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A B S T R A C T

In post-event reconnaissance missions, engineers and researchers collect perishable information about damaged
buildings in the affected geographical region to learn from the consequences of the event. A typical post-event
reconnaissance mission is conducted by first doing a preliminary survey, followed by a detailed survey. The
objective of the preliminary survey is to develop an understanding of the overall situation in the field, and use
that information to plan the detailed survey. The preliminary survey is typically conducted by driving slowly
along a pre-determined route, observing the damage, and noting where further detailed data should be collected.
This involves several manual, time-consuming steps that can be accelerated by exploiting recent advances in
computer vision and artificial intelligence. The objective of this work is to develop and validate an automated
technique to support post-event reconnaissance teams in the rapid collection of reliable and sufficiently com-
prehensive data, for planning the detailed survey. The focus here is on residential buildings. The technique
incorporates several methods designed to automate the process of categorizing buildings based on their key
physical attributes, and rapidly assessing their post-event structural condition. It is divided into pre-event and
post-event streams, each intending to first extract all possible information about the target buildings using both
pre-event and post-event images. Algorithms based on convolutional neural networks (CNNs) are implemented
for scene (image) classification. A probabilistic approach is developed to fuse the results obtained from analyzing
several images to yield a robust decision regarding the attributes and condition of a target building. We validate
the technique using post-event images captured during reconnaissance missions that took place after hurricanes
Harvey and Irma. The validation data were collected by a structural wind and coastal engineering re-
connaissance team, the National Science Foundation (NSF) funded Structural Extreme Events Reconnaissance
(StEER) Network.

1. Introduction

Rapid reconnaissance teams have been deployed after significant
natural hazard events for decades with the objective of collecting per-
ishable information to be used by scientists and engineers to learn from
the event consequences. Such data have been instrumental in revealing
gaps in knowledge, improving design procedures and building codes,
and generally reducing the vulnerability of the built environment.
There has been an enormous investment directed toward the collection
of these data, based on the expectation that these data will be even
more critical in the future. For example, in the United States, the
Natural Hazards Engineering Research Infrastructure (NHERI), a

distributed network funded by the National Science Foundation [7],
includes the Post-Disaster, Rapid Response Research (RAPID) Facility to
support data collection and use [9,20]. NHERI has developed a Science
Plan to guide scientific efforts, which stresses the need to better collect
and share data and information to enable research and deliver solutions
[7]. The NHERI Science Plan also emphasizes the need to collect and
analyze sensor and image information for use in disaster preparedness,
mitigation, response, and recovery. The most recent addition to the
NHERI network is the CONVERGE center, headquartered at the Uni-
versity of Colorado at Boulder, which aims to coordinate hazards and
disaster researchers to better link them to NHERI partners [6]. CONV-
ERGE anticipates leveraging and advancing the platforms, networks,
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mobile applications, cyberinfrastructure, and research opportunities for
these reconnaissance teams to leverage. One of the key partners leading
the structural engineering data collection efforts is the Structural Ex-
treme Events Reconnaissance (StEER) Network [25]. In addition, the
Earthquake Engineering Research Institute (EERI) also initiated the
Virtual Earthquake Reconnaissance Team (VERT) that aims to engage
young engineers and graduate students in post-disaster reconnaissance
[28].

The data collection platforms that support these efforts, including
drones and satellites, have advanced rapidly in recent years. However,
many of the steps involved in the organization and analysis of the
complex and unstructured data collected during post-event re-
connaissance missions are still predominantly manual and quite time-
consuming. Furthermore, the research needed to accelerate, and even
automate, the analysis of these data has not kept pace with the en-
ormous investment directed toward the collection of these data.
Automating some of the procedures associated with building damage
surveys will enable reconnaissance teams to more rapidly gather and
analyze these large volumes of perishable information. Recent de-
monstrations of automation include scene recognition and object de-
tection with large volumes of images collected after an event by ex-
ploiting new developments in convolutional neural networks (CNNs)
[2,11,29,30]. These techniques, which fall into the broad category of
artificial intelligence, are gaining traction. However, there are still
significant challenges associated with real world application of these
methods, mainly revolving around both the need to acquire sufficient
quantities of ground truth data and the potential to inadvertently in-
troduce bias into the training process [10].

Here we develop an end-to-end technique for automating several
steps in the analysis and decisions associated with post-event damage
survey data. Post-event surveys can be broken down into a preliminary
survey, sometimes called a “windshield survey,” followed by a detailed
survey [5]. The preliminary survey is conducted to collect initial data to
gain a perspective about the overall situation in the field. This initial
data are then used to make decisions regarding what further data must
be collected during the detailed survey. To conduct the preliminary
survey, field engineers usually drive slowly along the streets in the af-
fected region to observe the extent of the damage. This typically takes
place within a few days of the event. These coarse data might be aug-
mented by occasionally getting out of the vehicle to take photos or
perhaps to get a closer look at debris or specific buildings. The pre-
liminary survey is conducted to provide evidence that is used to plan an
efficient detailed survey. During the detailed survey, several small
teams of engineers and architects, data collectors, are dispatched to the
region to visit specific buildings and collect much more detailed in-
formation about their condition [8,12,25]. Typically, the detailed
survey involves collecting these data by walking around each building,
or even entering the building if permitted to do so. Many of these teams
intend to capture data that may motivate new lines of scientific inquiry
related to the performance of our infrastructure.

Within our procedure we also leverage relatively new vision sen-
sors, such as spherical cameras that can be mounted on street view cars,
that have the mobility to rapidly collect a large volume of entire-view,
high-resolution images in a short period of time [1]. To support many
other needs in the commercial sector, regularly-updated images of
buildings’ facades are captured and stored through street view services.
These images may be critical for damage surveys, as after an event a
building may be so severely damaged that its original attributes may
not be decipherable. An automated technique has been developed to
extract high-quality pre-event images from several viewpoints using
only a single geo-tagged image or its GPS data [17]. Additionally, after
the event, images may be similarly collected with spherical cameras to
quickly record the external appearance of buildings and support visual
assessment [17,31]. The integration of these readily available data,
efficient and automated analytics capabilities, and processing power,
can greatly improve the efficiency of the reconnaissance missions.

The objective of this research is to develop and validate an auto-
mated technique to process post-event reconnaissance image data and
output the relevant attributes and overall damage condition of each
building. Using only the visual content in the images, the technique is
intended to directly support engineers and architects mainly during the
preliminary survey phase of a reconnaissance mission. Automation is
applied to extract the relevant information typically collected during
such missions, making it readily available to the human engineer and
architect that must act upon that information. We first develop an ap-
propriate classification schema for this application and establish the
ability to categorize buildings based on their key physical attributes
using pre-event data. CNNs are utilized for scene (image) classification
to categorize the target building, shown in a set of images, based on
their structural attributes and post-event condition. Next, post-event
data is similarly used to rapidly determine their post-event condition. In
each case, by appropriately fusing the information extracted from
multiple images, we make robust determinations regarding the cate-
gorization of each building.

The information fusion process developed and integrated into the
technique considers the quality and completeness of the data collected.
We validate the technique using post-event images of residential
buildings captured during hurricane Harvey and Irma reconnaissance
missions collected by the NSF-funded StEER Network [24,25]. We
evaluate the performance of the technique by comparing our results to
the documentation collected during the mission, as recorded through
the Fulcrum app [23], and we discuss the need for greater volumes of
data to be collected in future missions.

The remainder of this paper is organized as follows: Section 2 pro-
vides the problem formulation. Section 3 provides a demonstration and
validation of its effectiveness. The conclusions are discussed in
Section 4.

2. Technical approach

A general diagram of the technique developed is shown in, Fig. 1.
The input is a collection of geo-tagged, post-event images of the re-
sidential buildings in a region. The output is the information needed for
an assessment of each residential building, including automatically
generated physical and structural attributes plus post-event condition
information. Certain necessary physical and structural attributes are
best obtained from the pre-event condition, so multiple pre-event
images are automatically extracted from existing street view databases.
Post-event building condition information is obtained directly from
post-event images.

The technique is implemented through two branches of data ana-
lysis, conducted independently. We call these two branches the post-
event data analysis stream and the pre-event data analysis stream. The
post-event stream assesses the overall damage condition of the building
after the event based on the images collected during the preliminary
survey. The pre-event stream extracts building physical attributes to be
used for the preliminary screening, as well as several pre-event views of
the building from various perspectives. These two sets of com-
plementary information are organized in a way that assists the decision-
making process of human inspectors regarding where to focus resources
during a detailed survey. For clarity, we design a classification schema
specific to post-event preliminary surveys. The schema can be easily
extended to support other applications. In the subsequent paragraphs,
we discuss the process use to develop each data analysis stream. The
detailed definitions for the classification schema are provided in Section
2.1.

The post-event data analysis stream requires the design and training
of two image classifiers which are implemented sequentially. The first
classifier is intended to filter out images that contain useful information
about the condition of the building, step B1. The best images for de-
tecting the overall condition of the building for hurricane assessment
are images that provide a view of the entire building. However, the data
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collected for a given target building may include close images of
components or details, or even irrelevant images (e.g., cars, trees,
windows, doors, etc). Including these in the dataset to be automatically
analyzed may bias the results, or increase the processing time. The
filtered data are passed to the next classifier, which is trained to detect
the overall condition of the structure, step B2, see Section 2.1.1.

The pre-event data analysis stream automatically detects certain
physical attributes of each building that are useful in a preliminary
post-event survey using image classification. Since post-event images of
buildings that have experienced severe damage cannot reliably be used
to determine the original physical attributes, it is more appropriate to
use pre-event images for this purpose. To this end, we developed a fully
automated technique to extract pre-event images from street view
imagery services, step A1. These pre-event images along with the
ground truth labels, provided by the field engineers [24], are used to
design and train a set of image classifiers, that can detect certain phy-
sical attributes, explained in Section 2.1.2, step A2.

In some cases, reliable determination of a physical attribute or even
the condition of the building requires that classification results from
several images containing multiple views of the building be used. For
instance, if several post-event images are collected from a building, and
only one of those images provides a view of the damaged region, the
classifier will only detect damage in that one specific image; The spe-
cific image containing the damage cannot be known in advance.
Therefore, the relevant images available must be used collectively to
make a determination. We have developed an approach to fuse the
information from several images to make such decisions. The problem
formulation is provided in Section 2.2 and the demonstration is in-
cluded in Section 3.

2.1. Design of the classification schema

The classification schema designed to support preliminary hurricane
surveys is shown in, Fig. 2, the abbreviations are defined later). Clas-
sifiers are much more effective when clear boundaries exist to distin-
guish the visual features of the images in different classes. This is
especially true to achieve robust classification in the real world when
using such unstructured and complex data, as is often the case in re-
connaissance datasets. Thus, a clear definition for each class is needed
to establish consistent ground-truth data that are suitable for training.

The definitions for those comprising the post-event and pre-event
streams are discussed in the following sections.

2.1.1. Classifiers used in the post-event stream
The procedure used in the post-event data analysis stream is shown

in, Fig. 3. Two classifiers are used for classification of the post-event
data, one to filter out less valuable images from the larger set, and a
second to determine the condition of the building. These are applied to
the dataset sequentially, as shown in, Fig. 2b.

The first classifier needed for post-event data analysis is called the
Overview classifier. This is a binary classifier that flags images that show
a sufficient view of the building. Each post-event image is classified as
either “Overview” or “Non-Overview,” as indicated in Step 2A.

The Overview classifier is defined as:

• Overview (hereafter, OV): Images classified as OV show the entire
building, irrespective of whether it is damaged or not, in the sense
that they contain more than 70% of the facade (with either a front
view or a side view), and they include a portion of the roof. To
include the possibility of severe damage, an image with some
standing columns, or a pile of debris which can clearly be identified
as a collapsed building, is also classified as OV. Examples of the
latter include images of the general overall view of standing struc-
tural members or a collapsed roof. An additional restriction of OV
images is that no more than 20% of the image area shows the sur-
rounding buildings. In some cases, partial obstruction, by trees, cars,
and other buildings, is an inevitable challenge. However, if the
obstruction hides less than 30% of the building facade, we still
consider the image as an OV.
• Non-overview (hereafter, NOV): Images that are not OV are NOV.
Examples of NOV include images of the interior of the building,
measurements, GPS devices, drawings, multiple buildings, building
facades occluded by trees, cars or other buildings.

Samples of images defined as OV and NOV are shown in Fig. 4a and
b, respectively.

Next, as shown in, Fig. 3, the subset of images classified as OV are
analyzed collectively to determine the overall building condition. A
classifier is trained to determine whether a single OV image should be
labeled as “Major damage” or “Non-major damage,” which includes

A1 A2

B1 B2

Detecting the buildings’ 
attributes using pre-event 

images

Post-event data 
analysis  stream

Pre-event data 
analysis stream

Detecting the buildings’ 
condition using post-event 

overview images

Detecting overview images of 
the buildings

Physical attributes

Post-event condition

Reading the GPS location  of the 
buildings and post-disaster images

Input Output

Extracting multi-view pre-
event images of the buildings  

from street view services

Fig. 1. Diagram showing the steps in the automated procedure.
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both minor and no damage. We call this binary classifier the Damage
classifier. Note that a single image is not sufficient to characterize a
building as it may be showing a side from which damage is not visible.
Therefore, after classifying the damage in each OV image of a given
building, the overall condition must be decided by fusing all available
information (this will be discussed in Section 2.2). The Damage clas-
sifier is defined as:

• Major damage (hereafter, MD): Images classified as MD contain
visual evidence of severe damaged by wind, wind-driven rain, or
flood. MD includes failure of structural/non-structural components,
such as roof collapse, broken column or wall, or damage on exterior
wall or door [19]. In cases where there is visual evidence of severe
water intrusion/damage, we also classify the image as MD. Con-
siderable damage to the roof or exterior doors or windows or garage
doors, either from flooding or water intrusion in the case of a hur-
ricane, are interpreted as major damage.
• Non-major damage (hereafter, NMD): Images that are not MD are
NMD. No damage, or minor damage, such as cracked, curling, lifted,
or missing shingles, missing flashing, or dents on the doors, are all
considered as NMD.

Samples of images defined as MD and NMD are shown in Fig. 5a and
b, respectively.

2.1.2. Classifiers used in the pre-event stream
The sequence of steps used to perform the pre-event data analysis

stream is shown in, Fig. 6. In the pre-event stream, multiple external
views of each building, collected before the event, are required. We
employ an automated method we previously developed to extract sui-
table pre-event residential building images from typical street view
panoramas [17,31].

We design three independent classifiers, shown in, Fig. 2a, to label
the scenes containing each view of the pre-event target building. These
classifiers detect: first floor elevation, number of stories, and con-
struction material. To successfully train the classifiers to detect building
attributes, we need a clear definition of each class. In what follows, we
describe these definition in detail.

One important physical attribute of a residential building is first
floor elevation, which is defined as the elevation of the top of the lowest
finished floor, which must be an enclosed area, of a building. We train a
classifier to determine whether a single building image should be
classified as “Elevated” or “Non-elevated”. The Elevation classifier is
defined as:

• Elevated (hereafter, EL): This class includes buildings with a first
floor that appears to be elevated more than 5 feet (or, half a story).
Buildings are considered as EL when their ground floor, below the
first finished floor, is not covered by walls or cladding and is thus
visually distinguishable from an occupied floor. The lack of cover-
ings or walls is present to potentially allow water to pass through in

(a) Pre-event (b) Post-event

Fig. 2. Hierarchy of classifiers used in pre-event
and post-event data analysis streams. OV:
Overview, NOV: Non-overview, MD: Major da-
mage, NMD: Non-major damage, EL: Elevated,
NEL: Non-elevate, 1S: One-story, 2S: Two-story,
WO: Wood, MA: Masonry. See Sections 2.1.1 and
2.1.2 for the detail description of these classes.

MD

ND

NMD

Making final 
decision for the 
target building

Quantifying MD probability 
of each image

(Damage classifier)

Fusing information of 
all images to quantify 
MD probability of the 

target building

Non-Major 
Damage 
(NMD)

Major Damage 
(MD)

Filtering OV images 
(overview classifier)

Reading post-event geo-
tagged raw images

B1 B2Input

Fig. 3. Detailed steps in the post-event data analysis stream.

A. Lenjani, et al. Engineering Structures 208 (2020) 109884

4



case of flood to reduce hydrodynamic impact loads. In a typical
elevated building, the first floor only contains supporting columns
(sometimes referred to as slits) which are visually identifiable in the

images. Fig. 7a shows samples of EL images.
• Non-elevated (hereafter, NEL): This class has the opposite
meaning as the elevated class. It includes images of buildings

(a) OV (b) NOV

Fig. 4. Samples of images classified as overview (OV) and non-overview (NOV).

(a) MD (b) NMD

Fig. 5. Samples of images classified as major damage (MD) and non-major damage (NMD).
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without first floor elevation, or with a first floor elevation of less
than 5 feet. Any images of buildings with a first floor that is covered
by walls or cladding are classified as NEL. Fig. 7b shows samples of
NEL images.

Another useful physical attribute is the number of stories. Because
we focus on residential buildings here, the vast majority of the images

will contain buildings that have either one or two stories. So, we train a
two-class classifier to classify each of the images as either as “One-
story” or as “Two-stories.” This classifier does not consider any floors
that are not visible, for instance in a case where a floor may be below
grade. This classifier is the Number-of-stories classifier, and these two
classes are defined as follows:

Fusing information 
of all images to 
quantify each 

attribute probability 
of the target building

Making final 
decision for each 
attribute of the 
target building

Quantifying attributes 
probability of each 

image
(image classifiers)

Preparation of the multiple views of pre-
event images of the target building

Detecting the 
available 

optimal views of 
the target 
building

Reprojection
of panoramas 

to optimal 
angles 

rectilinear 
images

Downloading 
panoramas 

from street view 
imagery 

Reading the GPS 
location of the 

geo-tagged  
image

Fig. 6. Detailed steps in the pre-event data analysis stream.

(a) Elevated (b) Non-elevated

Fig. 7. Samples of images classified as Elevated and Non-elevated building images.
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• One-story (hereafter, 1S): This class includes images of buildings
which appear to have one-story from a structural engineering point
of view (i.e., dynamically, it behaves like a single story). If any
elevation is present in the image, it must not be enough to be
classified as EL (i.e., less than about half a story). Fig. 8a shows
samples of One-story images.
• Two-stories (hereafter, 2S): This class includes images of buildings
which appear to have two-stories, from the structural engineering
viewpoint. Either a two story building with no first floor elevation,
or a one story building with greater than 5 feet of elevation at the
first floor is included in the Two-stories category. Fig. 8b shows
samples of Two-stories images.

The third classifier applied to the pre-event images is trained to
detect the construction material of the building. In a preliminary
survey, it is important to know if wood is the main construction ma-
terial, or if there is an abundance of other materials present, for in-
stance masonry structural components or veneers. Based on the
common construction practices in this geographical region, wood is the
main material used for residential construction [21]. The Material
classifier, distinguishing between “Wood” and “Masonry,” is defined as:

• Wood (hereafter WO): Images in this class provide visible evidence
that wood is the main construction material in the building. Note
that all materials may not be visible in each image (or even in any
image). If all visible parts of the building in the image, including
columns, posts, roof structure, exterior load-bearing walls, beams,
and girders, are made of wood, the image is classified as WO. Fig. 9a
shows samples of WO images.
• Masonry (hereafter, MA): When more than 70% of the visible
portions of the exterior of the building in the image consists of
masonry, the image is classified as MA. Fig. 9b shows samples of
Masonry images. Note that sloped roof buildings with masonry walls
generally have wooden roofs.

2.2. Information fusion

We discuss how to make decisions using a probabilistic approach
that fuses the classification results from several images. Let C be the
random variable (r.v.) corresponding to a given physical building at-
tribute taking values in the set . Now consider n images …x x, , n1 of the
same building and let …C C, , n1 be the set of r.v.’s corresponding to the
detection of the physical attribute each one of the images. The Ci’s also
take values in , but they are distinctly different. The former, Ci, only
tells us which attribute was detected in image i, whereas the latter, C,
which attribute was detected in the entire building. The two are dif-
ferent because an attribute may not be visible in all images. Since Ci
depends only on the i-th image, we have:

= … = =p C c x x p C c x f x( | , , ) ( | ) ( ),i i n i i i c i1 CNN, i (1)

where f x( )cCNN, is the CNN-based classifier corresponding to the attri-
bute. How can we use the classification of each image (Ci) to classify the
entire building (C)? We have:

= … = = = … = …

= … = …
= = = … =

= … = …
= = = … =

= …

= = = … =

=

…

…

…

=

…

=

p C c x x p C c C c C c x x

p C c C c x x
p C c C c C c

p C c C c x x
p C c C c C c

p C c x x

p C c C c C c

p C c x

( | , , ) ( | , , , , , )·

( , , | , , )
( | , , )·

( , , | , , )
( | , , )·

( | , , )

( | , , )·

( | ).

n
c c

i n n n

n n n

c c
i n n

n n n

c c
i n n

i

n

i i n

c c
i n n

i

n

i i i

1
, ,

1 1

1 1 1

, ,
1

1 1 1

, ,
1

1
1

, ,
1

1

n

n

n

n

1

1

1

1

(2)

Here, going from the first step to the second step we assumed that the
raw data …x x, , n1 do not provide any additional information about the
building label C if image labels …C C, , n1 are known. This assumption is
discussed again in Section 2.2.1. For the next steps, we use the sum rule
of probability, and observe that the Ci’s are independent conditional on
the images, and then apply Eq. (1). The term

= = … =p C c C c C c( | , , )n n1 1 gives the probability that the target
building is labeled c, given the available images are labeled as …c c, , n1 .
This fusion probability is attribute-specific, as discussed in Sections
2.2.1 and 2.2.2 for post-event and pre-event attributes, respectively.
Note that, in our case, the set of possible classes always contains two
elements. Without loss of generality, in what follows, we are going to
denote it with = {0, 1} with =c 1 corresponding to the positive de-
tection of an attribute and =c 0 to detection of the alternative.

Finally, let be the set of possible decisions that are available to us
with regard to a given building, and one void class, here called No
Decision (ND), added to skip making a decision when a confident de-
cision is not available. For example, in case of predicting the overall
damage condition, it will include MD, NMD and ND. Define a loss
function denoted d c( , ) which represents the resulting loss if we
choose decision d in when the true attribute is c in . Ignoring risk
preferences, the rational decision is the one minimizing the expected
loss:

… = = …d x x d c p C c x x( , , ) argmin ( , ) ( | , , ).n
d c

n1 1
(3)

Here, the loss represents the threshold for making a decision about the
building or leaving it as ND. The loss function parameters can be tuned
by the reconnaissance teams for a specific reconnaissance goal, such as

(a) One Story (b) Two Stories

Fig. 8. Samples of images classified as (a) One-story and (b) Two-stories.
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to either make the best possible decision about all cases, or to make
decision only when it is highly confident. The loss function is structured
to handle the trade-off between the accuracy and informativeness of the
results through adding ND class to skip making a decision in case of not
being sufficiently confident.

2.2.1. Post-event
The case of the post-event stream, and in particular the MD ( =C 1)

vs NMD ( =C 0) problem, is inherently asymmetric. On one hand, one
must consider the whether or not the set of images shows the building
from all sides. For example, a single image classified as NMD is not
sufficient to conclude that the building is indeed NMD since the damage
may simply not be visible from the viewpoint of that image. So, to
classify a given building as NMD, we need to ensure that all sides of the
building are shown in the set of images (in this case, we say that the
building is covered). If all of these individual images are classified as
NMD, only then can the building be categorized as NMD. On the other
hand, to classify a building as MD, it is sufficient to have a single image
classified as MD.

Define a binary r.v. Z taking values {0, 1} indicating that the
building is not covered and is covered, respectively. Let

= = … = …p Z C c C c x x( 1| , , , , , )n n n1 1 1 be probability that the available
images sufficiently cover the target building, hereafter coverage prob-
ability. Our dataset does not provide any information about Z (the
images do not include sufficient geolocation information). Therefore,
we may write:

= = … = … =
= = … = =

p Z C c C c x x
p Z C c C c q

( 1| , , , , , )
( 1| , , ) ,

n n n

n n n

1 1 1

1 1 (4)

where in the last step we used the observation that only the number of
images are affects our state of knowledge about Z, i.e., the labels
themselves are uninformative about Z. Obviously, =q 01 and =q 02
since one or two images cannot cover the building. Furthermore, we
should have that +q q0 1i i 1 . The specific numerical choice of this
series of probabilities depends on our state of knowledge about how the
data were collected. For example, if we knew that any three images
cover the building, then we would set = =q q 01 2 and =q 1n for n 3.

Now, we use the sum rule on the fusion probability:

= = … = = = = … = = =
= … =
+ = = … = = =

= … =
= = = … = =
+ = = … = =

p C C c C c p C c C c C c Z p Z C
c C c
p C C c C c Z p Z C

c C c
p C C c C c Z q
p C C c C c Z q

( 1| , , ) ( | , , 1) ( 1|
, , )
( 1| , , , 0) ( 0|

, , )
( 1| , , 1)
( 1| , , , 0)(1 ).

n n n n

n n

n n

n n

n n n

n n n

1 1 1 1 1

1

1 1 1

1

1 1

1 1

(5)

The two terms that we need to specify are the probabilities of la-
beling the building as MD ( =C 1) given the image labels and whether
or not the building is covered. For the covered case, we set:

= = … = = = =p C C c C c Z
c

n
( 1| , , 1) ,n n

i

n

i

1 1
1

(6)

where · is the first integer greater than its argument. This means that
there is at least one image labeled as MD, then the entire building is
labeled MD. For a covered building to be labeled NMD, all images must
be labeled NMD. There are no intermediate cases. For the uncovered
case, we set:

= = … = = = =p C C c C c Z
c

n
( 1| , , , 0) max , ,n n

i

n

i

n1 1
1

(7)

where n represents the probability that the building is MD but the
damage is not visible in n images. Again, n depends on what we know
about data collection. In general, we must have +0 1i i 1 . In our
case studies, we simply pick = 0.5n for all n. So, for the uncovered
case, a single MD labeled image is sufficient to characterize the building
as MD. However, if all images are labeled NMD, there is still a prob-
ability, n, that the building is MD but the damage is not visible.

(a) Wood (b) Masonry

Fig. 9. Samples of images classified as (a) Wood and (b) Masonry.
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2.2.2. Pre-event
In the pre-event stream, we detect binary physical attributes, i.e., EL

vs NEL, 1S vs 2S, and WO vs MA. All these cases are similar in nature.
The more often an attribute is detected in the images the more likely it
is really there. The simplest model that encodes this intuition is:

= = … = = =p C C c C c
c

n
( 1| , , ) .n n

i

n

i

1 1
1

(8)

Here, we exploit the 0–1 encoding of the binary class. The probability
on the right hand side is simply the average number of ones in the n
images. Essentially, the r.v. C conditional on the r.v.’s …C C, , n1 has a
Bernoulli distribution. The approach can be trivially generalized, using
a Categorical distribution, to the case where contains more than two
options.

3. Experimental validation

We verify the individual classifiers and validate the overall tech-
nique using a high-quality published and curated post-event dataset.
These perishable information were captured during reconnaissance
missions that took place shortly after hurricanes Harvey and Irma, led
by the NSF-funded Structural Extreme Events Reconnaissance (StEER)
Network, with data collection supported by the Fulcrum App [24]. We
have tried three networks, Inception v3 [27], InceptionResNetV2 [26],
and Xception [3], as the image classifiers, and Xception network
slightly outperformed the two others. We implemented Xception with
Depthwise Separable Convolutions network, in Keras [4].

In this implementation we used Stochastic Gradient Descent (SGD)
optimizer. The SGD hyper-parameters used for the classifiers were fine-
tuned using grid search to train each of the classifiers. We tuned the
hyper-parameters, particularly the learning rate which is the most im-
portant hyper-parameter [13], carefully to improve the performance of
the classifiers. We set the grid to search for 1) learning rate in

× × … × ×{1 10 , 5 10 , ,5 10 , 1 10 }1 2 9 10 2) momentum in
× … × ×{1 10 , , 9 10 and 99 10 }1 1 2 3) weight decay coefficient in
× … ×{1 10 , , 1 10 }1 10 . We randomly separate the train and test set

with 70% and 30% , respectively, of the data for each classifier. To avoid
over-fitting, we randomly sample out 10% of the train set to use for
hyper-parameters fine-tuning. Table 1, shows the hyper-parameters
used to train these five required classifiers.

The StEER network was formed to document the damage induced
during and enable research to understand the effects of a number of
natural hazard events [25], including hurricanes Harvey, Irma and
Maria in 2017 [16,18], and hurricane Florence and Michael in 2018
[14,22,15], on the built environment. An overview of the dataset
[25,23] is shown in, Fig. 10. Detailed damage surveys of more than
4,000 buildings were conducted door-to-door [24,8]. The data include
assessments of the post-event condition of most of the buildings. Other
documentation includes primary structural typologies, construction
materials, and certain component damage levels. The documentation
available for this data also includes both building attributes plus ob-
servations of the overall damage condition of the building after the
hurricane. Thus, these data are well-suited for validation of the

technique developed.
For training the classifiers we used data from 3,141 buildings, in-

cluding 2,020 buildings collected after hurricane Harvey in Texas, and
1,121 building collected after hurricane Irma in Florida. The data vary
greatly from building to building in terms of completeness and number
of images collected. Thus, not all the data collected from these 3,141
buildings are useful. We pre-process the dataset as follows. We made
adjustments to the pre-event attributes documented in the original
dataset that were necessary to conform with our definitions. The first
floor elevation is reported as an estimated height of elevation in the
original documentation. Here, we use our threshold of 5 feet to
manually label the data for training, testing and validation. Then, if the
building is elevated, we also add one to the number of stories reported
to conform to our definition. Regarding the construction material, we
make use of the attribute in the original data called structural framing.
However, most of these building actually use wood for the structural
framing, or the load bearing elements, and thus we redefine it as the
main construction materials visible on the exterior of each building as
explained in Section 2.1.2. When multiple items are provided in the
original data, we simply use the first material listed.

Because the data we use for validation do not contain geo-location
information, we only consider the number of available images (see
Section 2.2.1). In Section 2.2.1, we defined the probability that n
images are sufficient to cover the building as

= = … = =p Z C c C c q( 1| , , )n n n1 1 . Currently the typical number of
images captured in wind-event reconnaissance missions is quite small.
Furthermore, there is a certain bias in the collection process since the
data collector is, typically, interested in collecting images of damage.
For example, we observe that data collectors take fewer images of
buildings that have no damage or only minor damage. In these cir-
cumstances, if only one image is captured, then we may conclude that
the building is sufficiently covered, i.e., =q 1n for all n 1. In a more
objective data collection process, one has to adjust coverage probability
accordingly, see Section 3.1.

We evaluate the performance of the pre-event and post-event data
analysis streams independently. The validation of the method involves
first evaluating the performance of the individual steps in each branch
(i.e., of each classifier), as well as considering the end-to-end perfor-
mance of each data analysis branch. Fig. 11a and b show the accuracy
of each the independent classifiers used for post-event and pre-event
stream, respectively. We evaluate the end-to-end performance of the
method developed in Sections 3.1 and 3.2. The input to each branch is
the set of geo-tagged raw images of the buildings. To validate each of
these, we use raw available data from all of the 1,121 buildings col-
lected after hurricane Irma. Here we explain both the post-event and
pre-event data analysis streams validation results. In the post-event
stream, first we demonstrate the results for an example loss function
assuming all buildings are sufficiently covered. Then, we discuss how
the results can be improved if we refine the coverage probability, qn in
Eq. (4). Subsequently, we study the effect of the loss function para-
meters on the trade-off between accuracy and ND rate, the rate of ND
predictions over all permissible predictions. In the post-event stream,
we illustrate the results for an example loss function, and then the
procedure for tuning of the loss function parameters is discussed.

3.1. Post-event stream validation

As described earlier, each OV post-event image is passed through
the damage classifier. Predicting the overall condition of the building,
based only on images, is subject to error, see Section 2.2.1. Even if the
building is covered, it may still be difficult to make the decision based
entirely on the images. For example, the damage shown in the image
may not be sufficiently severe to be labeled MD, nor minor enough to
confidently labeled as NMD. Under these circumstances, even human
inspectors face difficulties and the situation calls for a more detailed
inspection.

Table 1
Hyper-parameters used to train the classifiers.

Classifier name Initial learning
rate

Momentum Weight decay
coefficient

Overview ×1 10 5 ×9 10 1 ×1 10 6

Damage ×5 10 6 ×9 10 1 ×1 10 6

Elevation ×1 10 6 ×9 10 1 ×1 10 6

Number-of-stories ×5 10 7 ×9 10 1 ×1 10 7

Material ×1 10 7 ×9 10 1 ×1 10 7
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The general form of the loss function is shown in, Table 2. Without
loss of generality, we can set the loss of correct predictions to zero. The
cost of mistakenly characterizing an MD (NMD) building as NMD (MD)
is 1. The cost of labeling as ND when the building state is MD (NMD) is

1 ( 2). These parameters are selected to reflect the goals of the pre-
liminary survey, see Section 3.1.3.

3.1.1. Sample results
First, consider the case in which all of the buildings are assumed to

be captured adequately with the images available, =q 1n for all n 1,
and pick a loss function with = = 0.31 2 . This choice of the loss
function making mistakes has a unit cost, while not deciding costs thirty
percent of the mistake cost. In Fig. 12, we visualize the density of the
fusion predictive probabilities corresponding to each different decision
and true label, i.e., density of decisions made at a given fusion prob-
ability. It shows six combination of the two true labels, MD and NMD,
and three possible decisions, MD, NMD and ND. The correct decisions
for the buildings with NMD (MD) true labels, depicted in red (blue),
show low-variance right (left)-skewed density with a mode close to 0
(1). However, the densities of the incorrect decisions for both MD and
NMD buildings, have more variance. Table 3 provides the confusion
matrix, the table of true labels versus predicted, for the results of our

demonstration of the end-to-end post-event stream data analysis. Out of
a total of 1,121 buildings visited after hurricane Irma, the dataset in-
cludes 54 buildings with no true label, and 179 buildings with no OV
images. Also, 26 buildings are not distinct and those data are merged
into one building set. Therefore we have 914 labeled buildings with OV
images. The results show that 717 buildings are correctly categorized,
110 buildings are classified incorrectly, and 87 buildings labeled ND.

To understand the limitations of the approach, it is informative to
examine some specific building examples of correct (incorrect) deci-
sions as well as ND. Fig. 13 shows four images of a representative case
in which a building is correctly categorized as MD. In this case, the first
three raw images, numbered as 1, 2, and 3, do not show any evidence of
damage. However, image number 4 does show the damage clearly, and

Fig. 10. Post-event reconnaissance dataset collected after Harvey and Irma and published on DesignSafe-CI and Fulcrum [8,23,24].

(a) Accuracy ofthe classifiers for post-event stream. (b) Accuracy ofthe classifiers for pre-event stream.

Fig. 11. Accuracy plots of classifiers.

Table 2
Loss function.

Decision

ND MD NMD

True label
MD 1 0 1
NMD 2 1 0
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the CNN classifies it as MD with a high probability. The fusion formula,
Eq. (6), categorizes the building as MD with high probability.

Fig. 14 includes six images corresponding to an ND case. The true
label of the building is MD. The three images in top row, numbered as 1,
2, and 3 are each individually classified as NOV with a high probability.
However, image number 4 does show signs of damage on the roof, al-
beit with a 51.79% probability. Images 5 and 6 do not show any evidence
of damage. The fusion formula also gives an almost fifty-fifty chance of
MD.

Fig. 15 corresponds to a case that is incorrectly categorized as NMD
due to a shortage of informative images. In particular, there is not an
adequate number of images to cover the building (remember that in this
case study we have set =q 1n , i.e., our framework mistakenly “thinks”
that the building is covered). Only one image (front view of the building
facade, numbered 1) is classified as OV. Image number 2 shows two
sides of the building and potentially could capture the damage, but is
highly obstructed by trees. Therefore, image 2 is classified as NOV and
is not used for building categorization. Thus, image number 1 is the
only image available for detecting the overall damage condition which

does not have any evidence that the building should be categorized as
having major damage, and is not classified as damaged. However,
image number 3, which is the top view of the building capture through
aerial imagery, which is not part of the data collected in preliminary
survey, does show the damage on the back side of the building clearly.
Note that this image would have been filtered out automatically by the
overview classifier. It is included manually here for demonstrating the
true building label. Investigating the case shown in Fig. 15 reveals that
the need for capturing multiple post-event images that cover all around
the building is critical for correct building categorization, see Section 4.

3.1.2. Discussion on selecting the coverage probability
The results presented in Table 3 are based on the assumption that

each given building is sufficiently covered, and human data collectors
may have taken only 1 or 2 images of the NMD buildings. However, our
method is capable of dealing with unbiased data collected auto-
matically. This is possible through proper setup of

= = … =p C c C c C c( | , , )n n1 1 , introduced in Section 2.2.1. In Table 4 we
illustrate the results of considering a sample coverage probability,

= = = =q q q q0.2, 0.5, 0.9, 1n1 2 3 for n 4. The results in Table 4 show
that the number of MD buildings which are incorrectly characterized as
NMD is reduced by almost 75%, compared with Table 3. These building
are moved to the ND class. For example, the case discussed in Fig. 4 is
characterized as ND after modifying the coverage probability.

Fig. 16a shows the density of the fusion predictive probabilities
corresponding to different decision. However, since one or two images
are deemed insufficient to consider the building covered, the number of
correctly detected NMD buildings also decreases by about 50%, and
again these are moved to the ND class. These consequences of in-
corporating coverage information can be interpreted as an indication
that human data collectors typically have an inherent bias to take fewer
images of buildings with no or minor damages, or NMD buildings.
Human collectors see things that are not depicted in the images they
take. For future utilization of this method, assuming the collected da-
taset contains more images of the target buildings, it is recommended to
use a realistic choice of coverage probability, e.g.,

= = = =q q q q0, 1n1 2 3 for n 4. Density of the fusion predictive
probabilities corresponding to different decisions are depicted in
Fig. 16b. Comparing Fig. 16a and b demonstrates that refining the
coverage probability, from = = = =q q q q0.2, 0.5, 0.9, 1n1 2 3 for
n 4to = = = =q q q q0, 1n1 2 3 for n 4, leads to a decrease in in-
correct predictions and an increase of ND. More comprehensive and
systematic data collection, e.g., collecting more images per building to
cover all sides of the building, will reduce the number of ND outcomes.

3.1.3. Discussion on tuning the loss function
In Tables 3 and 4, the ratio of the correct, incorrect and ND pre-

diction is highly dependent on the loss function parameters. The choice
of these parameters should reflect the objectives of the reconnaissance
team. To develop some intuition about these parameters, we investigate
their effect on the results, we change 1 and 2 from 0.1 to 1 and cal-
culate the results for all combination sets of the parameters. Fig. 17a

Fig. 12. Density of the fusion predictive probabilities corresponding to each
different decision, assuming all buildings are sufficiently covered (with =q 1n
for n 1).

Table 3
Confusion matrix using a loss function with parameters ( = = 0.31 2 ); as-
suming all buildings are sufficiently covered.

Fig. 13. Sample of a correct MD detection.
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demonstrates the effect of loss function parameters on the accuracy of
the post-event buildings overall damage categorization.

According to Fig. 17a choosing both 1 and 2 to be larger results in
a high accuracy. However according to Fig. 17b this choice also results
in a high ND rate, which is the rate of ND predictions over all permis-
sible predictions. These represent two different options for a re-
connaissance team setting out on a field mission. To explain the dif-
ference between these options, we describe two scenarios
corresponding to two teams with different goals. The first scenario
considers a team (say, Team 1) that has limited but sufficient resources
to visit all potential MD buildings. Essentially, Team 1 will decrease the
ND rate to visit all of the MD buildings because they do not want to miss
any potential visual evidence. Team 1 can encode their objective in the
loss function by picking the 1 and 2 to be very high, e.g., 0.9. Alter-
natively, Team 2 is more conservative with their budget and only visits
buildings that have a high probability of MD. Here, Team 2 only need
some samples of damage. In this scenario, the goal is to increase the
accuracy based on the limited budget available. Team 2 can encode
their objective by picking the 1 and 2 to be very small, e.g., 0.1.

3.2. Pre-event stream validation

In the pre-event stream, images of 807 of the 1,121 buildings visited
after hurricane Irma are successfully extracted from street view pa-
noramas. The 314 buildings excluded from the pre-event images ex-
traction are not available because (1) the building’s address is not

available, (2) the street view panoramas are not available, (3) the
building facade may be occluded by other objects, e.g., trees, cars or
other buildings, (4) in some geographical regions street view images are
not up to date and have a very low resolution. So we set our pre-event
image extraction tool to filter out those images. Here, all of these 807
buildings are assumed to be captured adequately with the images
available.

The general form of the loss function for determining pre-event
attributes is shown in, Table 5. Similar to the post-event loss function,
the loss of a correct prediction is set to zero, but the loss of making
mistakes, 1, or labeling as ND, 1 and 2, represents the relative pe-
nalties.

Tables 6–8 provide the confusion matrix for the results of our

Fig. 14. Sample of a ND building categorization.

Fig. 15. Sample of an incorrect building categorization.

Table 4
Confusion matrix using a loss function with parameters ( = = 0.31 2 ); con-
sidering a sample coverage probability, = = = =q q q q0.2, 0.5, 0.9, 1n1 2 3 for
n 4.
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demonstration of the end-to-end, pre-event stream data analysis. These
results are obtained with a loss function with = = 0.31 2 . Table 6
provides the confusion matrix for the results of our demonstration of
the end-to-end, pre-event stream data analysis for first floor elevation
attribute. Out of a total of 807 buildings, 498 buildings in the dataset
posted are correctly categorized, 55 buildings are classified incorrectly,
and 253 buildings are labeled as ND. Table 7 provides the confusion
matrix for the results for number of stories attribute. Out of a total of
807 buildings, 115 buildings in the posted dataset have an unknown or
more than two stories true label. Therefore data from the 692 one and
two story labeled buildings are used here. The results show that 435
buildings are correctly categorized, 53 buildings are classified in-
correctly, and 204 buildings labeled ND. Table 8 shows the confusion
matrix for the results for construction material attribute. Out of a total
of 807 buildings, 405 buildings have unknown or other types of ma-
terial, and 402 buildings are labeled as either wood or masonry build-
ings. Out of these 402 buildings, the automated data analysis procedure
results show 218 buildings are correctly categorized, 38 buildings are
classified incorrectly, and 146 buildings are labeled ND.

Despite the successful performance of the technique to detect the
building attributes, as demonstrated in Tables 6–8, there are certain
ways to improve the results. For the Elevation classifier more data
samples would sharpen the results. To improve the Number-of-stories
classifier it would be necessary to include buildings with more than two
stories, which are rarely considered so far in exiting data from re-
connaissance missions. Also, detection of the construction material with
only images is inherently a challenging task even for a human engineer.
Therefore, in addition to more data samples and including more variety
of the construction materials, improving this classifier would require
more detailed and granular data collection.

Fig. 16. Fusion probabilities.

Fig. 17. Accuracy vs ND rate.

Table 5
Loss function.

Decision

ND Attribute 1 Attribute 2

True label
Attribute 1 1 0 1
Attribute 2 2 1 0

Table 6
Confusion matrix of first floor elevation using a loss function with parameters
( = = 0.31 2 ).

Table 7
Confusion matrix of number of stories using a loss function with parameters
( = = 0.31 2 ).
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4. Conclusion

After a natural disaster such as a hurricane, information about the
performance of the built environment is gathered to learn lessons and to
inform codes and guidelines. A preliminary survey is conducted im-
mediately after the event to identify the most valuable sites and buildings
to visit during a more detailed survey that follows. That manual process
is tedious and time consuming, but the strategic use of automation and
computer vision can accelerate and even automate the process.

In this paper, a technique is developed to directly support the needs
of the human engineers conducting a preliminary survey. The technique
is focused on automating the data analysis steps involved in this process,
achieving this goal by leveraging and adapting recent advances in deep
learning research to this important problem. The input to the technique
is a collection of post-event images collected from residential buildings in
the affected region. The output of the technique is the building attributes,
and the damage classification for the buildings in that region. By for-
mulating this data analysis problem in terms of a pre-event stream and a
post-event stream, the critical information is automatically extracted
from the images collected, for ready use by the human engineer. A
classification schema is designed to organize the data. Robust scene
classifiers are designed for specific scene classification tasks. Information
fusion methods are developed to combine the results from multiple
images, yielding a result that collectively considers the individual results
of multiple images. Valuable lessons on how to achieve robust classifi-
cation for such complex and unstructured datasets are also discussed.

The technique is demonstrated using a publicly-available, real-
world dataset collected by the NSF-funded StEER teams during the
2017 and 2018 hurricanes. The technique provides the engineer in the
field with automated capabilities, reducing effort, improving con-
sistency, and accelerating decisions after a major event. Because auto-
mation has enormous potential in the analysis of these images, the
collection of more data, with less subjectivity, will make this process
more robust and will also reduce bias in the results. Thus, collecting
more data to learn from such events is strongly encouraged.

Limitation of the proposed technique originate from the shortage of
available data per building and the lack of quality in data collection. Both
issues hinder extracting unique and unbiased features for training classi-
fiers. Training models with sufficient quantity of high-quality data allows
developing more robust classifiers. We have some suggestions for data
collection strategies, including consistent data collection procedure, e.g.,
taking overview images of four sides of the building from same distance;
more granular data collection, e.g., taking images from all key components
of a building; and combining datasets from diverse geographical location
to include various building attributes, e.g., construction material.

Future research that builds on this technique can be categorized into
two major directions. The primary is direction is facilitating the col-
lection and process of multiple sources of data, e.g., all type of images
(street-level, aerial, and satellite), engineers’ recorded and written ob-
servations, social media reports. Another direction is in generalizing the
techniques to fuse the available types of information properly.
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