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ABSTRACT
We present a (1 + �)-approximate parallel algorithm for computing
shortest paths in undirected graphs, achieving poly(logn) depth and
mpoly(logn) work for n-nodesm-edges graphs. Although sequen-
tial algorithmswith (nearly) optimal running time have been known
for several decades, near-optimal parallel algorithms have turned
out to be a much tougher challenge. For (1 + �)-approximation, all
prior algorithms with poly(logn) depth perform at least �(mnc )
work for some constant c > 0. Improving this long-standing upper
bound obtained by Cohen (STOC’94) has been open for 25 years.

We develop several new tools of independent interest. One of
them is a new notion beyond hopsets — low hop emulator — a
poly(logn)-approximate emulator graph in which every shortest
path has at most O(log logn) hops (edges). Direct applications
of the low hop emulators are parallel algorithms for poly(logn)-
approximate single source shortest path (SSSP), Bourgain’s embed-
ding, metric tree embedding, and low diameter decomposition, all
with poly(logn) depth andmpoly(logn) work.

To boost the approximation ratio to (1 + �), we introduce com-
pressible preconditioners and apply it inside Sherman’s framework
(SODA’17) to solve the more general problem of uncapacitated
minimum cost �ow (a.k.a., transshipment problem). Our algorithm
computes a (1 + �)-approximate uncapacitated minimum cost �ow
in poly(logn) depth usingmpoly(logn) work. As a consequence,
it also improves the state-of-the-art sequential running time from
m · 2O (

p
logn) tompoly(logn).
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1 INTRODUCTION
The problem of �nding the shortest path between two vertices
in an undirected weighted graph is one of the most fundamen-
tal problems in computer science. Standard sequential algorithms
with (nearly) optimal running time have been known for several
decades [27, 30, 57]. In contrast, parallelizing these algorithms has
been a challenge, and existing parallel algorithms are far from at-
taining the e�ciency we would like. Two standard measures of the
e�ciency of a parallel algorithm in the standard PRAMmodel of par-
allelism are work (total time over the processors)1 and depth (paral-
lel time). The exact shortest path can be computed by the standard
path-doubling (Floyd-Warshall) algorithm in poly(logn) parallel
time usingO(n3) total work, for ann-nodem-edge graph. This result
has been improved in a long line of work [11, 13, 17, 26, 42, 55, 56].
Nevertheless, the state-of-the-art algorithms have either �(n2.1)
work or �(n0.1) depth.

In order to achieve algorithms with better bounds on work
and depth, researchers have turned to approximation algorithms.
Building on the idea of hopsets [16], a series of papers, includ-
ing [16, 18, 23, 41, 49] give (1 + �)-approximation algorithms. Yet
again, every prior algorithm withm poly(logn) work has at least
�(n� ) depth, and the ones with poly(logn) depth do �(mn� ) work,
where � > 0 is an arbitrary small constant. In particular, none of the
prior algorithms achieve poly(logn) depth andm poly(logn) work
simultaneously. In fact, there was no known parallel algorithm with
poly(logn) parallel time andm poly(logn) work that approximates
the shortest path even up to a poly(logn) factor. Hence, after [16],
a major question which remained open for more than 25 years is:

������� 1.1. Is there a parallel algorithm computing an approx-
imate shortest path in poly(logn) depth andm poly(logn) work?

In this paper, we answer this question positively by developing a
parallel (1+�)-approximate shortest path algorithmwith poly(logn)
depth andm poly(logn) work.
1More precisely, the work is the running time required when only one processor can
be used, i.e., the sequential running time when the algorithm is implemented in the
vanilla RAM model.
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1.1 Our Results and Comparison to Prior
Approaches

To obtain our main result, we develop new tools, which we present
next and which may be of independent interest. It is most natural
to present these results in the context of two related approaches to
parallel shortest path algorithms — hopsets and continuous opti-
mization techniques.

We note that some of our results have new consequences beyond
parallel algorithms, including faster sequential algorithms and con-
structions where none were previously known. Our input is a con-
nected n-vertexm-edge undirected weighted graphG = (V , E,w)
with weightsw : E ! Z�0 and maxe 2E w(e)  poly(n). The paral-
lel algorithms from this paper are in the EREW PRAM model.

Hopsets. One iteration of Bellman-Ford can be implemented e�-
ciently in parallel, and therefore, for graphs in which an approxi-
mate shortest path has a small number of hops (edges) we already
have an e�cient algorithm. Motivated by this insight, researchers
have proposed adding edges to a graph in order to make an ap-
proximate shortest path with a small number of edges between
every pair of vertices. Formally, for a given graph G = (V , E,w)
with weightsw : E ! R�0, a hopset is an edge-set H with weights
wH : H ! R�0. Let eG be the union graph (V , E [ H ,w [wH ). We
de�ne dist(h)eG (u,�), the h-hop distance in eG, to be the length of the
shortest path between u,� 2 V which uses at most h hops (edges)
in eG. Then H is an (h, �)-hopset of G if 8u,� 2 V , dist(h)eG (u,�) is
always a (1 + �)-approximation to the shortest distance between u
and � in the graph G. There is a three-way trade-o� between h, � ,
and |H |, which was studied in [16, 23, 34, 49, 59], leading to some
of the aforementioned algorithms.

Surprisingly, a hard barrier arose: [1] showed that the size of
H must be �(n1+� ) for any h  poly(logn), � < 1

logn and some
constant � > 0. Thus, it is impossible to directly apply hopsets to
compute a (1 + �)-approximate shortest path in poly( logn� ) parallel
time usingm poly( logn� ) work for sparse G, when |E | = O(n).

Low Hop Emulator. To bypass this hardness, we introduce a new
notion — low hop emulator — which has a weaker approximation
guarantee than hopsets, but has stronger guarantees in other ways.
A low hop emulator G 0 = (V , E 0,w 0) of G is a sparse graph with
n poly(logn) edges satisfying two properties. First, the distance
between every pair of vertices inG 0 is a poly(logn) approximation
to the distance in G. The second property is that G 0 has a low hop
diameter, i.e., a shortest path between every pair of two vertices in
G 0 only contains O(log logn) number of hops (edges).

We give an e�cient parallel sparse low hop emulator construc-
tion algorithm. To the best of our knowledge, it was not even clear
whether sparse low hop emulators exist, and thus no previous
algorithm was known even in the sequential setting.

T������ 1.2 (L�� ��� ��������). For any k � 1, any graph G
admits a low hop emulator G 0, with expected size of eO ⇣

n1+
1
k

⌘
,2 sat-

isfying: 8u,� 2 V , distG (u,�)  distG0 (u,�)  poly(k) · distG (u,�),
and with the hop diameter at most O(logk). Furthermore, there is a

2 eO (f (n)) denotes f (n) · poly log(f (n)).

PRAM algorithm computing the emulator G 0 in poly log(n) parallel
time using eO(m + n1+ 2

k ) expected work.
Notice that, setting k = logn, we can compute a low hop em-

ulator with expected size eO(n) and hop diameter O(log logn) in
poly log(n) parallel time using eO(m) expected work. The approxi-
mation ratio in this case is poly log(n).

We now highlight two main features that make a low hop em-
ulator stronger than hopsets. Firstly, the low hop emulator can
be computed in poly(logn) parallel time usingm poly(logn) work
while the same guarantees cannot be simultaneously achieved by
hopsets. Secondly, the O(log logn)-hop distances in low hop emu-
lator G 0 satisfy the triangle inequality while the h-hop distances in
the union graph eG of original graph G and the (h, �)-hopset do not.

An immediate application of the �rst feature is a poly(logn)-
approximate single source shortest path (SSSP) algorithm using
poly(logn) parallel time andm poly(logn) work. We remark that
when using the hop-distance to approximate the exact distance in
G, we only need to use edges from the low hop emulator while we
also need to use original edges if we use hopsets.

The second feature is crucial for designing parallel algorithms
for Bourgain’s embedding [12], metric tree embedding [24, 28]
and low diameter decomposition [50], using poly(logn) depth and
m poly(logn) work. [28] introduced a notion similar to low hop
emulators, and it also has the second feature mentioned above.
In contrast, their emulator graph is a complete graph, and the
construction is based on

⇣
poly(logn), 1

poly(logn)
⌘
-hopsets.

Continuous optimization. To boost the approximation ratio of
shortest path from poly(logn) to (1+�), we employ continuous opti-
mization techniques. Recently, continuous optimization techniques
have been successfully applied to design new e�cient algorithms
for many classic combinatorial graph problems, e.g., [15, 19, 20, 38,
39, 44, 48, 52–54]. Most of them can be seen as “boosting” a coarse
approximation algorithm to a more accurate approximation algo-
rithm. Oftentimes, to �t into a general optimization framework, the
“coarse” approximationmust be for a more general problem— in our
case, for the uncapacitated minimum cost �ow, also known as the
transshipment problem. Following this approach, the work of [8]
develops near-optimal uncapacitated min-cost �ow algorithms in
the distributed and streaming settings based on the gradient descent
algorithm. Their algorithm can be seen as boosting a poly(logn)
approximate solver for the uncapacitated min-cost �ow problem
to an (1 + �) approximate solver, but with one crucial di�erence:
it requires a poly(logn) approximate solver for the dual problem.
Hence it is not clear how to leverage their algorithm for our goal as
the aforementioned techniques do not seem applicable to the dual
of uncapacitated min-cost �ow.

We develop an algorithm for the uncapacitated min-cost �ow
problem by opening up Sherman’s framework [54] and combin-
ing it with new techniques. There is a fundamental challenge in
adopting Sherman’s framework, beyond implementing it in the
parallel setting. Sherman’s original algorithm solves the uncapaci-
tated minimum cost �ow problem inm · 2O (

p
logn) sequential time.

Hence, if we obtain a parallel uncapacitated min-cost �ow algo-
rithm withm poly(logn) total work, we cannot avoid improving
this best-known running time ofm · 2O (

p
logn) tom poly(logn).
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Uncapacitated minimum cost �ow and approximate s � t short-
est path. To handle the challenge mentioned above, we develop
a novel compressible preconditioner. By using our compressible
preconditioner inside Sherman’s framework, we improve the run-
ning time of (1 + �)-approximate uncapacitated min-cost �ow from
m·2O (

p
logn) tom poly(logn). Furthermore, we show that such com-

pressible preconditioner can be computed in poly(logn) parallel
time usingm poly(logn) work. This preconditioner relies crucially
on our low hop emulator ideas.

Formally, in the uncapacitated minimum cost �ow problem,
given a demand vector b 2 Rn satisfying

Õ
� 2V b� = 0, the goal is

to determine the �ow on each edge such that the demand of each
vertex is satis�ed and the cost of the �ow is minimized.

T������ 1.3 (P������� ������������� ������� ���� ����).
Given a graph G = (V , E,w), a demand vector b 2 Rn and an error
parameter � 2 (0, 0.5), there is a PRAM algorithm which outputs an
(1+ �)-approximate solution to the uncapacitated minimum cost �ow
problem with probability at least 0.99 in ��2 poly log(n) parallel time
using eO(��2m) expected work.

While the above techniques are su�cient for estimating the
value of the shortest path, one additional challenge arises when we
want to compute an (1+�)-approximate shortest path. In particular,
the continuous optimization framework produces an approximate
shortest path �ow, which is not necessary integral and, more cru-
cially, may contain cycles. We address this challenge by developing
a novel recursive algorithm based on random walks, and which
uses a coupling argument.

T������ 1.4 (P������� (1 + �)������������ s � t ��������
����). Given a graph G = (V , E,w), two vertices s, t 2 V and an
error parameter � 2 (0, 0.5), there is a PRAM algorithm which can
output a (1 + �)-approximate s � t shortest path with probability at
least 0.99 in ��2 poly log(n) parallel time using expected eO(��3m)
work.

Massive Parallel Computing (MPC).. Althoughwe present our par-
allel algorithms in the PRAM model, they can also be implemented
in the Massive Parallel Computing (MPC) model [2, 7, 25, 29, 37]
which is an abstract of massively parallel computing systems such
as MapReduce [21], Hadoop [60], Dryad [36], Spark [61], and others.
In particular, MPC model allowsm� space per machine for some
� 2 (0, 1). The computation in MPC proceeds in rounds, where each
machine can perform unlimited local computation and exchange
up tom� data in one round.

By applying the simulation methods [29, 37], our PRAM algo-
rithm can be directly simulated in MPC. The obtained MPC algo-
rithm has poly(logn) rounds and only needsm · poly(logn) total
space. Furthermore, it is also fully scalable, i.e., the memory size per
machine can be allowed to bem� for any constant � 2 (0, 1). To the
best of our knowledge, this is the �rst MPC algorithm which com-
putes (1 + �)-approximate shortest path using poly(logn) rounds
andm poly(logn) total space when the memory of each machine
is upper bounded by n1��(1). Previous work on shortest paths in
the MPC model include [22] when the memory size per machine
is o(n), and simulations of shortest path algorithms from the Con-
gested Clique model [8, 14, 32, 33, 40, 47] when the memory size
per machine is �(n) [9].

Independent work. Independently, [46] developed an alternativeeO(m) algorithm for the uncapacitated minimum cost �ow problem
(see Theorem 4.19). The �rst arXiv version of [46], released at the
same time as the arXiv version of this paper [4], on November 5,
2019, also claimed a parallel algorithm with performance similar
to one from Theorem 1.4. However, that version was missing a
necessary component (how to compute a path from a �ow in paral-
lel, see Section 1.2.2), without which the algorithm could not even
compute the cost in parallel. The author of [46] later developed an
algorithm for this component, which appeared in a revision of his
arXiv paper, on December 19, 2019.

1.2 Our Techniques
In this section, we give an overview of techniques that we use in
our algorithms. Figure 1 sketches the dependencies between our
techniques and the main results mentioned in this paper.

1.2.1 Low Hop Emulator. A concept closely related to low hop em-
ulator are hopsets [16]. A hopset is a set of weighted shortcut edges
such that for any two vertices s and t we can always �nd an approx-
imate shortest path connecting them using small number of edges
from the hopset and the original graph. Many hopset construction
methods [10, 16, 23, 31, 32, 34, 42, 49, 58, 59] share some common
features — they all choose a layer or multiple layers of leader ver-
tices, and the hopset edges are some shortcut edges connecting to
these leader vertices. However, when connecting shortcut edges
to a layer of leader vertices, none of these algorithms can avoid
processing information for all n vertices from the original graph,
even though there may be a large fraction of vertices which are
not connecting any of this layer’s leader vertex in the �nal hopset.
Furthermore, each of these algorithms needs either n · log�(1) n
work (sequential time) or log�(1) n depth to process n vertices for
constructing shortcut edges for some layers. To improve the e�-
ciency of these algorithms, a natural question is: can we reduce the
number of vertices needed to be processed when constructing the
shortcut edges?

Subemulator. Motivated by the above question, we introduce a
new concept called subemulator. For � � 1 and an integer b � 1,
we say H = (V 0, E 0,w 0) is an (�,b)-subemulator of G = (V , E,w)
if 1) V 0 is a subset of V ; 2) for any vertex � in G, at least one of
the b-closest neighbors3 of � is in V 0; 3) for any two vertices u,�
in H , distH (u,�) �-approximates distG (u,�). In addition, if we can
assign each vertex � 2 V a leader q(�) 2 V 0 such that q(�) is one
of the b-closest neighbors of � and for any two vertices u,� 2 V it
always satis�es

distG (q(u),q(�))  distH (q(u),q(�))
 distG (q(u),u) + � · distG (u,�) + distG (�,q(�))

(1)

for some � � 1, we call H a strong (�,b, �)-subemulator of G. A
subemulator H can be regarded as a sparsi�cation of vertices of G.
Two notions related to subemulators are vertex sparsi�ers [45, 51]
and distance-preserving minors [43]. The major di�erence between

3We assume that� is also a neighbor of� itself. Thus the closest (or 1-closest) neighbor
of � is � itself.
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Figure 1: Techniques and results mentioned in this paper. Blue rounded rectangles indicate new techniques developed in this paper.

subemulators and vertex sparis�ers is that the vertex sparsi�er ap-
proximately preserves �ow/cut properties for the subset of vertices
while the subemulator approximately preserves distances for the
subset of vertices. Furthermore, both vertex sparsi�ers and distance-
preserving minors have given �xed vertex sets, whereas the vertex
set of the subemulator is not given but should satisfy the condition
2) mentioned above, i.e., each vertex in G has a b-closest neighbor
which is in the subemulator.

To construct a strong subemulator H = (V 0, E 0,w 0), we need to
construct both a vertex setV 0 and a edge set E 0. For convenience, let
us consider the case forb � logn. ConstructingV 0 is relatively easy.
We can add each vertex ofV toV 0 with probability �(log(n)/b). By
Cherno� bound, with high probability, each vertex has at least one
of the b-closest neighbors inV 0 and the size ofV 0 is roughly eO(n/b).
For each vertex � 2 V , it is natural to set the leader vertex q(�) to
be the vertex in V 0 which is the closest vertex to � . The challenge
remaining is to construct the edge set E 0 such that condition 3)
and Equation (1) can be satis�ed. In our construction, we add two
categories of edges to E 0:

(1) For each edge {u,�} 2 E, add an edge {q(u),q(�)} with
weight distG (q(u),u) +w(u,�) + distG (�,q(�)) to E 0.

(2) For each � 2 V and for each u which is a b-closest neighbor
of� , we add an edge {q(u),q(�)}with weight distG (q(u),u)+
distG (u,�) + distG (q(�),�) to E 0.

The �rst category of edges looks natural — for an edge {u,�} of
which two end points u,� are assigned to di�erent leader vertices
q(u),q(�), we add a shortcut edge connecting those two leader
vertices with a weight which is equal to the smallest length of the
q(u) �q(�) path crossing edge {u,�}. However, if we only have the
edges from the �rst category, it is not good enough to preserve the
distances between leader vertices. To �x this, we add the second
category of edges. We now sketch the analysis. It follows from
our construction that each edge in H corresponds to a path in G.
Thus, 8u 0,� 0 2 V 0, distG (u 0,� 0)  distH (u 0,� 0). We only need to

upper bound distH (u 0,� 0). Let us �x a shortest path u 0 = z0 !
z1 ! · · · ! zh = � 0 between u 0,� 0 in the original graph G. We
want to construct a path in H with a short length. We use the
following procedure to �nd some crucial vertices on the shortest
path z0 ! · · · ! zh :

(1) �0  u 0,k  0. Repeat the following two steps:
(2) Let xk+1 be the last vertex on the path z0 ! · · · ! zh such

that xk+1 is one of the b-closest neighbors of �k . If xk+1 is
zh , �nish the procedure.

(3) Set �k+1 to be the next vertex of xk+1 on the path z0 !
· · · ! zh . k  k + 1.

It is obvious that

distG (u 0,� 0) =

distG (�k , xk+1) +
k�1’
i=0

(distG (�i , xi+1) +w(xi+1,�i+1)).

For i = 0, 1, · · · ,k , xi+1 is a b-closest neighbor of �i . Thus, there
is an edge {q(�i ),q(xi+1)} in H from the second category of the
edges. For i = 1, 2, · · · ,k , �i is adjacent to xi . Thus, there is an edge
{q(xi ),q(�i )} in H from the �rst category of the edges. Thus u 0 =
q(�0) ! q(x1) ! q(�1) ! q(x2) ! q(�2) ! · · · ! q(xk+1) = � 0

is a valid path (see Figure 2) in H and the length is

distG (u 0,� 0) + 2 ·
k’
i=1

(distG (xi ,q(xi )) + distG (�i ,q(�i ))) .

By our choice ofq(·), we have8� 2 V , distG (�,q(�)) = distG (�,V 0).
So, 8i = 1, 2, · · · ,k,

distG (xi ,q(xi ))  distG (�i�1,q(�i�1)) + distG (�i�1, xi ).

Since �i is not a b-closest neighbor of �i�1 but q(�i�1) is a b-closest
neighbor of �i�1, 8i = 1, 2, · · · ,k,

distG (�i�1,q(�i�1))  distG (�i�1, xi ) +w(xi ,�i ).
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Figure 2: For u0, � 0 2 V 0 and a shortest path between u0, � 0 in G , we can �nd a corresponding path between u0, � 0 in the subemulator H . A
single dashed line denotes a shortest path in G between �i�1 and xi . A single solid line denotes an edge {xi , �i } in G . A double dashed line
denotes a shortest path in G between a vertex and its leader vertex. A double solid blue line denotes an edge in the subemulator H with a
weight which is equal to the length of the path in G represented by the corresponding blue arc.

Since xk+1 2 V 0, we have distG (�k ,q(�k ))  distG (�k , xk+1). ThenÕk
i=1 distG (xi ,q(xi ))  2 · distG (u 0,� 0) and

Õk
i=1 distG (�i ,q(�i )) 

distG (u 0,� 0). Thus, we can conclude distH (u 0,� 0)  8·distG (u 0,� 0).
We now argue that our construction of E 0 also satis�es Equation (1)
with � = 22. There are two cases. The �rst case is that either
u is a b-closest neighbor of � or � is a b-closest neighbor of u.
In this case, E 0 contains an edge from the second category with
weight distG (q(u),u) + distG (u,�) + distG (�,q(�)) which implies
Equation (1). The second case is that neitheru is ab-closest neighbor
of � nor � is a b-closest neighbor of u. In this case, we have

distH (q(u),q(�))  8 distG (q(u),q(�))
 8(distG (q(u),u) + distG (u,�) + distG (�,q(�)))
 distG (q(u),u) + distG (�,q(�)) + 22 distG (u,�),

where the last step follows from distG (u,q(u)), distG (�,q(�)) 
distG (u,�).

The bottleneck of computing a subemulator is to obtain b-closest
neighbors for each vertex. We can use the truncated broadcasting
technique [3, 55] to handle this in poly(logn) parallel time usingeO(m+nb2) total work. The output subemulator has eO(n/b) vertices
and O(m + nb) edges. As we can see, there is a trade-o� between
total work used and the number of vertices in the subemulator: if
we can a�ord more work for the construction of the subemulator,
fewer vertices appear in the subemulator.

Low hop emulator via subemulator. Now, we describe how to use
strong subemulators to construct a low hop emulator. Consider a
weighted undirected graph G = (V , E,w). Suppose we obtain a se-
quence of subemulatorsH0 = (V0, E0,w0),H1 = (V1, E1,w1), · · · ,Ht =
(Vt , Et ,wt ) where H0 = G and 8i = 0, · · · , t � 1, Hi+1 is a strong
(8,bi , 22)-subemulator of Hi for some integer bi � 1. We have
V = V0 ◆ V1 ◆ V2 ◆ · · · ◆ Vt . For� 2 Vi , let us denote qi (�) 2 Vi+1
as the corresponding assigned leader vertex of� in the subemulator
Hi+1 satisfying Equation (1). We add following three types of edges
to the graph G 0 = (V , E 0,w 0) and we will see that G 0 is a low hop
emulator of G:

(1) 8i = 0, · · · , t�1, 8� 2 Vi , add an edge {�,qi (�)}with weight
27t�i�1 · distHi (�,qi (�)) to G 0.

(2) 8i = 0, · · · , t, for each edge {u,�} 2 Ei , add an edge {u,�}
with weight 27t�i ·wi (u,�) to G 0.

(3) 8i = 0, · · · , t, 8� 2 Vi , add an edge {�,u} with weight
27t�i · distHi (�,u) to G 0 for each u which is one of the bi -
closest neighbors of � in Hi (de�ne bt = |Vt |).

Roughly speaking, we can imagine thatG 0 is obtained from �atten-
ing a graph with t + 1 layers. Each layer corresponds to a subem-
ulator. The lowest layer corresponds to the original graph G, and
the highest layer corresponds to the last subemulator Ht . The �rst
type of edges connect the vertices in the lower layer to the leader
vertices in the higher layer. The second type of edges correspond
to the subemulators on all layers. The third type of edges shortcut
the close vertices from the same layer. Furthermore, the weights
of the edges on the lower layers have larger penalty factor, i.e., the
penalty factor of the edges on the layer i is 27t�i .

By Equation (1) of strong subemulator, we can show that 8u,� 2
V , distG (u,�)  distG0 (u,�). Consider the �rst layer. By the second
type edges, we know that 8u,� 2 V , distG0 (u,�)  27t distG (u,�).
In particular, for t = O(log logn), G 0 preserves the distances in G
up to a poly(logn) factor. Now we want to show that 8u,� 2 V ,
there is always a shortest path connecting u,� in G 0 such that the
number of hops (edges) of the path is at most 4t . For convenience,
we conceptually split each vertex of G 0 into vertices on di�erent
layers based on the construction of G 0. Consider a shortest path
u = z0 ! z1 ! z2 ! · · · ! zh = � using the smallest num-
ber of hops in G 0 with splitting vertices. By the constructions of
three types of edges we know that 8j = 0, 1, · · · ,h � 1, zj , zj+1 are
either on the same layer or on the adjacent layers, and z0, zh are
on the lowest layer which is corresponding to H0 = G. We will
claim two properties of the shortest path z0 ! · · · ! zh . Suppose
zj , zj+1 are on the same layer corresponding to Hi . We claim that
zj+2 cannot be on the same layer as zj and zj+1. Intuitively, this is
because if zj+2 is on the same layer of zj then there are two cases
which both lead to contradictions: in the �rst case, zj+2 is close to
zj such that there is a third type edge connecting zj , zj+2 which
implies that zj+1 is redundant; in the second case, zj+2 is far away
from zj such that distHi (zj ,qi (zj )) + distHi+1 (qi (zj ),qi (zj+2)) +
distHi (qi (zj+2), zj+2) is a good approximation to distHi (zj , zj+2),
and due to a smaller penalty factor, the length of the path zj !
qi (zj ) ! (shortest path) ! qi (zj+2) ! zj+2 is smaller than
the length of zj ! zj+1 ! zj+2. We claim another property of
z0 ! · · · ! zh as the following. If the layer of zj+1 is lower than
the layer of zj , the layer of any of zj+2, zj+3, · · · , zh must be lower
than the layer of zj . At a high level, this is because of Equation (1)
and the smaller penalty factor for higher layers: if we move from
higher layer to lower layer then come back to the higher layer, it is
always worse than we only move in the higher layers. Due to these
two claims, the shortest path inG 0 should have the following shape:
the path starts from the lowest layer, then keeps moving to the
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non-lower layers until reach some vertex, and �nally keeps moving
to the non-higher layers until reach the target. Furthermore, there
are no three consecutive vertices on the path which are on the same
layer. Hence we can conclude that the shortest path has number of
hops at most 4t . Based on above analysis, the shortest path in G 0

will never use the second type edges. Thus, in our �nal construction
of G 0, we only need the �rst type and the third type of edges.

The size of G 0 is at most
Õt
i=0 |Vi | · bi . The bottleneck of the

construction of G 0 is to compute the third type edges. This can be
done by truncated broadcasting technique [3, 55] in t · poly(logn)
parallel time using

Õt
i=0

⇣
|Ei | + |Vi | · b2i

⌘
· poly(logn) total work.

The problem remaining is to determine the sequence of bi . As
we discussed previously, we are able to use poly(log |Vi |) parallel
time and eO(|Ei | + |Vi |bi ) total work to construct a subemulator
Hi+1 with eO(|Vi |/bi ) vertices and O(|Ei | + |Vi |bi ) edges. By double
exponential problem size reduction technique [3], we can make bi
grow double exponentially fast in this situation. More precisely,
if we set b0  poly(logn), bi+1  b1.25i , and t  O(log logn),
then in this case, the result low hop emulator can be computed in
poly(logn) parallel time and eO(m +n) total work. Furthermore, the
size of the result low hop emulator is eO(n), the approximation ratio
is poly(logn), and the hop diameter is O(log logn).

Applications of low hop emulator. We can build a useful oracle
based on a low hop emulator: given a query subset S of vertices, the
oracle can output a poly(logn) approximations to distG (�, S) for all
� 2 V . Furthermore, the output approximate distances always sat-
isfy triangle inequality. To implement such oracle, we preprocess aneO(n) size low hop emulator G 0 with poly(logn) approximation ra-
tio and O(log logn) hop diameter in poly(logn) parallel time usingeO(m + n) work. For each oracle query, we can just run Bellman-
Ford on G 0 with source S . The work needed for each Bellman-Ford
iteration is at most eO(n). Since the hop diameter isO(log logn), the
number of iterations needed is O(log logn). Therefore, each query
can be handled in poly(logn) parallel time and eO(n) total work. The
triangle inequality is always satis�ed since the output approximate
distances are exact distances in the graphG 0. Several parallel appli-
cations such as Bourgain’s embedding, metric tree embedding and
low diameter decomposition directly follow the oracle.

1.2.2 Minimum Cost Flow and Shortest Path.

Uncapacitated minimum cost �ow. At a high level, our unca-
pacitated minimum cost �ow algorithm is based on Sherman’s
framework [54]. Sherman’s algorithm has several recursive iter-
ations. It �rst uses the multiplicative weights update method [5]
to �nd a �ow which almost satis�es the demands and has nearly
optimal cost. If the unsatis�ed parts of demands are su�ciently
small, it routes them naively to make the �ow truly feasible with-
out increasing the cost by too much. Otherwise, it updates the
demands to be the unsatis�ed parts of the original demands and
recursively routes the new demands. [54] shows that if the prob-
lem is well conditioned, then the �nal solution can be computed
by the above process e�ciently. However, most of the time the
natural form of the uncapacitated minimum cost �ow problem is
not well-conditioned. Thus, a preconditioner, i.e., a linear operator
P 2 Rr⇥n applied to the �ow constraints, is needed to make the

problem well-condtitioned. Consider a given graph G = (V , E,w).
Sherman shows that if for any valid demands b 2 Rn we always
have OPT(b)  kPbk1  � ·OPT(b), then P can make the condition
number of the �ow problem on G be upper bounded by � , where
OPT(b) denotes the optimal cost of the �ow on G satisfying the
demands b. Sherman gives a method to construct such P . However,
to have a smaller approximation ratio � , the time of computing
matrix-vector multiplication with P must increase such that the
running time of the multiplicative weights update step increases.
To balance the trade-o�, Sherman constructs P with � = 2O (

p
logn)

approximation ratio and nnz(x) · 2O (
p
logn) time for matrix-vector

multiplication P · x , where nnz(x) denotes the number of non-zero
entries of x . Thus, its �nal running time ism · 2O (

p
logn). To design

a parallel minimum cost �ow algorithm using poly(logn) paral-
lel time and m poly(logn) work, we cannot avoid improving the
sequential running time of minimum cost �ow to m poly(logn)
time in sequential setting. By the above discussion, a natural way
is to �nd a linear transformation P which can embed the mini-
mum cost �ow into `1 with poly(logn) approximation ratio and
the running time for matrix-vector multiplication P · x needs to be
nnz(x) · poly(logn). Next, we will introduce how to construct such
embedding P .

First, we compute a mapping� which embeds the vertices into `d1
ford = O(log2 n) such that8u,� 2 V , k�(u)��(�)k1 is a poly(logn)
approximation to distG (u,�). This step can be done by Bourgain’s
embedding. The parallel version of Bourgain’s embedding is one of
the applications of low hop emulator as we mentioned previously.
Then we can reduce the minimum cost �ow problem to the geomet-
ric transportation problem. The geometric transportation problem
is also called Earth Mover’s Distance (EMD) problem. Speci�cally,
it is the following minimization problem:

min
� :V⇥V!R�0

’
(u ,�)2V⇥V

� (u,�) · k�(u) � �(�)k1

s .t . 8u 2 V ,
’
� 2V

� (u,�) �
’
� 2V

� (�,u) = bu .

We denote OPTEMD(b) as the optimal cost of the above EMD prob-
lem. It is easy to see that OPTEMD(b) is a poly(logn) approximation
to OPT(b). Therefore, it su�ces to construct P such that for any
valid demand vector b 2 Rn ,

OPTEMD(b)  kPbk1  poly(logn) · OPTEMD(b).

One known embedding of EMD into `1 is based on randomly shifted
grids [35]. We can without loss of generality assume that the co-
ordinates of �(�) are integers in {1, · · · ,�} for some � which is
a power of 2 and upper bounded by poly(n). We create 1 + log�
levels of cells. We number each level from 0 to log�. Each cell in
level log� has side length �. Each cell in level i + 1 is partitioned
into 2d equal size cells in level i and thus each cell in level i has
side length 2i . Therefore each cell in level 0 can contain at most
one point �(�) for � 2 V . According to [35], for any valid demand
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vector b 2 Rn ,

E
�⇠{0,1, · · · ,��1}

266664
log�’
i=0

’
C : a cell in level i

2i ·

������
’

� 2V :�(�)+� ·1d is in C
b�

������
377775

(2)

is always a poly(logn) approximation to OPTEMD(b), where � is
drawn uniformly at random from {0, 1, · · · ,��1}, and �(�)+� ·1d
is the point obtained after shifting each coordinate of �(�) by � .
Since each cell in level i has side length 2i , Equation (2) is equal to

log�’
i=0

1
2i

2i�1’
�=0

’
C : a cell in level i

2i ·

������
’

� 2V :�(�)+� ·1d is in the cell C
b�

������
=

log�’
i=0

’
C : a cell in level i

2i�1’
�=0

������
’

� 2V :�(�)+� ·1d is in the cell C
b�

������ . (3)

Equation (3) can be written in the from of kPbk1 where each row
of P corresponds to a cell C and a shift value � , and each column
of P corresponds to a vertex � . Figure 3 shows how does P look
like: for an entry Pi , j corresponding to a cell C , a shift value � and
a vertex � , we have Pi , j = 1 if the point �(�) + � · 1d is in the cell
C and Pi , j = 0 otherwise. Therefore, P can be used to precondition
the minimum cost �ow problem on G with condition number at
most poly(logn). However, such matrix P is dense and have poly(n)
number of rows. It is impossible to naively write down the whole
matrix. Fortunately, we will show that P has a good structure and
we can write down a compressed representation of P . Consider a
cell C in level i and a vertex � . If there exists � 2 {0, 1, · · · , 2i � 1}
such that�(�)+� ·1d is in the cellC , then there must exist �1, �2 such
that �(�)+� ·1d is in the cellC if and only if � 2 {�1, �1+1, · · · , �2}.
In other words, the shift values � that can make �(�) + � · 1d be in
C are consecutive. Another important property that we can show is
that the number of cells in level i that can contain at least one of the
shifted points �(�),�(�) + 1d ,�(�) + 2 · 1d , · · · ,�(�) + (2i � 1) · 1d
is at most d + 1. Now consider a column of P corresponding to
some vertex � . The entries with value 1 in this column should be in
several consecutive segments. The number of such segments is at
most (d + 1) · (1 + log�)  poly(logn). Thus, for each column of P ,
we can just store the beginning and the ending positions of these
segments. The whole matrix P can be represented by n poly(logn)
segments. The only problem remaining is to use this compressed
representation to do matrix-vector multiplication. Suppose we want
to compute � = P · x for some x 2 Rn . It is equivalent to the
following procedure:

(1) Initialize � to be an all-zero vector.
(2) For each column i and for each segment [l, r ] in column i ,

increase all �l ,�l+1, · · · ,�r by xi .
We can reduce the above procedure to the following one:

(1) Initialize z to be an all-zero vector.
(2) For each column i and for each segment [l, r ] in column i ,

increase zl by xi and increase zr+1 by �xi .
(3) Compute �j  

Õj
k=1 zk .

In the above procedure, we only need to compute a pre�x sum for z.
Since each column of P has at most poly(logn) segments, the total

number of segments involved is at most nnz(x) ·poly(logn). The to-
tal running time is eO(nnz(x) · poly(logn)). Notice that even though
� has a large dimension, it can be decomposed into eO(nnz(x) ·
poly(logn)) segments where the entries of each segment have the
same value. Thus, we just store the beginning and the ending posi-
tions of each segment of �.

Each step of computing the compressed representation can be
implemented in poly(logn) parallel time and each step of comput-
ing the matrix-vector multiplication can also be implemented in
poly(logn) parallel time. We obtained a desired preconditioner. By
plugging this preconditioner into Sherman’s framework, we can
obtain a parallel (1 + �)-approximate uncapacitated minimum cost
�ow algorithm with poly(logn) depth and ��2m · poly(logn) work.

Parallel (1 + �)-approximate s � t shortest path. s � t Shortest
path is closely related to uncapacitated minimum cost �ow. If we
set demand bs = 1,bt = �1 and b� = 0 for � , s, t 2 V , then the
optimal cost of the �ow is exactly distG (s, t). Thus, computing a
(1 + �)-approximation to distG (s, t) can be achieved by our �ow
algorithm. However, the �ow algorithm can only output a �ow
but not a path. We need more e�ort to �nd a path from s to t
with length at most (1 + �) · distG (s, t). As mentioned by [8], if
the (1 + �)-approximate �ow does not contain any cycles, then
for each vertex � , t we can choose an out edge with probability
proportional to the magnitude of its out �ow, and the expected
length of the path found from s to t is exactly the cost of the �ow
which is (1 + �) · distG (s, t). Unfortunately, the �ow outputted by
our �ow algorithm may create cycles. If we randomly choose an
out edge for each vertex � , t with probability proportional to the
magnitude of the out �ow, we may stuck in some cycle and may not
�nd a path from s to t . To handle cycles, we propose the following
procedure to �nd a path from s to t .

(1) If the graph only has constant number of vertices, �nd the
shortest path from s to t directly.

(2) Otherwise, compute the (1+ � 0)-approximate minimum cost
�ow from s to t for � 0 = �(�/logn).

(3) For each vertex except t , choose an out edge with probability
proportional to its out �ow.

(4) Consider the graph with n� 1 chosen edges. Each connected
component in the graph is either a tree or a tree plus an edge.
A component is a tree if and only if t is in the component.
For each component, we compute a spanning tree. If the
component contains t , we set t as the root of the spanning
tree. Otherwise, we set an arbitrary end point of the non-tree
edge as the root of the spanning tree.

(5) Construct a new graph of which vertices are roots of span-
ning trees. For each edge {u,�} in the original graph, we
add an edge connecting the root of u and the root of � with
weight

(distance from u to the root of u on the spanning tree) +w(u,�)
+(distance from � to the root of u on the spanning tree).

(6) Recursively �nd a (1 + � 0)-approximate shortest path from
the root of s to t in the new graph. Recover a path in the
original graph from the path in the new graph.

In the above procedure, only 1/2 vertices can be root vertices. Thus,
the procedure can recurse at most logn times which implies that
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Figure 3: Consider cells C1,C2,C3,C4 shown above with side length 4. Blue dots denote the positions of �(�) + � · 1d for some vertex � and
� = 0, 1, 2, 3. The entries of P in the column corresponding to � and in the rows corresponding to (C , � ) for C = C1,C2,C3,C4 and � = 0, 1, 2, 3
are shown on the right.

the parallel time of the algorithm is at most poly(logn) and the total
work is still ⇠m poly(n). Now analyze the correctness. It is easy to
see that each edge in the new graph corresponds to a path between
two root vertices in the original graph. Thus a path from the root of
s to t in the new graph corresponds to an s � t path in the original
graph. We only need to show that the distance between the root of
s and t in the new graph can not be much larger than the distance
between s and t in the original graph. To prove this, we show that
if we do a random walk starting from s and for each step we choose
the next vertex with probability proportional to the out �ow, the
expected length of the random walk to reach t is exactly the cost
of the �ow. By coupling argument, we can prove that the expected
length of the distance between the root of s and t in the new graph
is at most (1 + O(� 0)) · (the cost of the �ow). Thus, the expected
length of the �nal s � t path is at most (1+O(� 0))logn · distG (s, t) 
(1 + �) · distG (s, t).

1.3 A Roadmap
We introduce notation and preliminaries in Section 2. We describe
the construction of low hop emulators in Section 3. We describe our
uncapacitated minimum cost �ow algorithm in sequential setting
in Section 4. For parallel implementations, applications of low hop
emulators, parallel recursive path construction algorithm and all
missing proofs, we refer reader to the full version4.

2 PRELIMINARIES
Let [n] denote the set {1, 2, · · · ,n}. For a set V , 2V denotes the
family of all the subsets of V , i.e., 2V = {S | S ✓ V }. In this
paper, we will only consider graphs with non-negative weights. Let
G = (V , E,w) be a connected undirectedweighted graphwith vertex
set V , edge set E, and weights of the edgesw : E ! Z�0. Let both
{u,�}, {�,u} denote an undirected edge between u and � . For each
edge e = {u,�} 2 E, let bothw(u,�),w(�,u) denotew(e). For� 2 V ,
letw(�,�) be 0. Consider a tuple p = (u0,u1,u2, · · · ,uh ) 2 V h+1. If
8i 2 [h], eitherui = ui�1 or {ui�1,ui } 2 E, then p is a path between
u0 anduh . The number of hops ofp ish, and the length ofp is de�ned
asw(p) = Õh

i=1w(ui�1,ui ). For u,� 2 V , let distG (u,�) denote the
length of the shortest path between u,� , i.e., distG (u,�) = w(p⇤),
where the path p⇤ between u,� satis�es that 8path p between u,� ,

4https://arxiv.org/pdf/1911.01956.pdf

w(p⇤)  w(p). Similarly, dist(h)G (u,�) denotes the h-hop distance
between u,� , i.e., dist(h)G (u,�) = w(p0), where the h-hop path p0

betweenu,� satis�es that8h-hop pathp betweenu,� ,w(p0)  w(p).
The diameter diam(G) ofG is de�ned as maxu ,� 2V distG (u,�). The
hop diameter of G is de�ned as the minimum value of h 2 Z�0
such that 8u,� 2 V , distG (u,�) = dist(h)G (u,�). For S ✓ V ,� 2 V ,
we de�ne distG (�, S) = distG (S,�) = minu 2S dist(u,�). Similarly,
we de�ne dist(h)G (�, S) = dist(h)G (S,�) = minu 2S dist

(h)
G (u,�). If G is

clear in the context, we use dist(·, ·) and dist(h)(·, ·) for short.
Consider twoweighted graphsG = (V , E,w) andG 0 = (V , E 0,w 0).

If 8u,� 2 V , distG (u,�)  distG0 (u,�)  � · distG (u,�) for some
� � 1, then G 0 is called an �-emulator of G.

Given r 2 Z�0, for � 2 V , we de�ne BallG (�, r ) = {u 2 V |
distG (u,�)  r }, and Ball�G (�, r ) = {u 2 V | distG (u,�) < r }. Given
b 2 [|V |], for � 2 V , let rG ,b (�) satisfy that | BallG (�, rG ,b (�))| � b
and | Ball�G (�, rG ,b (�))| < b.We de�ne BallG ,b (�) = BallG (�, rG ,b (�)),
and Ball�G ,b (�) = Ball�G (�, rG ,b (�)). If there is no ambiguity, we
just use Ball(�, r ), Ball�(�, r ), rb (�), Ballb (�), Ball�b (�) to denote
BallG (�, r ), Ball�G (�, r ), rG ,b (�), BallG ,b (�), Ball�G ,b (�) respectively
for short.

For a vector x 2 Rm we use kx k1 to denote the `1 norm of x ,
i.e., kx k1 =

Õm
i=1 |xi |. We use kx k1 to denote the `1 norm of x , i.e.,

kx k1 = maxi 2[m] |xi |. Given a matrix A 2 Rn⇥m , we use Ai , Aj

andAj ,i to denote the i-th column, the j-th row and the entry in the
i-th column and the j-th row of A respectively. We use kAk1!1 to
denote the operator `1 norm of A, i.e., kAk1!1 = supx :x,0

kAx k1
kx k1 .

A well-known fact is that kAk1!1 = maxi 2[m] kAi k1. We use 1n to
denote an n dimensional all-one vector. We use sgn(a) to denote
the sign of a, i.e., sgn(a) = 1 if a � 0, and sgn(a) = �1 otherwise.
We use nnz(·) to denote the number of non-zero entries of a matrix
or a vector.

3 LOW HOP EMULATOR
Given a weighted undirected graph G, we give a new construction
of the graph emulator ofG . For any two vertices in our constructed
emulator, there is always a shortest path with small number of
hops. Furthermore, our construction can be implemented in parallel
e�ciently.
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3.1 Subemulator
In this section, we introduce a new concept which we called sube-
mulator. Later, we will show how to use subemulator to construct
an emulator with low hop diameter.

D��������� 3.1 (S����������). Consider two connected undi-
rected weighted graphs G = (V , E,w) and H = (V 0, E 0,w 0). For
b 2 [|V |] and � � 1, if H satis�es

(1) V 0 ✓ V ,
(2) 8� 2 V , BallG ,b (�) \V 0 , ;,
(3) 8u,� 2 V 0, distG (u,�)  distH (u,�)  � · distG (u,�),

then H is an (�,b)-subemulator ofG. Furthermore, if there is a map-
ping q : V ! V 0 which satis�es 8� 2 V ,q(�) 2 BallG ,b (�) and
8u,� 2 V , distH (q(u),q(�)) 

distG (u,q(u)) + distG (�,q(�)) + � · distG (u,�)
for some � � 1, then H is a strong (�,b, �)-subemulator of G, q(·) is
called a leader mapping, and q(�) is the leader of � .

In Algorithm 1, we show how to construct a strong subemulator.

Algorithm 1 Construction of the Subemulator
1: procedure S����������(G = (V , E ,w ), b 2 [ |V |])
2: Output: H = (V 0, E0,w 0), q : V ! V 0

3: V 0  S������(G , b). . Constructing vertices.
4: H , q  C�������(G ,V 0, b). . Constructing edges and leaders.
5: Return H , q.
6: end procedure
7: procedure S������(G = (V , E ,w ), b 2 [ |V |])
8: Initialize S ,V 0  ;, n  |V |
9: For � 2 V , add � into S with probability min(50 log(n)/b , 1/2).
10: For � 2 V , if � 2 S or BallG ,b (�) \ S = ;, V 0  V 0 [ {� }.
11: Return V 0.
12: end procedure
13: procedure C�������(G = (V , E ,w ),V 0 ✓ V , b 2 [ |V |])
14: Output: H = (V 0, E0,w 0), q : V ! V 0

15: For � 2 V , q(�)  argminu2BallG ,b (� )\V 0 distG (u , �).
16: Initialize E0 = ;.
17: For {u , � } 2 E , E0  E0 [ {q(u), q(�)}.
18: For � 2 V , u 2 Ball�G ,b (�), E0  E0 [ {q(u), q(�)}.
19: For e0 2 E0, initialize w 0(e0)  1.
20: For {u , � } 2 E , consider e0 = {q(u), q(�)} 2 E0,

w 0(e0)  min(w 0(e0), distG (q(u), u) +w (u , �) + distG (� , q(�))).

21: For � 2 V , u 2 Ball�G ,b (�), consider e0 = {q(u), q(�)},
w 0(e0)  min(w 0(e0), distG (q(u), u) + distG (u , �) + distG (� , q(�))).

22: Return H = (V 0, E0,w 0) and q : V ! V 0.
23: end procedure

T������ 3.2 (C����������� �� ��� �����������). Consider
a connected n-vertexm-edge undirected weighted graphG = (V , E,w)
and a parameter b 2 [n]. S����������(G,b) (Algorithm 1) will out-
put an undirected weighted graph H = (V 0, E 0,w 0) and q : V ! V 0

such that H is a strong (8,b, 22)-subemulator of G, and q is a cor-
responding leader mapping (De�nition 3.1). Furthermore, E[|V 0|] 
min(75 log(n)/b, 3/4)n, |E 0|  m + nb.

3.2 A Warm-up Algorithm: Distance Oracle
Given a weighted undirected graph, a distance oracle is a static
data structure which uses small space and can be used to e�ciently
return an approximate distance between any pair of query vertices.
In this section, we give a warm-up algorithm which is a direct
application of subemulator. In section 3.3, we will show how to
apply the preprocessing procedure P��P��� (Algorithm 2) in our
construction of low hop emulator.

Algorithm 2 Distance Oracle
1: procedure P��P���(G = (V , E ,w ), k )
2: n  |V |,m  |E |.
3: t  0, H0 = (V0, E0,w0)  G , b0  

max
⇣
d(75 logn)2 e, n1/(2k )

⌘
.

4: n0  |V0 |,m0  |E0 |
5: while nt � bt do
6: Ht+1 = (Vt+1, Et+1,wt+1), qt  S����������(Ht , bt ). .

See Algorithm 1.
7: 8� 2 Vt , let Bt (�)  Ball�Ht ,bt (�) [ {qt (�)} and compute

and store distHt (� , u) for every u 2 Bt (�).
8: nt+1  |Vt+1 |,mt+1  |Et+1 |.
9: bt+1  b1.25t .
10: t  t + 1.
11: end while
12: For � 2 Vt , Bt (�)  Vt , compute distHt (� , u) for u 2 Vt , and

qt (�)  x where x 2 Vt is smallest.
13: end procedure
14: procedure ����(u , � )
15: Output: d 2 Z�0
16: l  0, d0  0, u0  u , �0  � .
17: while �l < Bl (ul ) and ul < Bl (�l ) do
18: dl  distHl (ul , ql (ul )) + distHl (�l , ql (�l )).
19: ul+1 = ql (ul ), �l+1 = ql (�l ).
20: l  l + 1
21: end while
22: dl  distHl (ul , �l ).
23: Return d =

Õl
i=0 di .

24: end procedure

L���� 3.3 (P��������� �� ��� ������������� ���������).
Given a connected weighted graph G = (V , E,w) with |V | = n,
|E | = m, and a parameter k 2 [0.5, 0.5 logn], let t be the value at
the end of P��P���(G,k) (Algorithm 2). For i > t , de�ne ni =mi =
0,bi = b1.25i�1 ,Vi = ;. We have following properties:

(1) t  4dlog(k) + 1e.
(2) For i 2 Z�0,

• E[ni ]  max(n1+1/k ,n · (75 logn)4)/b2i ,
• E[mi ]  m + 2 ·max(n1+1/(2k ),n · (75 logn)2),
• E

⇥Õ
� 2Vi |Bi (�)|

⇤
 max(n1+1/k ,n · (75 logn)4)/bi .

L���� 3.4 (C���������� �� ��� ���� ���������). Given a
connected weighted graphG = (V , E,w) with |V | = n, |E | =m, and
a parameter k 2 [0.5, 0.5 logn], run preprocessing P��P���(G,k)
(Algorithm 2). Then 8u,� 2 V , the output d of Q����(u,�) (Algo-
rithm 2) satis�es distG (u,�)  d  264 dlog(k )+1e distG (u,�). The
running time of Q����(u,�) is O(log(4k)).
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3.3 Low Hop Emulator
In this section, we construct an emulator graph such that the dis-
tance is approximately preserved and there always exists a low hop
shortest path between any pair of vertices in the emulator.

Algorithm 3 Low Hop Emulator
1: procedure L��H��D��E�������(G = (V , E ,w ), k )
2: Output: G0 = (V 0, E0,w 0)
3: Run the processing procedure P��P���(G , k ), and let t be the value

at the end of the procedure. 8i 2 {0, 1, · · · , t }, let Hi = (Vi , Ei ,wi ),
qi : Vi ! Vi+1, Bi : Vi ! 2Vi , bi be computed by the such procedure.
. See Algorithm 2.

4: Initialize E0  ;.
5: For i 2 {0, 1, · · · , t � 1}, for each � 2 Vi , E0  E0 [ {� , u },

where u = qi (�).
6: For i 2 {0, 1, · · · , t }, for each � 2 Vi , for each u 2 Bi (�), E0  

E0 [ {u , � }.
7: For each e0 2 E0, initialize w 0(e0)  1.
8: For i 2 {0, 1, · · · , t � 1}, for each � 2 Vi , consider e0 = {� , u }

where u = qi (�). Let w 0(e0)  min(w 0(e0), 27t�i�1 · distHi (u , �)).
9: For i 2 {0, 1, · · · , t }, for each � 2 Vi , for each u 2 Bi (�), con-

sider e0 = {u , � }. Let w 0(e0)  min(w 0(e0), 27t�i · distHi (u , �)).
10: Output G0 = (V , E0,w 0).
11: end procedure

T������ 3.5. Consider an n-vertexm-edge connected undirected
weighted graph G = (V , E,w) and k 2 [0.5, 0.5 logn]. Let G 0 =
(V , E 0,w 0) be the output of L��H��D��E�������(G,k) (Algorithm 3).
Then, E[|E 0|]  O(n1+1/(2k ) + n log2 n) and 8u,� 2 V ,

distG (u,�)  distG0 (u,�)  274 dlog(k )+1e · distG (u,�).

Furthermore, 8u,� 2 V , distG0 (u,�) = dist(16 dlog(k )+1e)G0 (u,�).

4 UNCAPACITATED MINIMUM COST FLOW
Given an undirected graph G = (V , E,w) with |V | = n vertices
and |E | =m edges, the vertex-edge incidence matrix A 2 Rn⇥m is
de�ned as the following: 8i 2 [n], j 2 [m],

Ai , j =

8>><
>>:

1 {i,�} 2 E is the j-th edge of G and i < �,
�1 {i,�} 2 E is the j-th edge of G and i > �,
0 Otherwise.

The weight matrixW 2 Rm⇥m is a diagonal matrix. The i-th di-
agonal entry ofW is w(e), where e 2 E is the i-th edge. Given a
demand vector b 2 Rn with 1>n b = 0, i.e.,

Õn
i=1 bi = 0, the unca-

pacitated minimum cost �ow (transshipment) problem is to solve
the following problem: minf 2Rm kW f k1, s .t . Af = b .

If b only has two non-zero entries bi = 1 and bj = �1, then the
optimal cost is the length of the shortest path between vertex i
and vertex j. Without loss of generality, we can suppose that each
edge has positive weight. Otherwise, we can contract the edges
with weight 0, and the contraction will not a�ect the value of the
solution. Let x =W f , then the problem becomes

min
x 2Rm

kx k1 (4)

s .t . AW �1x = b .

In this section, we will focus on �nding a (1 + �)-approximation to
problem (4).

4.1 Sherman’s Framework
Before we present our algorithm, let us review Sherman’s algo-
rithm [54], and completely open his black box.

D��������� 4.1 (`1 N��������� ��������� ������). Given a
matrix B 2 Rr⇥m , the `1 non-linear condition number of B is de�ned
as �(B) = infS kBk1!1 · supx 2Rm :Bx,0

kS (Bx ) k1
kBx k1 , where the range

of S : Rr ! Rm is over all maps such that 8x 2 Rm , B · S(Bx) = Bx .

It is easy to show that an equivalent de�nition of�(B) is kBk1!1 ·
max�2{�2Rr |�=Bx ,x 2Rm }\{0} minx :Bx=�

kx k1
k� k1 .

D��������� 4.2 ((�, �)�S�������). Given amatrixB 2 Rr⇥m and
a vector� 2 {� 2 Rr | � = Bx, x 2 Rm }, letx⇤ = argminx :Bx=� kx k1.
If kx k1  � kx⇤k1 and kBx � �k1  � kBk1!1kx⇤k1, then x is called
an (�, �)-solution with respect to (B,�). Given a matrix B 2 Rr⇥m , if
an algorithm can output an (�, �)-solution with respect to (B,�) for
any vector � 2 {� 2 Rr | � = Bx, x 2 Rm }, then the algorithm is
called an (�, �)-solver for B.

D��������� 4.3 (C���������� �� ��� �������). Suppose F1 is
an (�1, �1)-solver for B 2 Rr⇥m and F2 is an (�2, �2)-solver for B. For
any input vector � 2 {� 2 Rr | � = Bx, x 2 Rm }, the composition
F2 � F1 �rstly runs F1 to obtain an (�1, �1)-solution x 2 Rm with
respect to (B,�), then runs F2 to obtain an (�2, �2)-solution x 0 2 Rm
with respect to (B,� � Bx), and �nally outputs x + x 0.

L���� 4.4 ([54]). Suppose F1 is an (�1, �1/�)-solver for B 2 Rr⇥m
and F2 is an (�2, �2/�)-solver for B, where � is the `1 non-linear
condition number of B, i.e., � = �(B). Then F2 � F1 is an (�1 +
�2�1, �1�2/�)-solver for B.

C�������� 4.5 ([54]). Let � 2 (0, 0.5). Suppose F is an (1+�, �/�)
solver for B 2 Rr⇥m , where � is the `1 non-linear condition number
of B, i.e., � = �(B). De�ne F 1 = F , and F t = F t�1 � F . Then F t is an
(1 + 4�, �t /�) solver.

C�������� 4.6 ([54]). Let � 2 (0, 0.5), t,M 2 R�0. Suppose F1 is
an (1 + 4�, �t /�)-solver for B 2 Rr⇥m, and F2 is an (M, 0)-solver for
B, where � = �(B). Then F2 � F1 is an (1 + 4� +M�t , 0)-solver for B.

Let us come back to the minimum cost �ow problem, problem (4).
One observation is that if a matrix P 2 Rr⇥m has full column
rank, then PAW �1x = Pb , AW �1x = b. So, instead of solving
Equation (4) directly, we can design a matrix P 2 Rr⇥m with full
column rank, and try to solve

min
x 2Rm

kx k1 (5)

s .t . PAW �1x = Pb .

Notice that since P has full column rank, problem (5) is exactly the
same as problem (4). Although an (�, 0)-solver for PAW �1 is also
an (�, 0)-solver for AW �1, an (�, �)-solver for PAW �1 may not be
an (�, �)-solver forAW �1 for � > 0. As shown in [54], if �(PAW �1)
is smaller, then it is much easier to design a (1 + �, �/�(PAW �1))-
solver for PAW �1. If �(PAW �1) is small, then we say P is a good
preconditioner forAW �1. Before we discuss how to construct P , let
us assume �(PAW �1)  �, and review how to solve problem (5).

According to [54], there is a simple (n, 0)-solver to problem (5).
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L���� 4.7 ([54]). Given a connected undirected weighted graph
G = (V , E,w), let A 2 Rn⇥m be the corresponding vertex-edge in-
cidence matrix, and let W 2 Rm⇥m be the corresponding diago-
nal weight matrix, where n = |V |,m = |E |. There is an algorithm
MSTR������, such that for any demand vector b 2 Rn with 1>n b = 0,
the output f 2 Rm of MSTR������(G,b) satis�es Af = b and
kW f k1  n · minf 0:Af 0=b kW f 0k1. MSTR������(G,b) takes run-
ning time eO(m).

By above lemma, if we set x =W f , we have PAW �1x = Pb, and
kx k1  n · minx 0:PAW �1x 0=Pb kx 0k1. Thus, x is an (n, 0)-solution
to problem (5). Suppose � < 0.5. By Corollary 4.6, if we have a
(1+4�, �1+logn/�) solver for PAW �1, then together with Lemma 4.7,
we can obtain a (1+5�, 0)-solver for PAW �1, and thus we can �nally
�nd a (1+5�) approximation to problem (4). If we have a (1+�, �/�)-
solver for PAW �1, then according to Corollary 4.5, we can apply
(1 + �, �/�)-solver 1 + logn times to obtain a (1 + 4�, �1+logn/�)-
solver. It su�ces to design a (1 + �, �/�) solver for PAW �1.

4.1.1 A (1 + �, �/�)-Solver. In this section, we will have a detailed
discussion of how [39, 54] used multiplicative weights update algo-
rithm [5] to �nd a (1+�, �/�)-solution with respect to (PAW �1, Pb),
where � � �(PAW �1) is an upper bound of the condition number
(see De�nition 4.1) of PAW �1, and � 2 (0, 0.5) is an arbitrary real
number.

Let x⇤ = argminx :PAW �1x=Pb kx k1. It is not hard to show

kPbk1
kPAW �1k1!1

 kx⇤k1  � · kPbk1
kPAW �1k1!1

.

Then, we can reduce the optimization problem to a feasibility prob-
lem. We want to binary search s 2 {1, 1 + �, (1 + �)2, · · · , (1 +
�) dlog1+� � e }, and want to �nd s such that s · kPb k1

kPAW �1 k1!1
 (1 +

�)kx⇤k1 and �nd x 2 Rm which satis�es kx k1  s · kPb k1
kPAW �1 k1!1

and kPAW �1x � Pbk1  �
2� · kPAW �1k1!1 · s · kPb k1

kPAW �1 k1!1
. The

binary search will takes O(log(log1+� �)) rounds.
Let x 0 = x · kPAW

�1 k1!1
kPb k1 · 1

s . Then the problem becomes the
following feasibility problem: given s � 1, either �nd x 0 2 Rm such
that

kx 0k1  1 and
��� PAW �1
kPAW �1 k1!1

x 0 � 1
s · Pb
kPb k1

���
1
 �

2� (6)

or �nd a certi�cate such that

kx 0k1  1 and PAW �1
kPAW �1 k1!1

x 0 = 1
s · Pb
kPb k1 (7)

is not feasible. Next, we show how to use multiplicative weights
update algorithm [5, 39, 54] to solve problem (6)-(7).

L���� 4.8 ([39, 54]). Consider P 2 Rr⇥n,A 2 Rn⇥m,W 2
Rm⇥m,b 2 Rn, s � 1, � 2 (0, 0.5),� � 1. MWU(P,A,W ,b, s, �,�)
(Algorithm 4) takesT = O

⇣
�2

� 2 logm
⌘
iterations. The output x 0 2 Rm

satis�es Equation (6) if MWU(P,A,W ,b, s, �,�) does not return FAIL.
Otherwise, �̄ = 1

T
ÕT
t=1 �t is a certi�cate that Equation (7) is not

feasible. In particular,

8j 2 [m], 1
s · Pb
kPb k1 <

�̄>(PAW �1)j
kPAW �1 k1!1

, 1
s · Pb
kPb k1 < �

�̄>(PAW �1)j
kPAW �1 k1!1

.

Algorithm 4 Solving the Feasibility Problem
1: procedure MWU(P 2 Rr⇥n , A 2 Rn⇥m ,W 2 Rm⇥m , b 2 Rn , s �

1, � 2 (0, 0.5), � � 1)
2: Output: x 0 2 Rm
3: Initialize weights: 8i 2 [m],� +1 (i)  1,� �1 (i)  1.

4: Initialize T  64�2 ln(2m)
� 2 , �  �

8� , B 2 Rn⇥2m :

B  
⇣

AW �1
kPAW �1 k1!1

� 1
s · b ·1>m
kPb k1 � AW �1

kPAW �1 k1!1
� 1

s · b ·1>m
kPb k1

⌘
.

5: for t = 1! T do
6: �t  

Õm
i=1�

+
t (i) +

Õm
i=1�

�
t (i).

7: For i 2 [m], p+t (i)  � +t (i)/�t , p�t (i)  � �t (i)/�t .
8: Set pt 2 R2m s.t. 8i 2 [m], the i-th entry of pt is p+t (i), and

the (i +m)-th entry of pt is p�t (i).
9: If kPBpt k1  �

2� , return x 0 2 Rm such that 8i 2 [m], x 0i =
p+t (i) � p�t (i).

10: Otherwise, set �t 2 {+1, �1}r such that 8i 2 [r ], (�t )i =
sgn

�
(PBpt )i

�
.

11: For i 2 [m], �+t (i)  �>t PBi /2, ��t (i)  �>t PBi+m/2.
12: For i 2 [m], � +t+1(i)  � +t (i) ·

�
1 � ��+t (i)

�
,� �t+1(i)  

� �t (i) ·
�
1 � ���t (i)

�
.

13: end for
14: Return FAIL.
15: end procedure

4.2 Preconditioner Construction
As discussed in the previous section, if we �nd a good precondi-
tioner such that �(PAW �1) is small, we can use a small number of
iterations to compute a good solution. Before we describe how to
choose a good preconditioner, let us introduce the following lemma.

L���� 4.9 ([39, 54]). Given P 2 Rr⇥n with full column rank,
A 2 Rn⇥m,W 2 Rm⇥m , if 8b 2 {� 2 Rn | � = AW �1x, x 2 Rm },

kx⇤k1  kPbk1  � kx⇤k1,

where x⇤ = argminx 2Rm :AW �1x=b kx k1, then �(PAW �1)  � .

By above lemma, our goal is to �nd a linear operator P such that
for any demand vector b, kPbk1 can approximate the minimum cost
�ow with demand vector b very well. Instead of using Sherman’s
original lattice algorithm, we propose to use randomly shifted grids
based algorithm [35].

4.2.1 Embedding Minimum Cost Flow into `1 via Randomly Shi�ed
Grids. In this section, we review the embedding method of [35] and
describe how to construct the preconditioner. Suppose we have a
mapping � : V ! [�]d such that 8u,� 2 V ,

distG (u,�)  k�(u) � �(�)k1  � · distG (u,�).
We can reduce estimating the minimum cost �ow on G to approx-
imating the cost of the geometric transportation problem. The
geometric transportation problem is also called Earth Mover’s Dis-
tance (EMD) problem. In particular, it is the following minimization
problem:

min
� :V⇥V!R�0

’
(u ,�)2V⇥V

� (u,�) · k�(u) � �(�)k1 (8)

s .t . 8u 2 V ,
’
� 2V

� (u,�) �
’
� 2V

� (�,u) = bu .
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It is obvious that if we can obtain a �-approximation to the opti-
mal cost of (8), we can obtain an ��-approximation to the cost of
original minimum cost �ow problem on G.

For a sequential algorithm, the such embedding� can be obtained
by Bourgain’s Embedding.

L���� 4.10 (B�������’� E�������� [12]). Given an undirected
graphG = (V , E,w) with |V | = n vertices and |E | =m edges, there is
a randomized algorithm which can output a mapping � : V ! [�]d
for d = O(log2 n) with probability 0.99 inO(m log2 n) time, such that

8u,� 2 V , distG (u,�)  k�(u) � �(�)k1  O(logn) · distG (u,�),

where �  Õ
e 2E w(e).

In the remaining of this section, we focus on approximating (8).
Without loss of generality, we suppose � is a power of 2. Let
L = 1 + log�. We create L levels grids G0,G1, · · · ,GL�1, where
Gi partitions [2�]d into disjoint cells with side length 2i . In partic-
ular, 8i 2 {0, 1 · · · , L � 1}, the i-th level grid Gi is:n
C
�� C = {a1, · · · ,a1 + 2i � 1} ⇥ · · · ⇥ {ad , · · · ,ad + 2i � 1},

8j 2 [d],aj mod 2i = 1,aj 2 [2�]
o
.

Instead of shifting the gird, we shift the points. For each dimension,
we can use the same shift value � [6]. Let � be a random variable
with uniform distribution over [�]. We can construct a vector h 2
R
ÕL�1
i=0 |Gi | with one entry per cell inG0[G1[· · ·[GL�1. Let h(i ,C)

correspond to the cellC 2 Gi . For each i 2 {0, 1, · · · , L�1} and each
cell C 2 Gi , we set h(i ,C) as: h(i ,C) = d · 2i ·Õ� 2V :�(�)+� ·1d 2C b� .
Let OPTEMD(b) denote the optimal solution of the EMD problem (8).
As shown by [35], khk1 is a good approximation to OPTEMD(b).

L���� 4.11. Let h 2 R
ÕL�1
i=0 |Gi | be constructed as above. Then,

(1) E� [khk1]  2Ld · OPTEMD ,
(2) khk1 � OPTEMD(b).

An observation is that since each cell in Gi has side length 2i ,
shifting each point by � · 1d is equivalent to shifting each point by
(� mod 2i ) · 1d for the cells in Gi . Thus, if we modify the construc-
tion of h as the following: 8i 2 {0, 1, · · · , L � 1},C 2 Gi ,

h(i ,C) = d · 2i ·
’

� 2V :�(�)+(� mod 2i )·1d 2C
b� ,

Lemma 4.11 still holds. Next, we describe how to construct h0 2
R
ÕL�1
i=0 2i |Gi | . The entry h0(i ,C ,� ) corresponds to the cell C 2 Gi and

the shift value � . For each i 2 {0, 1, · · · , L � 1}, each cell C 2 Gi
and each shift value � 2 [2i ], we set h0(i ,C ,� ) as:

h0(i ,C ,� ) =
1
2i

· d · 2i ·
’

� 2V :�(�)+� ·1d 2C
b� = d ·

’
� 2V :�(�)+� ·1d 2C

b� .

It is clear that kh0k1 = E[khk1]. By Lemma 4.11, we have

OPTEMD(b)  kh0k1  2Ld · OPTEMD(b).

Observe that h0 can be written as a linear map of b, i.e., h0 = P 0b,
where P 0 2 R(

ÕL�1
i=0 2i |Gi |)⇥n . Each row of P 0 is indexed by a tuple

(i,C, � ) for i 2 {0, 1, · · · , L � 1},C 2 Gi and � 2 [2i ], and each

column of P 0 is indexed by a vertex � 2 V . For i 2 {0, 1, · · · , L �
1},C 2 Gi , � 2 [2i ],� 2 V ,

P 0(i ,C ,� ),� =
⇢
d �(�) + � · 1d 2 C,
0 Otherwise.

Consider i = 0, � = 1, 8� 2 V , there is a unique cell C 2 G0 which
contains �(�) + 1d . Thus, P 0 has full column rank. According to
Lemma 4.9, since 8b 2 {� 2 Rn | � = AW �1x, x 2 Rm },

min
x 2Rm :AW �1x=b

kx k1  OPTEMD(b)  kP 0bk1

 2Ld · OPTEMD(b)  2Ld� · min
x 2Rm :AW �1x=b

kx k1,

we have �(P 0AW �1)  2Ld� . However, since the size of P 0 is too
large, we cannot apply P 0 directly in Algorithm 4, and thus it is
unclear how to construct a (1+�, �/�(P 0AW �1))-solver for P 0AW �1.

4.3 Fast Operations for the Preconditioner
One of our main contributions is to develop several fast operations
for P 0 such that we can implement Algorithm 4 e�ciently.

4.3.1 Preconditioner Compression.

Removing useless cells. The �rst observation is that though P 0

has a large number of rows, most rows of P 0 are zero. Thus, we
can remove them. Precisely, for each i 2 {0, 1, · · · , L � 1}, let Ci =
{C 2 Gi | 9� 2 V , � 2 [2i ], s .t . �(�) + � · 1d 2 C}. Then we can
set P 2 R(

ÕL�1
i=0 2i |Ci |)⇥n such that 8i 2 {0, 1, · · · , L� 1},C 2 Ci , � 2

[2i ],� 2 V ,

P(i ,C ,� ),� =
⇢
d �(�) + � · 1d 2 C,
0 Otherwise.

L���� 4.12. 8i 2 {0, 1, · · · , L � 1}, |Ci |  n · (d + 1).
By Lemma 4.12, we know that P has at most 2� · n(d + 1) rows.
Compressed representation. Another observation is that, P may

have many identical rows. Thus, we want to handle these rows
simultaneously. To achieve this goal, we introduce a concept called
compressed representation.

D��������� 4.13 (C��������� �������������� �� � ������).
Let I = {([a1,b1], c1), ([a2,b2], c2), · · · , ([as ,bs ], cs )}, where ci 2 R,
[ai ,bi ] ✓ [1, r ] for some r 2 Z�1, and 8i , j 2 [s], [ai ,bi ] \
[aj , c j ] = ;. Let x 2 Rr . If 8i 2 [s], j 2 [ai ,bi ], x j = ci and 8j 2
[1, r ] \–i 2[s][ai ,bi ], x j = 0, then I is a compressed representation of
x . The size of the compressed representation I is |I | = s .

The compressed representation of x may not be unique.

D��������� 4.14 (C��������� �������������� �� � ������).
Let I = (I1, I2, · · · , In ). Given a matrix P 2 Rr⇥n , if 8i 2 [n], Ii is a
compressed representation of Pi , then I is called a compressed repre-
sentation of P . Furthermore, the size of the compressed representation
I is de�ned as

Õn
i=1 |Ii |.

L���� 4.15 (C�������� � ���������� �������������� �� P ).
Given an undirected graph G = (V , E,w) with |V | = n, |E | =m and
a mapping � : V ! [�]d for some �,d , such that

8u,� 2 V , distG (u,�)  k�(u) � �(�)k1  � · distG (u,�),
the output I = (I1, I2, · · · , In ) of I�������P(�) (Algorithm 5) is a
compressed representation of a matrix P with full column rank and
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Algorithm 5 Computing a compressed representation of P

1: procedure I�������P(� : V ! [�]d )
2: Output: I
3: n  |V |, L  1 + log�, 8i 2 {0, 1, · · · , L � 1}, Ci  ;, and

create grids G0,G1, · · · ,GL�1.
4: 8i 2 {0, 1, · · · , L � 1}, � 2 V , Ci  Ci [ {C 2 Gi | 9� 2

[2i ], �(�) + � · 1d 2 C }.
5: for the i-th vertex � 2 V do
6: Ii  ;.
7: for l 2 {0, 1, · · · , L � 1} do
8: For each C 2 Cl with 9� 2 [2l ], �(�) +

� · 1d 2 C , �nd �1, �2 2 [2l ] such that
�1 = min� 2[2l ]:�(� )+� ·1d 2C � , �2 = max� 2[2l ]:�(� )+� ·1d 2C � .

9: SupposeC is the k -th cell in Cl . a  (k�1)2l+Õl�1
j=0 2

j |Cj |.
Ii  Ii [ {([a + �1, a + �2] , d )} .

10: end for
11: end for
12: Return I = (I1, I2, · · · , In ).
13: end procedure

�(PAW �1)  O(�Ld), where L = 1 + log�, A 2 Rn⇥m is the vertex-
incidence matrix, andW 2 Rm⇥m is the diagonal weight matrix.
Furthermore, for i 2 [n], the size of Ii is at most (d + 1)L. The running
time of I�������P(�) is n · poly(dL logn).
4.3.2 Operations under Compressed Representations. In this sec-
tion, we introduce how to implement some important operations
under compressed representations.

F��� 4.16. Let I = {([a1,b1], c1), · · · , ([as ,bs ], cs )} be a com-
pressed representation of a vector x 2 Rr . Then, kx k1 =

Õs
i=1(bi �

ai + 1) · |ci |. Let � 2 Rr be a vector satisfying 8i 2 [r ],�i =
sgn(xi ). Then I 0 = {([a1,b1], sgn(c1)), · · · , ([as ,bs ], sgn(cs ))} is a
compressed representation of �. Let z = t · x for some t 2 R. I 00 =
{([a1,b1], tc1), · · · , ([as ,bs ], tcs )} is a compressed representation of
z. Furthermore, kx k1, I 0 and I 00 can be computed in O(s) time.

Algorithm 6 Compressed Matrix-Vector Multiplication
1: procedure M�����V��(I = (I1, I2, · · · , In ), � 2 Rn )
2: Output: bI
3: S  ;,bI  ;.
4: for i 2 [n] : �i , 0 do
5: For each ([a, b], c) 2 Ii , S  S [ {(a, c�i ), (b + 1, �c�i )}.
6: end for
7: Sort S = {(q1, z1), · · · , (qk , zk )} such that q1  q2  · · ·  qk .
8: For each j 2 {2, 3, · · · , k } : qj > qj�1, bI  bI [ {([qj�1, qj �

1],Õt :qt <qj zt )}.
9: Return bI .
10: end procedure

L���� 4.17 (C������������������������������������). Given
a compressed representation I = (I1, I2, · · · , In ) of a matrix P 2
Rr⇥n with 8i 2 [n], |Ii |  s , and a vector � 2 Rn , the output bI
of M�����V��(I ,�) (Algorithm 6) is a compressed representation of
P�. Furthermore, |bI |  2s · nnz(�), and the running time is at most
O(s nnz(�) · log(s nnz(�))).

L���� 4.18 (C��������� ���������������������������). Given
a compressed representation I of a vector � 2 Rr with |I |  s and a

Algorithm 7 Compressed Vector-Matrix Multiplication
1: procedure V�����M��(I , I 0 = (I1, I2, · · · , In ))
2: Output: �> 2 Rn
3: �  (0, 0, · · · , 0).
4: Fill I such that 8j 2 [r ], 9([a, b], c) 2 I , j 2 [a, b].
5: Sort I = {([a1, b1], c1), ([a2, b2], c2), · · · , ([as , bs ], cs )} such

that a1 < a2 < · · · < as .
6: 8j 2 [s], compute the pre�x sum pj =

Õj
t=1(bt � at + 1) · ct .

7: for i 2 [n], ([a, b], c) 2 Ii do
8: Run binary search to �nd j1  j2 such that a 2 [aj1 , bj1 ], b 2

[aj2 , bj2 ].
9: If j1 = j2, �i  �i + c · c j1 · (b � a + 1).
10: If j1 < j2, �i  �i + c · (c j1 · (bj1 � a + 1) + c j2 · (b � aj2 +

1) + (pj2�1 � pj1 )).
11: end for
12: Return �>.
13: end procedure

compressed representation I 0 = (I1, I2, · · · , In ) of a matrix P 2 Rr⇥n
with 8i 2 [n], |Ii |  s 0, the output �> 2 Rn of V�����M��(I , I 0) (Al-
gorithm 7) is P>�. Furthermore, the running time isO((s +ns 0) log s).

4.4 Uncapacitated Minimum Cost Flow
By plugging our preconditioner in Algorithm 4, we obtain the
uncapacitated minimum cost �ow algorithm.

T������ 4.19. Given an � 2 (0, 0.5), a connected n-vertexm-edge
undirected graph G = (V , E,w) with w : E ! Z�0, and a demand
vector b 2 Rn with 1>n b = 0, there is a randomized algorithm which
can output an (1 + �)-approximate solution to the uncapacitated
minimum cost �ow problem in ��2m · (logn log�)O (1) time with
probability at least 0.99, where � =

Õ
e 2E w(e).
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