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Vector Field Decompositions using
Multiscale Poisson Kernel

Harsh Bhatia, Robert M. Kirby, Valerio Pascucci, and Peer-Timo Bremer

Abstract—Extraction of multiscale features using scale-space is one of the fundamental approaches to analyze scalar fields. However,
similar techniques for vector fields are much less common, even though it is well known that, for example, turbulent flows contain
cascades of nested vortices at different scales. The challenge is that the ideas related to scale-space are based upon iteratively
smoothing the data to extract features at progressively larger scale, making it difficult to extract overlapping features. Instead, we
consider spatial regions of influence in vector fields as scale, and introduce a new approach for the multiscale analysis of vector fields.
Rather than smoothing the flow, we use the natural Helmholtz-Hodge decomposition to split it into small-scale and large-scale
components using progressively larger neighborhoods. Our approach creates a natural separation of features by extracting local flow
behavior, for example, a small vortex, from large-scale effects, for example, a background flow. We demonstrate our technique on
large-scale, turbulent flows, and show multiscale features that cannot be extracted using state of the art techniques.

Index Terms—Helmholtz-Hodge decomposition, Flow analysis, Multiscale features

1 INTRODUCTION

ULTISCALE representations and the notion of
Mscale-space analysis have long been a crucial
building block of data analysis and signal processing.
The fundamental idea is to split a signal into its spectral
components, i.e, low vs. high frequencies, in order to
remove noise or analyze phenomena at different spatial
or temporal scales, e.g., daily vs. monthly vs. seasonal
temperature fluctuations. However, these techniques have
been predominantly designed for scalar-valued signals, and
applying them to vector fields is challenging. Turbulent
flows, in particular, are known to contain features on a wide
(and continuous) spectrum of scales [1]. Although scientists
observe coherent structures at various temporal and spatial
scales in animations, defining and extracting such features
directly from a velocity field has proven elusive. Often,
smoothing is applied to individual vector components or
derived scalars, which can produce significant artifacts (see
for example, Figs. 4 and 5).

We contend that multiscale flow features require a
conceptually different viewpoint compared to conventional
scale-space approaches, which consider a signal exclusively
in terms of its frequency content, and use “scale” only to
define the frequency range of the corresponding filter. In
flow fields, however, one is often interested in global effects,
e.g., the presence of a background flow or other large-scale
motions, compared to local ones, e.g., small-scale vortices.
These concepts are only loosely coupled to the frequency
of the signal, but rather are more concretely defined in
terms of spatial scales, and echo a Lagrangian viewpoint
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that distinguishes a local observer moving with the flow
from a global one.

To create “observers” at different scales, we propose to
extend Helmholtz’s perspective [2], [3], according to which
the flow at a given point is affected by the flow at every
other point in the domain. Through this perspective, we
propose to create different scales by explicitly restricting
the region of influence for every point. In particular, using
the natural Helmholtz-Hodge decomposition [4], [5], we
split the flow into small-scale effects, i.e., induced by
the flow within the region of influence, and large-scale
effects, i.e., induced by flow structure further away. By
continuously adjusting the filter size, we can create a
multiscale decomposition based on splitting the observed
effects, rather than smoothing signals. More importantly, the
resulting decomposition has a physical interpretation: the
large-scale flow describes the overall motion at a given scale,
whereas the small-scale flow defines the relative motion as
observed when moving with the large-scale flow. In the
limit of an infinitesimal filter, the small-scale flow reverts
to the traditional Lagrangian frame of reference, where the
observer moves along particles in the flow.

Multiscale techniques, in general, create an alternate
function to represent behavior above or below a chosen
scale. Similarly, our approach creates alternate (small- and
large-scale) vector fields, which can be analyzed using
any of the existing vector field techniques. Our multiscale
decomposition is not aimed at any specific type(s) of
features. Rather, feature extraction can be seen as operations
defined on vector fields and our decomposition supports all
known operations. This paper demonstrates computation
of critical points, streamlines, and pathlines as operations
on the derived field, which appear to identify interesting
phenomena even though they are not directly connected to
their conceptual counterparts in the original flow.

Unlike  existing  approaches, the  presented
decomposition does not define “scale” using spectral
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content, but as the (spatial) region of influence. Here, we
present a way to split the features based on the size of
their region of influence. The splitting operation presented
here depends entirely upon the spatial derivatives of the
flow in spatial neighborhoods and, therefore, separates
spatially multiscale features, such as multiscale vortices.
Given a temporally smooth unsteady flow, the presented
approach can be applied to each time-step independently,
producing a decomposition that is multiscale in space and
smooth in time. Particle paths in turbulent unsteady flows
are typically affected by behavior at many scales, e.g., small
vortical motion revolving in a larger vortex. As mentioned
above, the goal is not to extract the particle paths of a
given unsteady flow. Instead, our approach decomposes
the flow and can represent the particle paths in the absence
of large- or small-scale behavior. Considering that pathline
computation, as an operation, is not linear, the presented
decomposition provides a new way to separate the particle
behavior with respect to flow at different scale (see Fig. 1).

Contributions. We present a new multiscale decomposition

framework for vector fields. More specifically,

e We propose a new filter to solve the Poisson equation
directly at multiscale. The proposed filter, a modified
Green’s function, is based on the idea of “splitting”
local vs. nonlocal effects, as compared to the traditional
“smoothing” filters.

e Using the modified Green’s function, we extract
multiscale features from vector fields. Our approach
generalizes a recent work [5], which compensates for
the global harmonic background flow, by allowing to
compensate for more general types of flows.

e We present a Fourier-based approach to compute
the multiscale decomposition, which has a simple
implementation (about 120 lines of Python code), and is
several orders of magnitude faster than the previously
presented technique [4] (about 87 x for a typical 2D case).

e We demonstrate our multiscale decomposition on
analytically designed as well as simulated turbulent
flows. We show that our approach enables extraction of
multiscale features, such as nested vortices. We also show

N + 3 £l
(d) GIven unsteady 1ow

Vector Field Magnitude

Fig. 1. Turbulent flows often exhibit complex phenomena at a wide range of spatial and temporal scales and extracting multiscale features of interest
is challenging. Here, we present a new framework for multiscale decomposition of flow fields. Using a novel splitting kernel, we decompose a given
flow into a small-scale and a large-scale component (with respect to a chosen scale). The figure shows a synthetic flow (a), which comprises of a
steady flow with four centers of rotation superimposed with a time-varying rotational flow (see Section 4.3). As seen in the figure, the superposition
suppresses two of the centers and forces the other two inwards. Pathlines seeded near the expected vortices do not highlight swirling behavior.
Our approach allows separating the flow features at the two scales, such that the small-scale flow component (b) captures the expected, stationary
centers of rotation, whereas the large-scale component (c) captures the larger, time-varying rotation. The top view (bottom row) of the three flows
highlights the difference in the spatial scales of (b) and (c), which are superimposed in the original flow (a).
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that the proposed technique produces features that are
stable in scale-space, and can be applied to unsteady flows
by decomposing flow at each time-step independently.

2 RELATED WORK

Turbulent flows are known to contain features on a
wide (and continuous) spectrum of scales. Characterizing
the inherent multiscale features of turbulence has been
a long-standing problem in fluid dynamics [1], and
scientists are interested in characterizing whether or not
there exist universal structures across scales. Several
multiscale analysis and representation approaches have
been proposed; we refer the reader to Mishra et al. [6], [7]
for a discussion of related techniques.

The intuition about multiscale features is most often
formalized using signal processing techniques, where
selected filters (usually low-pass) are used to study the data
at a continuous spectrum of scales, also called scale-space [8].
Isotropic [9], [10] as well as nonisotropic [11], [12] filtering
have been used to construct the scale-space, and for
smoothing and denoising vector fields. Most existing
techniques apply the scale-space analysis independently to
each velocity component. However, linear smoothing often
fails to preserve sharp flow features (see Fig. 5 published
by Tong et al. [13]). Furthermore, the resulting flows,
especially the remainder (high-frequency) component can
produce distortions that seem to not correspond to any
physical feature (see Fig. 5). In general, when treating each
velocity component independently, it remains unclear how
to physically interpret the results, e.g., the chosen filter
may not preserve conformal finite-element spaces, H(div)
and/or H(curl). Building upon smoothing techniques, Xia
et al. [14] proposed vector-valued wavelets, but they have
primarily been used to remove additive noise [15], [16], and
share some of the limitations of smoothing.

Alternatively, Tong et al. [13] proposed to smooth
derived fields. In particular, they decompose a given flow
into a pair of potential fields, smooth these potentials,
and recombine the results to obtain a “simpler” flow.
This approach is based upon a fundamental result in
flow analysis, the Helmholtz-Hodge decomposition (HHD), and
results in the expected effects, i.e., enhancing or suppressing
small-scale structures. Nevertheless, since smoothing is still
performed using a low-pass filter, and more importantly,
the two fundamental constituent potentials are smoothed
independently, the physical relevance of the resulting flow
remains unclear (see Fig. 5). Tong et al.’s approach is closely
related to the decomposition presented in this paper, as
we also use a variant of the HHD to create a multiscale
representation. However, instead of “smoothing” the given
flow, our goal is to “split” the flow based on local vs.
non-local effects. Sections 3 and 4 will provide mathematical
details and comparisons between the two approaches.

Another related approach is the proper orthogonal
decomposition (POD) [17], [18], [19], which derives a
reduced-order basis from instantaneous snapshots of vector
fields, and has been used extensively for extracting coherent
structures from turbulent flows [20], [21]. The POD is
attractive due to its linearity. However, since the POD
basis are derived from the global flow behavior, the

resulting coarser space is comparable to the global flow
decompositions. In comparison, our approach provides a
way to achieve both spatial and temporal locality, and
makes no assumption about the global behavior of the flow.

Decompositions of vector fields are closely related to
the notion of frames of reference. In this context, the
usual goal is to define a new frame of reference to
facilitate analysis of flows, e.g., by extracting vortices
moving along a background flow. The simplest approaches
compensate for a uniform background flow [22], [23], [24],
[25], [26], usually by employing the derivative of the flow.
Several more-general frames have also been proposed; for a
complete discussion, see the survey by Pobitzer et al. [27].
The ideas proposed in this paper are a generalization of the
internal frames of reference presented by Bhatia et al. [5],
who used the natural HHD [4] to split a given flow into
internal (local to the domain) vs. external effects.

More recently, Giinther et al. proposed rotation-invariant
[28] and objective [29] detection of vortices through
minimization of temporal derivatives in selected local
neighborhoods. Conceptually, this approach is similar
to the one presented in this paper as both techniques
separate flow within a local neighborhood into different
components. However, Giinther et al.’s approach [29] aims
to minimize the temporal derivative rather than considering
different spatial scales, which can be a limitation since
accurately estimating the temporal derivatives requires
sufficiently time-resolved data, which, especially for the
large simulations of greatest interest, is rarely available
in practice [30]. Instead, the multiscale decomposition
proposed here operates directly on individual velocity
snapshots; hence, it provides many practical advantages,
such as better computational cost, independence from
temporal resolution, and easy applicability.

Although there exist many ways to define multiscale
vector field representations, motivated by different goals
and based upon different mathematical theories, only
one approach (Tong et al. [13]) presents a multiscale
decomposition, making it to be our primary competing
approach and allowing for a direct comparison.

3 FUNDAMENTALS

This section describes the mathematical foundations
required to present the discussion of our multiscale
decomposition. In particular, since the Helmholtz-Hodge
decomposition is defined using a set of Poisson equations,
we discuss the intuition behind the Poisson equation and an
important way to compute its solution before discussing the
relevant decompositions.

3.1

The Poisson equation is one of the most fundamental elliptic
partial differential equations, and has the following form:

Vip=—f 1)

where, f is called the source function, and ¢ the potential
function. The general solution to Equation (1) is given
by a homogeneous and a heterogeneous part, written as

The Poisson Equation

in ,
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¢ = F + H, where V2F = —f, and H is a solution of
the Laplace equation,

VZH =0 in €,
and is called a harmonic function — a function with zero
second derivative. Equation (1) is solvable only up to an
additive harmonic function, and therefore, a specific H must
be chosen in order to obtain a unique solution. Since a
harmonic function H has a constant slope in the given
domain 2, it can be computed by using only the values
at the boundary, i.e., it is determined completely by the
boundary conditions.

For functions defined on infinite domains that tend to
zero at infinity, there cannot exist any nonzero harmonic
function. As a result, the Poisson equation can be
solved uniquely without any explicit boundary conditions;
however, we note the implicit assumption of a far-field
boundary condition. For such cases, the fundamental
solution to the Poisson equation can be computed using
an integration kernel, called the (free-space) Green’s function,
Goo(%x,%0), which is given as

1
GOO(X,XO):—§|X—XO\ X,Xg € R,

1
Goo(x,%0) = ~ox log(|x — x0|) x,x%x0 € R2, ()
1

Gl %0) = i ]

X,Xo € R3.

The Poisson equation V2¢ = —f on R", where f(x) — 0
for x — oo canbe solved by computing the integral solution,
ie.,

$(x0) = | Goo(X,%0) f(x) dx. ®)

RTL
A more-detailed discussion on potential functions and
integral solutions can be found in literature [31], [32].

3.2 The Helmholtz-Hodge Decomposition

The Helmholtz-Hodge decomposition (HHD) [2], [33], [34]
decomposes a given vector field into three components: a
rotation-free, a divergence-free, and a harmonic vector field.
Consider a smooth vector field V : Q — R", where () C R"™
(for n = 2, 3), then

V=d+7+h, )

where, d is rotation-free (V x d = 6), 7 is divergence-free
(V- 7 = 0),and h is harmonic (V x h = Oand V-h = 0).
Thus, the following equalities are obtained.

-

V-d=V-V,

. - ©)

Vxr=VxV.
To compute the decomposition, the components d and 7 are
represented as the gradient of a scalar potential D, and the
curl of a vector potential R, respectively. Substituting d=
VD and 7# = V x R in Equations (5), we get two Poisson
equations,

. 6)

where, A is the (scalar) Laplacian, that is, A = V2, and A
is the vector Laplacian, i.e., A = (VV:) = (V x Vx). The
Poisson equations (6) are solved, leading to the components
d and 7, and then, the harmonic component is computed as
the remainder:

h=V—d—r.

In two-dimensions, the curl can be represented as a
scalar value in the normal direction to the domain. This
leads to a simpler representation of " as the co-gradient
of a scalar potential R, that is, 7= JV R, where J is the
7 /2-rotation operator [35, Eq. 16]. Consequently, the second
Poisson equation in (6) can be simplified as

AR=-V-JV. @)

For domains with boundary, the solutions to the Poisson
equations (6) and (7) are not unique, and usually, boundary
conditions are imposed to obtain uniqueness. Different
types of boundary conditions can be applied as suited
for different applications. A detailed discussion on the
properties and boundary conditions of the HHD can be
found in a recent survey [35].

3.3 The Natural Helmholtz-Hodge Decomposition

Recently, a new variant of the HHD, called the natural
Helmbholtz-Hodge decomposition has been proposed, which
does not require specification of boundary conditions to
obtain uniqueness. The natural HHD exploits the fact that
the solution to the Poisson equation (1) represents the
influences that are internal (defined by f) as well as external
(unknown) with respect to the given domain Q. In this
context, a harmonic function is equivalent to the external
influence only, i.e., the potential generated by a source
function that is zero inside {2 and (possibly) nonzero outside
Q) (see [4, Section 2]).

Using this intuition, the authors proposed that the
Green’s function, G, can also be applied to a bounded
domain 2 C R" by splitting the computation of ¢ in
Equation (3) into two parts — inside {2 and outside {2, i.e,,

B(x0) = /Q oo (%, %0) f(x)dx+/R oo (%, %0) f(x) dx.

n/Q

®)
They noted that the second integral ( Jgn /0 ) creates
a harmonic potential with respect to €2, whereas the first
integral ([, ---) leads to a nonharmonic potential with
respect to the given domain. As a result, one way to obtain
a unique solution to the Poisson equation (1) on bounded
domains is by simply discarding the second integral. Such
a solution implicitly chooses to define the solution, ¢, to be
affected by internal influences only.

To compute the natural HHD, the Poisson equations (6)
are solved by splitting the solutions into two parts as in
Equation (8), and then discarding the second part. Formally,
the scalar and vector potentials of the natural HHD are
computed as follows

D(x¢) = / Goo(x,%0) V- V(x) dx X,Xg € €,
Q
. . ©)
R(x¢) = —/ Goo(x,%0) VX V(x)dx x,%x0 € Q.
Q
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This gives the three
HHD as d(x)=VD(x),

hix) = V(x) = d(x) = 7(x).

components of the natural
7(x) =V x R(x), and

3.4 Multiscale Representation of Tong et al. [13]

The technique most similar to the one proposed in this
paper is due to Tong et al. [13], who extend a popular
finite-element approach [36] to compute the HHD for 3D
tetrahedral domains. Their approach solves a least-squares
system for the Poisson equations (6) using the boundary
conditions, VD x i = 0 and V R-ii = 0, respectively. Once
the two potentials (D and R) have been computed, they
smooth the potentials, before recombining them to create a
vector field, which in turn, is a smoother representation of
the input data.

In order to provide a fair comparison with Tong et al.’s
approach, we make two modifications to their formulation.
First, their approach uses boundary conditions, which, as
discussed in detail elsewhere [4], [37], can create severe
artifacts not present in our approach, as our technique
extends from the natural HHD. Therefore, we modify
Tong et al’s formulation to instead use Equation (9),
thus, avoiding the otherwise present boundary artifacts.
Second, since the technique as discussed by Tong et
al. has been designed primarily for manipulating vector
fields in graphics applications, not for a multiscale
analysis of scientific data, their decomposition does
not explicitly handle the harmonic component. In
particular, the smoothed vector fields are computed by
applymg a low-pass filter, g,, on the HHD potentials:

dc, = V(go*D), and 7, =V X (gg * R) Here, the

high-frequency component would be defined as V—d,—7,,
which expands to h+d— d, + 7 — 7,. This expression
means that the harmonic component, which conceptually
represents the global scale and can contain low-frequency
features only, would instead be represented as part of the
high-frequency flow, which is not desirable for scientific
analysis. Instead, we adapt Tong et al’s approach to
explicitly assign h to the large-scale component.

3.5

Equation (9) represents convolution of the divergence and
rotation of the field with Green’s function. The original
paper on the natural HHD [4] computes the convolution
spatially, i.e.,

$(x) = Goo (%) * f(x),

where Goo(x) = Goo(x,0), and # is the convolution
operator. Instead, we compute this convolution efficiently
in Fourier domain, although this computational gain costs
some accuracy at the boundary. Since spatial convolution
is effectively a weighted sum for discrete data, the
boundary poses little problems as the “missing samples”,
i.e., the data outside the boundary, is simply taken to be
zero. However, Fourier transform is defined only for a
periodic signal, and therefore, computing the transform of
nonperiodic data imposes additional high frequencies to
the spectrum. We also note that windowing approaches,
e.g., using Hamming or Tukey window, to make the

Integral Solution in Fourier Domain

x €, (10)

data periodic is ill-suited for vector fields as they create
significantly worse artifacts due to sharp gradients near
the boundary. Although vector fields of interest are almost
always nonperiodic, in practice, we found that the boundary
artifacts due to nonperiodic Fourier transform are negligible
for the large-scale flows of practical interest. Furthermore,
considering the computational advantage of convolution in
Fourier domain (O(nlogn)) over that in the spatial domain
(O(n?) in 3D), such artifacts are acceptable.

4 MULTISCALE DECOMPOSITION

This paper presents a new multiscale kernel to solve the
Poisson equation. We use the presented multiscale solution
to the Poisson equation to decompose vector fields using
the multiscale Helmholtz-Hodge decomposition. The defining
characteristic of this decomposition is that given a scale, the
flow is decomposed into two components, which contain
features with respect to the corresponding scale (akin
to low- and high-frequency components in filtering). In
particular, the goal is to define a small-scale flow containing
small-scale features (local with respect to the given scale),
and the remainder containing the remaining, large-scale
(nonlocal) structures.

Tong et al. compute two potential fields, D and R, and
smooth them using a low-pass filter. The authors show
that using the HHD, their approach can better preserve
sharp features in the flow, as compared to direct linear
smoothing of the vector field. Nevertheless, the artifacts of
smoothing can still be observed, e.g., the approach is not
able to distinctly decompose the flow into local vs. nonlocal
features, e.g., see Fig. 5. We note that the smoothed potential
field, D, used by Tong et al.’s approach is given as

Dozga*(Gm*VW_/’),
= (go % Goo) ¥ V - V.

Thus, this approach is equivalent to solving the Poisson
equation (6) using the integral solution (11), but using a
smoothed Green’s function as the integration kernel.

4.1 Multiscale Solution to The Poisson Equation

In order to explore the limitations of smoothing approaches,
and to develop a new multiscale decomposition of vector
fields based on the idea of “splitting” local vs. nonlocal
effects, we propose a new multiscale filter to solve the
Poisson equation. This section discusses the properties and
implications of the effective integration kernel of Tong et
al.’s approach, as well as our proposed kernel.

Given a Poisson equation, the goal is to find the potential
function with respect to a given scale, 0. Traditionally, the
focus has been on the smoother function containing only the
large-scale components, but in many cases, the small-scale,
local components are as important.

Smoothing approaches. There are two common strategies
to obtain the low-frequency component. As suggested by
Tong et al., one can smooth the potential function after
solving the Poisson equation using the integral solution
given by Equation (3), i.e., ¢po = g5 * ¢ = g5 * (Goo * f),
where g, is a low-pass filter, e.g., a Gaussian filter.
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Fig. 2. Comparison of filters for computing the multiscale Poisson equation in 2D (a,b) and 3D (c,d). The effective filters for smoothing are shown
in (a) and (c) and those corresponding to the proposed Green’s function in (b) and (d). The red and green curves show filters for extracting large-
and small-scale components, respectively. As seen from the figure, the modified Green’s function maintains the weights in the local neighborhood
(of x = 0) better, and thus, provides a “splitting” of local vs. nonlocal influences as compared to “smoothing” filters. We use a normalized Gaussian

(95 (0) = 1) as the scaling function k. for all results in the paper.

Alternately, one can first simplify the source function
leading to a simplified potential, i.e., ¢ = Goo * (go * f).
Since convolution is associative, both these approaches
are mathematically equivalent to smoothing the Green’s
function and then solving the Poisson equation, i.e.,

¢a:(90*GOO)*f-

Using the distributive property of convolution, the implied
kernel for the small-scale component, 1, can be derived as

)

follows:
'(/)0' = d) - (ba
:Goo*f_(ga*Goo)*f (12)
= (Goo_ga*Goo)*f'

Figs. 2(a) and 2(c) show the implied kernels for both small-
and large-scale components in the standard smoothing
approaches. As expected, the low-pass filter (red) smoothes
out the singularity at x = 0, suppressing the convolution
weights in the immediate neighborhood. The high-pass
filter (green) captures the remaining weights. Although
mathematically valid, smoothing does not produce the
desired result in the physical sense of the Poisson equation,
because despite suppressing certain frequencies while
retaining others, it fails to maintain the spatial context of the
Poisson equation. Note how the local influences (at and near
x = 0) are distributed between the two scales, and thus do
not provide a clean separation into local vs. nonlocal effects.

The modified Green’s function. Recall that the integral
solution (3) determines the potential ¢ at a given point
by accumulating the net influence of the source function
f at all the points in the domain. Thus, a spatially relevant
solution at a reduced scale can be obtained by explicitly
controlling the weights in the (spatial) neighborhood of the
given point. Figs. 2(b) and 2(d) show our proposed kernel,
whose mathematical properties are discussed in the next
paragraph. In particular, note that the filter for small-scale
features (green) preserves not only the singularity, but
also the weights in the immediate neighborhood, thus
capturing local influences with higher fidelity. As a result,
the corresponding filter for large-scale effects (red) does not
include the point x = 0 and suppresses the contribution
of neighboring points. Furthermore, the large-scale filter
preserves the weights in the far-field. Such a kernel can be
thought of as a modified Green’s function, and is better suited
to compute multiscale solution to the Poisson equation.
Mathematically, the modified Green’s function can be
obtained by multiplying the Green’s function with a suitable
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scaling kernel, k,(x)
restrictions.

R®™ — R, with the following

o For any given scale o,
- ky(x)=1forx =0,
- ko(x) = 0 for x — oo,
- 0<k,(x) <1forall x,and
- ko(x1) > ko(x2) for all [x1] < |x2].
 For any two scales 01 < o9,
- ko, (x) < ko, (x) for all x.
Two simple choices for k, are a normalized Gaussian
function and a tent function, where the spread of the
function is proportional to o. For k, = 1, the Green’s
function remains unchanged, and therefore, a full-scale
solution is obtained.

The crucial difference with the smoothing approach is
that using a modified Green’s function, as compared to
Equation (12), we directly compute the small-scale potential,

%, as the integral solution to

1#; = (kd Goo)*f (13)
Smoothing vs. splitting. Conceptually, the modified
Green’s function is a high-pass filter, as compared to the
low-pass filter given in Equation (11). However, since it
explicitly controls the Green’s function in spatial domain,
our proposed filter is better suited for “splitting” the local
effects from nonlocal ones, as compared to the “smoothing”
performed by low-pass filters. Next, we will demonstrate
the advantages of the modified Green’s function in the

context of vector fields.

4.2 The Proposed Multiscale Decomposition

Using the multiscale solution to the Poisson equation,
computation of the multiscale HHD is straightforward. In
particular, the two small-scale potentials, denoted D* and

o

R*, respectively, can be computed as

—

Df = (ky-Goo) %V -V,
K (14)

R: = (ky-Goo) xV X V,

giving the small-scale flow component, l_;*, as,

=

= VD:+V xR

=

¥ 3k jares *
lo_da+ra o

=t

v

and the large-scale component as ﬁ;
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Fig. 3. Considering neighborhoods of varying sizes allows creating a
multiscale decomposition by representing different amounts of rotation
(and divergence) as nonlocal effects. Aggregating only the local effects,
thus, amounts to creating a small-scale flow, i.e., containing only the
features at or below the given scale. For example, as the smallest
neighborhood (red) sees a mostly laminar flow, the corresponding
small-scale features contain only little rotation, and the large-scale
rotation can be used to effectively create a rotational frame of reference.

The intuition behind the multiscale HHD is
schematically illustrated using Fig. 3. Without loss of
generality, consider a rotational vector field in 2D, and the
solution of Equations (14) for a single point, xy (shown as a
gray dot) for three scales, o1 > 02 > 3. The corresponding
scaling functions gradually and smoothly scale the Green's
function down to zero for the neighboring points in an
isotropic manner. The blue, green, and red circles in the
figure show the distances from x( (the gray dot) where
ks - G becomes negligible for three scales, respectively.

Zooming into the three circles separately, the figure
shows only the flow considered by Equations (14)
for xg for the different scales. The solution to these
equations considers the divergence and rotation only in
the corresponding region, and “approximates” a vector
at xo that best describes the divergence/rotation within
the domain, thus, capturing the phenomena that are local
with respect to the given scale. These ideas generalize to
compressible flows where the local phenomena captures
both compressibility and rotation. Furthermore, following
the discussion in Section 3.3, any divergence/rotation at
the points outside these boundaries creates a harmonic flow
with respect to the corresponding region. When combined
globally, the sliding window implied by the convolution
operator allows removing the larger-scale rotation with
respect to the smaller regions in the domain.

When the entire given domain is considered, this
approach is equivalent to creating the (globally) harmonic
flow [5]. On the other hand, with decreasing scale, the given
rotational field disappears from the small-scale component,
and contributes to the large-scale part. For the smallest
scale in this experiment, the rotational component is zero,
whereas the large-scale component is no longer harmonic
and contains all of the rotational field. Indeed, in the limiting
case of an infinitely small neighborhood, the multiscale
decomposition creates a Lagrangian viewpoint, where the
entire motion is seen relative to a given observer, who is
considered to be at rest.

4.3 Multiscale Decomposition of Unsteady Flows

The description of our multiscale decomposition framework
depends only on the spatial derivatives (on the divergence

and curl) local to a spatial neighborhood. Indeed, the
independence from the temporal dimension is a key
characteristic of our framework. Given an unsteady flow, the
decomposition can be applied to each time-step individually
to produce a temporally smooth unsteady decomposition
that captures the multiscale behavior of interest.

5 RESULTS

We demonstrate our multiscale decomposition on simulated
flows, a jet in crossflow and a lifted ethylene flame, both of
which are expected to contain nested vortices across scales.

5.1

Our first test case is a common type of turbulent flow: a jet
in crossflow [38], which is a fundamental flow phenomenon
relevant to many engineering applications, e.g., film cooling
of turbines, fuel injections, and dilution jets in gas-turbine
combustors. The experimental set-up contains injection of
flow through a jet at the bottom in the presence of a strong
background flow in transverse direction, the crossflow, as
illustrated in Fig. 4(a). The goal of the experiment is to
study different types of vortical structures created by the
interaction of the burning jet with the crossflow.

Important structures in this flow include a pair of
counter-rotating vortices, which occur as a result of the
impulse of the jet on the crossflow, and become dominant in
the far field. Experts speculate that various smaller vortices
are nested inside these larger counter-rotating vortices.
However, due to the turbulent nature of the phenomenon,
these large, but weak, vortices are overpowered by
the smaller and stronger vortices, making them difficult
to extract using standard approaches. Previously, by
compensating for the global harmonic background flow,
Bhatia et al. [5, Fig. 11] used internal reference frames to
extract and highlight these features of interest.

Using Fig. 4, we show that our proposed technique
improves upon their approach, by enabling the extraction
of these vortices through a multiscale decomposition of
the flow directly on a relevant 2D slice (in xy plane). In
particular, Fig. 4(a) shows the existing decomposition [5],
which shows turbulent behavior in the local component,
and the global component is a harmonic flow with very low
magnitude. Such a behavior is observed due to a lack of
separation of scale of vortices. The results of the proposed
multiscale decomposition for a selected scale are shown in
Fig. 4(c). As is seen in the figure, the nonlocal component
capture the counter-rotating vortices, thus, creating a
rotational frame of reference for the smaller, nested vortices,
which can be found in the local component. Advancing the
state of the art from the global decomposition, this result
allows the domain experts, to simultaneously analyze both
types of vortices (nested as well as counter-rotating) to
understand the effects of simulation parameters. We note
that the projection step to compute the zy slice for this
experiment discards the crossflow, which is orthogonal to
the chosen slice, since the experiment focuses largely on the
counter-rotating vortex pair.

We next analyze the data in an orthogonal direction, on
a xz slice through the center of the jet (see Fig. 5). In this

Jet in Crossflow
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Fig. 4. (a) lllustration of a jet in crossflow and the different types of vortical structures associated with this flow; the most important, and yet the most
elusive to find, is the counter-rotating vortex pair, which represents weak, large-scale rotation, typically not detectable using standard approaches
in the original flow (not shown) nor using existing decomposition techniques. (b) shows the local flow (as defined by Bhatia et al. [5]) on the slice
as a LIC image and the corresponding global flow as streamlines. The expected vortices are too small to influence the global flow but are also
not easily recognized in the superposition of all non-global effects (LIC). (c) shows the proposed multiscale decomposition at an appropriate scale,
which highlights the vortex pair in the large-scale component (streamlines) and well-defined nested vortices in the small-scale component (LIC).

case, the goal is to study the features around the flame,
and therefore, the projection discards y component of the
flow, which although not zero, is negligible as compared to
the strong crossflow. The given flow, as shown in Fig. 5(a),
highlights the jet emerging from the bottom of the domain,
as well as the strong crossflow in the lateral direction.
Fig. 5(d) shows the small-scale flow obtained through our
approach. At the chosen scale, the resulting flow captures
not only the jet, which contains a series of small, but
strong jet shear-layer vortices, but a number of other
turbulent structures in the domain. Although many similar
structures are observed when Gaussian filtering (Fig. 5(b))
and Tong et al.’s approach (Fig. 5(c)) are applied for the
same o, what distinguishes the three results is the shape and
direction of the flow above the jet flame as it moves to the
right. Our decomposition highlights the expected (mostly
laminar) flow around the flame. Note that in the small-scale
component, i.e., relative to the strong crossflow, the flow
direction is inverted indicating the drag the flame induces
on the surrounding flow. The other approaches resolve the
same features in the simple, nonturbulent flow directly at
the front of the flame, but fail to do so in the more complex
environment at the back of the flame.

Next, in Fig. 6, we present the multiscale decomposition
on the same xy slice for progressively smaller o, thus,
focusing on increasingly smaller vortices. The figure shows
the expected correspondence between the size of our
integration kernel and the size of the vortices observed.
Results like this can be used to explore the distribution
of features, e.g., vortices at different scales, and the
resulting energy cascading effects with respect to scale. The
scale-space of features is further discussed in Section 5.3.

Finally, the multiscale HHD can be used directly on the
3D flows as well. Fig. 7 presents the decomposition for two
different scales; the figure shows the magnitude of vorticity,
as well as LIC visualization of a slice (computed after
performing the 3D decomposition). As can be seen from the
figure, the proposed multiscale decomposition highlights

smaller scale features in the flow. It is important to note
that the HHD (and hence the proposed multiscale approach)
does not commute with the 2D projection (slicing) operator;
therefore, unsurprisingly, the LIC visualizations in Fig. 7
show different flows than those in Fig. 6.

5.2 Lifted Ethylene Jet Flame

Next, we analyze a direct numerical simulation of a
turbulent lifted ethylene jet flame [39], which represents
a compressible and highly turbulent flow. In this case,
fuel is injected from the left of the domain creating a
strong background flow towards the right. This type of
flow is well studied, and is known to contain nested
turbulent structures. Therefore, this data provides important
validation for our approach. Fig. 8 shows the given
flow as well as the local components of our multiscale
decomposition for a variety of scale parameters. At the
full scale, the local component is heavily influenced by
the divergence created by the jet. At the next shown scale,
however, almost all of the divergence has been removed
from the local component, and the resulting flow shows
nested vortical structures. In particular, with decreasing
scale, increasingly smaller rotational features are observed.

5.3 Stability of the Multiscale Decomposition

Scientific data, like the ones discussed above, rarely
provides a “ground truth”, against which validity of a new
technique may be established. However, it is known that
physically relevant features must be stable with respect
to the multiscale decomposition [10], [40]. Therefore, we
demonstrate the stability of the features identified through
the proposed decomposition.

We revisit the 2z and yz slices of the jet in crossflow
discussed earlier, and compute the decomposition for a
wide range of scales. We compute the critical points of
the resulting fields in a numerically robust manner [41],
and track them over scales, ie., compute mapping of
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(c) Tong et al.’s decomposition (d) Proposed decomposition

Fig. 5. Multiscale analysis of a jet in crossflow. (a) The original velocity field at the center of the jet, within the lateral direction (zz-plane); (b)
The high-frequency component of a traditional scale-space analysis showing a number of unphysically distorted regions; (c) The high-frequency
component using Tong et al’s multiscale decomposition [13] shows less artifacts but still fails to resolve the flame; and (d) The small-scale flow
computed by the proposed technique resolves the expected behavior on top of the flame. In this comparison, only the proposed decomposition
correctly identifies the reverse flow above the jet, indicating the drag induced by the turbulent flame on the crossflow.

Fig. 6. Multiscale decomposition of the flow shown in Fig. 5(a) defined on a 20 x 25 mm domain at decreasing scales (¢ = 6.67,3.70,1.48 mm)
from left to right. One interesting structure is the single dominant vortex under the jet arch highlighted at the largest scale. Subsequent scales show
successively smaller vortices confirming the intuition of nested vortical structures.

critical points within adjacent scales using spatial distance. and stable paths of critical points, suggesting that several
As shown in Fig. 9(a), the “scale-space” of critical points features remain persistent over the considered range of
computed in the manner described above shows long scales, although some are indeed short-lived, and limited
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Fig. 7. Local (high-frequency) components of the JICF computed using the proposed decomposition at full-scale (left) and a smaller scale (right,
o = 0.925 mm) show substantial difference with the latter focusing more on finer features. The images show the vorticity (log-mapped to the shown
color scale), superposed on the LIC visualization of the flow through the center of the flame, highlighting the difference in flow structures.

in scale. In particular, many of the strong vortices in the
(xz-0 domain; left of Fig. 9(a)) span a wide range of scales.
Furthermore, the result for yz-o scale-space shows a larger
number of shorter tracks, indicating that many identified
features are limited in scale. A closer examination shows
the equivalent of Hopf-bifurcations in scale space with pairs
of counter-rotating vortices appearing at smaller scales.
Despite the seemingly noisy figure, the merging of many of
the tracks can be noticed (especially in the yz-o scale-space).
These features represent smooth and stable merging of
features, confirming that the decomposition does not create
artifacts in the form of suddenly appearing critical points
(except at the boundary of the domain). The zz slices also
contain some prominent vortices that are long-lived yet shift
their position significantly throughout the scales. This is a
well known phenomena in scale-space analysis indicating
that these structures are relevant (and stable) for some but
not all scales.

5.4 Multiscale Decomposition of Unsteady Flows

To demonstrate the decomposition of unsteady flows, we
create a steady flow with four rotating centers [28] and add
to it a time-varying unsteady vortex. The resulting flow
represents a key test case where the flow behavior of a
larger vortex may overwhelm that of smaller vortices. For
example, in our test scenario, even though the four centers
are stationary, the pathlines, which are also affected by
the unsteady rotation, fail to swirl around and capture the
stationary (and known) centers of rotation (Fig. 1(a)).

Fig. 1 also visualizes the small-scale and large-scale
components with respect to a chosen scale. The small-scale
flow in this case is able to completely capture the stationary
centers of rotation, as seen both by the LIC visualization as
well as the swirling pathlines around them. In contrast, the
large-scale flow captures the time-dependent rotation in the
flow, and highlights its larger spatial span (scale).

Next, Fig. 9(b) visualizes critical point tracking for the
time-varying lifted flame for a single scale. As can be
noticed from the figure, most critical points persist over
the entire time span and show stable paths, indicating

temporal stability in the results computed using individual
time-steps. This result is different from Fig. 1 in two
ways. First, we show the temporal stability of critical
points as compared to pathlines swirling around known
vortices in Fig. 1. Second, whereas the centers of rotation
in Fig. 1 were stationary, the critical points in the lifted
flame are unsteady. Our experiments illustrate a temporally
smooth, multiscale decomposition of unsteady flows, which
is able to extract the evolution of multiscale features by
decomposing individual time-steps of unsteady flows.

5.5 Implementation and Performance

The computation of the natural HHD as described by Bhatia
et al. [4], and further improved by us (see Section 3.5)
requires (1) gradient, divergence, and curl operators, (2)
convolution operator, and (3) the computation of the Green’s
function, Gs. The proposed multiscale decomposition
additionally requires (4) the computation of the scaling
kernel, k,, and (5) the multiplication of k, with G. It is
important to note that since steps 4 and 5 always perform
a single multiplication (per grid point) irrespective of the
chosen scale, the computational cost is independent of o.
We have prototyped this pipeline in Python, leveraging
the inbuilt functionalities provided by numpy and scipy,
allowing the implementation of the entire approach in about
120 lines of code.

The time to compute the decomposition for a flow
defined on [1408 x1080] slice is ~3.3 seconds on a standard
laptop computer. The 3D computation is more intensive,
as convolution steps take ~2347 seconds each for a
[352%275%270] data, making the time needed for four
convolutions ~92% of the total time. Since the primary
computational bottleneck is solving 3D convolutions, we are
exploring the fftw library [42], which is likely to be more
optimized than scipy’s implementation. Nevertheless, our
approach provides a computational gain of several orders
of magnitude over the previous work [4], which reported
requiring ~290 seconds for a 2D decomposition on a
[800x2025] grid using 144 processes for spatial convolution.
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6 CONCLUSION

We present a new perspective on creating multiscale
representations for vector fields. Unlike conventional
scale-space approaches, which operate primarily in the
frequency domain and perform smoothing of the given data,
our technique is motivated by the physical intuition of

Vector Field Magnitude
150

Fig. 8. Velocity field of a lifted ethylene jet flame (top) in a domain
size 20.25x8.0 units is decomposed into its local component at the
global scale (second from top), which highlights a strong through flow,
but fails to resolve nesting of vortices. Next three images show the
multiscale decomposition for decreasing scales, ¢ = 2.0, 1.0, 0.6
units, respectively, show increasingly smaller vortices, nested inside
prominent counter-rotating vortices.

splitting the flow into components corresponding to spatial
scales. We present a new multiscale kernel for Poisson
equation to support splitting operations. We show that the
proposed approach allows separating phenomena existing
at different scales, and extracting features that are stable and
physically meaningful. Since it is based on convolutions,
the proposed approach is robust against noise. Several of
our results show features that are expected, but have not
been directly observed previously. Furthermore, the features
generated by the proposed decomposition are stable in the
scale-space, which is well known [10], [40] to be a strong
indicator of physical relevance of features. As a result, we
argue that our technique is well suited for simultaneous
visualization and analysis of flow features at different scales.

Our approach is based on potential theory, which
provides a mathematical framework to represent the
underlying Poisson equations at multiple scales using the
proposed modified Green’s function. The discussion presented
in this paper is valid for 1D, 2D, and 3D vector as well
as scalar functions, although the current work has been
motivated by the need for representing multiscale flow
features. We would like to investigate the applications of
the multiscale Poisson equation for scalar functions as well.

This paper describes a framework to decompose a flow
with respect to scales; however, a current limitation is the
lack of understanding of how to choose an appropriate
scale. We are currently exploring this question and plan
to consider transfer of energy across scales to find
distinguished scales that are meaningful for analysis.

We note that the multiscale effects in 3D appear muted
when compared to the 2D results, i.e., the flow features vary
less across scales. One explanation is that the 3D Green’s
function is much narrower than its 2D equivalent, as shown
in Fig. 2. As a result, even at the full scale (i.e., [5]) the
3D results are already very localized, and therefore, further
restricting the kernel has less of an impact. As part of future
work, we would like to better understand this effect, and
explore new scaling functions for 3D. For example, one
might artifically inflate the 3D Greens’s function, and thus
extract features at scales larger than what we now consider
“global”, although it is unclear how this would connect to
the mathematical theory. Alternatively, one might find that
a 3D harmonic flow can simply represent a much richer
set of structures than a 2D harmonic. This would explain
how the global background flow in 3D is able to already
express much of the complexity, leaving few structures
for the local component. In this case, one might consider
adding additional constraints on the background flow, e.g.,
by restricting it to lower frequencies, i.e., smoother flows.

Although defined using a spatial kernel, our approach is
directly applicable to computing multiscale decomposition
of unsteady flows by decomposing individual snapshots.
Our results demonstrate that not only does the presented
method preserve temporal stability of data, but is also
able to extract stationary or nonstationary features with
respect to scales. Decoupling the temporal dimension from
the analysis offers significant advantages for large-scale
data, where limited I/O bandwidth makes the availability
of data at sufficient temporal resolution prohibitive [30].
As compared to the techniques that compute temporal
derivatives, which makes them susceptible to errors at
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(a) Scale-space for two 2D planes of the jet in crossflow.

(b) Time-varying lifted ethylene jet flame.

Fig. 9. Stability of the proposed multiscale decomposition can be demonstrated by studying features of the components across scale and/or time.
(a) The paths of critical points in the “scale-space” for two orthogonal slices of the jet in crossflow for o € [0.0925, 9.8975]. (b) The paths of critical
points across time for the lifted flame show. All paths are colored yellow—red with increasing persistence (approximated as the length of the paths).
Long stable curves, and smooth merging of curves demonstrate that the proposed decomposition produces stable features, with respect to both
scale and time. The bounding slices are visualized with magnitude of the local flow mapped to the color scale ([0,303] for (a) and [0, 257] for (b)).

insufficient resolution, our approach is agnostic to temporal
sampling rate, and therefore produces temporally smooth
decompositions, given temporally smooth flows, thus
alleviating the dependence on high temporal resolution.
Additionally, processing time-steps of unsteady flows
independently makes the approach embarrassingly parallel.

One intriguing interpretation of the multiscale
decomposition is to consider the results in the context
of new frames of reference, i.e., as multiscale extension of
the internal reference frames [5]. Traditionally, flow fields
have been considered primarily in two frames of reference:
the Eulerian frame, used by most simulations, and the
Lagrangian frame, moving along each particle. The internal
frame [5] (and related ideas, such as the local flow [43])
add an intermediate frame that roughly corresponds to a
single global observer moving with a background flow.
Conceptually, the multiscale decomposition proposed here
adds a continuous scale of observers corresponding to
different spatial scales. This can be seen as a continuous set
of frames that cover the entire range from the Lagrangian
viewpoint (infinitely small scales) to the Eulerian viewpoint
(infinitely large scales) and anywhere in between. Our
results show a number of expected features in well-known
flows which demonstrates that intermediate scales do
extract physically meaningful features. However, going
forward it will be crucial to develop both theory and
algorithms to determine which scales are most important
for any given flow and how to connect the results to the
intuition on local flow behavior.
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