maxima have labels that form a subset
of [I]. Now fix M;, we trace the gradient flow of each point
xr € M toward its destination, a local maximum y € M,
and assign to z the label of y; let a; : M — [l] denote
such an assignment. The probabilistic map P : M — R”"
is defined as a discrete probability distribution of values in
(a1(2),ag(x), -+ ,an(x)) for each € M.

Ackley dataset. We describe our pipeline for the probabilis-
tic map via a synthetic dataset, called the Ackley dataset.
Fig. 1a visualizes the Ackley function [21] f as the ground
truth. f is made into a Morse function using simulation
of simplicity [54]. f contains nine (local) maxima, which
produce nine 2-cells in its corresponding Morse complex in
Fig. 1d. We generate an ensemble of uncertain scalar fields
{fi}}—, by mixing f with a small amount of noise sampled
from a uniform distribution (ie., €;(z) ~ U(0,0.3 x py)),
where py is the persistence of the smallest topological fea-
ture (a maximum-saddle pair) in f. Two ensemble members
fi(x) ~ f(z) £ €;(z) are shown in Fig. 1f and 1h, respec-
tively. For comparison, we compute the mean field of the
ensemble, f = (3°, fi)/n and visualize its Morse complex
in Fig. 1e. The Morse complex of f (Fig. 1e) appears similar
to the ground truth (Fig. 1d); however, it does not capture
structural variations among the boundaries of 2-cells.

Persistence simplification and labeling. First, we perform a
pre-processing step that combines persistence simplification
with certain labeling strategy such that the maxima of each

4

ensemble member share the same set of labels, denoted
as [I] = {1,2,---,1}. There are three labeling strategies,
via k-means clustering, mandatory maxima [24], or Morse
mapping [25].

For the strategy based on k-means clustering, we use a
set of n persistence graphs (Fig. 4a) derived for n ensemble
members, each of which shows the number of maxima as
a function of persistence [55], to guide the selection of a
simplification scale. For a fixed M;, each maximum has
its associate persistence value that indicates at which scale
this feature would be simplified, and thus, represents its
significance [56]. The shape of the persistence graph, in
particular, a plateau, indicates a stable range of scales to
separate noise from features [56]. Combining the persistence
graphs (Fig. 4a) and spaghetti plots of 1-cells (Fig. 4b) helps
us identify a scale for which we observe an agreement in the
number maxima across the ensemble. We demonstrate such
a process in Fig. 4 where [ is determined to be 9 with the aid
of persistence graphs and spaghetti plots. We then apply k-
means clustering (setting & = [) to the maxima across all
ensemble members, where each maximum of a simplified

M; is assigned a label in [I].

Maxima Count

Persistence

Fig. 4. The persistence simplification process for the Ackley dataset.
(a) By overlaying persistence graphs, all ensemble members have the
same number (i.e., 9) of maxima (dotted pink line) for a scale at 0.3
within a common stable region (dotted red line). (b) At scale 0.3, overlaid
spaghetti plots of 1-cells (i.e., 2-cell boundaries) for the simplified Morse
complexes across the ensemble exhibit a significant spatial variation,
but the topology of these 1-cells remains consistent.

For the strategy based on mandatory maxima, we apply
the technique of Giinther et al. [24] to an ensemble of uncer-
tain Ackley functions { f;}7—,, resulting in { = 9 mandatory
maxima, which are represented by different colors in Fig. 1c.
Mandatory maxima are defined to be spatial regions and
function ranges where local maxima have to occur across
the ensemble [24]. We then apply persistence simplification
to each Morse complex M; until we are left with [ max-
ima. Subsequently, we associate each maxima to its nearest
mandatory maxima to obtain its label in [I].

For the strategy based on Morse mapping, we employ
a method that has been applied to the tracking of critical
points [25]. It builds upon the partition of the domain pro-
vided by a Morse complex. For a pair of Morse complexes
M; and Mj, we say a maxima & € M; is weakly mapped to
a maxima y € My if z belongs to the 2-cell surrounding y
in My. If = is mapped to y and y is mapped to z, then x is
strongly mapped to y. We choose an ensemble member with a
minimum number of maxima as a pivot M,. For each other
member, we assign labels to its maxima by computing both
weak and strong mappings against M.

Computing the probabilistic map. Now, for each M;,,
a; : M — [l] assigns each x € M the label of its
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gradient destination (another maxima). The probabilistic
map P : M — R! is defined to be a discrete probability
distribution of values in (a1(x),--- ,an(x)). Let Pj(x) be
the number of times x is assigned a label j € [I] divided
by n. Then P(z) = (P1(x),--- ,Pi(z)). For a point z € M,
if Pj(z) = 1 (implying P, = O for all k& # j) for some j,
then z is a point with certainty; otherwise, it is a point with
uncertainty. Points with certainty are those whose gradient
flows to the maxima with the same label, whereas points
with uncertainty are those whose gradient destinations vary
across ensemble members.

Visualizing P via color blending. Fig. 1j visualizes P for
the Ackley dataset via color blending. Suppose each label is
assigned a color, {c1, - , ¢}, where ¢; € R? (a RGB triplet).
Point z is then assigned a color as ¥;¢;P;(x). Fig. 1k shows
the points with certainty in color. For example, all orange
points have their gradients flow to the maxima with the
same label. The white regions are points with uncertainty.
Points with uncertainty are further visualized with color in
Fig. 11 based on their proximity to the points with certainty.
For a pair of adjacent regions with different labels ¢ and j
(e.g., orange vs. light green), a black contour contains all
points © € M such that P;(z) = 0.5 for some label i; we
refer to such black contours as expected boundaries.

Visualizing P via entropy and interactive queries. Fur-
thermore, we compute and visualize point-wise entropy
of P. Given P : M — R!, the Shannon entropy [57] at
z € M is computed as E(z) = — Y\=) Pi(x)logaPi ().
Since uniform probability yields maximum uncertainty and
therefore maximum entropy, points with high entropy rep-
resent positions whose gradient destinations have higher
unpredictability. As illustrated in Fig. 5, points with high
entropy (E > 1) are concentrated within the four corners,
because their gradient destinations are (approximately) uni-
formly distributed across four maxima.

S S el

- - "
(a) Entropy >= 1 (b) Entropy >= 0.75
Fig. 5. Visualizing P with point-wise entropy.

I I

(c) Entropy >= 0.5

To further understand the points with uncertainty in
P (Fig. 1j), we provide interactive queries based on the
framework of Potter et al. [26]. Points at selected locations
are queried of its corresponding distribution P (Fig. 6).

07 Selection x=0 (6,7) 07

Selection x=1 (33,21

123 4567 89 12345617809
i i

Fig. 6. Interactive queries of P for the Ackley dataset. Two query loca-
tions labeled x = 0 and = = 1 are selected. P;(x) associated with each
query location is visualized using a bar chart, where ¢ denotes labels.

5 SIGNIFICANCE MAP

Using the significance map Z : M — R", we quantify the
uncertainty of a point based on the persistence associated
with its gradient destinations at a fixed scale across the
ensemble. First, we use persistence graphs [55] in combination
with spaghetti plots (Fig. 4) to identify the scale of persis-
tence simplification across the ensemble. Second, we apply
persistence simplification with the identified simplification
scale to each Morse complex M;. We assign a significance
measure to each point x € M of a simplified ensemble
member M;, which is equal to the persistence value of a local
maximum in M; to which the gradient flow originating at
x terminates; let 5; : M — R denote such an assignment.
Figs. 7a-b visualize significance assignments across two
ensemble members for the Ackley dataset. The significance
map Z : M — R" is defined to be a vector of significance
measures across the ensemble (8;(x), B2(x), .., Bn(z)) for
each point x € M.

Selection x=0 (7,32)

Selection x=1 (7,18)
0.05 1

o1

gnua
5003
Boo02

Probability
£2 88

oo

a
0.00 T T 00| NI T
06 08 10 12 14 o6 08 10 12 14

Significance Significance

@ ©) (f)
Fig. 7. (a-b) Visualization of significance assignments for two simplified
Morse complexes of the Ackley dataset. For the yellow-blue diverging
colormap, blue means low and yellow means high value. (c) Quantized
visualization of point-wise mean of Z. (d-f) Visualizing the significance
map with point-wise mean coupled with interactive queries.

Visualize 7 with mean, variance, and entropy. The map 7
can be visualized using its point-wise mean, variance, and
entropy (Figs. 1m-0). The point-wise mean of Z is defined
as B := 13, 3. To highlight further the variability of 1-
cells, we employ a quantized visualization by dividing the
range of Z into a number of intervals and visualize the
pre-image of each interval using a miscellaneous colormap
(Figs. 7c). The point-wise variance is defined as Var(f) :=
15:(Bi = B)*. The point-wise Shanon entropy is computed
by obtaining a probability distributions of the significance
values fB1(z), - ,Bn(x) using kernel density estimation.
For example, via interactive queries, such distributions at
the locations with labels x = 0 and x = 1 are visualized in
Figs. 7e-f, respectively.

To capture structural variations in a local neighborhood
of a point, we also study variance and entropy computed in
a 5 x 5 patch centered at a given point. This is referred to
as the patch-wise variance/entropy. They can be considered
as smoothing filters that emphasize and enhance uncertain
features in local neighborhoods, see Sec. 7.1 for details.
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6 SURVIVAL MAP

Using the survival map S : M — R", we study directional
changes of gradient flows as a result of persistence sim-
plification across all scales. For a fixed ensemble member
M;, we first apply a hierarchical persistence simplification
of M; using persistence as a scale parameter. In the case
of a 2D Morse complex, we focus on canceling maximum-
saddle pairs until only the global maximum remains. We
assign a survival measure for each point x € M based on how
frequently it changes its gradient destinations during the
simplification process. The less frequently x changes its gra-
dient destinations, the greater is its survival measure, and
vice versa. In other words, the survival measure quantifies
the survivability of consistent flow behaviors. Let v, : M — R
denote such an assignment. The survival map S : M — R"
is defined to be a vector of survival measures across the
ensemble, (v1(x),v2(z), -+ ,yn(x)) for each x € M.

Algorithmic details. To compute v : Ml — R for a particular
ensemble member, we use Fig. 3 to illustrate one step of
our algorithm with a toy example. Suppose we simplify the
maximum-saddle pair (z, z) with the lowest persistence A.
As a result, the gradient flows that terminate at  (Fig. 3a)
are redirected to the nearby maxima y (Fig. 3b), effectively
merging the orange 2-cell surrounding x into the green 2-
cell surrounding y. v : M — R is increased by A for all
points in the green 2-cell of Fig. 3a, and it is unchanged
everywhere else in the domain. In other words, points in
the green region (Fig. 3a) have “survived” the simplification
without changing their gradient destinations; therefore, they
are “rewarded” the amount \. Therefore, -y captures the sur-
vivability of local gradient destinations after simplification.

Following the above process, we compute v; : M — R
for each ensemble member. We initialize ~; to be zero
everywhere. Let {\1,---,\,,} denote the persistence of
maximum-saddle pairs to be canceled in an increasing order.
We perform n; steps of persistence simplification. For each
step j (1 < 5 < ny), v is incremented within a local
neighborhood where the gradient flow destinations survive
(remain unchanged) after simplification. The above process
is repeated until the entire Morse complex is simplified into
a single 2-cell surrounding the global maximum (j = n;).

Visualize S with mean, variance, and entropy. Figs. 1p-
r visualize § via its point-wise mean, variance, and en-
tropy, respectively. For instance, the mean is defined as
p(x) = L3 | 7i(x). The yellow region in Fig. 1p suggests
the existence of a relatively tall peak, and the dark blue
regions represent the existence of relatively low peaks across
all ensemble members. This behavior is consistent with the
ground truth Ackley function depicted in Fig. 1a.

7 RESULTS

We demonstrate the utility of our proposed statistical sum-
mary maps for gaining insights into Morse complex uncer-
tainty for simulated and observed scientific datasets.

7.1 Wind Dataset

We first analyze a set of 15 vector fields (velocity) from a
wind dataset of the IRI/LDEO Climate Data Library. The

6

dataset pressure_level_wind is obtained using the NCEP en-
semble system' [58] with the forecast and perturbed parameters.
We analyze the dataset with a pressure level at 200 hPA and
a forecast hour at 0 on January 01, 2015 over a spatial range
of 150°W-49.5°W and 90°N-10°S. The sampling resolution
for the grid is 1.5° along each spatial dimension, resulting in
a 68x68 grid representing the domain of interest. We obtain
an ensemble of 15 Morse complexes computed from the
negation of velocity vector magnitudes. That is, we focus
on features surrounding the local minima of the velocity
magnitude scalar field that correspond to the critical points
of vector fields. Fig. 8a shows the mean vector field.

. ;
@) (b) ©

Fig. 8. Wind dataset. (a) Visualization of the negated mean velocity
magnitude field (red means low and blue means high velocity magni-
tude); and its corresponding Morse complexes before (b) and after (c)
persistence simplification.

Persistence simplification. Guided by persistence graphs
and spaghetti plots, we first apply persistence simplification
to obtain a common label set across all ensemble members.
From the persistence graphs in Fig. 9a, we identify a com-
mon plateau that indicates a stable range of scales to sep-
arate features from noise. In particular, at a scale 7 (dotted
red line) within the plateau, all members have 11 maxima
after simplification (dotted pink line). Spaghetti plots of the
simplified Morse complexes with 11 maxima are shown in
Fig. 9b. Although there are significant spatial variations of
1-cells, their topology remain sufficiently consistent across
the ensemble. Therefore, we analyze the ensemble at the
chosen scale where each member contains 11 maxima after
simplification.

—
)

(b)
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o 7 20 40
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Fig. 9. Wind dataset: persistence simplification. (a) Persistence graphs.
(b) Spaghetti plots of the simplified Morse complexes with 11 cells.

For comparison, Fig. 8b visualizes the Morse complex of
the mean vector field, which is also simplified to contain 11
maxima in Fig. 8c. Fig. 10 visualizes the Morse complexes
for two ensemble members before and after simplification.
The spatial variations of 1-cells appear to be substantial,
even after simplification. Although persistence simplifica-
tion of the mean field (Fig. 8c) gives us a high-level view

1. http:/ /iridl.1deo.columbia.edu/SOURCES/ ECMWE/.S2S/
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of its gradient behavior, it does not give us insight into
positional uncertainties of 1-cells (i.e., 2-cell boundaries).

(@)

Fig. 10. Wind dataset: Morse complexes of two ensemble members
before (a, c) and after (b, d) persistence simplification.

Labeling. Next, we apply k-means clustering to find label
correspondences across the simplified ensemble members.
Fig. 11a shows a scatter plot of the maxima across sim-
plified ensemble members. Fig. 11b illustrates label corre-
spondences after k-means clustering (where & = 11). For
comparison, we also experiment with an alternative labeling
strategy based on mandatory maxima. Fig. 11c visualizes
11 mandatory maxima computed using the framework of
Glnther ef al. [24]. Fig. 11d shows label assignment of each
maximum to its nearest mandatory maxima. For the wind
dataset, both labeling strategies (k-means vs. mandatory
critical points) provide identical results.

© % ® 5} ‘% & R (o} ‘% J.
(] 6 ]
%% ‘3' \ %3
0 & o 0 & e g‘Q
0O o ©P| e o Q¥ - ] e o @

@ (b) © @

Fig. 11. Labeling with k-means clustering: (a) a scatter plot of maxima
across simplified ensemble members; (b) the k-means clustering of
maxima with £ = 11. Labeling with mandatory maxima: (c) mandatory
maxima are shown as colored regions; (d) each ensemble maximum is
assigned the label of its nearest mandatory maximum.

Probabilistic map. The probabilistic map P is computed
and visualized using color blending in Fig. 12a. In Fig. 12b,
P is visualized based on point-wise entropy (thresholded at
> 0.9). Via interactive queries, the gradient flows passing
through location = = 0 have a high probability of terminat-
ing at maxima associated with labels 4 (orange) or 9 (violet);
while the gradients passing through = = 1 may terminate at
maxima with labels 2 (light blue), 6 (red), or 7 (light green).

Significance map. The significance map 7 is visualized via
its point-wise mean, patch-wise variance, and entropy, as il-
lustrated in Fig. 13. When 7 is visualized with its mean in (a)
and (b), it captures uncertain segmentation of the domain.
In particular, the yellow region in (a) encloses points with
high average significance (persistence) and highlights an im-
portant feature shared across all members. The regions with
higher fluctuations in colors in the quantized visualization
(b) represent the positional uncertainty of 1-cells.

The variance-based visualization of Z captures how far
a set of significant values is spread out from their mean
at a local neighborhood. In particular, the yellow region in
Fig. 13d highlights the points with the largest variation.
The entropy-based visualization of Z in Fig. 13e high-
lights neighborhoods that exhibit relatively high random-
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certain regions

uncertain regions

Selection x=0 (6,19)
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Fig. 12. Wind dataset: (a) P is visualized using color blending, including
points with certainty and points with uncertainty (black contours in the
uncertain region denote the expected Morse complex boundaries); (b)
‘P is visualized based on point-wise entropy thresholded at 0.9.

Fig. 13. Wind dataset: (a-b) Z is visualized with its point-wise mean
(a), together with its quantized visualization (b); (c) spaghetti plots of
1-cells; (d-e) Z is visualized with its patch-wise variance and entropy,
respectively; (f) aggregate segmentation from [18]. For the yellow-blue
diverging colormap, blue means low and yellow means high value.

ness in their significance values, thus capturing boundary
uncertainty exceptionally well. Points with high entropy,
e.g., those enclosed by the red dotted squares in (e), are
shown to be consistent with the areas with large spatial
variations in the spaghetti plots (c). For comparison, our
entropy-based visualization (e) complements the aggregate
segmentation of Thompson et al. [18] in (f), which highlights
the points that are crossed frequently by the 1-cells across
ensembles. It captures the frequencies of points serving as 2-
cell boundaries, whereas the entropy captures the structural
variabilities of boundaries in local neighborhoods.

7.2 Navier Stokes Simulation Dataset

We study a time-dependent flow simulation dataset [59]%.
The dataset originates from a direct numerical Navier Stokes
simulation by Camarri et al. [59]. It is a 3D flow around
a confined square cylinder where the square cylinder has
been positioned symmetrically between two parallel walls.

2. http:/ /tinoweinkauf.net/notes/squarecylinder.html
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Camarri et al. used a uniformly resampled version, which
was provided by Tino Weinkauf and used by von Funck et
al. [60] for smoke visualization. We consider an ensemble
consisting of velocity vector fields from time steps 60-66 of
the 3D simulation. We take a 2D slice perpendicular to the z-
axis (z = 24) and use velocity magnitude as the underlying
scalar fields.

Persistence simplification. First, we apply persistence sim-
plification to obtain a common label set across all ensemble
members, guided by persistence graphs and spaghetti plots
in Fig. 14. In particular, at the selected simplification scale
(dotted red line) in Fig. 14a, 5 out of 7 (70%) members agree
on the number of maxima (10) after simplification.
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Fig. 14. Navier Stokes simulation dataset: persistence simplification. (a)

Persistence graphs. (b) Spaghetti plots of the simplified Morse com-

plexes.

We illustrate three ensemble members at time steps 60,
63, and 66, in Figs. 15a-c, respectively. For each time step,
we visualize, from left to right, the underlying scalar field,
together with Morse complexes before and after persistence
simplification. The mean field (Fig. 15d), on the other hand,
misses a significant number of features compared to individ-
ual members due to the spatial shift of critical points across
the ensemble. Furthermore, the mean field Morse complex
does not give any insight into its structural uncertainty.

Bel B0
1]

Fig. 15. Navier Stokes simulation dataset. (a-c) Three ensemble mem-
bers at time steps 60, 63, and 66, respectively. (d) Morse complex of
the mean field. Each subfigure visualizes, from left to right, the velocity
magnitude field, its corresponding Morse complexes before and after
persistence simplification.
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However, spaghetti plots of the simplified Morse com-
plexes in Fig. 14b do not display the topological consistency
of 1-cells as in Sec. 7.1. For such cases, we demonstrate
below how Morse mapping may be an effective strategy for
our labeling process.

Labeling. In Fig.16, we compare the three labeling strate-
gies in finding label correspondences across the simplified
ensemble members. Since the mandatory maxima strategy
extracts the common denominator of maxima across all
ensemble members, its results are sensitive to noise in the
data. Specifically, for ensembles with relatively large noise,
the number of mandatory maxima tend to be small (3),
as illustrated in Fig. 16d. If we simplify each ensemble
member to have 3 maxima and assign each maximum the
label of its nearest mandatory maximum, we will miss most
of the features in the ensemble (Fig. 16e). As illustrated
Fig. 16a and Fig. 16(b-c), the Morse mapping and the k-
means clustering strategies provide slightly different results.
The Morse mapping strategy (Fig. 16a) does not require the
simplified ensemble members to have the same number of
maxima, and therefore it is more flexible than the k-means
clustering.

boq

@ (b) (© () ©

Fig. 16. Navier Stokes simulation dataset. (a) Labeling with Morse
mapping. (b-c) Labeling with k-means clustering. (d-e) Labeling with
mandatory maxima, which are shown as colored regions in (d); ensem-
ble maxima are labeled with nearest mandatory maxima (e).

00 @O
o0 00

Probabilistic map. We further compare and contrast the
k-means clustering and Morse mapping labeling strategies
for the computation of the probabilistic map P in Fig. 17.
The probabilistic map visualizations using either labeling
strategy give insight into the positional uncertainty of the
expected 2-cell boundaries that are not observable via the
mean field (Fig. 15d). However, as illustrated in Fig. 17b, the
expected 2-cell boundaries using Morse mapping appear to
be more consistent with respect to the underlying topology
of individual ensemble members than those obtained using
k-means clustering in Fig. 17a and the mean field in Fig. 15d.

Significance map and survival map. Figs. 18a-c visualize
the significance maps 7 via point-wise mean, patch-wise
variance and entropy, respectively. The region enclosed by
the red dotted box within the spaghetti plots in Fig. 14b
shows a lack of spatial consistency in the 1-cells across
ensemble members. The boundary of such a region is high-
lighted via the variance in Fig. 18b (white dotted box).

On the other hand, the survival map S visualized via its
mean highlights the yellow feature immediately behind the
square cylinder (white dotted box) in Fig. 18d, which has
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Fig. 17. Navier Stokes simulation dataset: the map P is computed and
visualized based upon k-means clustering (a) and Morse-mapping (b)
labeling strategies, respectively. Black contours in the uncertain region
denote the expected 2-cell boundaries in both subfigures.

uncertain

the highest survival measure across all scales. The patch-
wise variance and entropy of S (Figs. 18e-f) both capture
high variabilities along its boundaries (white dotted boxes).

l
-

(@) (b) © @ ©) (f)
Fig. 18. Navier Stokes simulation dataset: (a-c) Z is visualized with
its point-wise mean in (a), patch-wise variance in (b), and patch-wise
entropy in (c); (d-f) S is visualized with its point-wise mean in (d), patch-
wise variance in (e), and patch-wise entropy in (f). For the yellow-blue
diverging colormap, blue means low and yellow means high value.

7.3 Red Sea Eddy Simulation Dataset

We study the eddy simulation of the Red Sea, which is
available via the 2020 IEEE SciVis Contest’. Analyzing the
effects of ocean eddies is important in oceanology for gain-
ing insights into the transport of energy and biogeochem-
ical particles [61]. In the Red Sea dataset, each ensemble
member is generated based on the MIT ocean general cir-
culation model (MITgcm) and the Data Research Testbed
(DART) [62] with varying initial conditions. The data are
obtained by sampling from a 3D domain of resolution
500 x 500 x 50, and ensemble members are sampled from
60 time steps to represent a time-varying 3D flow [63]. For
our analysis, we use an ensemble of 10 members, in which
each member corresponds to a 2D slice perpendicular to
the z-axis (¢ = 1) for time step 40. Each ensemble member
represents a velocity vector field, and Morse complexes are
computed from the negation of velocity magnitudes of each
ensemble member to focus on critical points of the vector
fields.

Persistence simplification. First, we apply persistence sim-
plification to obtain a common label set across all ensemble
members, guided by persistence graphs and spaghetti plots

3. https:/ /kaust-vislab.github.io /SciVis2020/
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in Fig. 19. In particular, at the selected simplification scale
(dotted red line) in Fig. 19a, 5 of 10 (50%) members agree
on the number of maxima (11) after simplification.
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Fig. 19. Red Sea dataset: persistence simplification. (a) Persistence

graphs. (b) Spaghetti plots of the simplified Morse complexes.

We illustrate three ensemble members in Figs. 20a-c,
respectively. For each ensemble member, its corresponding
simplified Morse complex contains 2-cells that highlight
vortical features of ocean (white boxes). The mean field
Morse complex in Fig. 20d, however, does not give any in-
sight into the structural uncertainty, that is, the variabilities
of these features across the ensemble.

Fig. 20. Red Sea dataset. (a-c) Three ensemble members together
with (d) the mean field. Each subfigure visualizes, from left to right,
the negated velocity magnitude field (red means low and blue means
high velocity magnitude), its corresponding Morse complexes before and
after persistence simplification.

On the other hand, spaghetti plots of the simplified
Morse complexes in Fig. 19b do not display the topological
consistency of 1-cells as in Sec. 7.1. In such cases, we
demonstrate below how Morse mapping may be an effective
strategy for our labeling process.

Labeling. In Fig. 21, we compare the three labeling strate-
gies. As illustrated in Fig. 21d, the number of mandatory
maxima is small (3) since ensemble members have large
variations. Simplifying each ensemble member to have 3
maxima will miss most of the features of interest (Fig. 21e).
The Morse mapping (Fig. 21a) and the k-means clustering
(Fig. 21b-c) strategies, on the other hand, provide reasonable
results; the Morse mapping is more flexible without requir-
ing the same number of maxima across the ensemble.
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Fig. 21. Red Sea dataset. (a) Labeling with Morse mapping. (b-c)
Labeling with k-means clustering. (d) Mandatory maxima are shown as
colored regions. (e) Labeling with nearest mandatory maxima.

Probabilistic map. We visualize the probabilistic map using
both the k-means clustering and Morse mapping labeling
strategies. Both visualizations in Fig. 22 highlight positional
uncertainty of 2-cell boundaries invisible to the mean field
of Fig. 20d. However, the expected 2-cell boundaries using
Morse mapping appear to be more spatially stable than
those obtained via k-means clustering.

@

4
certain

uncertain certain uncertain

Fig. 22. Red Sea dataset: the map P is visualized based on (a) k-means
clustering and (b) Morse mapping strategies.

Figs. 23a-c visualize our entropy-based exploration of
probabilistic map for lower entropy thresholds of 1.5, 1.25,
and 1, respectively. Figs. 23d-f carve out regions in the
domain, where the ensemble agrees in their gradient des-
tinations for at least 80%, 70%, and 60% members, respec-
tively. Thus, the shared features across the ensemble are

discoverable in Figs. 23d-f.

ik @

(@) (b) (© (d) ©) ()
Fig. 23. Red Sea dataset: (a-c) entropy-based exploration of uncertain
regions representing entropy greater than or equal to 1.5 in (a), 1.25
in (b), and 1 in (c), respectively; (d-f) visualizations of the regions that
agree in their gradient destinations for at least 80% members in (d), 70%
members in (e), and 60% members in (f), respectively.

Significance map and survival map. Figs. 24a-c visualize
the significance maps 7 via point-wise mean, patch-wise

10

variance and entropy, respectively. The significance map
7 in Fig. 24a highlights the presence of a shared feature
(white dotted box) with relatively high persistence. The
same region (white dotted box) also is of high variance
(Fig. 24b) and high entropy (Fig. 24c). Interestingly, the
survival map S appears to be low for this region (white
dotted box in Fig. 24d), which requires further investigation.

(@) () © () © ®
Fig. 24. Red Sea dataset: (a-c) Z is visualized with its point-wise mean
in (a), patch-wise variance in (b), and patch-wise entropy in (c); (d-f) S
is visualized with its point-wise mean in (d), patch-wise variance in (e),
and patch-wise entropy in (f). For the yellow-blue diverging colormap,
blue means low and yellow means high value.

8 CONCLUSION

We propose statistical summary maps as new abstractions
for quantifying structural variations among ensembles of
Morse complexes that arise from 2D uncertain scalar fields.
We introduce three types of statistical summary maps, the
probabilistic map P, the significance map Z, and the sur-
vival map S. We take advantage of persistence simplifica-
tion, mandatory critical points, or Morse mapping, to derive
labeling strategies for ensemble members. We employ tech-
niques such as color blending, entropy-based visualization,
interactive queries, and quantized visualizations to under-
stand the structural variability captured by our statistical
summary maps.

Regarding labeling strategies, we demonstrate by ex-
periments in Sec. 7.1 and the supplementary material that
mandatory maxima capture almost all common features
when there is a small amount of noise across the ensem-
ble. However, when the ensemble members become quite
noisy, the number of mandatory critical points is signifi-
cantly smaller than the number of maxima in any ensemble
member, rendering the label assignment unreliable (Sec. 7.2
and 7.3). The k-means clustering and the Morse mapping
strategies are more general, with the latter being the most
flexible when ensemble members are not required to have
the same number of maxima.

For future work, we plan to extend our work for Morse
complexes beyond 2D. Although Morse complexes may be
approximated in higher dimensions, visualizing uncertain-
ties in higher dimensions will require new visual mappings.
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