
1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

1

SpotSDC: Revealing the Silent Data Corruption
Propagation in High-Performance Computing

Systems
Zhimin Li, Harshitha Menon, Dan Maljovec, Yarden Livnat, Member, IEEE, Shusen Liu,

Kathryn Mohror, Member, IEEE, Peer-Timo Bremer, Member, IEEE, and Valerio Pascucci, Member, IEEE

Abstract—The trend of rapid technology scaling is expected to make the hardware of high-performance computing (HPC) systems
more susceptible to computational errors due to random bit flips. Some bit flips may cause a program to crash or have a minimal effect
on the output, but others may lead to silent data corruption (SDC), i.e., undetected yet significant output errors. Classical fault injection
analysis methods employ uniform sampling of random bit flips during program execution to derive a statistical resiliency profile.
However, summarizing such fault injection result with sufficient detail is difficult, and understanding the behavior of the fault-corrupted
program is still a challenge. In this work, we introduce SpotSDC, a visualization system to facilitate the analysis of a program’s
resilience to SDC. SpotSDC provides multiple perspectives at various levels of detail of the impact on the output relative to where in the
source code the flipped bit occurs, which bit is flipped, and when during the execution it happens. SpotSDC also enables users to study
the code protection and provide new insights to understand the behavior of a fault-injected program. Based on lessons learned, we
demonstrate how what we found can improve the fault injection campaign method.

Index Terms—Fault Injection Sampling, Error Propagation, Information Visualization, Silent Data Corruption

F

1 INTRODUCTION

THE growing demands of computation make hardware
features (e.g., computer chip size, transistor size, etc.)

smaller and the density of hardware components in HPC
systems larger [1], which increases the likelihood of tran-
sient faults and makes the computation hardware unreli-
able [2], [3], [4]. Transient faults, caused by device noise, low
voltage, cosmic radiation, and other factors, which in turn
lead to random bit flips in hardware devices (e.g., memory,
register, etc.), can manifest in applications in three ways. 1)
They can cause an application to crash, e.g., the transient
fault corrupts a pointer variable and causes a segmentation
fault; 2) they can be benign and not affect the application’s
output; or 3) they can alter the computation result without
being noticed and cause silent data corruption (SDC). SDC
faults are dangerous in that they are hard to detect, and
the corrupted output result can have serious consequences
in areas such as nuclear reactor design, where corrupted
output could lead to regretful circumstances.

Due to the worrisome nature of SDC, studying how it
affects an application is critical for developing and evaluat-
ing software resiliency techniques against SDC. The classical
approach for studying how transient faults affect an appli-
cation is a fault injection campaign, which is commonly
composed of thousands of experiments. Each experiment
randomly flips a single bit from a variable during program
execution, observes the program’s behavior, and records the

• Zhimin Li, Dan Maljovec, Yarden Livnat, and Valerio Pascucci are with
the Scientific Computing and Imaging Institute, University of Utah.
E-mail: {zhimin, maljovec, yarden, pascucci}@sci.utah.edu

• Harshitha Menon, Shusen Liu, and Kathryn Mohor, and Peer-
Timo Bremer are with Lawrence Livermore National Laboratory. E-mail:
{harshitha, liu42, mohror1, bremer5}@llnl.gov

result. However, a fault injection campaign usually ends
with a high-level statistical profile of a program’s resiliency
(e.g., the percentage of SDC outcome over all fault injection
experiments). Without a fine-grained analysis of the impact
of the transient fault over different regions and time, the
conclusion of the analysis can be incomplete and/or inaccu-
rate.

In the HPC community, researchers often design protec-
tion mechanisms, such as process replication [5], component
redundancy [6], MPI redundancy [7], or auto instruction
duplication [8], [9] in the compiler level, to protect the
program from transient faults and reduce the probability
of an SDC. However, such protections are expensive and
can often cause significant overhead in HPC systems. To
mitigate the cost, it is important to identify and understand
program locations that are most sensitive to transient errors
and the frequency in which they are being reached in order
to evaluate the costs and benefits of protecting each location.

Many researchers have investigated the natural re-
siliency of algorithms [9], [10], [11], [12] (e.g., neural net-
work models, k-means, linear solvers, etc.), which can mask
the corruption error during the computation, to design a
more efficient protection technique. For example, if a fault
corrupts a variable of an iterative program and propagates
through the subsequent execution, the program may need
to compute more iterations to reach convergence, but in
general the program still produces a correct result. However,
the behavior of the majority of application domains under
SDC is still unknown or known to have a high impact,
e.g., SDC can cause large differences in output for high-
dimensional partial differential equations (PDEs) [13] and
nonsensical output for GPU graphics rendering [14]. Study-
ing the corruption propagation to understand how the error

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

2

Fig. 1. SpotSDC helps researchers study silent data corruption, such as erroneous bit flips, and how these errors propagate through a program’s
computation. As illustrated in (a), we show a hierarchical overview of a bit flip’s impact on different program regions of the conjugate gradient
benchmark and highlight the most vulnerable region. Users can selectively choose a set of fault injection experiments, compare these experiments’
fault injection input error vs output error in (b) and use (c) to monitor the propagation of errors during execution of a program. Both views (a) and (c)
are linked to (d) for users to jointly reason about the observed error pattern, identified code vulnerability, and study protections.

propagates from one location to another during the program
execution will provide insight into why a program can
mask errors or whether protecting a specific component may
prevent more SDC than protecting the other components.
Due to the complicated dynamic of a program’s execution, a
visual analysis technique is more accessible than a statistical
method to study the corruption propagation, but limited
visual analysis tools in the domain have been developed to
accomplish these purposes.

In this paper, we introduce SpotSDC, an interactive vi-
sualization system, to study the impact and propagation of
silent data corruption. Our key contributions are as follows:

• We develop a novel interactive visualization system
for studying silent data corruption vulnerability and
its impact on an HPC computation kernel.

• We design a new visual encoding to show the de-
gree to which silent data corruption happens across
multiple levels of granularity in numerical codes
ranging from full programs, to functions, variables,
or individual bits.

• We introduce new guidelines for sampling a pro-
gram’s fault injection space to improve the fidelity
of the user understanding of fault tolerance and
demonstrate how what we learn in the visualization
can improve the traditional fault injection campaign
methods.

• We provide new insights into how error propagates
through the program execution and how visualiza-
tion can improve and accelerate user understanding.

2 RELATED WORK

In this section, we will discuss related work in understand-
ing the impact of SDC faults and their propagation through

HPC applications. We will also discuss how to prevent ap-
plications from SDC. To the best of our knowledge, applying
visual techniques to understand a program’s fault tolerance
property is not well explored in the literature, and so we
connect our work to various prior visualization systems for
HPC, visualization of hierarchy, and ensemble visualization.

2.1 Understanding Silent Data Corruptions and Error
Propagation

The fault injection campaign [15] is still the most popular
approach to understanding how SDC affects a particular
application. Menon et al. [16] defined and evaluated two
metrics, SDC impact and SDC ratio, to understand the
SDC properties of an application. Sangchoolie et al. [17]
compared the analysis result of a single bit flip model with
that of a multiple bit flip model and found that a single
bit flip model causes more SDC than the multiple bit flip
model. Di et al. [18] have also shown that a fault injection
campaign with different program input may change the
resiliency profile of that program. Other tools have been
designed for understanding error propagation. Rizwan et
al. [19] designed a tool to understand the speed and depth
(e.g., the number of processes) of the error propagation in
a parallel environment, and Guo et al. [20] developed a
framework to extract the resiliency computation pattern that
can mask an error. Li et al. [21] have proposed techniques
to understand and characterize SDC error propagation in
a GPU-based computation application. Skarin et al. [22]
presented a visualization to understand the high-level fault
injection and error propagation analysis of a Brake-by-Wire
system with the assistance of Matlab Simulink. These tools
provide only high-level aggregate information regarding the
error propagation of the application. In contrast, we build an
interactive visualization system for the fault injection data

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

3

to enable domain experts to do fine-grained analysis of the
impact of SDC on an application.

2.2 Transient Fault Detection and Source Code Protec-
tion
Automatic detection methods have been developed to pre-
dict the resiliency of an application and protect the highly
vulnerable program regions. Most of those methods [23],
[24], [25], [26] have designed a probability model using the
static analysis data and dynamic information of a program
to predict the probability of a region being affected by tran-
sient faults. A highly vulnerable region will automatically
insert redundant [27], [28] code and validation instructions
at the compiler level to test the correctness of the compu-
tation. Probabilistic methods are often not suitable for high
regret situations, and the transient fault’s impact on the pro-
gram output is not under consideration. Program resiliency
can be improved by exploring the fault injection data [29]
before implementing the design protection techniques. Our
tool presents an exploration environment for the domain to
examine multiple SDC properties and the protection cost at
the same time. It helps researchers determine the cost and
benefits before they design an algorithm to auto-detect the
transient faults and protect the source code against them.

2.3 Visualization Software in HPC Programs
Visualization systems for HPC applications mostly focus
on analyzing a program’s data flow and communication
pattern for improving performance. The Boxfish system [30]
visualizes a 5D torus network through a flexible multi-
view visualization. Ravel [31] has focused on providing a
scalable solution to visualize complex trace records during
a program’s execution. Wongsuphasawat et al. [32] created
a visualization tool to display the data-flow of a neural
network model in the Tensor-Flow [33] environment. Sabin
et al. designed CFGExplore [34] to interactively explore a
program’s structure and understand its control flow. Xie et
al. [35] created a visual framework to understand the call
stack trees and proposed stack2vec to detect anomalies. For
an overview, please refer to the survey in [36] on perfor-
mance visualization. To the best of our knowledge, there is
no visualization tool dedicated to the task of understanding
the effects of transient faults in HPC applications.

2.4 Hierarchical and Ensemble Visualization
SpotSDC is designed based on the hierarchical structure of
an application, and a program’s resiliency analysis is similar
to ensemble analysis. A rich literature in the visualization of
hierarchy and ensemble visualization has been developed in
the visualization community. Niklas [37] used a hierarchical
aggregation model to transform any visualization technique
into a multiscale structure. Nobre et al. [38], [39] designed a
hierarchical structure-based visualization framework to un-
derstand genealogies and coauthor network datasets. Coll-
berg et al. [40] applied a hierarchical technique to visually
present the evolution of a software development process.
More hierarchical visualization techniques can be found in
[41]. Potter et al. [42] created a multiple link view visualiza-
tion framework, Ensemble-Vis, to analyze the distribution

of scientific simulation data. Whitaker et al. [43] introduced
innovative contour boxplots, and Mirzargar et al. [44] ex-
tended the technique for functions’ level set and contour
ensembles. For more details about ensemble visualization,
refer to Wang’s survey work [45].

3 DOMAIN BACKGROUND

This section provides basic background on how to simu-
late the appearance of transient faults during a program
execution, how data are collected, what heuristics are used
to measure the impact of the injected fault, and how we
categorize the outcome of a fault injected experiment and
quantify error in a fault injected program.

3.1 Fault Injection Model
As the size of computation components (e.g., transistor size)
shrinks and the number of components increases, features
such as the low-power and high-temperature tolerance are
introduced into the computation system. These features will
lead to a low threshold of a bit flip event and exacerbate
the transient-fault phenomenon. In this work, we consider
that bit flips happen only in a processor’s functional units
(e.g., floating-point unit) or registers. The error corruption in
these components often leads to a program’s data corrup-
tion. Therefore, our work focuses on the error corruption
of a program’s data variables. Transient faults also can
corrupt the cache and main memory. However, researchers
in computer architecture have designed solutions such as
error-correcting code (ECC) [46] and parity bit, which exist
in our current PC computer, to protect these components
from the transient fault corruption.

We simulate the transient fault by using the standard
single bit flip error model [15], [20], where the fault occurs
as a single random bit flip error during the computation.
In each fault injection experiment, the fault injection tool
selectively introduces a bit flip at a specific bit location of
a program’s data variable. For each fault injection run, the
fault injector records key information regarding the fault
injected location, time, and outcome of the experiment in a
log file. Transient faults can also affect control and pointer
variables; however, they will usually cause the program to
crash. A bit flip crash of a program is better than silent
data corruption because a program crash is not silent, and
domain experts can re-run the application to address the
problem. Moreover, faults in control and pointer variables
are well understood and can be mitigated using low-cost
methods, but faults in data variables are complicated to
diagnose and repair. We exclusively consider floating-point
variable types for our work. Floating-point arithmetic is the
predominant means for computation in HPC applications,
and the standard IEEE 32 bits (float) and 64 bits (double)
are the most common data types used in a program. The
standard IEEE 754 format comprises a sign, an exponent,
and mantissa bits.

3.2 Program Outcome
To evaluate the outcome of a fault injection experiment, we
first compute the ground truth solution obtained from a run
where no fault was injected. The output error is compared

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

4

against an acceptable error threshold set by domain experts.
This acceptable error threshold indicates how much of an
error is tolerable in the output. Based on the output of
the program, the outcome of a fault injection experiment
is classified as one of the following:

• Crash: After the error is injected into the program,
the program throws an exception (e.g., segmentation
fault, floating-point overflow) and stops running. We
also define cases in which the output is NAN or
infinity as a program crash because this type of out-
put can be easily caught by the program’s protection
mechanism.

• Masked: A fault is injected into the program and
the program finishes running and reports an output
with error under a specified threshold defined by the
domain expert.

• Silent Data Corruption (SDC): Error is injected into
the program and the program finishes running, but
the output error is above the specified threshold.

3.3 SDC Properties
In this work, we employ three metrics, SDC frequency, SDC
ratio, and SDC impact, to measure the SDC vulnerability of
different program components. Each metric examines a pro-
gram component’s SDC feature from different perspectives.

3.3.1 SDC Frequency
The SDC frequency measures the fraction of SDCs caused
by a program component in a campaign. Let nsdc be the
number of SDCs that occur in a program component and
Nsdc be the total number of SDCs in the campaign.

SDC Frequency =
nsdc
Nsdc

(1)

3.3.2 SDC Ratio
The SDC ratio determines the sensitivity of a program
component to a transient fault by measuring the probability
that a transient fault in a component will result in an SDC.
For a given component, let nsdc be the number of times the
result is SDC; nmasked be the number of times the result
is Masked; and ncrash be the number of times the result is
Crash.

SDC Ratio =
nsdc

nsdc + nmasked + ncrash
(2)

3.3.3 SDC Impact
The SDC impact measures the impact of a program com-
ponent on the final output of the program. Let Og be the
output of an error-free run and Oe be the output of an error-
injected run that results in SDC for the same program. We
then can define SDC impact as follows:

SDC Impact = |Oe −Og| (3)

3.4 Error Propagation
When an error corrupts a critical variable, the error will
propagate to the other variables that depend on the cor-
rupted variable and finally affect the program output. In
this study, we monitor the fault injected program’s behavior

T1

T2

T5T3 T4

Fig. 2. Domain experts start with a dataset to study SDC properties over
different components (T1) and optimize the number of samples in a com-
ponent (T2) if necessary. Once these experts understand each program
component’s SDC property, they will either reason the observed feature
over the source code (T4) and decide to protect this component (T5) or
explore the error propagation start from this component and study the
propagation process (T3).

by comparing the value of critical variables in an error-free
run and a fault injected run. In the domain, the error is
often defined under the assumption that the computation
flow of the fault injected run is the same as the error-free
run. Therefore, our analysis focuses only on the part of
the program execution that has the same execution path
between two runs (e.g., if-else statement, iteration). Under
this assumption, we define error at dynamic instruction i as
||error freei − fault injectedi||.

4 DOMAIN-SPECIFIC REQUIREMENTS AND TASKS

The development of SpotSDC involves two domain experts
who are actively working on fault tolerance research and
are also the co-authors of this paper. Furthermore, we have
engaged with other researchers who are interested in a
program’s fault tolerance and have discussed how they
analyze a program’s resiliency. We designed SpotSDC based
on the feedback about what will help them in their efforts.
From these discussions, we developed five tasks that follow
the task flow in Fig. 2.

T1: Explore Program’s SDC Characteristics. SDC met-
rics in subsection 3.3 are commonly used to measure the
influence of transient faults on a program component. Dur-
ing the analysis process, domain experts often print out
the values of the metrics or plot a chart (e.g., histogram)
to compare the values of metrics across different program
components. This task is undertaken to help the domain
experts understand the characteristics of a program under
different granularities in terms of SDC properties and their
variance overtime.

T2: Examine Sample Coverage and Optimize Sample
Quality. A larger number of fault injections performed
in the campaign will lead to better coverage of program
components, which is critical for the analysis process. Good
coverage over the exponent, sign, and mantissa portions of
a program component is also important. However, domain
experts often sample thousands of samples and start to
analyze the program resiliency without understanding the
coverage of the sample. With the information of sample
distribution in a program component, it is also helpful to
allow domain experts to manually add more samples to
some of the components to optimize the fidelity of the
analysis result.

T3: Observe corruption Propagation. Many programs
have natural resiliency properties that can mask an error
that occurs during the program execution. However, a bit

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

5

flip may cause a large error that leads to error explosion
during the computation. For a fault injected run, informa-
tion about how an error is dismissed by a program or where
an error is amplified during the execution can help increase
users’ understanding of a program’s resiliency property.

T4: Source Code Correlation. Visualization presents the
data and displays an abstract SDC characteristic profile
of a program. However, such information is usually not
sufficient to explain the cause of the associated observations.
Visualizing data in the context of the source code to be
executed is, therefore, a key aspect in developing proper
explanations of why different parts of the code may have
different degrees of vulnerability. Moreover, the ability to
visualize the data with source code is also useful when
documenting the results and presenting research findings
to other domain experts.

T5: Study Code Protection. For a vulnerable program
component, adding protection mechanisms to improve its
resilience is an important domain concern. The program
component that causes the majority of the SDC may be
a code region that is executed frequently. Protecting such
regions will reduce the vulnerability of the code but cause
significant performance overhead and reduce a program’s
efficiency. Presenting multiple SDC properties at the same
time helps domain experts understand what kind of error
is protected, how the overall SDC probability is reduced,
and how the overhead of the computation is increased.
Providing such insight helps domain experts choose better
strategies to improve a program’s resilience.

5 SYSTEM DESIGN AND VISUAL ENCODING

As shown in Fig. 1, SpotSDC has four visualization views
to explore the fault injected dataset: a) an overview visual-
ization, b) a sensitivity view, c) an error propagation view,
and d) a source code view. SpotSDC loosely follows Schnei-
derman’s mantra: ”Overview first, zoom, filter, details on
demand” [47]. It firstly provides an overview of the impact
of a transient fault on a program. The user can then carry
out further detailed analysis by zooming in on a program
component and observing how an error occurring there
will impact program output or how it propagates to other
program components.

The system is designed to address the tasks proposed
in section 4. To complete a domain task, it requires multiple
information sources for joint analysis and online data aggre-
gation for different granularity reasoning. To satisfy these
requirements, our system is designed in a multiview layout
to present different information at the same time. Each
visual component of SpotSDC performs its functionality to
answer a part of the domain questions. In Table 1, we show
how the composition of the system’s visual components
can complete each domain task. As a running example, we
use the data from an exhaustive fault injection campaign
performed on a conjugate gradient (CG) [48] benchmark.

5.1 Overview Visualization
Having an overview of a program’s resiliency properties
over all program components is often the first step for
domain experts. Fig. 3 shows the three panels of overview
visualization: (a) Data Manipulation, (b) Levels of Detail,
and (c) Statistical Summary.

TABLE 1
Composition of Visual Components to Address Domain Tasks.

Visual Components\Tasks T1 T2 T3 T4 T5

Overview

Data Manipulation
Levels of Detail

Bit Sample Distribution
Bit Outcome Distribution
SDC Impact Distribution

Ratio and Frequency

Sensitivity View
Source Code View
Propagation View

(a)

(c)(b)

Fig. 3. Display of a CG benchmark dataset to compare the SDC impact
and SDC ratio of across multilevel program components; (a) provides a
set of filter and dataset options, (b) enables users to manually decide
on a hierarchical structure of data that is presented in (c), and (c) is a
composition of visual components to display SDC properties.

5.1.1 Data Manipulation

Domain experts need to understand the SDC properties
with respect to different bits, input error, program outcomes,
and more. Data manipulation includes a list of data filter
options that enable users to expose the visualization in
different types of fault injection data and to examine dif-
ferent subsets of the data and gain a more comprehensive
understanding of the resilient features of a program.

5.1.2 Levels of Detail

The dataset collected from a program’s fault injection cam-
paign will naturally contain the program’s hierarchical
structure information. To capitalize on such vital informa-
tion, the overview needs the functionality to present the
hierarchy of the data. Levels of Detail is an initialization
component of the overview visualization that enables users
to decide on the hierarchy of the fault injected data they
want to present in the visualization. Instead of fixing the
data hierarchy, this view provides additional flexibility that
allows users to select and reorder the levels of aggregation
for the data displayed in Fig. 3 (C). The data tree could
be a single node, which represents a program (e.g., fft),
or a multilevel tree such as program-function-variable-line
number, which is a common hierarchy that researchers
apply to understand a program’s resiliency (e.g., fft-Scale-
x-775). Fault Injection Summary text with charts on the
top of the data tree visually displays the fault injection

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

6

Fig. 4. The visualization on the top displays a program component’s
sample density distribution across different bit locations. The visualiza-
tion on the bottom shows the different outcome ratios with respect to
different bit locations.

statistic over the entire program. This summary component
enables users to maintain the global resiliency profile while
exploring the fault tolerance property of each local program
component.

During the design process, we also considered other
common hierarchical techniques such as TreeMap [49] and
pack layout [50] to present the hierarchical data and show
the respective SDC ratio, but presenting more information
such as bit-level detail and multiple properties at the same
time in these techniques is difficult.

5.1.3 Statistical Summary Views
The statistical summary component contains multiple
views, and each view aggregates the fault injection data and
presents information for users to study the SDC properties
(T1), examine sample coverage (T2), and study code protec-
tion (T5). In the visualization, the color for each outcome
categories is selected from ColorBrewer [51], and all colors
are color-blind safe.

Bit Sample Distribution View: Presenting information
in bit-level detail provides insight into the impact of the
bit flip across different bits. To visualize how such low-
level analysis relates to the fault injection data, we have
designed our visualization based on the IEEE 754 floating
point format. The IEEE 754 floating format is a basic concept
in the HPC domain that is easily understandable for the
target users.

In Fig. 4, the visualization on the top shows a program
component’s sample density distribution of a fault injection
campaign with respect to the bit location. The y-axis encodes
the number of samples, and the x-axis encodes the bit
location. At each bit location of the visualization on the top,
a stacked column chart shows the accumulated number of
Crash, SDC, and Masked outcomes due to transient faults
(bit flip) at that bit location. The information presented in the
visualization can be used to examine the sample coverage
of a program component over sign bit, exponent bits, and
mantissa bits. Balanced sample coverage is important to
drive an accurate conclusion of a program component’s
resiliency. If users observe an unbalanced sample distribu-
tion, the visualization will enable interactively adding more
samples to the current analysis dataset.

Bit Outcome Distribution: In Fig. 4, the visualization
on the bottom shows the outcome ratio with respect to a
different bit of a program component. The y-axis encodes
the ratio value, and the x-axis encodes the bit location. Each
bit location has an equal length stacked column chart that
shows that the probabilities of a bit flip in different bits lead

Fig. 5. Component A has the highest number of fault injections and the
highest frequency of SDCs. Component C has the largest SDC ratio.

to three program outcomes. The information presented in
the visualization can be used to study the statistical impact
of a bit on a program’s outcome.

Ratio and Frequency: The stacked row chart in Fig. 5
shows the overall fault injected frequency and outcome
ratio. Users can examine local normalization to compare the
SDC ratio of different program components and global nor-
malization to target the program component that may cause
the greatest amount of SDC and study the protection over-
head. Local normalization compares the number of different
outcome categories of a program component, which implies
a component’s SDC ratio. Global normalization shows the
number of fault injection experiments in different program
components, color encodes the outcome categories, and
length represents the number of samples. A fault is injected
into a data variable when it is called by a program; therefore,
a program component tested by the fault injection campaign
often implies the program component is frequently called
by the program and adding protections there may cause
significant overhead. Users can also selectively choose SDC
outcomes data to compare the SDC frequency of different
program components.

SDC Impact Distribution: Fig. 6 shows the SDC impact
distribution of two program components. For all SDC out-
puts caused by a fault injection in a program component,
output values are presented into the log scale. These data are
then aggregated by a 10-bin histogram, and the percentage
of elements that fall in each bit is encoded as a different
color. The color in Fig. 6 changes from light to dark blue,
representing the increasing percentage of SDC cases. Each
color in the color map on the top represents a range of
percentage values. A white rectangle represents a single
value 0%, which is not linked to the continued color map
on the right.

In our study, each fault injection experiment resulting in
SDC can be an interesting case to study how the transient
fault affects the program’s output. Therefore, it is critical
to distinguish whether a fault injection output value falls
into a value range or not. We use a color map to describe
error distribution, instead of using a histogram, with which
recognizing a small portion frequency of an error-output-
density distribution is difficult. The white rectangle is sepa-
rated from the continued color map because each rectangle
of the color map on the right represents a range of values,
but the white rectangle represents only a single value. In Fig.
6, most of the SDC fault falls into the smallest error bin of
the visualization, which visually attracts users’ attention. In
the visualization, large errors need more attention, but their
colors are often light blue. To mitigate this contradiction, we
adjust the size of the rectangles such that large rectangles
represent a large error range and small rectangles represent

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

7

Fig. 6. SDC impact distribution of two program components. A SDC
outcome caused by a fault injected in A can lead to a wide range of
SDC impact. In B, a SDC outcome will introduce a relatively small SDC
impact.

a small error range.

5.2 Source Code View and Sensitivity View

In SpotSDC, the source code is placed on the side of the
dynamic visual analysis environment to provide additional
context for reasoning and understanding the visual en-
coding results (T4). The source code view (Fig.1 (d)) is
linked to the overview visualization and the propagation
visualization by interactive operations (e.g., line selection).

The sensitivity analysis helps users identify a pro-
gram’s critical components and interesting propagation
cases. SpotSDC contains a sensitivity view with input and
output error distribution of fault injection experiments to
present the sensitivity information. The sensitivity view is a
scatter plot with a density distribution histogram attached
on the x-axis and y-axis. Users can choose a component in
the overview and display its fault injection experiments on
the sensitivity view (Fig.1 (b)). A red dot is a fault injection
result in SDC, and a green dot is a masked experiment. The
histograms over the x-axis and y-axis indicate the density
of different value regions. From the input and output error
distribution, users can choose an interesting experiment case
and present the propagation process in the propagation
view to study the error propagation.

5.3 Propagation View

Studying how an error propagates through a computation
will allow users to obtain a comprehensive picture of how
the program behaves across its lifetime (T3). In Fig. 7, a
propagation visualization shows a bit flip error propagat-
ing through a conjugate gradient program run. We design
component Fig. 7 (a), which shows a summary view of a
fault injected program’s behavior. The x-axis is the time step,
and the y-axis is the error scale. The blue line in the chart
presents the variation of error across the program’s lifetime.
How we measure error is defined in section 3.4. A program
computation’s convergence or divergence indicates whether
the injected error is dismissed or amplified during the com-
putation. In component Fig. 7 (a), the purple line displays
a metric (e.g., the residual in a linear solver, such as the
conjugate gradient) used to measure such information. An
error will start to propagate to the other elements once it is
injected. To highlight the initial location of the error, in (b),
the red triangle in the figure at the x-axis indicates the time
step at which the error is injected.

A computation run has hundreds of time steps, and
presenting all of them at the same time is challenging. To
reduce the number of time steps, we place a lens in Fig. 7

(a) that enables users to select a time interval, zoom into
a period of execution, and display the corruption detail
in Fig. 7 (c). To address the problem of displaying many
corrupted locations, the y-axis is designed with a program’s
hierarchical structure. Users can collapse the region they
want to ignore or distribute the region they want to examine
more closely.

View Fig. 7 (c) is a matrix-based visualization with
the y-axis representing a program location and the x-axis
representing the time step. The distributed squares in the
matrix represent load or store dynamic instructions that are
executed at a specific time step that belongs to a program’s
specific component. The number of continuous squares im-
plies the number of data elements in a program component,
which helps to reveal how many elements are corrupted
during a period of time. The color assigned to each square
represents the error scale at that dynamic instruction, with
white indicating no error and dark red indicating large error
over the program run. For the meaning of the color, refer to
the color map in Fig. 7 (a).

Understanding the error scale across different program
components and filtering out error can speed up the process
of targeting the interesting error propagation region. The
histogram in Fig.7 (e) shows the overall error distribution
collected from the fault injected program execution. In the
figure, users can selectively choose a different range of
errors and display them in Fig. 7 (a) and Fig. 7 (c). The set
of playback buttons in Fig. 7 (f) allows users to step line by
line through the code’s execution or animate the execution
of the code, and enables them to see how and where the
error increases/diminishes over time. The animation mimics
the dynamic execution of a program run and is visually
attractive to the domain experts.

During the visual design process, we firstly chose graph-
based methods to design a propagation visualization and
use the static analysis method to generate a program’s data
dependencies graph. Each node is a data variable, and the
edge between each node is the data dependency between
variables. However, static data dependencies do not reflect
the dynamic condition of a program execution, and the
static dependency information can be misleading or hard
to interpret for propagation analysis. Extracting an accurate
dynamic dependency of a program is not a trivial task.
Once a program’s scale grows, extracting an accurate data
dependency graph become difficult [26], and sometimes it
is worse to extract an accurate data dependency graph in a
programming language with pointers such as C++.

5.4 Scalability

Scalability is one of the main concerns in our visualiza-
tion system. SpotSDC currently focuses on analyzing a
program’s critical data variables instead of all the lines of
code in the program. However, showing the fault injec-
tion data over all the variables at once or presenting the
propagation data across different program components can
still be a scalability challenge. To address this difficulty,
both overview and propagation visualizations are designed
in a hierarchical structure. During the exploration process,
users can interactively collapse or expand the hierarchy to
aggregate or distribute the data based on their needs. In the

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

8

Time Step

Program
Location

(f)

(e)

(a)

(b)

(c)

Fig. 7. A bit flip happens at one of the data elements of the variable sum
in line 48 and propagates to some of the subsequent variables’ data ele-
ments during the selected program execution time interval: (a) presents
an overview of the error variation during a program’s computation, and
(b) indicates the initial fault injected location. The lens in (a) can be used
to select a time interval and examine the propagation detail in (c). Users
can use (e) to selectively filter out a certain range of error and present
the rest of the error in (a) and (c), and (f) is a set of play buttons to
animate the propagation process.

overview visualization, users can configure the attribute of
each tree layer to present the fault injection data. In each
layer, the order of nodes can be adjusted such that program
components with a large SDC property value are placed on
the top, and program components with a small value fall to
the bottom. Users can manually decide which property to
use to decide the order of the node in each layer. The sort
process starts at child nodes belonging to the same parent
node, which will be sorted by aggregating the data of the
child nodes.

6 USE CASES

In this section, we demonstrate four common use cases, in
which HPC experts utilize the proposed tool to address
domain challenges and complete the tasks discussed in
section 4. Here we focus on datasets collected from the
fault injection campaign on two representative computation
kernels: conjugate gradient (CG) and fast Fourier trans-
form (FFT). Conjugate gradient [48] is a classical iterative
algorithm for solving linear equations, and fast Fourier
transform [52] is a widely used numerical algorithm that
computes the discrete Fourier transform.

6.1 Study SDC Characteristics in Different Computa-
tion Iterations
Understanding the SDC properties (T1) with respect to
different iterations can provide researchers with an oppor-
tunity to selectively protect a certain iteration to improve a
program’s resilience with less overhead. The visualization
at the top of Fig. 8 displays the SDC impact distribution
and SDC frequency of a bit flip injected in different iter-
ations of the conjugate gradient (CG) program. As shown
in (a), the visualization displays a filtered dataset with an
outcome attribute containing only SDC and presents the
SDC impact distribution for each iteration of the program.
In the filtered dataset, iter 0 means the fault is injected in the
initialization stage, which loads the data matrix and presets

(c)

(a)

(c)

(b)

Fig. 8. Both visualizations present different iterations (c) to examine
CG’s resiliency property. In (a), filter out crash and masked cases
and choose global normalization. The top visualization shows that the
program’s SDC impact and the SDC frequency decreases as the CG’s
iteration number increases. In (b), choose the full data set and select lo-
cal normalization. The bottom visualization demonstrates the program’s
SDC ratio and its related bit location’s SDC ratio decrease as the CG’s
iteration increases.

some parameters. A number i (i > 0) indicates the fault is
injected into the ith iteration of the computation. Users are
able to observe, in the SDC impact distribution, that errors
injected in the initialization stage lead to a wide range of
SDC impact. As the computation continues and bit flips are
injected in the later iterations, the SDC impact shrinks. At
the same time, the bar chart on the right shows that the SDC
frequency also decreases as the iteration number increases.

The visualization at the bottom of Fig. 8 shows the
SDC ratio with respect to each iteration and each itera-
tion’s different bits. Fig. 8 (b) shows an example workflow
where users have switched to the bit outcome distribu-
tion visualization, selected the complete dataset without
filter operations, and chosen local normalization for each
computation iteration to compare the SDC ratio. As those
row stacked charts show, the overall impact of the high bit
decreases as does the SDC ratio. With the observation from
the visualization, domain experts can infer that transient
faults have a greater impact in CG’s earlier iteration than
in the later.

6.2 Examine and Improve Sample Coverage of Pro-
gram’s Components

A correct understanding of the SDC characteristics of a
program component requires good sample coverage across
different bits (T2). In the bottom images of Fig. 8 and Fig. 9,
the fault injection summary presents the bit flip outcome
distribution across different bits on two programs. The
result shows that a bit flip in exponent bits and sign bit
has a greater impact than that in mantissa bits. Because

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

9

(a) (b)

(c)

Fig. 9. No SDC outcome is caused by injecting a bit flip in line 725,
but (a) shows that all the samples come from mantissa bits. After an
interactive fault injection resample (b) in line 725, the visualization shows
that line 725 has a relatively high SDC ratio in (c).

of the stochastic process, the bit flip sample distribution
in a program component can have unbalanced coverage
in mantissa bits, exponent bits, and the sign bit, which
leads to inaccurate conclusions being drawn in this location.
Here we present a random fault injection dataset of the
fast Fourier transform program with which domain experts
sample 1 in every 4 bits. The data are sampled in such
a way as to reduce the number of samples needed to
study a program’s fault tolerance property but preserve the
relatively high accuracy of the analysis result.

Fig. 9 displays a fault injection sample density distri-
bution over different components of a fast Fourier trans-
form (fft) program. In Fig. 9 (a), variable x at line 725
in the function scale (fft-Scale-x-725) does not have an
SDC outcome for the fault injection experiments in this
location. Without further investigation, users can make the
incorrect inference that a bit flip in fft-Scale-x-725 does
not cause SDC. In the visualization, all the samples in
fft-Scale-x-725 are in mantissa bits, and no experiments
are sampled in exponent bits. Users can interactively add
more samples (Fig. 9 (b)) to line 725. In Fig. 9 (c) shows
the resampling result and a few samples come from the
exponent bits, and the SDC probability caused by exponent
bits in this location is high. Moreover, the overall SDC
ratio in fft-Scale-x-725 is significantly large with the new
dataset.

6.3 Identify Vulnerable Region and Study Code Protec-
tion
Identifying and reasoning about the program component
that causes the greatest amount of SDC (T4) is a key task for
domain experts to examine a program’s resiliency. Studying
the code protection in that particular component is a natural
follow-up step (T5). Fig. 10 shows the workflow of how
users can use SpotSDC to identify the vulnerable code
region and study potential protection strategies. In Fig. 10
(a), users select the program component that causes the
maximum number of SDCs and the source code highlight
line 25. In Fig. 10 (b), the source code shows that variable
Ap at line 25 in function matvec (matvec-Ap-25) nests in
a two-level for loop in the matvec function. If the user
traces back to the regions that called the matvec function,
in Fig. 10 (c) the matvec function is called in a for loop of
the program’s main solver function. Due to the three-level

nested for loops, this line of code will be run many times,
which also leads to a high fault injection probability. Even
though matvec-Ap-25 causes the greatest amount of SDC,
the error it introduces to the computation output is smaller
than the rest of the program components (e.g., solve cg,
readA). Meanwhile, adding a protection mechanism (e.g.,
instruction duplication) in matvec-Ap-25will cause a signif-
icant amount of overhead in this frequently called for loop
(T3). How to protect such a code region depends on the
domain experts’ priority: the computation result’s accuracy
or the computation’s performance.

6.4 Visualizing an Error Propagates Through Computa-
tions

Observing how an error propagates (T3) through a compu-
tation and analyzing why the error is masked or explodes
during the execution will help domain experts gain a better
understanding of the resiliency of a program. The conjugate
gradient algorithm [10] has a natural resiliency property that
can mitigate a certain amount of errors.

The propagation visualization at the top of Fig. 11
presents a fault injection case where a fault is injected
into the variable sum at line 48 in function dot r2
(dot r2-sum-48), which results in silent data corruption.
In this view, the top line chart shows that the initial error
is injected around 150th time steps, but the error starts to
explode after a program execution around the 250th time
step. By moving the lens and zooming in on the time
interval at which the error starts to explode in (a), in (b)
users can tell that the error starts to explode at variable
alpha at line 91 in function solve cg (solve cg-alpha-91),
and the error amplification trend continues in the rest of the
program variables.

On the other hand, the bottom visualization in Fig. 11
presents a fault injection case where a bit flip is in-
jected into a variable beta at line 84 in function solve cg
(solve cg-beta-84), but the final outcome is masked. The
top line chart shows the initial error is injected around the
230th time step. The converge metric and error explode at
the beginning but decrease after a certain number of time
step. By moving the lens and zooming in on the time inter-
val in (c) where the error dismisses, users can tell from (d)
that the error starts to dismiss at solve cg-alpha-91. As
the computation continues, the error continues to decrease.

The explanation from domain experts is that the two
case studies provide them with valuable insights about
the impact of errors in certain variables. It shows that
solve cg-alpha-91 is a critical variable, and an error in it
can significantly affect the output. This effect has to do with
the fact that the conjugate gradient is an iterative algorithm,
where the solution at an iteration is a linear combination
of the Krylov vectors computed in the previous iterations.
Note that the coefficients of the Krylov vectors are given
by the alpha, and the alpha in subsequent iteration de-
pends on its value computed in previous iterations, thereby
compounding the errors and ultimately corrupting the final
output.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

10

Fig. 10. In (a), line 25 has the maximum number of SDCs compared to the rest of the program components and the maximum number of fault
injections, which implies this line of code will be executed by the program most frequently. To interpret the result, link line 25 to the source code (b),
which shows that line 25 is called by a two-level for loop in function matvec. In (c), function matevec is also called by a for loop. The program output
error scale caused by injecting error in line 25 is relatively smaller compared to the other program components, and adding protection to reduce the
probability of SDC in line 25 will introduce significant overhead.

7 IMPROVE ACCURACY OF FAULT INJECTION
CAMPAIGN

In Section 6.2, we demonstrated a use case in which un-
balanced sample coverage in different bits of a program
component leads to an incorrect fault tolerance profile. To
improve the fidelity of the analysis, SpotSDC enables users
to interactively sample more data for a program component.
Often, the number of samples needed will vary over the
corpus of code being analyzed. Therefore, using a single
number for resampling is insufficient. For the IEEE double
floating point representation, in each uniform fault injection
campaign, 52

64 of the samples flip a mantissa bit, which
causes fewer SDCs, and only 12

64 of the samples come from
the region that causes the majority of SDCs. Therefore, this
uniform sampling strategy wastes a large amount of sam-
ples on the region that does not provide useful information
to understand the SDC characteristics of a program.

In this section, we will discuss how we can program-
matically decide the number of samples that should be
generated for a specific program component when the user
requests more samples. We also demonstrate two simple
sampling methods that change the sampling structure by
taking more samples from the sign bit and exponent bits
and fewer samples from the mantissa bits. Because the new
sampling methods do not follow the uniform assumption,
the final SDC metric value needs to be scaled to account
for the no longer uniform distribution. How to apply these
rescaled processes in our new sampling methods will also
be discussed. Our results are comparable to a gold standard
ground truth from the exhaustive campaign, and we show
the two sampling methods outperform the classic random,
uniform sampling.

7.1 Interactive Sample Fault Injection Data

A classical fault injection campaign with uniform sampling
does not guarantee that each program component will have
balanced coverage over different bits. To address the unbal-
anced sample problem during exploration, our tool provides

an interactive operation that allows domain experts to con-
nect to their fault injection tool, manually sample more data
for a specific program component, and analyze its resiliency.
Users can check a program component’s sample distribution
by observing the visualization of the distribution, which
is presented in Fig. 4, and manually add samples to the
location.

Leveugle et al. [53] formulated an equation to calculate
the number of error-injected samples required to bound
a program’s fault tolerance metrics (e.g., the percentage
of failure if faults are injected into a program) within a
specified error tolerance, and discussed the sensitivity of
the different parameters of the formula. In SpotSDC, we use
the same formula but apply it in an interactive context and
study a specific program component’s SDC properties (e.g.,
a function or a line of code). The number of samples needed
for a program component can be inferred from equation
4 with an initial confidence interval and margin errors.
The size of new samples has a statistical significance that
the SDC property (e.g., SDC ratio) of the component is in
[SDCRatio − ε, SDCRatio + ε] with a t confidence interval.
The value scale of each variable is often decided by the
domain experts.

n =
N

1 + ε2 × N−1
t2×p×(1−p)

(4)

In equation 4, N is the total number of the population, ε
represents the margin error, p is the estimated ratio of a sam-
ple dataset having a specific characteristic (e.g., SDC ratio),
t represents the confidence interval, and a 95% confidence is
usually chosen. The interactive sampling method manually
adds more samples to a program component, which does
not follow the uniform assumption. Therefore, users often
use the interactive fault injection campaign to analyze a
program component’s SDC property locally. To use the
resampled data to analyze the program’s global resiliency
property, the manually injected data needs to be rescaled
to calculate the entire program’s resiliency property. For
example, consider a particular program where line A has
2% of the total number of samples in a uniformly sampled

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

11

(a)

(b)

(d)

(c)

Fig. 11. The propagation visualization at the top displays a bit flip
injected into data variable dot r2-sum-48 that propagates to the entire
program and results in SDC. The propagation visualization at the bottom
displays a bit flip injected into data variable solve cg-beta-84 that
results in Masked. In (a) and (c), the lens is placed on a time interval
that the error starts to explode/dismiss. Parts (b) and (d) show where
the error starts to explode/dismiss. In both cases, the error starts to
explode/dismiss at line solve cg-alpha-91.

fault injection campaign, and a user elects to manually add
more samples to line A to analyze the resiliency property.
In order to calculate the global SDC ratio, the SDC ratio of
line A must contribute only 2% to the final SDC ratio no
matter how many new samples are drawn in this location.
The above description can be formulated as in equation
7, where SDCA is the SDC metric value calculated from
program component A, and SDCOther is the SDC metric
value calculated from the rest of the program components.

SDCMetric = SDCA × 2% + 98%× SDCOther (5)

7.2 Improve Fault Injection Campaign
An exhaust fault injection campaign of a conjugate gradient
algorithm with 8x8 matrix takes half of a day and needs 1.49
GB hardware space in a single machine with Intel i7 CPU.
In the same machine, the running time increases to 5 days,
and the data storage increases to 15.57 GB for solving a 20 x
20 matrix. A uniform random sampling approach can speed
up the process, but it is not efficient at capturing the SDC
samples as the majority of mantissa bits have a minor impact
on a program’s output. Previous research [54] has designed
a method that generates more data from a high uncertain

Fig. 12. (1) The 8vs2 sampling strategy with which 80% of the samples
come from sign and exponent bits and 20% of the samples draw from
mantissa bits. (2) The iterative sampling method, which separates the
sampling process into multiple steps. In the initial stage (sample 1), the
method samples the entire sample space. In the second round sampling
(sample 2), the method ignores half of the mantissa bits as the sampling
process continues. The method applies the binary searches strategy
during each sample iteration to find the least significant mantissa bit,
and then the rest of the sample will be drawn between only the sign bit
and the least significant mantissa bit.

time interval of a program computation, but the sample
quality of different bits is not considered in the approach.
Samples from high bits capture more SDC events than
samples in the mantissa bits. To verify the hypothesis, we
compare two simple sampling methods, 8vs2 sampling and
iterative sampling, with uniform sampling to demonstrate
how the observation can help the HPC community improve
the fault injection campaign. In the following discussion, we
define all exponent bits and the sign bit as high bits.

7.2.1 8vs2 Sampling

In Fig. 12 (1), 8vs2 samples 80% of the data from the high
bits and 20% from the mantissa bits. Because the sampling
process is not uniform, the formula for calculating the SDC
ratio, SDC impact, and other metrics needs to be multiplied
by a scaling parameter. Under the uniform assumption, the
information calculated from high bits will contribute to the
final result 12

64 , and that from mantissa bits will contribute to
the result by 52

64 under the IEEE 754 double precision format.
In equation 6, H is the SDC metric value calculated from
high-bit samples, and M is the SDC metric value calculated
from mantissa-bit samples.

SDCMetric = H × 12

64
+M × 52

64
(6)

7.2.2 Iterative Sampling

In Fig.12 (2), the adaptive sampling method separates the
sampling process into K iterations. In each iteration, the
sampling method not only samples the data but also per-
forms a binary search operation to find the lowest impact
mantissa bit, which is the index of the lowest mantissa bit
resulting in an SDC outcome. Here, we use a 64-bit floating
point as an example. The indexes of the mantissa bits are
from 1 to 52, the indexes of the exponent bits are from
53 to 63, and the index of the sign bit is 64. In mantissa
and exponent bits, the higher the bit index, the greater the
impact of the bit on the floating point value.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

12

For the first iteration, the method will sample from 1 to
64 bits and find the index of the lowest impact mantissa
bit. If the index is larger than 26, which is the index of the
middle mantissa bit, then the next round will sample the
26th bit to the 64th bit. The sample space in the mantissa
bits will shrink by half in each iteration until the lowest
mantissa bit causing SDC is found. After that, the rest of the
iteration will sample only the lowest impact mantissa bit to
the 64th bit. The worst case is that previous sample iterations
do not find a bit flip in the mantissa bits that cause the SDC
outcome. A 64-bit floating point variable has 52 mantissa
bits, and the binary search method will try a maximum of
6 sample iterations to find the lowest bit that causes SDC.
Once K > 6, the rest of the iterations will sample only
the regions that cause SDC based on the previous sample
iterations’ information.

Calculating the SDC metric value again requires a
rescaled operation. In the second iteration, assume the low-
est impact mantissa bit index is larger than 26. The iterative
method samples half of the mantissa bits (26th to 52th bit),
and all high bits (12 bits) if the lowest impact mantissa bit
is in the sample region. The SDC metric value needs to
multiply 12+26

64 , and a similar rescaled operation needs to
apply to the rest of the iterations. The final SDC metric is the
mean of each iteration’s result. In equation 7, SDCi

Metric is
the SDC metric value calculated in the ith iteration, where
ni is the number of mantissa bits in the sample space of the
ith iteration.

SDCMetric =
1

k
×

k∑
i=1

SDCi
Metric ×

12 + ni
64

(7)

7.2.3 Experiment
To evaluate the proposed sampling scheme, we performed
uniform sampling, 8vs2 sampling, and iterative sampling on
the conjugate gradient and fast Fourier transform programs.
In each experiment, each method sampled 1% of the total
population. For iterative sampling, the value K is set as 10.
We performed 100 experiments and used the mean of the
SDC metric value over the program’s different lines of code
to compare the sample quality of the different methods.

In Fig. 13, we compare the expected SDC ratio of the
three sampling methods with the ground truth. The top
image shows the expected SDC ratio over different lines of
code on the conjugate gradient. The bottom image displays
the same information except on the fast Fourier transform
dataset. In both datasets, the figure shows the mean SDC
ratio of different lines of code is close to the ground truth.
Each bar also shows that the 95% confidence interval of the
relative mean SDC ratio. As the figure shows, the iterative
method has the narrowest interval, and high-bit sampling
has a relatively larger confidence interval than the random
sampling method. By comparing the SDC ratio, we found
that the iterative method generates more stable results than
the other methods.

In Fig. 14, we compare the expected SDC impact of the
three sampling methods. All values are calculated in the log
domain because of the large value scale variation of the SDC
impact. As the figure shows, the ground truth is larger than
the expected SDC impact in both the conjugate gradient

Fig. 13. Testing three sampling methods on conjugate gradient and fast
Fourier transform and comparing the expected SDC ratio of different
lines of code with the golden ground truth. Most of the mean SDC ratios
are close to the ground truth, but the iterative sampling method has
the smallest confidence interval compared to the other two sampling
methods.

and fast Fourier transform programs. A gap exists between
the sampling approximation method and the golden ground
truth. However, in both programs, the iterative method and
8vs2 method give better approximation results compared to
the random method, and the 8vs2 sampling result is better
than the iterative sampling method in general. The random
sampling method’s expected SDC impact is smaller than
that of the other two methods. The new sampling methods
are more desirable to approximate SDC impact than the
uniform random sampling.

In the above two experiments, with the same number
of samples, the new sampling methods perform better sta-
tistically than the classical random sampling by comparing
the different SDC metrics, which allows us to achieve bet-
ter sampling efficiency. 8vs2 sampling demonstrates better
performance when measuring the program components that
cause large output error compared with the other two sam-
pling methods. This method can simply and efficiently be
deployed in any fault injection campaign, or it can be used
as a prototype method to understand a program’s resiliency
in the initial state. Iterative sampling methods better capture
a more accurate SDC ratio than the other two methods.

The improvement of the analysis fidelity can also be
reflected in the visualization. In Fig. 15, we use SpotSDC to
compare three 1000 samples datasets with the exhaust fault
injection campaign using the CG benchmark. The exhaust
dataset shows the fault injection can cause a range of error
output. The result of 8vs2 sampling is closer to the exhaust
dataset, and the interactive sampling method is slightly bet-
ter than uniform sampling. The visualization result matches
with the SDC impact analysis result in Fig. 14.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

13

Fig. 14. Comparing the expected SDC impact of different lines of code
with the golden ground truth using three sampling methods tested
on conjugate gradient and fast Fourier transform. The expected SDC
impact of high-bit sampling and iterative sampling is closer to the ground
truth than random sampling.

Fig. 15. Each of three sampling methods samples 1000 points and
compares the SDC impact and SDC ratio with the exhaust fault injection
dataset in the SpotSDC. (a) exhaust fault injection result. (b) uniform
random sampling. (c) interactive sampling and (d) 8vs2 sampling.

8 LIMITATIONS AND FUTURE WORK

Tracking how an error propagates through a program com-
putation is a challenging task. It is difficult to define error in
the propagation process. A single bit flip error may have an
unpredictable impact on the behavior of a program. In this
paper, we define error as the absolute difference between a
fault injected run and an error-free run under the assump-
tion that a bit flip error will not change the computation flow
of a program. However, such an assumption may not hold
in some fault injection experiments. For example, a bit flip
error may cause an iterative program to run more iterations
or change the control flow of a program, such as an if-else
statement. Defining a general metric to measure the error
between two different computation flows is not trivial, and
will be explored in the future.

The scalability challenge is not completely resolved in

SpotSDC. In our current system, visualizations are designed
to understand the fault tolerance property of HPC com-
putation kernels, which are relatively small compared to
the other large programs, not to mention the large parallel
computations that run a few days or a couple of weeks. The
scale of the computation increases not only the complexity
and challenge of the visualization design but also the size of
the dataset a visualization system needs to process. A short
survey in previous research [55] found that the potential
number of fault injection tests of a program can reach a
billion. Managing a dataset at such a scale in an interactive
visualization is difficult. Our new sampling method can
be part of the solution to mitigate this problem, but an
innovative data structure is also necessary. On the other
hand, how to select a few interesting fault injection cases
instead of the exhaust fault injection dataset to understand
a program’s resiliency will also be an interesting direction
to address this challenge.

The design of our visualization is a reference for re-
searchers interested in designing a tool to study tree struc-
ture datasets with multiple attributes. Our visualization
research not only will help researchers understand the im-
pact of silent data corruption during program computation
but also may be extended to help the research fields that
are interested in taking advantage of a program’s natural
resiliency and trade it for other benefits (e.g., performance).
An example is the computation’s precision fine tuning [56],
which uses a low-precision data type to improve perfor-
mance with a tolerated round error. Another example is
lossy compression for a large-scale simulation computation
[57] that uses a lossy compression technique to mitigate the
I/O bottleneck problem in an HPC system.

9 CONCLUSION

In this research, we designed a visualization tool, SpotSDC,
to help domain experts understand the impact of silent data
corruption on an HPC computation kernel. SpotSDC en-
ables users to understand the SDC impact at varying levels
of detail, and provides them with additional information to
study the protection trade-off. SpotSDC also allows users
to observe the behavior of a fault injected program, which
gives them additional insight into how an error propagates
through a program computation. In the end, we have shown
how the observations from SpotSDC can optimize fault
injection data and improve the traditional fault injection
campaign.

10 ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-764021-DRAFT).

REFERENCES

[1] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error prob-
lem: An architectural perspective,” in 11th International Symposium
on High-Performance Computer Architecture. IEEE, 2005, pp. 243–
247.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

14

[2] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173,
2014.

[3] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spec-
trum, vol. 53, no. 3, pp. 30–35, 2016.

[4] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhku-
dai, D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al.,
“Understanding gpu errors on large-scale hpc systems and the
implications for system design and operation,” in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Sympo-
sium on. IEEE, 2015, pp. 331–342.

[5] K. Ferreira, J. Stearley, J. H. Laros III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for exascale systems,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 44.

[6] C. Engelmann, H. H. Ong, and S. L. Scott, “The case for modular
redundancy in large-scale high performance computing systems,”
in Proceedings of the 8th IASTED international conference on parallel
and distributed computing and networks (PDCN), 2009, pp. 189–194.

[7] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 78.

[8] J. S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin, “Compiler-directed instruction duplication for soft
error detection,” in Design, Automation and Test in Europe. IEEE,
2005, pp. 1056–1057.

[9] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact
of sdc on the gmres iterative solver,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE, 2014,
pp. 1193–1202.

[10] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
resilience of the algebraic multi-grid solver,” in Proceedings of the
26th ACM international conference on Supercomputing. ACM, 2012,
pp. 91–100.

[11] P. Sao and R. Vuduc, “Self-stabilizing iterative solvers,” in Proceed-
ings of the Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems. ACM, 2013, p. 4.

[12] V. Piuri, “Analysis of fault tolerance in artificial neural networks,”
Journal of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18–
48, 2001.

[13] A. S. Nielsen, “Scaling and resilience in numerical algorithms
for exascale computing,” Ph.D. dissertation, Ecole Polytechnique
Fédérale de Lausanne, 2018.

[14] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer,
“Hauberk: Lightweight silent data corruption error detector for
gpgpu,” in 2011 IEEE International Parallel & Distributed Processing
Symposium. IEEE, 2011, pp. 287–300.

[15] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hardware
faults,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2014, pp. 375–382.

[16] H. Menon and K. Mohror, “Discvar: Discovering critical
variables using algorithmic differentiation for transient faults,”
in Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’18. New
York, NY, USA: ACM, 2018, pp. 195–206. [Online]. Available:
http://doi.acm.org/10.1145/3178487.3178502

[17] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple
bit-flip errors,” in 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). IEEE, 2017, pp.
97–108.

[18] D. Di Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and R. Johans-
son, “On the impact of hardware faults–an investigation of the
relationship between workload inputs and failure mode distribu-
tions,” in International Conference on Computer Safety, Reliability, and
Security. Springer, 2012, pp. 198–209.

[19] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” in High Performance Computing, Networking, Storage
and Analysis, 2015 SC-International Conference for. IEEE, 2015, pp.
1–12.

[20] L. Guo, D. Li, I. Laguna, and M. Schulz, “Fliptracker:
Understanding natural error resilience in hpc applications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC ’18.
Piscataway, NJ, USA: IEEE Press, 2018, pp. 8:1–8:14. [Online].
Available: http://dl.acm.org/citation.cfm?id=3291656.3291667

[21] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding
error propagation in gpgpu applications,” in High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for. IEEE, 2016, pp. 240–251.

[22] D. Skarin, J. Vinter, and R. Svenningsson, “Visualization of model-
implemented fault injection experiments,” in International Confer-
ence on Computer Safety, Reliability, and Security. Springer, 2014,
pp. 219–230.

[23] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune:
a model for predicting the sdc proneness of an application for
configurable protection,” in Proceedings of the 2014 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems. ACM, 2014, p. 23.

[24] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“Ipas: Intelligent protection against silent output corruption in
scientific applications,” in Code Generation and Optimization (CGO),
2016 IEEE/ACM International Symposium on. IEEE, 2016, pp. 227–
238.

[25] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: prob-
abilistic soft error reliability on the cheap,” in ACM SIGARCH
Computer Architecture News, vol. 38, no. 1. ACM, 2010, pp. 385–
396.

[26] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in 2018 48th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018, pp. 27–38.

[27] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August,
and S. S. Mukherjee, “Software-controlled fault tolerance,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 2,
no. 4, pp. 366–396, 2005.

[28] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in Proceedings of the
international symposium on Code generation and optimization. IEEE
Computer Society, 2005, pp. 243–254.

[29] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost program-
level detectors for reducing silent data corruptions,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[30] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin,
M. Schulz, S. H. Langer, P.-T. Bremer, and V. Pascucci, “Visualizing
network traffic to understand the performance of massively paral-
lel simulations,” IEEE Transactions on Visualization and Computing
Graphics, Proceedings of InfoVis, vol. 18, no. 12, pp. 2467–2476, 2012.

[31] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, and B. Hamann, “Combing the communication hair-
ball: Visualizing large-scale parallel execution traces using logical
time,” IEEE Transactions on Visualization & Computer Graphics, no. 1,
pp. 1–1, 2014.

[32] F. M. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual
analytics in deep learning: An interrogative survey for the next
frontiers,” IEEE transactions on visualization and computer graphics,
2018.

[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 265–283.

[34] S. Devkota and K. E. Isaacs, “Cfgexplorer: Designing a visual
control flow analytics system around basic program analysis
operations,” Comput. Graph. Forum, vol. 37, no. 3, pp. 453–464,
2018. [Online]. Available: https://doi.org/10.1111/cgf.13433

[35] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework
for the detection of anomalous call stack trees in high
performance computing applications,” IEEE Transactions on
Visualization Computer Graphics, p. 1. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/TVCG.2018.2865026

[36] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, B. Hamann, and P.-T. Bremer, “State of the art of
performance visualization.”

[37] N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for in-
formation visualization: Overview, techniques, and design guide-

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/3178487.3178502
http://dl.acm.org/citation.cfm?id=3291656.3291667
https://doi.org/10.1111/cgf.13433
doi.ieeecomputersociety.org/10.1109/TVCG.2018.2865026

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

15

lines,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 3, pp. 439–454, 2009.

[38] C. Nobre, N. Gehlenborg, H. Coon, and A. Lex, “Lineage: Vi-
sualizing multivariate clinical data in genealogy graphs,” IEEE
transactions on visualization and computer graphics, vol. 25, no. 3, pp.
1543–1558, 2018.

[39] C. Nobre, M. Streit, and A. Lex, “Juniper: A tree+ table approach to
multivariate graph visualization,” IEEE transactions on visualization
and computer graphics, vol. 25, no. 1, pp. 544–554, 2018.

[40] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,”
in Proceedings of the 2003 ACM symposium on Software visualization.
ACM, 2003, pp. 77–ff.

[41] H.-J. Schulz, “Treevis. net: A tree visualization reference,” IEEE
Computer Graphics and Applications, vol. 31, no. 6, pp. 11–15, 2011.

[42] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,
V. Pascucci, and C. R. Johnson, “Ensemble-vis: A framework
for the statistical visualization of ensemble data,” in 2009 IEEE
International Conference on Data Mining Workshops. IEEE, 2009, pp.
233–240.

[43] R. T. Whitaker, M. Mirzargar, and R. M. Kirby, “Contour boxplots:
A method for characterizing uncertainty in feature sets from simu-
lation ensembles,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2713–2722, 2013.

[44] M. Mirzargar, R. T. Whitaker, and R. M. Kirby, “Curve boxplot:
Generalization of boxplot for ensembles of curves,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2654–2663, 2014.

[45] J. Wang, S. Hazarika, C. Li, and H.-W. Shen, “Visualization and
visual analysis of ensemble data: A survey,” IEEE transactions on
visualization and computer graphics, 2018.

[46] R. W. Hamming, “Error detecting and error correcting codes,” The
Bell system technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[47] B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualizations,” in Visual Languages, 1996. Proceed-
ings., IEEE Symposium on. IEEE, 1996, pp. 336–343.

[48] J. R. Shewchuk et al., “An introduction to the conjugate gradient
method without the agonizing pain,” 1994.

[49] B. Shneiderman, “Tree visualization with tree-maps: A 2-d space-
filling approach,” Tech. Rep., 1998.

[50] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large
hierarchical data by circle packing,” in Proceedings of the SIGCHI
conference on Human Factors in computing systems. ACM, 2006, pp.
517–520.

[51] M. Harrower and C. A. Brewer, “Colorbrewer. org: an online tool
for selecting colour schemes for maps,” The Cartographic Journal,
vol. 40, no. 1, pp. 27–37, 2003.

[52] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965.

[53] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in Proceedings of
the Conference on Design, Automation and Test in Europe. European
Design and Automation Association, 2009, pp. 502–506.

[54] M. Ebrahimi, N. Sayed, M. Rashvand, and M. B. Tahoori, “Fault
injection acceleration by architectural importance sampling,” in
2015 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS). IEEE, 2015, pp. 212–219.

[55] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting application-level fault equivalence to analyze
application resiliency to transient faults,” in ACM SIGPLAN No-
tices, vol. 47, no. 4. ACM, 2012, pp. 123–134.

[56] H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, “Adapt: algorithmic differentiation
applied to floating-point precision tuning,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis. IEEE Press, 2018, p. 48.

[57] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
transactions on visualization and computer graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

Zhimin Li is a graduate student working on
his PhD from the School of Computing at the
University of Utah. Zhimin has been a research
assistant at the University of Utah’s Scientific
Computing and Imaging Institute since 2016.
He received his B.S. in computer science and
mathematics from the University of Utah in 2016.
His research focuses on analyzing silent data
corruption in high performance system.

Harshitha Menon is a Computer Scientist in the
Center for Applied Scientific Computing (CASC)
at Lawrence Livermore National Laboratory. She
joined CASC as a postdoctoral research staff
in 2016. Her research focuses on floating-point
mixed-precision, approximate computing, and
fault tolerance of HPC applications. She re-
ceived her Ph.D. in 2016 and M.S. in 2012,
both from the University of Illinois at Urbana-
Champaign. She was awarded the ACM/IEEE-
CS George Michael Fellowship in 2014, the

Anita Borg Scholarship in 2014 and the Siebel Scholarship in 2012.

Dan Maljovec is a recent graduate from the
School of Computing at the University of Utah
where he focused on the application of topo-
logical models to high dimensional data. He re-
ceived his B.S. in computer science from Gan-
non University in 2009. Dan has been a research
assistant at the University of Utah’s Scientific
Computing and Imaging Institute since 2012 and
has worked at three separate national labora-
tories during that time. He is now a full-time
employee at Recursion Pharmaceuticals in Salt

Lake City.

Yarden Livnat is a Research Scientist at the
SCI Institute and an Adjunct Research Professor
at the School of Medicine at University of Utah.
He received a B.Sc. in Computer Science at
the Ben Gurion University in Israel, an M.Sc.
in Computer Science at the Hebrew University
in Israel and a Ph.D. in Computer Science at
University of Utah in 1999.

Shusen Liu is a computer scientist at the
Center for Applied Scientific Computing (CASC)
at the Lawrence Livermore National Laboratory
(LLNL). His research interests lie primarily in
high-dimensional data visualization and inter-
pretable machine learning. He received a Ph.D.
in computing from the University of Utah in 2017.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2994954, IEEE
Transactions on Visualization and Computer Graphics

16

Kathryn Morhor is the group leader for the Data
Analysis Group at the Center for Applied Scien-
tific Computing at Lawrence Livermore National
Laboratory (LLNL). Kathryn’s research on high-
end computing systems is currently focused on
scalable fault tolerant computing and I/O for ex-
treme scale systems. Her other research inter-
ests include scalable performance analysis and
tuning, and parallel programming paradigms.
Kathryn is a 2019 recipient of the DOE Early
Career Award whose research focuses primarily

on user-level file systems for HPC in the Unify project and on scalable
I/O with the Scalable Checkpoint/Restart Library (SCR), an RD100
Award-winning multilevel checkpointing library. She is also a Co-Chair
of the Administrative Steering Committee for PMIx, a portable interface
for tools and applications to interact with system management software.

Peer-Timo Bremer is a member of technical
staff and project leader at the Center for Applied
Scientific Computing (CASC) at the Lawrence
Livermore National Laboratory (LLNL) and As-
sociated Director for Research at the Center for
Extreme Data Management, Analysis, and Visu-
alization at the University of Utah. Prior to his
tenure at CASC, he earned a Ph.D. in Computer
science at the University of California, Davis in
2004 and a Diploma in Mathematics and Com-
puter Science from the Leibniz University in Han-

nover, Germany in 2000.

Valerio Pascucci the Inaugural John R. Parks
Endowed Chair of the University of Utah and the
founding Director of the Center for Extreme Data
Management Analysis and Visualization (CED-
MAV) of the University of Utah. Valerio is also a
Faculty of the Scientific Computing and Imaging
Institute, a Professor of the School of Comput-
ing, University of Utah, and a Laboratory Fellow,
of PNNL and a visiting professor in KAUST. Be-
fore joining the University of Utah, Valerio was
the Data Analysis Group Leader of the Center

for Applied Scientific Computing at Lawrence Livermore National Labo-
ratory, and an Adjunct Professor of Computer Science at the University
of California Davis. Valerio’s research interests include Big Data man-
agement and analytics, progressive multi-resolution techniques in scien-
tific visualization, discrete topology, geometric compression, computer
graphics, computational geometry, geometric programming, and solid
modeling. Valerio is the coauthor of more than two hundred refereed
journal and conference papers and is an Associate Editor of the IEEE
Transactions on Visualization and Computer Graphics.

Authorized licensed use limited to: The University of Utah. Downloaded on November 27,2020 at 19:18:09 UTC from IEEE Xplore. Restrictions apply.

