Parallel Approximate Undirected Shortest Paths
via Low Hop Emulators’

Alexandr Andonit

andoni@cs.columbia.edu
Columbia University
New York, USA

ABSTRACT

We present a (1 + €)-approximate parallel algorithm for computing
shortest paths in undirected graphs, achieving poly(log n) depth and
mpoly(log n) work for n-nodes m-edges graphs. Although sequen-
tial algorithms with (nearly) optimal running time have been known
for several decades, near-optimal parallel algorithms have turned
out to be a much tougher challenge. For (1 + €)-approximation, all
prior algorithms with poly(log n) depth perform at least Q(mn®)
work for some constant ¢ > 0. Improving this long-standing upper
bound obtained by Cohen (STOC’94) has been open for 25 years.

We develop several new tools of independent interest. One of
them is a new notion beyond hopsets — low hop emulator — a
poly(log n)-approximate emulator graph in which every shortest
path has at most O(loglogn) hops (edges). Direct applications
of the low hop emulators are parallel algorithms for poly(log n)-
approximate single source shortest path (SSSP), Bourgain’s embed-
ding, metric tree embedding, and low diameter decomposition, all
with poly(log n) depth and mpoly(log n) work.

To boost the approximation ratio to (1 + €), we introduce com-
pressible preconditioners and apply it inside Sherman’s framework
(SODA’17) to solve the more general problem of uncapacitated
minimum cost flow (a.k.a., transshipment problem). Our algorithm
computes a (1 + €)-approximate uncapacitated minimum cost flow
in poly(log n) depth using mpoly(log n) work. As a consequence,
it also improves the state-of-the-art sequential running time from
m - 20(Vlogn) ¢, mpoly(log n).

CCS CONCEPTS

« Theory of computation — Shared memory algorithms; Short-
est paths; Network flows; Massively parallel algorithms.

“Full version of this paper appears as https://arxiv.org/pdf/1911.01956.pdf.
Research supported in part by Simons Foundation (#491119 to Alexandr Andoni),
NSF (CCF-1617955, CCF-1740833), and Google Research Award.

*Research supported in part by NSF grants CCF-1714818 and CCF-1822809.
SResearch supported in part by NSF grants CCF-1740833, CCF-1703925, CCF-1714818
and CCF-1822809, as well as the Google PhD Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384321

322

Clifford Stein¥
cliff@cs.columbia.edu
Columbia University
New York, USA

Peilin Zhong§
peilin.zhong@columbia.edu
Columbia University
New York, USA

KEYWORDS

parallel algorithms, shortest paths, minimum cost flow, low hop
emulators

ACM Reference Format:

Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel Approxi-
mate Undirected Shortest Paths via Low Hop Emulators. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC
"20), June 22-26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3357713.3384321

1 INTRODUCTION

The problem of finding the shortest path between two vertices
in an undirected weighted graph is one of the most fundamen-
tal problems in computer science. Standard sequential algorithms
with (nearly) optimal running time have been known for several
decades [27, 30, 57]. In contrast, parallelizing these algorithms has
been a challenge, and existing parallel algorithms are far from at-
taining the efficiency we would like. Two standard measures of the
efficiency of a parallel algorithm in the standard PRAM model of par-
allelism are work (total time over the processors)! and depth (paral-
lel time). The exact shortest path can be computed by the standard
path-doubling (Floyd-Warshall) algorithm in poly(log n) parallel
time using O(n®) total work, for an n-node m-edge graph. This result
has been improved in a long line of work [11, 13, 17, 26, 42, 55, 56].
Nevertheless, the state-of-the-art algorithms have either Q(n?!)
work or Q(n°1) depth.

In order to achieve algorithms with better bounds on work
and depth, researchers have turned to approximation algorithms.
Building on the idea of hopsets [16], a series of papers, includ-
ing [16, 18, 23, 41, 49] give (1 + €)-approximation algorithms. Yet
again, every prior algorithm with m poly(log n) work has at least
Q(n”) depth, and the ones with poly(log n) depth do Q(mn”) work,
where p > 01is an arbitrary small constant. In particular, none of the
prior algorithms achieve poly(log n) depth and m poly(log n) work
simultaneously. In fact, there was no known parallel algorithm with
poly(log n) parallel time and m poly(log n) work that approximates
the shortest path even up to a poly(log n) factor. Hence, after [16],
a major question which remained open for more than 25 years is:

QUESTION 1.1. Is there a parallel algorithm computing an approx-
imate shortest path in poly(log n) depth and m poly(log n) work?

In this paper, we answer this question positively by developing a
parallel (1+€)-approximate shortest path algorithm with poly(log n)
depth and m poly(log n) work.

!More precisely, the work is the running time required when only one processor can

be used, i.e., the sequential running time when the algorithm is implemented in the
vanilla RAM model.

STOC 20, June 22-26, 2020, Chicago, IL, USA

1.1 Our Results and Comparison to Prior
Approaches

To obtain our main result, we develop new tools, which we present
next and which may be of independent interest. It is most natural
to present these results in the context of two related approaches to
parallel shortest path algorithms — hopsets and continuous opti-
mization techniques.

We note that some of our results have new consequences beyond
parallel algorithms, including faster sequential algorithms and con-
structions where none were previously known. Our input is a con-
nected n-vertex m-edge undirected weighted graph G = (V, E, w)
with weights w : E — Z > and max.cg w(e) < poly(n). The paral-
lel algorithms from this paper are in the EREW PRAM model.

Hopsets. One iteration of Bellman-Ford can be implemented effi-
ciently in parallel, and therefore, for graphs in which an approxi-
mate shortest path has a small number of hops (edges) we already
have an efficient algorithm. Motivated by this insight, researchers
have proposed adding edges to a graph in order to make an ap-
proximate shortest path with a small number of edges between
every pair of vertices. Formally, for a given graph G = (V, E, w)
with weights w : E — Rx¢, a hopset is an edge-set H with weights
wy : H —> Rsg. Let G be the union graph (V,EU H, w U wgr). We
define distgl)(u, v), the h-hop distance in 5 to be the length of the
shortest path between u, v € V which uses at most h hops (edges)
in G. Then H is an (h, €)-hopset of G if Vu,v € V, distgf)(u, v) is
always a (1 + €)-approximation to the shortest distance between u
and v in the graph G. There is a three-way trade-off between A, €,
and |H|, which was studied in [16, 23, 34, 49, 59], leading to some
of the aforementioned algorithms.

Surprisingly, a hard barrier arose: [1] showed that the size of
H must be Q(n!*?) for any h < poly(logn), € < loén and some
constant p > 0. Thus, it is impossible to directly apply hopsets to

logn
€

compute a (1 + €)-approximate shortest path in poly(
logn
€

) parallel

time using m poly() work for sparse G, when |E| = O(n).

Low Hop Emulator. To bypass this hardness, we introduce a new
notion — low hop emulator — which has a weaker approximation
guarantee than hopsets, but has stronger guarantees in other ways.
A low hop emulator G’ = (V,E’,w’) of G is a sparse graph with
npoly(logn) edges satisfying two properties. First, the distance
between every pair of vertices in G’ is a poly(log n) approximation
to the distance in G. The second property is that G’ has a low hop
diameter, i.e., a shortest path between every pair of two vertices in
G’ only contains O(log log n) number of hops (edges).

We give an efficient parallel sparse low hop emulator construc-
tion algorithm. To the best of our knowledge, it was not even clear
whether sparse low hop emulators exist, and thus no previous
algorithm was known even in the sequential setting.

THEOREM 1.2 (LOW HOP EMULATOR). For anyk > 1, any graph G
admits a low hop emulator G’, with expected size of O (n“i),2 sat-
isfying: Yu,v € V, distg(u, v) < distgr(u, v) < poly(k) - distg(u, v),

and with the hop diameter at most O(log k). Furthermore, there is a

25(jr(n)) denotes f(n) - polylog(f(n)).

323

Alexandr Andoni, Clifford Stein, and Peilin Zhong

PRAM algorithm computing the emulator G’ in poly log(n) parallel
time using O(m + n”%) expected work.

Notice that, setting k = logn, we can compute a low hop em-
ulator with expected size O(n) and hop diameter O(loglog n) in
poly log(n) parallel time using O(m) expected work. The approxi-
mation ratio in this case is poly log(n).

We now highlight two main features that make a low hop em-
ulator stronger than hopsets. Firstly, the low hop emulator can
be computed in poly(log n) parallel time using m poly(log n) work
while the same guarantees cannot be simultaneously achieved by
hopsets. Secondly, the O(log log n)-hop distances in low hop emu-
lator G’ satisfy the triangle inequality while the h-hop distances in
the union graph G of original graph G and the (h, €)-hopset do not.

An immediate application of the first feature is a poly(log n)-
approximate single source shortest path (SSSP) algorithm using
poly(log n) parallel time and m poly(log n) work. We remark that
when using the hop-distance to approximate the exact distance in
G, we only need to use edges from the low hop emulator while we
also need to use original edges if we use hopsets.

The second feature is crucial for designing parallel algorithms
for Bourgain’s embedding [12], metric tree embedding [24, 28]
and low diameter decomposition [50], using poly(log n) depth and
mpoly(log n) work. [28] introduced a notion similar to low hop
emulators, and it also has the second feature mentioned above.
In contrast, their emulator graph is a complete graph, and the

construction is based on (poly(log n), m)—hopsets.

Continuous optimization. To boost the approximation ratio of
shortest path from poly(log n) to (1+¢€), we employ continuous opti-
mization techniques. Recently, continuous optimization techniques
have been successfully applied to design new efficient algorithms
for many classic combinatorial graph problems, e.g., [15, 19, 20, 38,
39, 44, 48, 52-54]. Most of them can be seen as “boosting” a coarse
approximation algorithm to a more accurate approximation algo-
rithm. Oftentimes, to fit into a general optimization framework, the
“coarse” approximation must be for a more general problem — in our
case, for the uncapacitated minimum cost flow, also known as the
transshipment problem. Following this approach, the work of [8]
develops near-optimal uncapacitated min-cost flow algorithms in
the distributed and streaming settings based on the gradient descent
algorithm. Their algorithm can be seen as boosting a poly(log n)
approximate solver for the uncapacitated min-cost flow problem
to an (1 + €) approximate solver, but with one crucial difference:
it requires a poly(log n) approximate solver for the dual problem.
Hence it is not clear how to leverage their algorithm for our goal as
the aforementioned techniques do not seem applicable to the dual
of uncapacitated min-cost flow.

We develop an algorithm for the uncapacitated min-cost flow
problem by opening up Sherman’s framework [54] and combin-
ing it with new techniques. There is a fundamental challenge in
adopting Sherman’s framework, beyond implementing it in the
parallel setting. Sherman’s original algorithm solves the uncapaci-

tated minimum cost flow problem in m - 20(VI°8") sequential time.
Hence, if we obtain a parallel uncapacitated min-cost flow algo-
rithm with m poly(log n) total work, we cannot avoid improving

this best-known running time of m - 20(VI8 ™) to m poly(log n).

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

Uncapacitated minimum cost flow and approximate s — t short-
est path. To handle the challenge mentioned above, we develop
a novel compressible preconditioner. By using our compressible
preconditioner inside Sherman’s framework, we improve the run-
ning time of (1 + €)-approximate uncapacitated min-cost flow from

m-20(Vlogn) 4o poly(log n). Furthermore, we show that such com-
pressible preconditioner can be computed in poly(log n) parallel
time using m poly(log n) work. This preconditioner relies crucially
on our low hop emulator ideas.

Formally, in the uncapacitated minimum cost flow problem,
given a demand vector b € R” satisfying >, cy by = 0, the goal is
to determine the flow on each edge such that the demand of each
vertex is satisfied and the cost of the flow is minimized.

THEOREM 1.3 (PARALLEL UNCAPACITATED MINIMUM COST FLOW).
Given a graph G = (V, E, w), a demand vector b € R" and an error
parameter € € (0,0.5), there is a PRAM algorithm which outputs an
(1 + €)-approximate solution to the uncapacitated minimum cost flow
problem with probability at least 0.99 in e =2 poly log(n) parallel time
using O(e™2m) expected work.

While the above techniques are sufficient for estimating the
value of the shortest path, one additional challenge arises when we
want to compute an (1+ €)-approximate shortest path. In particular,
the continuous optimization framework produces an approximate
shortest path flow, which is not necessary integral and, more cru-
cially, may contain cycles. We address this challenge by developing
a novel recursive algorithm based on random walks, and which
uses a coupling argument.

THEOREM 1.4 (PARALLEL (1 + €)-APPROXIMATE § — { SHORTEST
PATH). Given a graph G = (V,E, w), two vertices s,t € V and an
error parameter € € (0,0.5), there is a PRAM algorithm which can
output a (1 + €)-approximate s — t shortest path with probability at
least 0.99 in €2 poly log(n) parallel time using expected O(e~>m)
work.

Massive Parallel Computing (MPC).. Although we present our par-
allel algorithms in the PRAM model, they can also be implemented
in the Massive Parallel Computing (MPC) model [2, 7, 25, 29, 37]
which is an abstract of massively parallel computing systems such
as MapReduce [21], Hadoop [60], Dryad [36], Spark [61], and others.
In particular, MPC model allows m% space per machine for some
d € (0, 1). The computation in MPC proceeds in rounds, where each
machine can perform unlimited local computation and exchange
up to m? data in one round.

By applying the simulation methods [29, 37], our PRAM algo-
rithm can be directly simulated in MPC. The obtained MPC algo-
rithm has poly(log n) rounds and only needs m - poly(log n) total
space. Furthermore, it is also fully scalable, i.e., the memory size per
machine can be allowed to be m® for any constant d € (0, 1). To the
best of our knowledge, this is the first MPC algorithm which com-
putes (1 + €)-approximate shortest path using poly(log n) rounds
and m poly(log n) total space when the memory of each machine
is upper bounded by n1=2M) Previous work on shortest paths in
the MPC model include [22] when the memory size per machine
is o(n), and simulations of shortest path algorithms from the Con-
gested Clique model [8, 14, 32, 33, 40, 47] when the memory size
per machine is Q(n) [9].

324

STOC 20, June 22-26, 2020, Chicago, IL, USA

Independent work. Independently, [46] developed an alternative
O(m) algorithm for the uncapacitated minimum cost flow problem
(see Theorem 4.19). The first arXiv version of [46], released at the
same time as the arXiv version of this paper [4], on November 5,
2019, also claimed a parallel algorithm with performance similar
to one from Theorem 1.4. However, that version was missing a
necessary component (how to compute a path from a flow in paral-
lel, see Section 1.2.2), without which the algorithm could not even
compute the cost in parallel. The author of [46] later developed an
algorithm for this component, which appeared in a revision of his
arXiv paper, on December 19, 2019.

1.2 Our Techniques

In this section, we give an overview of techniques that we use in
our algorithms. Figure 1 sketches the dependencies between our
techniques and the main results mentioned in this paper.

1.2.1 Low Hop Emulator. A concept closely related to low hop em-
ulator are hopsets [16]. A hopset is a set of weighted shortcut edges
such that for any two vertices s and t we can always find an approx-
imate shortest path connecting them using small number of edges
from the hopset and the original graph. Many hopset construction
methods [10, 16, 23, 31, 32, 34, 42, 49, 58, 59] share some common
features — they all choose a layer or multiple layers of leader ver-
tices, and the hopset edges are some shortcut edges connecting to
these leader vertices. However, when connecting shortcut edges
to a layer of leader vertices, none of these algorithms can avoid
processing information for all n vertices from the original graph,
even though there may be a large fraction of vertices which are
not connecting any of this layer’s leader vertex in the final hopset.
Furthermore, each of these algorithms needs either n - logw(l) n
work (sequential time) or log“’(l) n depth to process n vertices for
constructing shortcut edges for some layers. To improve the effi-
ciency of these algorithms, a natural question is: can we reduce the
number of vertices needed to be processed when constructing the
shortcut edges?

Subemulator. Motivated by the above question, we introduce a
new concept called subemulator. For & > 1 and an integer b > 1,
we say H = (V/,E’, w’) is an (a, b)-subemulator of G = (V, E, w)
if 1) V’ is a subset of V; 2) for any vertex v in G, at least one of
the b-closest neighbors3 of v is in V’; 3) for any two vertices u, v
in H, disty (u, v) a-approximates distg(u, v). In addition, if we can
assign each vertex v € V a leader g(v) € V’ such that g(v) is one
of the b-closest neighbors of v and for any two vertices u,v € V it
always satisfies

distg(q(u), q(v)) < distg(q(w), g(v))
<distg(q(u), u) + p - distg(u, v) + distg(v, g(v))
o))

for some > 1, we call H a strong (a, b, f)-subemulator of G. A
subemulator H can be regarded as a sparsification of vertices of G.
Two notions related to subemulators are vertex sparsifiers [45, 51]
and distance-preserving minors [43]. The major difference between

3We assume that v is also a neighbor of v itself. Thus the closest (or 1-closest) neighbor
of v is v itself.

STOC 20, June 22-26, 2020, Chicago, IL, USA

Alexandr Andoni, Clifford Stein, and Peilin Zhong

Subemulator

Low Hop Emulator

Parallel SSSP

(polylogn - approximation)

- |

Parallel Metric
Tree Embedding

Parallel Bourgain's
Embedding

Parallel Low Diameter
Decomposition

|

Compressible
Preconditioner

Parallel Uncapacitated

Minimum Cost Flow
((1+&)- approximation)

Parallel Recursive
Path Construction

T =

Parallel s —¢
shortest path

((1+¢) - approximation)

Figure 1: Techniques and results mentioned in this paper. Blue rounded rectangles indicate new techniques developed in this paper.

subemulators and vertex sparisfiers is that the vertex sparsifier ap-
proximately preserves flow/cut properties for the subset of vertices
while the subemulator approximately preserves distances for the
subset of vertices. Furthermore, both vertex sparsifiers and distance-
preserving minors have given fixed vertex sets, whereas the vertex
set of the subemulator is not given but should satisfy the condition
2) mentioned above, i.e., each vertex in G has a b-closest neighbor
which is in the subemulator.

To construct a strong subemulator H = (V’, E’, w’), we need to
construct both a vertex set V/ and a edge set E’. For convenience, let
us consider the case for b > log n. Constructing V" is relatively easy.
We can add each vertex of V to V” with probability ©(log(n)/b). By
Chernoff bound, with high probability, each vertex has at least one
of the b-closest neighbors in V’ and the size of V” is roughly O(n/b).
For each vertex v € V, it is natural to set the leader vertex g(v) to
be the vertex in V’ which is the closest vertex to v. The challenge
remaining is to construct the edge set E’ such that condition 3)
and Equation (1) can be satisfied. In our construction, we add two
categories of edges to E”:

(1) For each edge {u,v} € E, add an edge {q(u), q(v)} with
weight distg(q(u), u) + w(u, v) + distg(v, q(v)) to E’.

(2) For each v € V and for each u which is a b-closest neighbor
of v, we add an edge {g(u), g(v)} with weight distg(q(u), u)+
distg(u, v) + distg(g(v), v) to E’.

The first category of edges looks natural — for an edge {u, v} of
which two end points u, v are assigned to different leader vertices
q(u), q(v), we add a shortcut edge connecting those two leader
vertices with a weight which is equal to the smallest length of the
q(u) — q(v) path crossing edge {u, v}. However, if we only have the
edges from the first category, it is not good enough to preserve the
distances between leader vertices. To fix this, we add the second
category of edges. We now sketch the analysis. It follows from
our construction that each edge in H corresponds to a path in G.
Thus, Vu’,v" € V/, distg(u’,v’) < disty(u’, v’). We only need to

325

upper bound disty (u’, v’). Let us fix a shortest path u’ = zp —
— zp, = v’ between u’, v’ in the original graph G. We
want to construct a path in H with a short length. We use the
following procedure to find some crucial vertices on the shortest
pathzp — --

zZ1 — -

> Zp

(1) yo « u’,k « 0. Repeat the following two steps:

(2) Let x4 be the last vertex on the path zg — - -+ — zj, such
that xz is one of the b-closest neighbors of yy. If x 1 is
zp,, finish the procedure.

(3) Set yr, to be the next vertex of x;,; on the path zo —

oz k—k+1.

It is obvious that

distg(u’,v") =
k-1
distG Yk, xg+1) + Z(distc(yi, Xi+1) + W(Xie1, Yi+1))-
i=0
Fori=0,1,---,k, xi3+1 is a b-closest neighbor of y;. Thus, there
is an edge {q(y;), q(xi+1)} in H from the second category of the
edges.Fori =1,2,-- -, k, y; is adjacent to x;. Thus, there is an edge
{q(x1),q(y;)} in H from the first category of the edges. Thus u’ =
q(yo) — q(x1) = q(y1) — q(x2) = q(y2) = -+ = qlrsy) = 0’
is a valid path (see Figure 2) in H and the length is

k
distg(u’,0") +2- Z (distg(xi, q(x;)) + distg(yi, 9(y:))) -
i=1

By our choice of ¢(-), we have Vv € V, distg (v, q(v)) = distg(v, V’).
So,Vi=1,2,--- ,k,

distg(xi, g(x;)) < distg(yi-1, q(yi-1)) + distg(yi-1, ;).

Since y; is not a b-closest neighbor of y;—; but q(y;—1) is a b-closest
neighbor of y;_1, Vi = 1,2,--- , k,

distg(yi-1, q(yi-1)) < distg(yi-1, xi) + w(xi, yi).

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

STOC 20, June 22-26, 2020, Chicago, IL, USA

_
X =V

Figure 2: For v/, v’ € V' and a shortest path between u’, v’ in G, we can find a corresponding path between ', v’ in the subemulator H. A
single dashed line denotes a shortest path in G between y;_; and x;. A single solid line denotes an edge {x;, y; } in G. A double dashed line
denotes a shortest path in G between a vertex and its leader vertex. A double solid blue line denotes an edge in the subemulator H with a
weight which is equal to the length of the path in G represented by the corresponding blue arc.

Since xi,1 € V', we have distg(yg, q(yr)) < distg(yg, Xk+1)- Then
Tk distg(xi,q(x;) < 2-distg(w’,v") and TX_, distG(yi. q(y)) <
distg(u’, v"). Thus, we can conclude distg (u”, v”) < 8-distg(u’, v”).
We now argue that our construction of E” also satisfies Equation (1)
with f = 22. There are two cases. The first case is that either
u is a b-closest neighbor of v or v is a b-closest neighbor of u.
In this case, E’ contains an edge from the second category with
weight distg(q(u), u) + distg(u, v) + distg(v, g(v)) which implies
Equation (1). The second case is that neither u is a b-closest neighbor
of v nor v is a b-closest neighbor of u. In this case, we have

distg(q(u), q(v)) < 8distg(q(u), q(v))
< 8(distg(q(u), u) + distg(u, v) + distg(v, g(v)))
< distg(q(u), u) + distg(v, g(v)) + 22 distg(u, v),

where the last step follows from distg(u, q(u)), distg(v, g(v)) <
distg(u, v).

The bottleneck of computing a subemulator is to obtain b-closest
neighbors for each vertex. We can use the truncated broadcasting
technique [3, 55] to handle this in poly(log n) parallel time using
5(m +nb?) total work. The output subemulator has 5(n /b) vertices
and O(m + nb) edges. As we can see, there is a trade-off between
total work used and the number of vertices in the subemulator: if
we can afford more work for the construction of the subemulator,
fewer vertices appear in the subemulator.

Low hop emulator via subemulator. Now, we describe how to use
strong subemulators to construct a low hop emulator. Consider a
weighted undirected graph G = (V, E, w). Suppose we obtain a se-
quence of subemulators Hy = (Vo, Eo, wo), H1 = (V1, E1, w1),- -+, Hy
(Vt, Et,wy) where Hy = Gand Vi = 0,--- ,t — 1, Hj41 is a strong
(8, bj, 22)-subemulator of H; for some integer b; > 1. We have
V=2V 2V, 22 Vs.Forv € V;,letus denote q;(v) € Viyq
as the corresponding assigned leader vertex of v in the subemulator
H; 1 satisfying Equation (1). We add following three types of edges
to the graph G’ = (V, E’, w") and we will see that G’ is a low hop
emulator of G:

(1) Vi=0,---,t—-1, Yv € V;,add an edge {v, q;(v)} with weight
2787171 - distyy, (v, gi(v)) to G'.

(2) Vi=0,---,t, for each edge {u,v} € E;, add an edge {u, v}
with weight 27/ 7% - w;(u, v) to G.

(3) Vi 0,---,t Yv € V;, add an edge {v,u} with weight
27471 distpy, (v, u) to G for each u which is one of the b;-
closest neighbors of v in H; (define b; = |V;|).

326

Roughly speaking, we can imagine that G’ is obtained from flatten-
ing a graph with t + 1 layers. Each layer corresponds to a subem-
ulator. The lowest layer corresponds to the original graph G, and
the highest layer corresponds to the last subemulator H;. The first
type of edges connect the vertices in the lower layer to the leader
vertices in the higher layer. The second type of edges correspond
to the subemulators on all layers. The third type of edges shortcut
the close vertices from the same layer. Furthermore, the weights
of the edges on the lower layers have larger penalty factor, i.e., the
penalty factor of the edges on the layer i is 27°7%.

By Equation (1) of strong subemulator, we can show that Vu, v €
V, distg(u, v) < distgs(u, v). Consider the first layer. By the second
type edges, we know that Yu, v € V, distg (1, v) < 27 distg(u, v).
In particular, for ¢ = O(log log n), G’ preserves the distances in G
up to a poly(log n) factor. Now we want to show that Vu,v € V,
there is always a shortest path connecting u, v in G’ such that the
number of hops (edges) of the path is at most 4t. For convenience,
we conceptually split each vertex of G into vertices on different
layers based on the construction of G’. Consider a shortest path
u=1zy > 21 > 22 — -+ — z5 = v using the smallest num-
ber of hops in G’ with splitting vertices. By the constructions of
three types of edges we know that Vj = 0,1,--- ,h — 1, zj, zj4+1 are
either on the same layer or on the adjacent layers, and z, zj, are
on the lowest layer which is corresponding to Hy = G. We will
claim two properties of the shortest path zg — --- — zj. Suppose
zj, zj+1 are on the same layer corresponding to H;. We claim that
zj+2 cannot be on the same layer as z; and zj1. Intuitively, this is
because if zj42 is on the same layer of z; then there are two cases
which both lead to contradictions: in the first case, zj+2 is close to
zj such that there is a third type edge connecting zj, zj+2 which
implies that zj41 is redundant; in the second case, zj is far away
from z; such that disty, (2}, qi(zj)) + distn,,,(qi(zj), qi(zj+2)) +
disty, (qi(zj+2), zj+2) is a good approximation to distg, (2, zj+2),
and due to a smaller penalty factor, the length of the path z; —
qi(zj) — (shortest path) — gqi(zj+2) — zj+2 is smaller than
the length of z; — zj4+1 — zj12. We claim another property of
— zj, as the following. If the layer of zj;; is lower than
the layer of zj, the layer of any of zj+2, zj+3, - - - , z;, must be lower
than the layer of z;. At a high level, this is because of Equation (1)
and the smaller penalty factor for higher layers: if we move from
higher layer to lower layer then come back to the higher layer, it is
always worse than we only move in the higher layers. Due to these
two claims, the shortest path in G’ should have the following shape:
the path starts from the lowest layer, then keeps moving to the

zZo — -

STOC 20, June 22-26, 2020, Chicago, IL, USA

non-lower layers until reach some vertex, and finally keeps moving
to the non-higher layers until reach the target. Furthermore, there
are no three consecutive vertices on the path which are on the same
layer. Hence we can conclude that the shortest path has number of
hops at most 4t. Based on above analysis, the shortest path in G’
will never use the second type edges. Thus, in our final construction
of G’, we only need the first type and the third type of edges.

The size of G’ is at most Z?:o |Vi| - bi. The bottleneck of the
construction of G’ is to compute the third type edges. This can be
done by truncated broadcasting technique [3, 55] in ¢ - poly(log n)
parallel time using ZLO (|Ei| + Vil - blz) - poly(log n) total work.
The problem remaining is to determine the sequence of b;. As
we discussed previously, we are able to use poly(log |V;|) parallel
time and O(|E;| + |V;|b;) total work to construct a subemulator
H;1 with O(|V;|/b;) vertices and O(|E;| + |Vi|b;) edges. By double
exponential problem size reduction technique [3], we can make b;
grow double exponentially fast in this situation. More precisely,
if we set by « poly(logn), biy1 « b}'zs, and t « O(loglogn),
then in this case, the result low hop emulator can be computed in
poly(log n) parallel time and O(m + n) total work. Furthermore, the
size of the result low hop emulator is O(n), the approximation ratio
is poly(log n), and the hop diameter is O(log log n).

Applications of low hop emulator. We can build a useful oracle
based on a low hop emulator: given a query subset S of vertices, the
oracle can output a poly(log n) approximations to distg(v, S) for all
v € V. Furthermore, the output approximate distances always sat-
isfy triangle inequality. To implement such oracle, we preprocess an
O(n) size low hop emulator G’ with poly(log n) approximation ra-
tio and O(log log n) hop diameter in poly(log n) parallel time using
O(m + n) work. For each oracle query, we can just run Bellman-
Ford on G’ with source S. The work needed for each Bellman-Ford
iteration is at most O(n). Since the hop diameter is O(log log n), the
number of iterations needed is O(log log n). Therefore, each query
can be handled in poly(log n) parallel time and O(n) total work. The
triangle inequality is always satisfied since the output approximate
distances are exact distances in the graph G’. Several parallel appli-
cations such as Bourgain’s embedding, metric tree embedding and
low diameter decomposition directly follow the oracle.

1.2.2 Minimum Cost Flow and Shortest Path.

Uncapacitated minimum cost flow. At a high level, our unca-
pacitated minimum cost flow algorithm is based on Sherman’s
framework [54]. Sherman’s algorithm has several recursive iter-
ations. It first uses the multiplicative weights update method [5]
to find a flow which almost satisfies the demands and has nearly
optimal cost. If the unsatisfied parts of demands are sufficiently
small, it routes them naively to make the flow truly feasible with-
out increasing the cost by too much. Otherwise, it updates the
demands to be the unsatisfied parts of the original demands and
recursively routes the new demands. [54] shows that if the prob-
lem is well conditioned, then the final solution can be computed
by the above process efficiently. However, most of the time the
natural form of the uncapacitated minimum cost flow problem is
not well-conditioned. Thus, a preconditioner, i.e., a linear operator
P € R™™ applied to the flow constraints, is needed to make the

327

Alexandr Andoni, Clifford Stein, and Peilin Zhong

problem well-condtitioned. Consider a given graph G = (V, E, w).
Sherman shows that if for any valid demands b € R” we always
have OPT(b) < ||Pb||; < y - OPT(b), then P can make the condition
number of the flow problem on G be upper bounded by y, where
OPT(b) denotes the optimal cost of the flow on G satisfying the
demands b. Sherman gives a method to construct such P. However,
to have a smaller approximation ratio y, the time of computing
matrix-vector multiplication with P must increase such that the
running time of the multiplicative weights update step increases.

To balance the trade-off, Sherman constructs P with y = 20(Ylogn)

approximation ratio and nnz(x) - 20(V1°€) time for matrix-vector

multiplication P - x, where nnz(x) denotes the number of non-zero

entries of x. Thus, its final running time is m - 20(Wlogn) o design
a parallel minimum cost flow algorithm using poly(log n) paral-
lel time and m poly(log n) work, we cannot avoid improving the
sequential running time of minimum cost flow to mpoly(log n)
time in sequential setting. By the above discussion, a natural way
is to find a linear transformation P which can embed the mini-
mum cost flow into ¢; with poly(log n) approximation ratio and
the running time for matrix-vector multiplication P - x needs to be
nnz(x) - poly(log n). Next, we will introduce how to construct such
embedding P.

First, we compute a mapping ¢ which embeds the vertices into £ ;j
for d = O(log? n) such that Vu, v € V, || ¢(u)— p(v)||1 is a poly(log n)
approximation to distg(u, v). This step can be done by Bourgain’s
embedding. The parallel version of Bourgain’s embedding is one of
the applications of low hop emulator as we mentioned previously.
Then we can reduce the minimum cost flow problem to the geomet-
ric transportation problem. The geometric transportation problem
is also called Earth Mover’s Distance (EMD) problem. Specifically,
it is the following minimization problem:

min Z w(u,v) - |le(u) — e(v)ll1
VXV R0 (,0)eVXV
st.Yuev, Z 7(u,v) — Z n(v,u) = by.
veV veV

We denote OPTgpmp (b) as the optimal cost of the above EMD prob-
lem. It is easy to see that OPTgpMp (D) is a poly(log n) approximation
to OPT(b). Therefore, it suffices to construct P such that for any
valid demand vector b € R",

OPTemp(b) < ||PD||1 < poly(logn) - OPTemp ().

One known embedding of EMD into ¢1 is based on randomly shifted
grids [35]. We can without loss of generality assume that the co-
ordinates of ¢(v) are integers in {1,---, A} for some A which is
a power of 2 and upper bounded by poly(n). We create 1 + log A
levels of cells. We number each level from 0 to log A. Each cell in
level log A has side length A. Each cell in level i + 1 is partitioned
into 24 equal size cells in level i and thus each cell in level i has
side length 2!, Therefore each cell in level 0 can contain at most
one point ¢(v) for v € V. According to [35], for any valid demand

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

vector b € R,

logA

2,

i=0 C:acellin level i

2k by

E
r~{0.1,--, A1} veV:ip(v)+r-14 isin C

2
is always a poly(log n) approximation to OPTgpmp (D), where 7 is
drawn uniformly at random from {0, 1,--- ,A—1},and p(v) +7- 14

is the point obtained after shifting each coordinate of ¢(v) by 7.
Since each cell in level i has side length 2*, Equation (2) is equal to

logA 2i_1

D)

i=0 7=0 C:acell in level i

2l by
veV:p(v)+7-14 isin the cell C
logA

)

i=0 C:acellinlevel i 7=0 |veV:p(v)+7 14 is in the cell C

2i-1

bol. (3

Equation (3) can be written in the from of ||Pb||; where each row
of P corresponds to a cell C and a shift value 7, and each column
of P corresponds to a vertex v. Figure 3 shows how does P look
like: for an entry P; j corresponding to a cell C, a shift value 7 and
a vertex v, we have P; ; = 1if the point ¢(v) + 7 - 14 is in the cell
C and P; j = 0 otherwise. Therefore, P can be used to precondition
the minimum cost flow problem on G with condition number at
most poly(log n). However, such matrix P is dense and have poly(n)
number of rows. It is impossible to naively write down the whole
matrix. Fortunately, we will show that P has a good structure and
we can write down a compressed representation of P. Consider a
cell Cin level i and a vertex . If there exists 7 € {0,1,---, 2! — 1}
such that ¢(v)+7-14 is in the cell C, then there must exist 7y, 72 such

that p(v)+7-14isinthe cell Cifand onlyifr € {r1,71+1, -+, 72}.

In other words, the shift values 7 that can make ¢(v) + 7 - 14 be in
C are consecutive. Another important property that we can show is
that the number of cells in level i that can contain at least one of the
shifted points ¢(v), p(v) + 14, P(V) +2- 14, , (V) + (21 = 1) - 14
is at most d + 1. Now consider a column of P corresponding to
some vertex v. The entries with value 1 in this column should be in
several consecutive segments. The number of such segments is at
most (d + 1) - (1 +log A) < poly(log n). Thus, for each column of P,
we can just store the beginning and the ending positions of these
segments. The whole matrix P can be represented by n poly(log n)
segments. The only problem remaining is to use this compressed
representation to do matrix-vector multiplication. Suppose we want
to compute y = P - x for some x € R™. It is equivalent to the
following procedure:

(1) Initialize y to be an all-zero vector.
(2) For each column i and for each segment [/, r] in column i,
increase all yy, yy41, -, yr by x;.

We can reduce the above procedure to the following one:

(1) Initialize z to be an all-zero vector.

(2) For each column i and for each segment [/, r] in column i,
increase z; by x; and increase z,4+1 by —x;.

(3) Compute y; < Zi:l Zk.

In the above procedure, we only need to compute a prefix sum for z.

Since each column of P has at most poly(log n) segments, the total

328

STOC 20, June 22-26, 2020, Chicago, IL, USA

number of segments involved is at most nnz(x) - poly(log n). The to-
tal running time is 5(nnz(x) - poly(log n)). Notice that even though
y has a large dimension, it can be decomposed into O(nnz(x) -
poly(log n)) segments where the entries of each segment have the
same value. Thus, we just store the beginning and the ending posi-
tions of each segment of y.

Each step of computing the compressed representation can be
implemented in poly(log n) parallel time and each step of comput-
ing the matrix-vector multiplication can also be implemented in
poly(log n) parallel time. We obtained a desired preconditioner. By
plugging this preconditioner into Sherman’s framework, we can
obtain a parallel (1 + €)-approximate uncapacitated minimum cost
flow algorithm with poly(log n) depth and e ~2m - poly(log n) work.

Parallel (1 + €)-approximate s — t shortest path. s — t Shortest
path is closely related to uncapacitated minimum cost flow. If we
set demand bs = 1,b; = —1 and b, = 0 for v # s,t € V, then the
optimal cost of the flow is exactly distg(s, t). Thus, computing a
(1 + €)-approximation to distg(s, t) can be achieved by our flow
algorithm. However, the flow algorithm can only output a flow
but not a path. We need more effort to find a path from s to ¢
with length at most (1 + €) - distg(s, t). As mentioned by [8], if
the (1 + e)-approximate flow does not contain any cycles, then
for each vertex v # t we can choose an out edge with probability
proportional to the magnitude of its out flow, and the expected
length of the path found from s to t is exactly the cost of the flow
which is (1 + €) - distg(s, t). Unfortunately, the flow outputted by
our flow algorithm may create cycles. If we randomly choose an
out edge for each vertex v # t with probability proportional to the
magnitude of the out flow, we may stuck in some cycle and may not
find a path from s to ¢. To handle cycles, we propose the following
procedure to find a path from s to ¢.

(1) If the graph only has constant number of vertices, find the
shortest path from s to ¢ directly.

(2) Otherwise, compute the (1 + €’)-approximate minimum cost
flow from s to ¢ for ¢’ = ©(e/log n).

(3) For each vertex except ¢, choose an out edge with probability
proportional to its out flow.

(4) Consider the graph with n — 1 chosen edges. Each connected

component in the graph is either a tree or a tree plus an edge.

A component is a tree if and only if ¢ is in the component.

For each component, we compute a spanning tree. If the

component contains ¢, we set ¢ as the root of the spanning

tree. Otherwise, we set an arbitrary end point of the non-tree

edge as the root of the spanning tree.

Construct a new graph of which vertices are roots of span-

ning trees. For each edge {u, v} in the original graph, we

add an edge connecting the root of u and the root of v with

weight

G

=

(distance from u to the root of u on the spanning tree) + w(u, v)
+(distance from v to the root of u on the spanning tree).
(6) Recursively find a (1 + €¢”)-approximate shortest path from

the root of s to t in the new graph. Recover a path in the
original graph from the path in the new graph.

In the above procedure, only 1/2 vertices can be root vertices. Thus,
the procedure can recurse at most log n times which implies that

STOC 20, June 22-26, 2020, Chicago, IL, USA

CZ

r=|

°
r=2 C4

1;3

Figure 3: Consider cells C;, C;, C3, C4 shown above with side length 4. Blue dots denote the positions of ¢(v) + 7 -
7 =0, 1, 2, 3. The entries of P in the column corresponding to v and in the rows corresponding to (C, 7) for C = Cy,

are shown on the right.

the parallel time of the algorithm is at most poly(log n) and the total
work is still ~ mpoly(n). Now analyze the correctness. It is easy to
see that each edge in the new graph corresponds to a path between
two root vertices in the original graph. Thus a path from the root of
s to t in the new graph corresponds to an s — ¢ path in the original
graph. We only need to show that the distance between the root of
s and t in the new graph can not be much larger than the distance
between s and t in the original graph. To prove this, we show that
if we do a random walk starting from s and for each step we choose
the next vertex with probability proportional to the out flow, the
expected length of the random walk to reach ¢ is exactly the cost
of the flow. By coupling argument, we can prove that the expected
length of the distance between the root of s and t in the new graph
is at most (1 + O(e”)) - (the cost of the flow). Thus, the expected
length of the final s — ¢ path is at most (1 + O(eN)o8 ™ . dist (s, t) <
(1+e) - distg(s, t).

1.3 A Roadmap

We introduce notation and preliminaries in Section 2. We describe
the construction of low hop emulators in Section 3. We describe our
uncapacitated minimum cost flow algorithm in sequential setting
in Section 4. For parallel implementations, applications of low hop
emulators, parallel recursive path construction algorithm and all

missing proofs, we refer reader to the full version®.

2 PRELIMINARIES

Let [n] denote the set {1,2,---,n}. For a set V, 2V denotes the
family of all the subsets of V, i.e., 2V = {§ | S C V). In this
paper, we will only consider graphs with non-negative weights. Let
G = (V, E, w) be a connected undirected weighted graph with vertex
set V, edge set E, and weights of the edges w : E — Zx¢. Let both
{u, v}, {v, u} denote an undirected edge between u and v. For each
edge e = {u, v} € E, letboth w(u, v), w(v, u) denote w(e). Forv € V,
let w(v, v) be 0. Consider a tuple p = (ug, ug, u2, - - - ,up) € yh+l 1f
Vi € [h], either u; = uj—j or {uj—1,u;} € E, then p is a path between
ug and uy,. The number of hops of p is h, and the length of p is defined
as w(p) = 2?21 w(uj—1,u;). For u,v € V, let distg(u, v) denote the
length of the shortest path between u, v, i.e., distg(u, v) = w(p*),
where the path p* between u, v satisfies that Vpath p between u, v,

“https://arxiv.org/pdf/1911.01956.pdf

329

Alexandr Andoni, Clifford Stein, and Peilin Zhong

v
s N

1 o= 0
0 C o= 1
0 [
0 1 t =3
0 t = 0
: C, -
0 2 o= 2
0 T =3
0 T = 0
1 C o= 1
0 r o= 2
0 3 r =3
0 t = 0
! c, .
1 4 ro= 2
1 r =3

14 for some vertex v and
Cz,C3,C4 and 7 = 0,1,2,3

w(p*) < w(p). Similarly, dist(c’;)(u, v) denotes the h-hop distance

between u, v, i.e., distgl)(u, v) = w(p’), where the h-hop path p’
between u, v satisfies that Vh-hop path p between u, v, w(p”) < w(p).
The diameter diam(G) of G is defined as max,, ey distg(u, v). The
hop diameter of G is defined as the minimum value of h € Z3g
such that Yu,v € V, distg(u,v) = distgl)(u, v).ForS CcV,ueV,
we define distg(v, S) = distg(S, v) = minyeg dist(u, v). Similarly,
we define dist(Gh)(v, S) = distgl)(S, V) = minges distgl)(u, v).IfGis
clear in the context, we use dist(:, -) and dist<h)(-, -) for short.

Consider two weighted graphs G = (V, E, w) and G’ = (V,E’, w’).
If Yu,v € V,distg(u,v) < distg(u,v) < a - distg(u, v) for some
a > 1, then G’ is called an a-emulator of G.

Given r € Zx, for v € V, we define Ballg(v,r) = {u € V |
distg(u, v) < r},and Ball;(v,r) = {u € V | distg(u, v) < r}. Given
b € [|V]], for v € V, let rg p(v) satisfy that | Ballg(v, rg p(v))| = b
and | Ballg; (v, rg 3 (v))| < b. We define Ballg ,(v) = Ballg(v, rg 3 (v)),
and Ba11°G’ »(©) = Ballg,(v, 76 (v)). If there is no ambiguity, we
just use Ball(v, r), Ball°(v,), r(v), Bally(v), Ball;(v) to denote
Ballg(v, r), Ballg; (v,), rg,p(v), Ballg 3 (v), BaHOG,b(v) respectively
for short.

For a vector x € R we use ||x||; to denote the ¢; norm of x,
ie, |lxlli = X2, |xi|. We use || x|l to denote the £ norm of x, i.e.,

[lxlleo = max;e[pm [xi|- Given a matrix A € R™M we use A;, A/
and Aj ; to denote the i-th column, the j-th row and the entry in the

i-th column and the j-th row of A respectively. We use ||All1—1 to
llAx lx

i llxll
A well-known fact is that [|A|l1—1 = maX; e[[|Aill1- We use 1, to

denote an n dimensional all-one vector. We use sgn(a) to denote
the sign of g, i.e., sgn(a) = 1if a > 0, and sgn(a) = —1 otherwise.
We use nnz(-) to denote the number of non-zero entries of a matrix
or a vector.

denote the operator £1 norm of A, i.e., ||Alli—1 = sup,.,o

3 LOW HOP EMULATOR

Given a weighted undirected graph G, we give a new construction
of the graph emulator of G. For any two vertices in our constructed
emulator, there is always a shortest path with small number of
hops. Furthermore, our construction can be implemented in parallel
efficiently.

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

3.1 Subemulator

In this section, we introduce a new concept which we called sube-
mulator.
an emulator with low hop diameter.

DEFINITION 3.1 (SUBEMULATOR). Consider two connected undi-
rected weighted graphs G = (V,E,w) and H = (V’,E’,w’). For
b e[|V|] and @ > 1, if H satisfies

1y v'cv,

(2) Yo € V, Ballg ,(v) NV’ # 0,

(3) Yu,v € V’, distg(u, v) < disty(u,v) < « - distg(u, v),
then H is an (@, b)-subemulator of G. Furthermore, if there is a map-
ping q : V. — V' which satisfies Vo € V, q(v) € Ballg ,(v) and

Yu,v € V,distg(q(u), g(v)) <
distg(u, q(u)) + distg(v, q(v)) + f - distg(u, v)
for some f > 1, then H is a strong (a, b, f)-subemulator of G, q(-) is
called a leader mapping, and q(v) is the leader of v.

In Algorithm 1, we show how to construct a strong subemulator.

Algorithm 1 Construction of the Subemulator

1: procedure SUBEMULATOR(G = (V, E, w), b € [|V]])

2 Output: H = (V',E', w'),q:V -V’

3 V' «SamprLEs(G, b). > Constructing vertices.
4 H, q —ConNECTS(G, V', b). > Constructing edges and leaders.
5: Return H, q.

6: end procedure

7: procedure SAMPLES(G = (V, E, w), b € [|V]])

8 Initialize S, V/ « 0, n « |V|

9 For v € V, add v into S with probability min(50log(n)/b, 1/2).
10: Forv e V,ifv € SorBallg ,(v)NS =0,V « V' U {v}.

11: Return V.

12: end procedure

13: procedure CoNNECTS(G = (V,E, w), V' CV,b € [|V]])

14: Output: H = (V',E', w'),q: V -V’

15: Forv € V, q(v) « arg minuEBallG’b(v)r\V’ distg(u, v).

16: Initialize E’ = 0.

17: For {u,v} € E, E' « E' U {q(u), q(v)}.

18: ForveV,ue€ Ballz’b(v), E' — E'U {q(u), q(v)}.

19: For e’ € E’, initialize w’(e’) « oo.
20: For {u, v} € E, consider e’ = {q(u), q(v)} € E’,

w(e’) « min(w’(e’), distg(q(u), u) + w(u, v) + distg (v, q(v))).

21: ForveV,ue€ Ballz}’b(v), consider ¢’ = {q(u), q(v)},

w'(e") « min(w’(e’), distg(q(u), u) + distg(u, v) + distg(v, q(v))).

22: Return H = (V/, E’,w')and q: V — V.
23: end procedure

THEOREM 3.2 (CONSTRUCTION OF THE SUBEMULATOR). Consider
a connected n-vertex m-edge undirected weighted graph G = (V, E, w)
and a parameter b € [n]. SUBEMULATOR(G, b) (Algorithm 1) will out-
put an undirected weighted graph H = (V/,E’,w’) andq:V — V’
such that H is a strong (8, b, 22)-subemulator of G, and q is a cor-
responding leader mapping (Definition 3.1). Furthermore, E[|V’|] <
min(75log(n)/b,3/4)n, |[E’| < m + nb.

330

STOC 20, June 22-26, 2020, Chicago, IL, USA

3.2 A Warm-up Algorithm: Distance Oracle

Given a weighted undirected graph, a distance oracle is a static
data structure which uses small space and can be used to efficiently
return an approximate distance between any pair of query vertices.
In this section, we give a warm-up algorithm which is a direct
application of subemulator. In section 3.3, we will show how to
apply the preprocessing procedure PREPROC (Algorithm 2) in our
construction of low hop emulator.

Algorithm 2 Distance Oracle
1: procedure PREPrROC(G = (V, E, w), k)

2: n« |V|,m« |E|

3: t — 0, Hy = (Vo, Ey, Wo) «— G, by —
max ([(751og n)?], nl/(Zk)).

4: ng <« |Vol|, mo « |Eo|

5: while n; > b; do

6: Hpv1 = (Vis1, Erv1, Wer1), @t <—SUBEMULATOR(Hy, by). >
See Algorithm 1.

7: Yo € Vi, let By(v) « Ball;ﬁ’bt(v) U {q+(v)} and compute
and store disty, (v, u) for every u € B;(v).

8: nee1 < |Vesrl, merr « |Egaal.

9: bii1 — b;B.

10: te—t+1.

11 end while

For v € V;, By(v) < V;, compute distg, (v, u) for u € V;, and
q:(v) « x where x € V; is smallest.
: end procedure
: procedure QUERY(u, v)

15: Output: d € Zxg

16: 1 —0,dy « 0,up «— u, vy « v.

17: while v; ¢ B;(u;) and u; ¢ B;(v;) do

18: d; < distp, (ur, qi(uy)) + distm, (v, q1(v7)).
19: urer = qi(wy), v4g = qi(ovr).

20: le—1+1

21: end while

22: d; « diStHl (uyg, vp).

23: Return d = 25:0 d;.

24: end procedure

LEMMA 3.3 (PROPERTIES OF THE PREPROCESSING ALGORITHM).
Given a connected weighted graph G = (V,E,w) with |V| = n,
|E| = m, and a parameter k € [0.5,0.5logn], let t be the value at
the end of PREPROC(G, k) (Algorithm 2). Fori > t, definen; = m;
0,b; = b};zls, Vi = 0. We have following properties:

(1) t < 4[log(k) + 1].

(2) Fori € Z>y,

e E[n;] < max(n'*/k n. (7510g n)*)/b%,
e E[m;] < m+2-max(n'*1/2k)_n . (7510g n)?),
e E [ZUE‘/I, IBi(v)|] < max(n'*1/¥ n . (75logn)*)/b;.

LEMMA 3.4 (CORRECTNESS OF THE QUERY ALGORITHM). Given a
connected weighted graph G = (V, E, w) with |V| = n, |E| = m, and
a parameter k € [0.5,0.5logn], run preprocessing PREPROC(G, k)
(Algorithm 2). Then Yu,v € V, the output d of QUERY(u, v) (Algo-
rithm 2) satisfies distg(u,v) < d < 2641080+ gist 5 (u, v). The
running time of QUERY(u, v) is O(log(4k)).

STOC 20, June 22-26, 2020, Chicago, IL, USA

3.3 Low Hop Emulator

In this section, we construct an emulator graph such that the dis-
tance is approximately preserved and there always exists a low hop
shortest path between any pair of vertices in the emulator.

Algorithm 3 Low Hop Emulator

1: procedure LowHopDIMEMULATOR(G = (V, E, w), k)

2: Output: G’ = (V', E', w')

3: Run the processing procedure PREPROC(G, k), and let ¢ be the value
at the end of the procedure. Vi € {0, 1, - - -, ¢}, let H; = (V;, E;, w;),
qi Vi > Viy1,Bi :V; — 2Vi b; be computed by the such procedure.
> See Algorithm 2.

4: Initialize E « 0.

5: Fori € {0,1,---,¢t—1},foreachv € V;, E' « E'U {v, u},
where u = gq;(v).

6: Fori € {0,1,--,t}, for each v € V;, for each u € B;(v), E’ «
E'U{u,v}.

7: For each e’ € E’, initialize w’(e’) « oo.

8: Fori € {0,1,---,¢— 1}, for each v € V;, consider ¢’ = {v, u}
where u = q;(v). Let w'(e’) « min(w’(e’), 277171 - dist g, (u, v)).

9: Fori € {0,1,---,¢}, for each v € V;, for each u € B;(v), con-

sider e’ = {u, v}. Let w'(e’) < min(w’(¢’), 277" - dist g, (u, v)).
Output G’ = (V, E’, w').
end procedure

10:
11:

THEOREM 3.5. Consider an n-vertex m-edge connected undirected
weighted graph G = (V,E,w) and k € [0.5,0.5logn]. Let G’

(V, E’, w’) be the output of LowHoPDIMEMULATOR(G, k) (Algorithm 3).

Then, E[|E’|] < O(n'*1/(ZK) 4 nlog? n) and Vu,v € V,
distg(u, v) < distgr (u, v) < 274180+ gt o (u, v).

(16[log(k)+11)

&

4 UNCAPACITATED MINIMUM COST FLOW

Given an undirected graph G = (V, E, w) with |[V| = n vertices
and |E| = m edges, the vertex-edge incidence matrix A € R™*™ is
defined as the following: Vi € [n], j € [m],

1 {i,v} € E is the j-th edge of G and i < v,

-1 {i,v} € Eisthe j-th edge of Gand i > v,

0 Otherwise.

Furthermore, Yu,v € V, distg (u, v) = dist (u, v).

Ajj =

The weight matrix W € R™™ is a diagonal matrix. The i-th di-
agonal entry of W is w(e), where e € E is the i-th edge. Given a
demand vector b € R with 1; b=0,1ie, Z;Ll b; = 0, the unca-
pacitated minimum cost flow (transshipment) problem is to solve
the following problem: ming cgm |[W f|l1,s.t. Af = b.

If b only has two non-zero entries b; = 1 and b; = —1, then the
optimal cost is the length of the shortest path between vertex i
and vertex j. Without loss of generality, we can suppose that each
edge has positive weight. Otherwise, we can contract the edges
with weight 0, and the contraction will not affect the value of the
solution. Let x = W f, then the problem becomes

min ||x 4
min x]l @)
s.t. AW lx = b.

In this section, we will focus on finding a (1 + €)-approximation to
problem (4).

331

Alexandr Andoni, Clifford Stein, and Peilin Zhong

4.1 Sherman’s Framework

Before we present our algorithm, let us review Sherman’s algo-
rithm [54], and completely open his black box.

DEFINITION 4.1 ({; NON-LINEAR CONDITION NUMBER). Given a
matrix B € R™™ the £1 non-linear condition number of B is defined

. S(B
as k(B) = infs ||Bll1—1 - SUPycrm.Bx=0 %, where the range

of S : R" — R™ is over all maps such thatVx € R™, B- S(Bx) = Bx.

It is easy to show that an equivalent definition of k(B) is || B|l1—1 -
| ES[P

llgll: -

MaXge(yeRr |y=Bx,xeRm }\ {0} MiNx:Bx=g

DEFINITION 4.2 (@, §)-SOLUTION). Given a matrix B € R"™™ and
avectorg € {y € R" | y = Bx,x € R™}, letx™ = arg miny.gx=¢ [|x||1.
Ifllxlly < allx*[ly and ||Bx = gll1 < BlIBlli—1llx*|l1, then x is called
an (a, B)-solution with respect to (B, g). Given a matrix B € R"™*™ if
an algorithm can output an (a, f)-solution with respect to (B, g) for
any vectorg € {y € R" | y = Bx,x € R™}, then the algorithm is
called an (a, f)-solver for B.

DEFINITION 4.3 (COMPOSITION OF THE SOLVERS). Suppose Fy is
an (ay, f1)-solver for B € R™™ and F, is an (a2, ff2)-solver for B. For
any input vectorg € {y € R" | y = Bx,x € R™}, the composition
Fy o Fy firstly runs Fy to obtain an (a1, f1)-solution x € R™ with
respect to (B, g), then runs F, to obtain an (ay, f2)-solution x’ € R™
with respect to (B, g — Bx), and finally outputs x + x’.

LEMMA 4.4 ([54]). Suppose Fy is an (a1, B1/x)-solver for B € R™*™
and Fy is an (ag, f2/x)-solver for B, where k is the {1 non-linear
condition number of B, i.e., k k(B). Then Fy o Fy is an (a1 +
azP1, P12/ x)-solver for B.

COROLLARY 4.5 ([54]). Lete € (0,0.5). Suppose F is an (1+€, €/x)
solver for B € R™™ where k is the {1 non-linear condition number
of B, i.e., k = k(B). Define F! =F, and Ft = FI"1 o F. Then F! is an
(1 + 4e, €' /x) solver.

COROLLARY 4.6 ([54]). Lete € (0,0.5),t, M € Rx. Suppose F; is
an (1 + 4e, €' /x)-solver for B € R™™ and F, is an (M, 0)-solver for
B, where k = (B). Then F; o Fy is an (1 + 4€ + Me?, 0)-solver for B.

Let us come back to the minimum cost flow problem, problem (4).
One observation is that if a matrix P € R™™ has full column
rank, then PAW 1x = Pb & AW~ 1x = b. So, instead of solving
Equation (4) directly, we can design a matrix P € R™ with full
column rank, and try to solve

©)

min ||x||y
x€ER™
s.t. PAW 1x = Pb.

Notice that since P has full column rank, problem (5) is exactly the
same as problem (4). Although an (, 0)-solver for PAW ! is also
an (a, 0)-solver for AW ™!, an (a, f)-solver for PAW~! may not be
an (a, B)-solver for AW~ for f > 0. As shown in [54], if K(PAW 1)
is smaller, then it is much easier to design a (1 + ¢, €/k(PAW ™1))-
solver for PAW ™!, If k(PAW™!) is small, then we say P is a good
preconditioner for AW ~!. Before we discuss how to construct P, let
us assume k(PAW™!) < «, and review how to solve problem (5).
According to [54], there is a simple (n, 0)-solver to problem (5).

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

LEmMMA 4.7 ([54]). Given a connected undirected weighted graph
G = (V,E,w), let A € R™™ be the corresponding vertex-edge in-
cidence matrix, and let W € R™*™ be the corresponding diago-
nal weight matrix, where n = |V|,m = |E|. There is an algorithm
MSTROUTING, such that for any demand vectorb € R™ with1] b =0,
the output f € R™ of MSTRouTING(G, b) satisfies Af = b and
IWflli < n-mingap—p, [Wf'|li. MSTROUTING(G, b) takes run-

ning time o(m).

By above lemma, if we set x = W f, we have PAW™1x = Pb, and
lxlli € n-ming.payw-1=pp X" |l1. Thus, x is an (n, 0)-solution
to problem (5). Suppose € < 0.5. By Corollary 4.6, if we have a
(1+4e, €1*198 7 /) solver for PAW ™!, then together with Lemma 4.7,
we can obtain a (1+5€, 0)-solver for PAW ™!, and thus we can finally
find a (1+5€) approximation to problem (4). If we have a (1+¢, €/x)-
solver for PAW ™!, then according to Corollary 4.5, we can apply
(1 + €, e/K)-solver 1 + log n times to obtain a (1 + 4e, eltlogn).
solver. It suffices to design a (1 + €, €/x) solver for PAW L,

4.1.1 A (1+ €, €e/k)-Solver. In this section, we will have a detailed
discussion of how [39, 54] used multiplicative weights update algo-
rithm [5] to find a (1+ ¢, €/k)-solution with respect to (PAW 1, Pb),
where k > k(PAW™!) is an upper bound of the condition number
(see Definition 4.1) of PAW™!, and € € (0, 0.5) is an arbitrary real
number.

Let x* = argmin,.p goyy-1,=pp ||X[l1. It is not hard to show

IIPb]l4 . IPDl4
e <X b <k
[IPAW =111 [IPAW =111

Then, we can reduce the optimization problem to a feasibility prob-
lem. We want to binary search s € {1,1 + ¢,(1 +¢€)%,---,(1 +

[logy,e k1] T
€)!"%81+e 1} "and want to find s such that s TPAW- <(1+

. m o1 . IPo |y
e)||x ||1 and find x € R™ which satisfies ||x||1 <s ‘PW
and |[PAW 1x = Pb|l; < & - [PAW i1 -5 - m. The
binary search will takes O(log(log;, . k)) rounds.

-1
Let x’ = x - % - 1. Then the problem becomes the

following feasibility problem: given s > 1, either find x” € R™ such
that

’ PAW™! X 1 Pb €
<1 and || phatg—y -t <& ©
or find a certificate such that
’ PAW™! r_1_ _Pb
<1 and S = s O

is not feasible. Next, we show how to use multiplicative weights
update algorithm [5, 39, 54] to solve problem (6)-(7).

LEMMA 4.8 ([39, 54]). Consider P € R™" A € R™™M™ W ¢
R™XM b € R, s >16€(005)K_1 MWUP, A, W,b,s, €, k)

(Algorithm 4) takes T = O (log m) iterations. The output x’ € R™
satisfies Equation (6) if MWU(P, A, W, b, s, €, k) does not return FAIL.
Otherwise, §j = % Zle y; is a certificate that Equation (7) is not
feasible. In particular,

Pb g (PAW™Y);

. 1 Pb g (PAW™Y);
Vielml s yppn < ypAw

. < - .
I1Polx IPAW =1

=

»

332

STOC 20, June 22-26, 2020, Chicago, IL, USA

Algorithm 4 Solving the Feasibility Problem

1: procedure MWU(P € R"™" A € R™™ W e R™™ p e R",s >
Lee(0,0.5),x>1)

2: Output: x’ € R™

3: Initialize weights: Vi € [m], ¢ (i) « 1, Y] (i) < 1.

2
4: Initialize T « %‘;(2'"), — i’ B e RX2m .
B (AWTL 1 bl AwTl 1 b-lj,,)
IPAW-1 s NIPbIL PAW-I5; s " TPbly

5 fort=1— T do

3 2R R S ORS AO)

7 For i € [m], pF (i) — 7 (i)/¥e. p; (i) — Y (D).

8 Set p; € Rzm s.t. Vi € [m], the i-th entry of p; is p} (i), and
the (i + m)-th entry ofpt is p7 (i).

9: If [PBp|l; < 5%, return x” € R™ such that Vi € [m], x] =
pr (D) = p; (D).

10: Otherwise, set y; € {+1,-1}" such that Vi € [r],(y;); =
sgn ((PBp:);).

11: Fori €| qS*(z) — 1y, PB;/2, ¢;(i) « y/ PBirm/2.

12: Fori € m ¢t+1(l) — l//t (l) (1_”¢t(l)) ¢t+1(l) —
Yr () - (1= ngp ().

13: end for

14: Return FAIL.
15: end procedure

4.2 Preconditioner Construction

As discussed in the previous section, if we find a good precondi-
tioner such that K(PAW_I) is small, we can use a small number of
iterations to compute a good solution. Before we describe how to
choose a good preconditioner, let us introduce the following lemma.

LEMMA 4.9 ([39, 54]). Given P € R™" with full column rank,
AeR™™M W e R™™ ifVh e {y e R™ | y = AW lx,x € R™},

llx*[ln < [IPBll < yllx™ (1,
where x* = arg min,. cgm. gy -15p |1%|l1, then k(PAW™!) < y.

By above lemma, our goal is to find a linear operator P such that
for any demand vector b, ||Pb||; can approximate the minimum cost
flow with demand vector b very well. Instead of using Sherman’s
original lattice algorithm, we propose to use randomly shifted grids
based algorithm [35].

4.2.1 Embedding Minimum Cost Flow into {1 via Randomly Shifted
Grids. In this section, we review the embedding method of [35] and
describe how to construct the preconditioner. Suppose we have a
mapping ¢ : V — [A]¢ such that Vu,v € V,

distg(u,v) < [lo(u) = ()l < a - distG(u, v).

We can reduce estimating the minimum cost flow on G to approx-
imating the cost of the geometric transportation problem. The
geometric transportation problem is also called Earth Mover’s Dis-
tance (EMD) problem. In particular, it is the following minimization
problem:

min Y x@o)-lle@- @l ©)

m:VXV—-Rsg (u,0) VXV

s.t.YueV, Z w(u,v) — Z m(v,u) = by.

veV veV

STOC 20, June 22-26, 2020, Chicago, IL, USA

It is obvious that if we can obtain a f-approximation to the opti-
mal cost of (8), we can obtain an af-approximation to the cost of
original minimum cost flow problem on G.

For a sequential algorithm, the such embedding ¢ can be obtained
by Bourgain’s Embedding.

LEMMA 4.10 (BOURGAIN’Ss EMBEDDING [12]). Given an undirected
graph G = (V, E, w) with |V| = n vertices and |E| = m edges, there is
a randomized algorithm which can output a mapping ¢ : V — (A]4
ford = O(log? n) with probability 0.99 in O(mlog? n) time, such that

Yu,v € V, distg(1,v) < |lp(u) — ¢(0)lly < O(logn) - distg(u, v),
where A < Y .cg w(e).

In the remaining of this section, we focus on approximating (8).
Without loss of generality, we suppose A is a power of 2. Let
L = 1+ logA. We create L levels grids Gy, Gy, -+, Gr—1, where
G; partitions [2A]9 into disjoint cells with side length 2!, In partic-
ular, Vi € {0,1---,L— 1}, the i-th level grid G; is:

{C|C:{a1,-~~,a1+2i—1}><---><{ad,---,ad+2i—l},
Vj € [d], a; mod 2t =1, aj € [ZA]}.

Instead of shifting the gird, we shift the points. For each dimension,
we can use the same shift value 7 [6]. Let 7 be a random variable
with uniform distribution over [A]. We can construct a vector h €
R2i% 1Gi] with one entry per cellin GoUGy U---UGL_1. Let h(; ¢)
correspond to the cell C € G;.Foreachi € {0,1,---,L—1} and each
cell C € Gj, we set h(; ¢y as: h(;,c) = d 2" - Xpevip(o)rr-14eC bo-
Let OPTgpmp(b) denote the optimal solution of the EMD problem (8).
As shown by [35], ||A]|1 is a good approximation to OPTgmp ().

L—
LEMMA 4.11. Leth € RZ,-:(,I IGil pe constructed as above. Then,

(1) E¢[llAll1] < 2Ld - OPTEpmp,
(2) ||klly = OPTEmp ().

An observation is that since each cell in G; has side length 27,
shifting each point by 7 - 1, is equivalent to shifting each point by
(r mod 2%) - 1 for the cells in G;. Thus, if we modify the construc-
tion of h as the following: Vi € {0,1,--- ,L — 1},C € G;,

hicy=d-2"- bo,
veV:p(v)+(r mod 21)-15€C
Lemma 4.11 still holds. Next, we describe how to construct h’ €
L-1 5i
R2Zi% 2'1Gil The entry h(’i o) corresponds to the cell C € G; and
the shift value 7. For each i € {0,1,---,L — 1}, each cell C € G;

and each shift value 7 € [2/], we set hgi’c’r) as:
’ 1 i
h(i,c,f)=§'d'2 . by=4d- by .

veV:p(v)+r-15€C veV:p(v)+r-145€C

It is clear that ||A’||; = E[||h]l1]. By Lemma 4.11, we have
OPTgMmp(b) < ||h,||1 < 2Ld - OPTgMmp ().

Observe that b’ can be written as a linear map of b, i.e., h’ = P’b,
where P’ € REi%0 2'1GiDxn Each row of P’ is indexed by a tuple
(i,C,r) fori € {0,1,---,L —1},C € G; and t € [2'], and each

333

Alexandr Andoni, Clifford Stein, and Peilin Zhong

column of P’ is ir_ldexed by a vertex v € V. Fori € {0,1,---,L —
1},C e Gj, Tt €[2'],veV,
P _ d ¢ +1-15€C,
(i,C,7),0 0 Otherwise.
Consider i = 0,7 = 1, Vv € V, there is a unique cell C € Gy which

contains ¢(v) + 14. Thus, P’ has full column rank. According to
Lemma 4.9, since Vb € {y € R" | y = AW !x,x € R™},

min lIxlli < OPTEmp(P) < ||P’bl)x
x€R™ AW 1x=b
< 2Ld - OPTemp(b) < 2Lda - min

Il¢]l1.
x€R™ AW 1x=b

we have x(P’AW™1) < 2Lda. However, since the size of P’ is too
large, we cannot apply P’ directly in Algorithm 4, and thus it is
unclear how to construct a (1+¢, €/k(P’AW~1))-solver for P’AW L,

4.3 Fast Operations for the Preconditioner
One of our main contributions is to develop several fast operations
for P’ such that we can implement Algorithm 4 efficiently.

4.3.1 Preconditioner Compression.

Removing useless cells. The first observation is that though P’
has a large number of rows, most rows of P’ are zero. Thus, we
can remove them. Precisely, for each i € {0,1,---,L — 1}, let C;
{CeG;|TveV,rel2], st o) +1-1g € C}. Then we can
setP € R(Z%;012i|ci|)><” such thatVi € {0,1,--- ,L-1},C € Cj,T €
[2]],v eV,

. | d ew)+T-15€C,
(i,C.71),v =) o Otherwise.

LEMMA 4.12. Vi€ {0,1,--- ,L—1},|Ci| < n-(d+1).

By Lemma 4.12, we know that P has at most 2A - n(d + 1) rows.

Compressed representation. Another observation is that, P may
have many identical rows. Thus, we want to handle these rows
simultaneously. To achieve this goal, we introduce a concept called
compressed representation.

DEFINITION 4.13 (COMPRESSED REPRESENTATION OF A VECTOR).
LetI = {([a1,b1], c1), ([a2, b2], c2), - - -, ([as, bs], cs)}, wherec; € R,
[ai, bi] € [1,7] for somer € Zsi, and Vi # j € [s],[ai, bi] N
[aj,cj]l = 0. Let x € R". IfVi € [s],j € [a;,bi],xj = ¢; and Vj €
[L 7]\ Uiesilai, bil, xj = 0, then I is a compressed representation of
x. The size of the compressed representationI is |I| = s.

The compressed representation of x may not be unique.

DEFINITION 4.14 (COMPRESSED REPRESENTATION OF A MATRIX).
Let1 = (I, I, -+ ,I). Given a matrix P € R™" ifVi € [n], I; isa
compressed representation of P;, then I is called a compressed repre-
sentation of P. Furthermore, the size of the compressed representation

I is defined as 3.7, |I;].

LEMMA 4.15 (COMPUTING A COMPRESSED REPRESENTATION OF P).
Given an undirected graph G = (V, E, w) with |V| = n, |E| = m and
a mapping ¢ : V. — [A]? for some A, d, such that

Vu,v €V, distg(u,v) < [lo(u) — ¢(v)ll < a - distg(u,v),
the output I = (I, I, - - - ,I) of ImpLIcITP(9) (Algorithm 5) is a
compressed representation of a matrix P with full column rank and

Parallel Approximate Undirected Shortest Paths via Low Hop Emulators

STOC 20, June 22-26, 2020, Chicago, IL, USA

Algorithm 5 Computing a compressed representation of P

Algorithm 7 Compressed Vector-Matrix Multiplication

1: procedure ImpLICITP(@ : V — [A]9)

2: Output: I

3: n« |[V|,L < 1+logA,Vi e {0,1,---,L—1},C; « 0, and
create grids Gy, Gy, - -+ , Gp-1.

4: Vi e {0,1,---,L—-1},v € V,C; « C;U{C € G; | At €
[27], p(v) + 7 - 14 € C}.

5: for the i-th vertex v € V do

6: I « 0.

7: forl € {0,1,---,L-1}do

8: For each C e (¢ with 3r € [21], p(v) +
T - 14 € C, find 11,1 € [2!] such that

= minre[zl]:(p('u)-#rldEC 7 2= maXrE[Z’]:(p(v)+T~1d€C T

9: Suppose Cisthe k-thcellin Cj. a «— (k—1)21+zjl.;(l) 2/ ICjl.
L «LU{(a+T,a+1],d)}.

10: end for

11: end for

12: Return I = (I, I, - - - , I,).
13: end procedure

kK(PAW™1) < O(aLd), where L = 1 +log A, A € R™™ is the vertex-
incidence matrix, and W € R™™ s the diagonal weight matrix.
Furthermore, fori € [n], the size of I; is at most (d + 1)L. The running
time of ImpLICITP(9) is n - poly(dLlog n).

4.3.2 Operations under Compressed Representations. In this sec-
tion, we introduce how to implement some important operations
under compressed representations.

Fact 4.16. Let I = {([a1,b1],¢1),- - ,([as,bs],cs)} be a com-
pressed representation of a vector x € R”. Then, ||x|l; = X7_,(b; -
ai + 1) - |ci|. Let y € R" be a vector satisfying Vi € [rl,y; =
sgn(x;). Then I" = {([a1, b1]. sgn(c1)). - - - . ([as, bs]. sgn(cs))} is a
compressed representation of y. Let z = t - x for somet € R. I" =
{([a1, b1], te1), - -+, ([as, bs], tes)} is a compressed representation of
z. Furthermore, ||x||1, I’ and I’ can be computed in O(s) time.

Algorithm 6 Compressed Matrix-Vector Multiplication

1: procedure MATRIXVEC(I = (I, I, - - - , In), g € R™)

2 Output: T

3 S« 0, T 0.

4 fori € [n]:g; #+0do

5: For each ([a, b],¢) € I;, S < SU {(a, cgi), (b + 1, —cg;)}.

6 end for

7 Sort S = {(q1, z1), - -+ . (qk. zk)} such that g1 < g2 < -+ < gi.
8 Foreach j € {2,3,---,k} : qj > gj-1, T—Tu {(lgj-1.9; =

U Xeigr<q; 200}
9: Return 1.
10: end procedure

LEMMA 4.17 (COMPRESSED MATRIX-VECTOR MULTIPLICATION). Given
a compressed representation I = (I1,Ip,--- ,I,) of a matrix P €
R™" with Vi € [n],|I;| < s, and a vector g € R", the outputf
of MATRIXVEC(I, g) (Algorithm 6) is a compressed representation of
Pg. Furthermore, 17 < 2s- nnz(g), and the running time is at most
O(s nnz(g) - log(s nnz(g))).

LEMMA 4.18 (COMPRESSED VECTOR-MATRIX MULTIPLICATION). Given
a compressed representation I of a vectory € R" with|I| < s and a

334

1: procedure VECTORMAT(I, I’ = (I1, I, - - - , I,))

2 Output: g7 € R"

3: g «—(0,0,---,0).

4 Fill I such that Vj € [r], 3([a, b], c) € I, j € [a, b].
5

Sort I = {([a1, b1], c1), ([az2, b2], c2), - - -, ([as, bs], cs)} such

thata; < ay < -+ - < as.)
6: Vj € [s], compute the prefix sum p; = Z]t:l(b, —a;+1)-c;.
7: for i € [n],([a, b], ¢) € I; do
8: Run binary search to find j; < j, such that a € [aj,, b,], b €
[ajy, bjy .
9: Ifjlzjz,gi<—g,-+c-cjl~(b—a+1).
10: If ji1 <j2,9i < gi +c-(cj, - (bj; —a+1)+cj - (b-aj, +
D+ (pj-1-Pjy))-
11: end for
12: Return g'.
13: end procedure
compressed representation I’ = (I, I, - - - ,I,) of a matrix P € R™*"

withVi € [n],|I;| < s’, the output g7 € R™ of VEcTorMa1(I,I") (Al-
gorithm 7) is PTy. Furthermore, the running time is O((s + ns’) log s).

4.4 Uncapacitated Minimum Cost Flow
By plugging our preconditioner in Algorithm 4, we obtain the
uncapacitated minimum cost flow algorithm.

THEOREM 4.19. Given ane € (0,0.5), a connected n-vertex m-edge
undirected graph G = (V,E, w) withw : E — Zx¢, and a demand
vector b € R™ with 1)) b = 0, there is a randomized algorithm which
can output an (1 + €)-approximate solution to the uncapacitated
minimum cost flow problem in e %m - (lognlog A)°W) time with
probability at least 0.99, where A = Y, ,cg w(e).

ACKNOWLEDGMENTS

We thank Aaron Bernstein, Yan Gu, Hossein Esfandiari, Jakub Lacki,
Vahab Mirrokni and Ruosong Wang for helpful discussions. Part
of this work was done while Peilin Zhong was an intern at Google
New York.

REFERENCES

[1] Amir Abboud, Greg Bodwin, and Seth Pettie. 2018. A hierarchy of lower bounds
for sublinear additive spanners. SIAM J. Comput. 47, 6 (2018), 2203-2236.

[2] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

2014. Parallel algorithms for geometric graph problems. https://doi.org/10.1145/

2591796.2591805 Full version at http://arxiv.org/abs/1401.0042.

Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.

2018. Parallel graph connectivity in log diameter rounds. In 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS). IEEE, 674-685.

[4] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2019. Parallel Approx-
imate Undirected Shortest Paths Via Low Hop Emulators. arXiv preprint
arXiv:1911.01956 (2019).

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing 8, 1
(2012), 121-164.

[6] Artars Backurs and Piotr Indyk. 2014. Better embeddings for planar earth-mover
distance over sparse sets. In Proceedings of the thirtieth annual symposium on
Computational geometry. ACM, 280.

[7] Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication steps for

parallel query processing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of database systems. ACM, 273-284.

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.

2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-

tributed and Streaming Models. In 31st International Symposium on Distributed

Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[9] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi.
2018. Brief Announcement: Semi-MapReduce Meets Congested Clique. CoRR,
abs/1802.10297, 2018. arXiv preprint arXiv:1802.10297 (2018).

3

[8

STOC 20, June 22-26, 2020, Chicago, IL, USA

[10] Aaron Bernstein. 2009. Fully dynamic (2+ €) approximate all-pairs shortest
paths with fast query and close to linear update time. In 2009 50th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, 693-702.

[11] Guy E Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel
shortest paths using radius stepping. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures. ACM, 443-454.

[12] Jean Bourgain. 1985. On Lipschitz embedding of finite metric spaces in Hilbert
space. Israel Journal of Mathematics 52, 1-2 (1985), 46-52.

[13] Gerth Stelting Brodal, Jesper Larsson Traff, and Christos D Zaroliagis. 1998. A
parallel priority queue with constant time operations. J. Parallel and Distrib.
Comput. 49, 1 (1998), 4-21.

[14] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf.
2019. Fast Approximate Shortest Paths in the Congested Clique. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing (PODC °19).
ACM, New York, NY, USA, 74-83. https://doi.org/10.1145/3293611.3331633

[15] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and

Shang-Hua Teng. 2011. Electrical flows, laplacian systems, and faster approxi-

mation of maximum flow in undirected graphs. In Proceedings of the forty-third

annual ACM symposium on Theory of computing. ACM, 273-282.

Edith Cohen. 1994. Polylog-time and near-linear work approximation scheme

for undirected shortest paths. In Proceedings of the 26th Annual ACM SIGACT

Symposium on Theory of Computing, Vol. 26. 16-26.

[17] Edith Cohen. 1997. Using selective path-doubling for parallel shortest-path
computations. Journal of Algorithms 22, 1 (1997), 30-56.

[18] Edith Cohen. 2000. Polylog-time and near-linear work approximation scheme
for undirected shortest paths. Journal of the ACM (JACM) 47, 1 (2000), 132-166.

[19] Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2017.
Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in O
(m 10/7 log W) Time*. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 752-771.

[20] Samuel I Daitch and Daniel A Spielman. 2008. Faster approximate lossy general-
ized flow via interior point algorithms. In Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 451-460.

[21] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107-113.

Michael Dinitz and Yasamin Nazari. 2019. Brief Announcement: Massively

Parallel Approximate Distance Sketches. In 33rd International Symposium on

Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik.

[23] Michael Elkin and Ofer Neiman. 2016. Hopsets with Constant Hopbound, and
Applications to Approximate Shortest Paths. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 128-137.

[24] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on
approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69, 3
(2004), 485-497.

[25] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and
Zoya Svitkina. 2010. On distributing symmetric streaming computations. ACM
Transactions on Algorithms 6, 4 (2010). Previously in SODA’08.

[26] Sebastian Forster and Danupon Nanongkai. 2018. A faster distributed single-
source shortest paths algorithm. In 2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE, 686-697.

[27] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM (JACM)
34, 3 (1987), 596-615.

[28] Stephan Friedrichs and Christoph Lenzen. 2018. Parallel metric tree embedding
based on an algebraic view on moore-bellman-ford. Journal of the ACM (FJACM)
65, 6 (2018), 43.

[29] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,
and Simulation in the MapReduce Framework.. In ISAAC, Vol. 7074. Springer,
374-383.

[30] Thomas Dueholm Hansen, Haim Kaplan, Robert E Tarjan, and Uri Zwick. 2015.
Hollow Heaps. In International Colloquium on Automata, Languages, and Pro-
gramming. Springer, 689-700.

[31] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2014. Decre-
mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total
Update Time. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science.

[32] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. An
almost-tight distributed algorithm for computing single-source shortest paths.
2016. STOC.

[33] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2019. A
deterministic almost-tight distributed algorithm for approximating single-source
shortest paths. SIAM J. Comput. 0 (2019), STOC16-98.

[34] Shang-En Huang and Seth Pettie. 2019. Thorup-Zwick emulators are universally

optimal hopsets. Inform. Process. Lett. 142 (2019), 9-13.

Piotr Indyk and Nitin Thaper. 2003. Fast image retrieval via embeddings. In

Workshop on Statistical and Computational Theories of Vision (at ICCV).

[16

[22

[35

335

[36

[37

[38

w
29,

[40

(41

[42

[43

S
&

[45]

[46]

[47

=
&

[49

[50

o
2

[61

Alexandr Andoni, Clifford Stein, and Peilin Zhong

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS operating systems review, Vol. 41. ACM, 59-72.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of com-
putation for MapReduce. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms. Society for Industrial and Applied Mathemat-
ics, 938-948.

Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014. An
almost-linear-time algorithm for approximate max flow in undirected graphs,
and its multicommodity generalizations. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 217-226.

Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. 2019.
Preconditioning for the Geometric Transportation Problem. arXiv preprint
arXiv:1902.08384 (2019).

Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson.
2015. Distributed computation of large-scale graph problems. In Proceedings of
the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 391-410.

Philip N Klein and Sairam Sairam. 1992. A parallel randomized approxima-
tion scheme for shortest paths. In Proceedings of the 24th Annual ACM SIGACT
Symposium on Theory of Computing, Vol. 92. 750-758.

Philip N Klein and Sairam Subramanian. 1997. A randomized parallel algorithm
for single-source shortest paths. Journal of Algorithms 25, 2 (1997), 205-220.

R. Krauthgamer, H. Nguyen, and T. Zondiner. 2014. Preserving Terminal Distances
Using Minors. SIAM Journal on Discrete Mathematics 28, 1 (2014), 127-141.
https://doi.org/10.1137/120888843

Yin Tat Lee and Aaron Sidford. 2014. Path finding methods for linear program-
ming: Solving linear programs in O(Vrank) iterations and faster algorithms for
maximum flow. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science. IEEE, 424-433.

F Thomson Leighton and Ankur Moitra. 2010. Extensions and limits to vertex
sparsification. In Proceedings of the forty-second ACM symposium on Theory of
computing. ACM, 47-56.

Jason Li. 2020. Faster Parallel Algorithm for Approximate Shortest Path. In
Proceedings of the ACM SIGACT Symposium on Theory of Computing. First
appeared as arXiv:1911.01626.

Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-
weight spanning tree construction in O (log log n) communication rounds. SIAM
. Comput. 35, 1 (2005), 120-131.

Aleksander Madry. 2013. Navigating central path with electrical flows: From
flows to matchings, and back. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science. IEEE, 253-262.

Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved
Parallel Algorithms for Spanners and Hopsets. In Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and Architectures. ACM, 192-201.

Gary L Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decom-
positions using random shifts. In Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures. ACM, 196-203.
Ankur Moitra. 2009. Approximation algorithms for multicommodity-type prob-
lems with guarantees independent of the graph size. In 2009 50th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, 3-12.

Jonah Sherman. 2013. Nearly maximum flows in nearly linear time. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science. IEEE, 263-269.
Jonah Sherman. 2017. Area-convexity, l regularization, and undirected multi-
commodity flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 452-460.

Jonah Sherman. 2017. Generalized preconditioning and undirected minimum-
cost flow. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 772-780.

Hanmao Shi and Thomas H Spencer. 1999. Time-work tradeoffs of the single-
source shortest paths problem. Journal of algorithms 30, 1 (1999), 19-32.
Thomas H Spencer. 1997. Time-work tradeoffs for parallel algorithms. Journal of
the ACM (JACM) 44, 5 (1997), 742-778.

Mikkel Thorup. 1999. Undirected single-source shortest paths with positive
integer weights in linear time. Journal of the ACM (JACM) 46, 3 (1999), 362-394.
Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. Journal of
the ACM (JACM) 52, 1 (2005), 1-24.

Mikkel Thorup and Uri Zwick. 2006. Spanners and emulators with sublinear
distance errors. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm. Society for Industrial and Applied Mathematics, 802-809.
Virginia Vassilevska Williams. 2012. Multiplying matrices faster than
Coppersmith-Winograd. In Proceedings of the forty-fourth annual ACM sym-
posium on Theory of computing (STOC). ACM, 887-898.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

