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Abstract

The evaluation of constitutive models, especially for high-risk and high-regret engineering applications, requires efficient
and rigorous third-party calibration, validation and falsification. While there are numerous efforts to develop paradigms and
standard procedures to validate models, difficulties may arise due to the sequential, manual, and often biased nature of the
commonly adopted calibration and validation processes, thus slowing down data collections, hampering the progress towards
discovering new physics, increasing expenses and possibly leading to misinterpretations of the credibility and application
ranges of proposed models. This work attempts to introduce concepts from game theory and machine learning techniques to
overcome many of these existing difficulties. We introduce an automated meta-modeling game where two competing AI agents
systematically generate experimental data to calibrate a given constitutive model and to explore its weakness such that the
experiment design and model robustness can be improved through competitions. The two agents automatically search for the
Nash equilibrium of the meta-modeling game in an adversarial reinforcement learning framework without human intervention.
In particular, a protagonist agent seeks to find the more effective ways to generate data for model calibrations, while an
adversary agent tries to find the most devastating test scenarios that expose the weaknesses of the constitutive model calibrated
by the protagonist. By capturing all possible design options of the laboratory experiments into a single decision tree, we
recast the design of experiments as a game of combinatorial moves that can be resolved through deep reinforcement learning
by the two competing players. Our adversarial framework emulates idealized scientific collaborations and competitions among
researchers to achieve a better understanding of the application range of the learned material laws and prevent misinterpretations
caused by conventional AI-based third-party validation. Numerical examples are given to demonstrate the wide applicability of
the proposed meta-modeling game with adversarial attacks on both human-crafted constitutive models and machine learning
models.
c� 2020 Elsevier B.V. All rights reserved.
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1. Introduction and background

As constitutive models that predict material responses become increasingly sophisticated and complex, the
demands and difficulties for accurately calibrating and validating those constitutive laws also increase [1–12].
Engineering applications, particularly those involve high-risk and high-regret decision-makings, require models to
maintain robustness and accuracy in unforeseen scenarios using as little amount of necessary calibration data as
possible. Quantifying the reliability of a new constitutive law, however, is nontrivial. As many constitutive models
are calibrated against a limited amount and variety of experimental data, identifying the reliable application range
of these constitutive laws beyond the loading paths used in the calibration could be challenging. While an apparent
good match between predictions and calibration data can be easily achieved by increasing the dimensionality of the
parametric space of a given model, over-fitting may also jeopardize the application of the learned models in the case
where the predicted loading path bears little resemblance to the calibration data [13–15]. Using such constitutive
models therefore bears more risks for a third-party user who is unaware of the sensitivity of material parameters
on the stress predictions. Furthermore, the culture and the ecosystem of the scientific communities often encourage
researchers to place a more significant focus on reporting the success of the material models in limited cases.
Yet, precise and thorough investigations on the weakness and shortcomings of material models are important and
often necessary even though they are less likely to be reported or documented in the literature due to the lack of
incentive [16,17].

Model calibration issues are critical not only for hand-crafted models but for many machine learning models and
data-driven framework that either directly use experimental data to replace constitutive laws [18–20] or generate
optimal response surfaces via optimization problems [21–23]. The recent trend of using black-box deep neural
networks (DNN) to generate constitutive laws has made the reliability analysis even more crucial. Due to the lack
of interpretability of predictions generated by neural networks, the reliability of DNN generated constitutive laws is
often only assessed through uncertainty quantification (UQ) [22,23]. UQ can be conducted via different procedures,
including Bayesian statistics, polynomial chaos expansion and Monte Carlo sampling where one seeks to understand
how probability distributions of the input material parameters affect the outcomes of predictions, as often represented
by some stress measures or performance metrics for solid mechanics applications. While UQ is a crucial step to
ensure the readiness of constitutive laws for engineering applications, a common challenge is to detect rare events
where a catastrophic loss of the prediction accuracy may occur in otherwise highly accurate constitutive laws.

The machine learning research community has been proposing methods to improve the interpolation and
generalization capabilities, hence improving the predictive capability with exogenous data as well as reducing the
epistemic uncertainties of trained neural network models. For instance, the active learning approach (e.g. [24]),
which is sometimes referred as an “optimal experimental design” [25], introduces query strategies to choose what
data to be generated to reduce generalization errors, balance exploration and exploitation and quantify uncertainties.
These approaches have repeatedly outperformed traditional “passive learning” methods which involve randomly
gathering a large amount of training data. Active learning is widely investigated using different deep learning
algorithms like CNNs and LSTMs [26,27]. There is also research on implementing Generative Adversarial Networks
(GANs) into the active learning framework [28]. With the increasing interest in deep reinforcement learning,
researchers are trying to re-frame active learning as a reinforcement learning problem [29]. Another recent study
focuses on the “semi-supervised learning” approaches [30–32], which take advantage of the structures of unlabeled
input data to enhance the “interpolation consistency”, in addition to labeled training data. These recently developed
techniques have shown some degrees of successes for image recognition, natural language processing, and therefore
could potentially be helpful for mechanics problems.

The calibration, validation, and falsification of material models have issues similar to those discussed above.
Moreover, experimental data are often expensive to get in both time and cost. Hence, experimentalists would like
to generate the least amount of data that can calibrate a constitutive model with the highest reliability and can also
identify its limitations. Traditionally the decisions on which experiments to conduct are based on human knowledge
and experiences. We make an effort here to use AI to assist the decision-makings of experimentalists, which will
be the first of its kind specifically targeting the automated design of data generation that can efficiently calibrate
and falsify a constitutive model.

The major contribution of this paper is the introduction of a non-cooperative game that leads to new optimized
experimental designs that both improve the accuracy and robustness of the predictions on unseen data, while at the
same time exposing any potential weakness and shortcoming of a constitutive law.
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We create a non-cooperative game in which a pair of agents are trained to emulate a form of artificial intelligence
capable of improving their performance through repeated trial-and-error. The two agents play against each other in
a turn-based strategy game, according to their own agendas and purposes respectively that serve to achieve opposite
objectives. This setup constitutes a game in which each agent is rewarded by competing against the opponent. While
the protagonist agent learns to validate models by designing the experiments than enhance the model predictions, the
adversary agent learns how to undermine the protagonist agent by designing experiments that expose the weakness
of the models. The optimal game strategies for both players are explored by searching for Nash equilibrium [33]
of the games using deep reinforcement learning (DRL).

With recent rapid development, DRL techniques have found unprecedented success in the last decades on
achieving superhuman intelligence and performance in playing increasingly complex games: Atari [34], board
games [35,36], Starcraft [37]. AlphaZero [35] is also capable of learning the game strategies of our game without
human knowledge. By emulating the learning process of human learners through trial-and-error and competition,
the DRL process enables both AI agents to learn from their own successes and failures but also through their
competitions to master the tasks of calibrating and falsifying a constitutive law. The knowledge gained from
the competitions will help us understand the relative rewards of different experimental setup for validation and
falsification mathematically represented by the decision trees corresponding to the protagonist and adversary agents.

The rest of the paper is organized as follows. We first describe the meta-modeling non-cooperative game,
including the method to recast the design of experiments into decision trees (Section 2). Following this, we will
introduce the detailed design of the calibration–falsification game for modeling the competition between the AI
experimental agent and the AI adversarial agent (Section 3). In Section 4, we present the multi-agent reinforcement
learning algorithms that enable us to find the optimal decision for calibrating and falsifying constitutive laws. In the
numerical examples presented in Section 5, we report the performances of the agents playing three non-cooperative
games, two for different classical elasto-plasticity models proposed by human experts for bulk granular materials,
and one for a neural network traction–separation law of a granular interface.

As for notations and symbols, bold-faced letters denote tensors (including vectors which are rank-one tensors);
the symbol ‘·’ denotes a single contraction of adjacent indices of two tensors (e.g. a · b = ai bi or c · d = ci j d jk); the
symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher (e.g. C : ✏e = Ci jkl✏

e

kl
);

the symbol ‘⌦’ denotes a juxtaposition of two vectors (e.g. a ⌦ b = ai b j ) or two symmetric second-order tensors
(e.g. (↵⌦ �)i jkl = ↵i j�kl). Moreover, (↵� �)i jkl = ↵ jl�ik and (↵ �)i jkl = ↵il� jk . We also define identity tensors
(I)i j = �i j , (I4)i jkl = �ik� jl , and (I4

sym)i jkl = 1
2 (�ik� jl + �il�k j ), where �i j is the Kronecker delta.

2. AI-designed experiments: selecting paths in arborescences of decisions

Traditionally the decisions on which experiments to conduct are based on a combination of intuition, knowledge
and experience of the experimentalist. We make the first effort to use AI to assist the decision-makings of
experimentalists on how to get data that can efficiently calibrate and falsify a constitutive model. Our method differs
from the existing machine learning techniques that we formulate the experimentalist-model-critic environment as
Markov games via decision-trees. In this game, the generation of calibration data is handled by a protagonist agent,
once the model is calibrated, the testing data are generated by an adversary agent to evaluate the forward prediction
accuracy. The goal of the adversary is to identify all application scenarios that the model will fail according to
a user-defined objective function (falsification). Hence the validation will be simultaneously achieved: the model
is valid within the calibration scenarios picked by the protagonist and the testing scenarios that the adversary has
not picked. Practically, the model is safe to use unless the adversary “warns” that the model is at high risk. The
formalization of decisions (or actions) as decision-trees, along with the communication mechanism designed in the
game, enable AI agents to play this game competitively instead of human players.

Here we idealize the process of designing or planning an experiment as a sequence of decision making among
different available options. All the available options and choices in the design process considered by the AI
experimentalists (protagonist and adversary) are modeled by “arborescences” in graph theory with labeled vertices
and edges. An arborescence is a rooted polytree in which, for a single root vertex u and any other vertex v, there
exists one unique directed path from u to v. A polytree (or directed tree) is a directed graph whose underlying
graph is a singly connected acyclic graph. A brief review of the essential terminologies are given in [38], and
their detailed definitions can be found in, for instance, Graham et al. [39], West et al. [40] and Bang-Jensen and
Gutin [41]. Mathematically, the arborescence for decision making (referred to as “decision tree” hereafter) can be
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expressed as an 8-tuple G = (LV,LE,V,E, s, t, nV , nE) where V and E are the sets of vertices and edges, LV and
LE are the sets of labels for the vertices and edges, s : E ! V and t : E ! V are the mappings that map each
edge to its source vertex and its target vertex, nV : V ! LV and nE : E ! LE are the mappings that give the
vertices and edges their corresponding labels (names) in LV and LE.

The decision trees are constructed based on a hierarchical series of test conditions (e.g., category of test,
pressure level, target strain level) that an experimentalist must decide to complete the design of an experiment.
Assuming that an experiment can be completely and uniquely defined by an ordered list of selected test conditions
tc = [tc1, tc2, tc3, . . . , tcn], where NTC is the total number of test conditions. Each tci is selected from a finite
set of choices TCi = {tc1

i
, tc

2
i
, tc

3
i
, . . . , tc

mi

i
}, where mi is the number of choices for the i th test condition. For

test conditions with inherently continuous design variables, TCi can include preset discrete values. For example,
the target strain for a loading can be chosen from discrete values of 1%, 2%, 3%, etc. All design choices available
to experimentalists are represented by an ordered list of sets TC = [TC1,TC2,TC3, . . . ,TCn] with a hierarchical
relationship such that, if i < j , tci 2 TCi must be selected prior to the selection of tc j 2 TC j .

After the construction of TC for experimentalists, a decision tree is built top-down from a root node representing
the ‘Null’ state that no test condition is decided. The root node is split into m1 subnodes according to the first level
of decisions TC1. Each subnode is further split into m2 subnodes according to the second level of decisions TC2.
The splitting process on the subnodes is carried out recursively for all the NTC levels of decisions in TC. Finally,
the down-most leaf nodes represent all possible combinations of test conditions. The maximum number of possible
configurations of experiments is N

max

test
= QNTC

i=1 mi , when all decisions across TCi are independent. The number of
possible experiments is reduced (Ntest < N

max

test
) when restrictions are specified for the selections of test conditions.

E.g., the selection of tci 2 TCi may prohibit the selections of certain choices tc j in subsequent test conditions
TC j , j > i . The experimentalists can choose multiple experiments by taking multiple paths in the decision tree
from the root node to the leaf nodes. The total number of possible combination of paths, if the maximum allowed

number of simultaneously chosen paths is N
max

path
, is

PN
max

path

k=1 C
k

Ntest
, where C

k

Ntest
= Ntest !

k!(Ntest�k)! is the combination
number.

Example for Hierarchical Test Conditions and Experimental Decision Tree. Consider a simple design of
mechanical experiments for geomaterials, for which all choices are listed in

TC = [‘Sample’, ‘Type’, ‘Target’]. (1)

The first decision is to pick the initial geomaterial sample to test. Assuming that a sample is fully characterized by
its initial pressure p0, a simple set of discrete sample choices is given as

TC1 = ‘Sample’ = {‘300 kPa’, ‘400 kPa’}. (2)

The second test condition is the type of the experiment. The experiment can be either drained triaxial compression
test (‘DTC’) or drained triaxial extension test (‘DTE’). Then

TC2 = ‘Type’ = {‘DTC’, ‘DTE’}. (3)

The third test condition to decide is the target strain magnitude for the loading. For example,

TC3 = ‘Target’ = {‘1%’, ‘3%’}. (4)

After all three decisions are sequentially made (taking a path in the decision tree), the experiment is completely
determined by an ordered list, e.g., tc = [‘300 kPa’, ‘DTE’, ‘3%’]. It indicates that the AI experimentalist decides
to perform a monotonic drained triaxial extension test on a sample with p0 = 300 kPa until the axial strain reaches
3%.

4



K. Wang, W. Sun and Q. Du Computer Methods in Applied Mechanics and Engineering 373 (2021) 113514

Fig. 1. Decision tree for a simple experimental design for geomaterials (Eqs. (1), (2), (3), (4)).

The decision tree G for the hierarchical design of geomaterial experiments specified by Eqs. (1), (2), (3), (4) is
shown in Fig. 1(a). The vertex sets and edge sets of the graph are

V ={‘Null’, ‘300 kPa’, ‘400 kPa’, ‘300 kPa DTC’, ‘300 kPa DTE’, ‘400 kPa DTC’, ‘400 kPa DTE’,
‘300 kPa DTC 1%’, ‘300 kPa DTC 3%’, ‘300 kPa DTE 1%’, ‘300 kPa DTE 3%’,
‘400 kPa DTC 1%’, ‘400 kPa DTC 3%’, ‘400 kPa DTE 1%’, ‘400 kPa DTE 3%’},

E ={‘Null’! ‘300 kPa’, ‘Null’! ‘400 kPa’, ‘300 kPa’! ‘300 kPa DTC’,
‘300 kPa’! ‘300 kPa DTE’, ‘400 kPa’! ‘400 kPa DTC’, ‘400 kPa’! ‘400 kPa DTE’,
‘300 kPa DTC’! ‘300 kPa DTC 1%’, ‘300 kPa DTC’! ‘300 kPa DTC 3%’,
‘300 kPa DTE’! ‘300 kPa DTE 1%’, ‘300 kPa DTE’! ‘300 kPa DTE 3%’,
‘400 kPa DTC’! ‘400 kPa DTC 1%’, ‘400 kPa DTC’! ‘400 kPa DTC 3%’,
‘400 kPa DTE’! ‘400 kPa DTE 1%’, ‘400 kPa DTE’! ‘400 kPa DTE 3%’},

LV =V,

LE ={‘300 kPa’, ‘400 kPa’, ‘DTC’, ‘DTE’, ‘1%’, ‘3%’}.
(5)

In this example, Ntest = N
max

test
= 2⇤2⇤2 = 8. If an experimentalist only collects data from one or two experiments,

i.e., N
max

path
= 2, the total number of possible combinations is C

1
8+C

2
8 = 36. Fig. 1(b) presents two example paths with

edge labels illustrating the hierarchical decisions on the test conditions in order to arrive at the final experimental
designs ‘300 kPa DTE 1%’ and ‘400 kPa DTC 3%’. ⇤

In this section, we present two decision trees for the design of geomechanical experiments, one for the bulk
mechanical behavior of granular materials, another for the traction–separation behavior of granular interfaces. We
later study the intelligence of the reinforcement-learning-based experimentalists (protagonist and adversary) on these
decision trees in Section 5.

2.1. Decision tree for AI-guided experimentation on bulk granular materials

This section defines a representative decision tree for the AI-guided experimentation on bulk geomaterials. The
hierarchical series of test conditions includes six elements, TC = [TC1, TC2, TC3, TC4, TC5, TC6], such that the
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Table 1
Choices of test conditions for AI-guided experimentation on bulk granular materials.

TC Test conditions Choices

TC1 = ‘Sample p0’ {‘300 kPa’, ‘400 kPa’, ‘500 kPa’}
TC2 = ‘Sample e0’ {‘0.60’, ‘0.55’}
TC3 = ‘Type’ {‘DTC’, ‘DTE’, ‘TTC’}
TC4 = ‘Load target’ {‘3%’, ‘5%’}
TC5 = ‘Unload target’ {‘NaN’, ‘0%’, ‘3%’}
TC6 = ‘Reload target’ {‘NaN’, ‘3%’, ‘5%’}

AI experimentalists can choose isotropic granular samples of different initial pressure p0 and initial void ratio e0,
perform different drained triaxial tests, and design different loading–unloading–reloading paths.

The choices for each test condition are shown in Table 1, represented by decision labels. The decision labels for
the test types TC3 are defined as follows,

1. ‘DTC’: drained conventional triaxial compression test (✏̇11 < 0, �̇22 = �̇33 = �̇12 = �̇23 = �̇13 = 0),
2. ‘DTE’: drained conventional triaxial extension test (✏̇11 > 0, �̇22 = �̇33 = �̇12 = �̇23 = �̇13 = 0),
3. ‘TTC’: drained true triaxial test with b = 0.5 (✏̇11 < 0, b = �22��33

�11��33
= const , �̇33 = �̇12 = �̇23 = �̇13 = 0),

with the loading conditions represented by constraints on the components of the stress rate and strain rate tensors

✏̇ =

2

4
✏̇11 ✏̇12 ✏̇13

✏̇22 ✏̇23
sym ✏̇33

3

5 , �̇ =

2

4
�̇11 �̇12 �̇13

�̇22 �̇23
sym �̇33

3

5 . (6)

Since ‘DTC’ and ‘DTE’ are special cases of true triaxial tests, the choices {‘DTC’, ‘DTE’, ‘TTC’} for TC3 are
equivalent to choosing the value of b = �22��33

�11��33
from {‘0.0’, ‘1.0’, ‘0.5’}, respectively [42].

The decision labels ‘NaN’ in TC5 and TC6 indicate that the unloading or reloading is not activated. This
design enables the freedom of generating monotonic loading paths (e.g., ‘5% NaN NaN’), loading–unloading paths
(e.g., ‘5% 0% NaN’) and loading–unloading–reloading paths (e.g., ‘5% 0% 3%’). There are restrictions in choosing
the strain targets. The experimentalist picks the loading target in TC4 first and the unloading target in TC5 must
be, if not ‘NaN’ (stop the experiment), smaller than the loading strain. Then the reloading target in TC6 must be,
if not ‘NaN’, larger than the unloading strain.

The corresponding decision tree is shown in Fig. 2. The subtree concerning the restricted decision-making in
TC4, TC5, and TC6 is also detailed in the figure. The total number of experimental designs (which equals to the
number of leaf nodes in the tree) is Ntest = 180. Fig. 3 provides the experimental settings on DEM (discrete element
methods) numerical specimens and data from one example of the experiments. The total number of experimental
data combinations increases significantly when the maximum allowed simultaneous paths N

max

path
increases. The

combination number equals to C
1
180 = 180 when N

max

path
= 1, equals to C

1
180 + C

2
180 = 16 290 when N

max

path
= 2,

equals to C
1
180 + C

2
180 + C

3
180 = 972 150 when N

max

path
= 3, etc.

2.2. Decision tree for AI-guided experimentation on granular interfaces

This section defines a representative decision tree for the AI-guided experimentation on granular interfaces. The
hierarchical series of test conditions includes six elements, TC = [TC1, TC2, TC3, TC4, TC5, TC6], such that the
AI experimentalists can choose the direction of the prescribed displacement jump, the number of loading cycles,
and different target displacement values to design complex loading paths.

The choices for each test condition are shown in Table 2, represented by decision labels. ‘NormTangAngle’
represents the angle between the displacement jump vector and the tangential direction vector, the corresponding
values in the Choices column are in units of degree. ‘NumCycle’ represents the number of loading–unloading cycles.
The conditions ‘Target1’, ‘Target2’, ‘Target3’, ‘Target4’ represent the target displacement jump magnitudes along
the loading–unloading cycles, the corresponding values in the Choices column are in units of millimeters. Regardless
of the loading–unloading cycles, the final displacement jump reaches the magnitude of 0.4 mm. The decision label
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Fig. 2. Decision tree for AI-guided drained true triaxial tests on bulk granular materials. Due to the complexity of the graph, the vertex
labels are omitted, and only a few edge labels are shown. See Fig. 1 for exhaustive vertex and edge labels in a simple decision tree example.

Fig. 3. Experimental settings of drained true triaxial tests on numerical specimens of bulk granular materials simulated via DEM (discrete
element methods). The test conditions for the AI experimentalist are presented in Table 1. As an example, the differential stress data and
volumetric strain data obtained from a test designed by the decision tree path ‘300 kPa’ ! ‘0.55’ ! ‘DTC’ ! ‘3%’ ! ‘0%’ ! ‘5%’
are presented.

Table 2
Choices of test conditions for AI-guided experimentation on granular interfaces.

TC test conditions Choices

TC1 = ‘NormTangAngle’ {‘0’, ‘15’, ‘30’, ‘45’, ‘60’, ‘75’}
TC2 = ‘NumCycle’ {‘0’, ‘1’, ‘2’}
TC3 = ‘Target1’ {‘NaN’, ‘0.1’, ‘0.2’, ‘0.3’}
TC4 = ‘Target2’ {‘NaN’, ‘0.0’, ‘0.1’, ‘0.2’}
TC5 = ‘Target3’ {‘NaN’, ‘0.1’, ‘0.2’, ‘0.3’}
TC6 = ‘Target4’ {‘NaN’, ‘0.0’, ‘0.1’, ‘0.2’}

‘NaN’ indicates that the unloading or reloading is not activated. For example, ‘NumCycle’=’0’ means a monotonic
loading to 0.4 mm, hence all the target conditions should adopt the values of ‘NaN’; ‘NumCycle’=’1’ means a
loading–unloading–reloading path to 0.4 mm, hence ‘Target1’ (loading target) and ‘Target2’ (unloading target) can
adopt values within ‘0.0’, ‘0.1’, ‘0.2’, ‘0.3’, while ‘Target3’ and ‘Target4’ should be ‘NaN’s.

The corresponding decision tree is shown in Fig. 4. The total number of experimental designs (which equals to the
number of leaf nodes in the tree) is Ntest = 228. Fig. 5 provides the experimental settings on DEM (discrete element
methods) numerical specimens and data from one example of the experiments. The total number of experimental
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Fig. 4. Decision tree for AI-guided displacement-driven mixed-mode shear tests on granular interfaces. Due to the complexity of the graph,
the vertex labels are omitted, and only a few edge labels are shown.

Fig. 5. Experimental settings of displacement-driven mixed-mode shear tests on numerical specimen of granular interfaces using DEM
(discrete element methods). The test conditions for the AI experimentalist are presented in Table 2. As an example, the loading path and
traction in normal and tangential directions obtained from a test designed by the decision tree path ‘30’ ! ‘2’ ! ‘0.2’ ! ‘0.0’ ! ‘0.3’
! ‘0.1’ are presented. Regardless of the designed loading–unloading cycles, the final displacement jump reaches the magnitude of 0.4 mm.

data combinations, for example, equals to C
1
228 + C

2
228 + C

3
228 ⇡ 1.97e6 when N

max

path
= 3. Such number is already

impractical for a human to find the optimal data sets for calibration and falsification by trial and error. For high
efficiency, the decisions in performing experiments should be guided by experienced experts or, in this paper,
reinforcement-learning-based AI.

3. Multi-agent non-cooperative game for model calibration/falsification with adversarial attacks

This section presents the design of a data acquisition game for both AI experimentalists (protagonist and
adversary) to play, based on the decision trees defined in Section 2 involving the common actions in testing the
mechanical properties of geomaterials. The goal of this game is to enable the protagonist agent to find the optimal
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design of experiments that best calibrate a constitutive law, while having the adversary agent designs a counterpart
set of experiments that expose the weakness of the models in the same decision tree that represents the application
range. For simplicity, we assume that all experiments conducted by both agents are fully reproducible and free
of noise. We will introduce a more comprehensive treatment for more general situations in which the bias and
sensitivity of the data as well as the possibility of erroneous and even fabricated data are considered in the future.
Such a treatment is, nevertheless out of the scope of this work.

Multi-agent multi-objective Markov games [43] have been widely studied and applied in robotics [44], traffic
control [45], social dilemmas [46], etc. In our previous work, Wang et al. [38], our focus was on designing agents
that have different actions and states but share the same goal. In this work, our innovation is on designing a non-
cooperative game in which the agents are competing against each other for a pair of opposite goals. While the
reinforcement learning may lead to improved gameplay through repeated trial-and-error, the non-cooperative nature
of this new game will force the protagonist to act differently in response to the weakness exposed by the adversary.
This treatment therefore may lead to a more robust and regularized model. In this work, the protagonist and the
adversary are given exactly the same set of possible actions mathematically represented in a decision tree. While a
non-cooperative game with non-symmetric action spaces can enjoy the great performance as demonstrated in some
of the OpenAI systems [44], such an extension is out of the scope of this study and will be considered in the future.

3.1. Non-cooperative calibration/falsification game involving protagonist and adversary

We follow the general setup in [44] to create a two-player Markov game with competing objectives to calibrate
and falsify a constitutive model. Both calibration and falsification are idealized as procedures that involve sequences
of actions taken to maximize (in the case of calibration) and minimize (in the case of the falsification) a metric that
assesses the prediction accuracy and robustness.

Consider the Markov decision process (MDP) in this game expressed as a tuple (S,Ap,Aa,P, rp, ra, s0) where
S is the set of game states and s0 is the initial state distribution. Ap is the set of actions taken by the protagonist in
charge of generating the experimental data to calibrate a given material model. Aa is the set of actions taken by the
adversary in charge of falsifying the material model. P : S⇥Ap⇥Aa⇥S ! R is the transition probability density.
rp : S ⇥ Ap ⇥ Aa ! R and ra : S ⇥ Ap ⇥ Aa ! R are the rewards of protagonist and adversary, respectively.
If rp = ra , the game is fully cooperative. If rp = �ra , the game is zero-sum competitive. At the current state s of
the game, if the protagonist is taking action ap sampled from a stochastic policy µp and the adversary is taking
action aa sampled from a stochastic policy µa , the reward functions are r

µp,µa

p = Eap⇠µp(·|s),aa⇠µa (·|s)[rp(s, ap, aa)]
and r

µp,µa

a = Eap⇠µp(·|s),aa⇠µa (·|s)[ra(s, ap, aa)].
In this work, all the possible actions of the protagonist and the adversary agent are mathematically represented

by decision trees (Section 2). The protagonist first selects one or more paths in its own tree which provide the
detailed experimental setups to generate calibration data for the material model, then the adversary selects one or
more paths in its own tree (identical to the protagonist’s tree) to generate test data for the calibrated model, aiming
to find the worst prediction scenarios. The rewards are based on the prediction accuracy measures SCORE of the
constitutive model against data. This measure of ‘win’ or ‘lose’ is only available when the game is terminated,
similar to Chess and Go [35,36], thus the final rewards are back-propagated to inform all intermediate rewards
rp(s, ap, aa) and ra(s, ap, aa). rp is defined to encourage the increase of SCORE of model calibrations, while ra is
defined to favor the decrease of SCORE of forward predictions. In this setting, the game is non-cooperative, and
generally not zero-sum.

3.2. Components of the game for the experimentalist agents

The agent–environment interactive system (game) for the experimentalist agents consists of the game environ-
ment, game states, game actions, game rules, and game rewards [47,48] (Fig. 6). These key ingredients are detailed
as follows.

Game Environment consists of the geomaterial samples, the constitutive model for performance evaluation, and
the experimental decision trees. The samples in this game are representative volume elements (RVEs) of virtual
granular assemblies modeled by the discrete element method (DEM) (e.g., Figs. 3, 5). The preparation of such
DEM RVEs are detailed in the numerical examples. The constitutive model can be given by the modeler agent

9
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Fig. 6. Key ingredients (environment, agents, states, actions, rules, and rewards) of the two-player non-cooperative agent–environment
interactive system (game) for the experimentalist agents.

in a meta-modeling game [38,48]. In this paper, we focus on the interactive learning of data acquisition strategies
for a certain constitutive model of interest. A three-agent protagonist-modeler-adversary reinforcement learning
game that incorporate modeling stratwgies is out of the scope of this study. The protagonist and adversary agents
determine the experiments on the RVEs in order to collect data for model parameter identification and testing the
forward prediction accuracy of the constitutive model, respectively, via taking paths in their own decision trees
(e.g., Figs. 1, 2, 4).

Game State For the convenience of deep reinforcement learning using policy/value neural networks, we use a 2D
array s(2) to concisely represent the paths that the protagonist or adversary has selected in the experimental decision
tree. The mapping from the set of the 2D arrays to the set of path combinations in the decision tree is injective.
The array has a row size of N

max

path
and a column size of NTC. Each row represents one path in the decision tree

from the root node to a leaf node, i.e., a complete design of one experiment. The number of allowed experiments is
restricted by the row size N

max

path
, which is defined by the user. Each array entry in the NTC columns represents the

selected decision label of each test condition in TC. The entry a (integer) in the j th row and i th column indicates
that the ath decision label in the set TCi is selected for the j th experiment. Before the decision tree selections, the
agent first decides a 1D array s(1) of size N

max

path
, with its kth entry indicating whether the agent decides to take a new

path in the decision tree (i.e., perform another experiment) after the current kth experiment is done. A value of 1
indicates continuation and 2 indicates stop. The total state s of the game combines s(1) and s(2), with s(2) flattened to
a 1D array of size N

max

path
⇤ NTC and then input into the policy/value neural networks for policy evaluations. Initially,

all entries in the arrays are 0, indicating no decision has been made.
Game Action The AI agent works on the game state arrays by changing the initial zero entries into integers

representing the decision labels. The agent firstly selects 1 for continuation or selects 2 for stop in s(1), in the left-
to-right order. The agent then works on s(2) in the left-to-right then top-to-bottom order. Suppose that the first zero
element of the current state array s(2) is in the j th row and i th column, the agent will select an integer 1  a  mi

(number of choices) to choose a decision label in TCi . The size of the action space is Naction = maxi2[1,NTC] mi .
Game Rule The AI agents are restricted to follow existing edges in the constructed decision tree, which has

already incorporated decision limitations such as the choices of loading/unloading/reloading strain targets. The game
rules are reflected by a list of Naction binaries Legal Actions(s) = [i i1, i i2, . . . , i iNaction

] at the current state s. If the
10
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Fig. 7. Example of the current st and next st+1 game states describing the selected edges in the decision tree, action by the agent at to
“advance” in the decision tree, and the legal actions at the current state, with N

max

path
= 2.

a-th decision is allowed, the ath entry is 1. Otherwise, the entry is 0. Fig. 7 provides an example of the mathematical
representations of the game states, actions, and rules of the decision tree game.

Game Reward The rewards from the game environment to the experimentalists should consider the performance
of a given constitutive model on calibration data and testing data. After the decision of experiments by the
protagonist, these experiments are performed on material samples to collect data. Then the constitutive model is
calibrated with these data, and the accuracy is evaluated by a model score SCOREprotagonist. After the decision of
experiments by the adversary, the calibrated constitutive model gives forward predictions on these testing data. The
accuracy is evaluated by a model score SCOREadversary. +SCOREprotagonist is returned to the protagonist to inform
its game reward, while �SCOREadversary is returned to the adversary. This adversary attack reward system is the
key to ensure that the protagonist generates calibration data to maximize the prediction strength of the constitutive
model, while the adversary tries to explore the weakness of the model.

3.3. Evaluation of model scores and game rewards

The accuracy of model calibrations and forward predictions are quantified by calculating the discrepancy between
the vector of data points [Y data

i
]Ndata

i=1 and the vector of predicted values [Y model
i

]Ndata

i=1 under the same experimental
conditions. For both data points and predictions, Y i = S j (Y

j

i
), where Y

j

i
is the data that falls into the j th category

of output features (quantities of interest, such as deviatoric stress q and void ratio e). S j is the scaling operator
(standardization, min–max scaling, . . . ) for the j th output feature.

The predictions [Y model
i

]Ndata

i=1 come from a given constitutive model that is calibrated with data generated by
the protagonist. In this work, for elasto-plastic models, the nonlinear least-squares solver “NL2SOL” in Dakota
software [49] is used to find the optimal parameter values. The initial guess, upper and lower bounds of each
parameter are given by domain experts’ knowledge and preliminary estimations. For models of artificial neural
networks, parameters are tuned by backpropagation algorithms using Tensorflow [50]. In both cases, the optimal
material parameters minimize the scaled mean squared error objective function

scaled MSE = 1
Ndata

NdataX

i=1

(Y model
i
� Y

data
i

)2 . (7)

The predictions Y
model
i

from a calibrated constitutive model are compared against the output data Y
data
i

corresponding to the input loading paths X
data
i

for both calibration data and testing data. The model scores measuring
11
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the prediction accuracy are based on the modified Nash–Sutcliffe efficiency index [51–53],

E
j

N S
= 1�

P
Ndata

i=1 |Y data
i
� Y

model
i

|
j

P
Ndata

i=1 |Y data
i
�mean(Y data)|

j
2 (�1, 1.0]. (8)

When j = 2, it recovers the conventional Nash–Sutcliffe efficiency index. Both the original and modified
Nash–Sutcliffe efficiency indexes are both commonly used to assess the predictive power of various hydrological
models [54]. They both range from � inf to 1. An efficiency of 1 (E

j

N S
= 1) corresponds to a perfect match of

model predictions to the observed data. An efficiency of 0 (E
j

N S
= 0) indicates that the model predictions are as

accurate as the mean of the observed data, whereas an efficiency less than zero (E
j

N S
< 0) occurs when the observed

mean is a better predictor than the model itself. Here we adopt j = 1, and

SCOREprotagonist or adversary = 2 ⇤ min(max(E
1
N S

, E
min

N S
), E

max

N S
)� 0.5 ⇤ (E

min

N S
+ E

max

N S
)

E
max

N S
� E

min

N S

, (9)

where E
max

N S
and E

min

N S
are maximum and minimum cutoff values of the modified Nash–Sutcliffe efficiency index,

SCORE 2 [�1.0, 1.0].
The game reward returned to the protagonist can consider both the calibration accuracy and the forward prediction

accuracy, by including an exponential decay term:

Rewardprotagonist = �1 + (SCOREprotagonist + 1) ⇤ exp [�↵SCORE ⇤max(E
min

N S
�min({E

1
N S

}), 0)]. (10)

where min({E
1
N S

}) is the minimum N–S index observed in the gameplay history, ↵SCORE is a user-defined decay
coefficient. When min({E

1
N S

}) < E
min

N S
, the decay term starts to drop the reward of the protagonist, otherwise

Rewardprotagonist = +SCOREprotagonist. On the other hand, the game reward returned to the adversary is

Rewardadversary = �SCOREadversary. (11)

Since the adversary is rewarded at the expense of the protagonist’s failure, it is progressively learning to create
increasingly devastating experimental designs to falsify the model, thus forcing the protagonist to calibrate material
models that are robust to any disturbances created by the adversary. In this work, we refer to the move of the
protagonist as calibration or defense, while the move of the adversary as falsification or attack.

4. Parallel reinforcement learning algorithm for the non-cooperative experimental/adversarial game

In the language of game theory, the meta-modeling game defined in the previous section is categorized as non-
cooperative, asymmetric (the payoff of a particular strategy depends on whether protagonist or adversary is playing),
non-zero-sum, sequential (the adversary is aware of the protagonist’s strategy in order to attack accordingly),
imperfect information (the protagonist does not know how the adversary will attack). Let (M, R) be a representation
of this two-player (denoted by subscripts p and a) non-cooperative game, with M = Mp ⇥Ma the set of
strategy profiles. R(µ) = (Rp(µ),Ra(µ)) is the payoff (final reward) function evaluated at a strategy profile
µ = (µp, µa) 2 M. A strategy profile µ⇤ is a Nash equilibrium if no unilateral change in µ⇤ by any player
is more profitable for that player, i.e.,

(
8µp 2Mp, Rp((µ⇤

p
, µ⇤

a
)) � Rp((µp, µ

⇤
a
))

8µa 2Ma, Ra((µ⇤
p
, µ⇤

a
)) � Ra((µ⇤

p
, µa))

. (12)

The existence of at least one such equilibrium point is proven by Nash et al. [33].
Solving the optimization problem directly to find the Nash equilibria strategies for this complex game is

prohibitive [55]. Instead, deep reinforcement learning (DRL) algorithm is employed. In this technique, the strategy
of each player (µp or µa) is parameterized by an artificial neural network f✓ that takes in the description of the
current state s of the game and outputs a policy vector p with each component representing the probability of taking
actions from state s, as well as a scalar v for estimating the expected reward of the game from state s, i.e.,

( p, v) = f✓ (s). (13)

These policy/value networks guide the learning optimal strategies of both protagonist and adversary such that
their actions may maximize their corresponding final game rewards. The learning is completely free of human
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Fig. 8. Two-player adversarial reinforcement learning for generating optimal strategies to automate the calibration and falsification of a
constitutive model.

interventions after the complete game settings. This tactic is considered one of the key ideas leading to the major
breakthrough in AI playing the game of Go (AlphaGo Zero) [35], Chess and shogi (Alpha Zero) [36] and many other
games. In [48], the key ingredients (policy/value network, upper confidence bound for Q-value, Monte Carlo Tree
Search) of the DRL technique are detailed and applied to a meta-modeling game for modeler agent only, focusing
on finding the optimal topology of physical relations from fixed training/testing datasets. Since DRL needs to figure
out the optimal strategies for both agents, the algorithm is extended to multi-agent multi-objective DRL [56–58].
The AI for protagonist and adversary are improved simultaneously during the self-plays of the entire meta-modeling
game, according to the individual rewards they receive from the game environment and the communications between
themselves (see Fig. 8).

The pseudocode of the reinforcement learning algorithm to play the non-cooperative game is presented in
Algorithm 1. This is an extension of the algorithm in [48]. As demonstrated in Algorithm 1, each complete DRL
procedure involves num I ters number of training iterations and one final iteration for generating the converged
selected paths in decision trees. Each iteration involves num Episodes number of game episodes that construct
the training example set trainExamples for the training of the policy/value networks f

Protagonist
✓ and f

Adversary
✓ . For

decision makings in each game episode, the action probabilities are estimated from numMCT SSims runs of Monte
Carlo Tree Search (MCTS) simulations.

The Monte Carlo Tree Search is an algorithm that estimates the optimal action out of a set of possible
actions through four sequential processes (selection, expansion, simulation and back-propagation) [36,48,59]. In
the selection step, the agents traverse the tree produced thus far. Each agent then selects an unexpanded node of
the tree. Then, the successors of the states chosen during the selection phase are added to the tree in the expansion
step. The agents then simulate the game starting at the node chosen during the selection phase until the terminal
states are reached. Finally, the terminal states of both agents generate new data for the constitutive model. The
constitutive model is then calibrated and falsified against the new data generated by the protagonist and adversary
agents. The rewards assigned based on the performance of both agents evaluated at their corresponding terminal
states are then propagated back along the path to the root nodes, as illustrated in Fig. 8.
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The state values v can be equal to the continuous reward functions Eqs. (10) and (11) to train the policy/value
neural networks. To further improve the convergence rate of the DRL algorithm, we propose an empirical method
to train the networks with binary state values (1 or �1) post-processed from the reward values, which is similar to
the concept of “win” (1) and “lose” (�1) in the game of Chess.

Consider the set of rewards {Rewardprotagonist}i of the num Episodes games played in the i th DRL iteration. The
maximum reward encountered from Iteration 0 to the current Iteration k, is,

R
max

p
= max

i2[0,k]
(max({Rewardprotagonist}i )). (14)

Meanwhile, the minimum reward is chosen as,

R
min

p
= max

i2[0,k]
(min({Rewardprotagonist}i )). (15)

A reward range in Iteration k is R
range

p = R
max

p
� R

min

p
. A strategy µp is considered as a “win” (v = 1) when

its reward Rewardprotagonist � R
max

p
� R

range

p ⇤ ↵range, while it is a “lose” (v = �1) when Rewardprotagonist <

R
max

p
� R

range

p ⇤ ↵range. ↵range is a user-defined coefficient which influences the degree of “exploration and
exploitation” of the AI agents. Similarly, for the adversary agent, the maximum and minimum rewards are

R
max

aµp
= min

i2[0,k]
(max({�Rewardµp

adversary}i )) (16)

and

R
min

aµp
= min

i2[0,k]
(min({�Rewardµp

adversary}i )), (17)

and R
range

aµp
= R

max

aµp
� R

min

aµp
are collected for each protagonist strategy µp. Then an attack strategy µa corresponding

to µp is considered as a “win” (v = 1) when its reward �Rewardµp

adversary  R
min

aµp
+ R

range

aµp
⇤ ↵range, while it is

a “lose” (v = �1) when �Rewardµp

adversary > R
min

aµp
+ R

range

aµp
⇤ ↵range. The training examples for the policy/value

neural networks are limited to the gameplays in the DRL iterations i 2 [max(k � ilookback, 0), k], where ilookback is
a user-defined hyperparameter controlling the degree of “forget” of the AI agents.

Another new contribution to this DRL framework is that we improve the computational efficiency of DRL
by executing the mutually independent gameplays and reward evaluations in a parallel manner, instead of serial
executions as in previous works [38,48,60]. We use the parallel python library “Ray” [61] for its simplicity and
speed in building and running distributed applications. The new workflow of parallel playing of game episodes in
each training iteration for DRL is illustrated in Fig. 9.

5. Automated calibration and falsification experiments

We demonstrate the applications of the non-cooperative game for automated calibration and falsification on three
types of constitutive models. The material samples are representative volume elements (RVEs) of densely-packed
spherical DEM particles. The decision-tree-based experiments are performed via numerical simulations on these
samples. The preparation and experiments of the samples are detailed in Appendix A. The three constitutive models
studied in this paper are the Drucker–Prager model [62], the SANISAND model [63], and a data-driven traction–
separation recurrent neural network model [60]. Their formulations are detailed in Appendix B. The results shown
in this section are representatives of the AI agents’ performances, since the policy/value networks are randomly
initialized and the MCTS simulations involve samplings from action probabilities. The gameplays during DRL
iterations may vary, but similar convergence performances are expected for different executions of the algorithm.
Furthermore, the material calibration procedures, such as the initial guesses in Dakota and the hyperparameters in
training of the neural networks, may affect the game scores and the converged Nash equilibrium points. Finally,
since simplifications and assumptions are involved in the DEM samples, their mechanical properties differ from
real-world geo-materials. The conclusions of the three investigated constitutive models are only on these artificial
and numerical samples. However, the same DRL algorithm is also applicable for real materials, when the actions
of the AI experimentalists can be programmed in laboratory instruments.

The policy/value networks f✓ are deep neural network in charge of updating the Q table that determines the
optimal strategies. The design of the policy/value networks is identical for both agents in this paper. Both of them
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Fig. 9. Workflow of parallel gameplays and reward evaluations in DRL.

consist of one input layer of the game state s, two densely connected hidden layers, and two output layers for the
action probabilities p and the state value v, respectively. Each hidden layer contains 256 artificial neurons, followed
by Batch Normalization, ReLU activation and Dropout. The dropout layer is a popular regularization mechanism
designed to reduce overfitting and improve generalization errors in deep neural network (cf. [64]). The dropout
rate is 0.5 for the protagonist and 0.25 for the adversary. These different dropout rates are used such that the
higher dropout rate for the protagonist will motivate the protagonist to calibrate the Drucker–Prager model with
less generalization errors, while the smaller dropout rate will help the adversary to find the hidden catastrophic
failures in response to a large amount of the protagonist’s strategies. In addition, the non-cooperative game requires
the hyperparameters listed in Table 3 to configure the game.

Remarks on the Computational Cost. The three numerical experiments are run on an Intel(R) Core(TM) i9-
9980HK CPU @ 2.40 GHz using 8 cores and 32 GB memory. The typical computation costs (expressed in physical
hours) for essential tasks in the proposed parallel reinforcement learning algorithm are listed in Table 4. These
computational costs depend on the user-defined hyperparameters for the non-cooperative game (See Table 3) and
the training speed of the parameters in the constitutive models. ⇤
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Algorithm 1 Self-play reinforcement learning of the non-cooperative meta-modeling game
Require: The definitions of the non-cooperative meta-modeling game: game environment, game states, game

actions, game rules, game rewards (Section 3).
1: Initialize the policy/value networks f

Protagonist
✓ and f

Adversary
✓ . For fresh learning, the networks are randomly

initialized. For transfer learning, load pre-trained networks instead.
2: Initialize empty sets of the training examples for both protagonist and adversary trainExamples

Protagonist  [],
trainExamples

adversary  [].
3: for i in [0,..., num I ters � 1] do
4: for j in [0,..., num Episodes � 1] do
5: Initialize the starting game state s.
6: for player in [Protagonist, Adversary] do
7: Initialize empty tree of the Monte Carlo Tree search (MCTS), set the temperature parameter ⌧train

for “exploration and exploitation”.
8: while True do
9: Check for all legal actions at current state s according to the game rules.

10: Get the action probabilities ⇡ (s, ·) for all legal actions by performing numMCT SSims times of
MCTS simulations.

11: Sample action a from the probabilities ⇡ (s, ·)
12: Modify the current game state to a new state s by taking the action a.
13: if s is the end state of the game of player then
14: Evaluate the score of the selected paths in the decision tree.
15: Evaluate the reward r of this gameplay according to the score.
16: Break.
17: Append the gameplay history [s, a,⇡(s, ·), r ] to trainExamples

player .
18: Train the policy/value networks f

Protagonist
✓ and f

Adversary
✓ with trainExamples

Protagonist and
trainExamples

Adversary.
19: Use the final trained networks f

Protagonist
✓ and f

Adversary
✓ in MCTS with temperature parameter ⌧test for one more

iteration of “competitive gameplays” to generate the final converged selected experiments.
20: Exit

5.1. Experiment 1: Drucker–Prager model

The two-player non-cooperative game is played by DRL-based AI experimentalists for Drucker–Prager model.
The formulations of the model are detailed by Eqs. (18), (19), (20). The initial guesses, upper and lower bounds
of the material parameters for Dakota calibration are presented in Table 6. The game settings are N

max

path
= 5 for

both the protagonist and the adversary, E
max

N S
= 1.0, E

min

N S
= �1.0. Hence the combination number of the selected

experimental decision tree paths in this example is 180!/(5!(180 � 5)!) ⇡ 1.5e9 where 180 is the total number of
leaves in the decision tree and 5 is the maximum number of paths chosen by either agent. The hyperparameters
for the DRL algorithm used in this game are num I ters = 10, num Episodes = 50, numMCT SSims = 50,
↵SCORE = 0.0, ↵range = 0.2, ilookback = 4, ⌧train = 1.0, ⌧test = 0.1.

The statistics of the game scores played for the “Calibration/Defense” by the protagonist and the “Falsifica-
tion/Attack” by the adversary during the DRL iterations are shown in Fig. 10. The AI agents only know the
experimental decision tree and the rules of the two-player game without any prior knowledge on the strengths
and weaknesses of the Drucker–Prager model. At the first DRL iteration, the agents play the game through trial and
error guided by randomly initialized policy/value networks and MCTS. This lack of knowledge on proper gameplay
strategies can be seen from the widely spread density distribution of game scores and the large inter-quantile range
between 25% and 75% in both “Calibration/Defense” and “Falsification/Attack”. In the subsequent iterations, the
agents progressively understand the “winning strategies” via reinforcement learning on the gameplay histories and
the associated game rewards, hence is capable of play games with better outcomes. This trend is evidenced by
the increase of the median of game scores by the protagonist, the decrease of the median scores by the adversary,

16



K. Wang, W. Sun and Q. Du Computer Methods in Applied Mechanics and Engineering 373 (2021) 113514

Table 3
Hyperparameters required to setup the non-cooperative game.

Hyperparameters Definition Usage

N
max

path
Maximum number of decision tree paths chosen by the
agents

Define the dimension of the game states

E
max

N S
Maximum cutoff value of the modified Nash–Sutcliffe
efficiency index

See Eq. (9)

E
min

N S
Minimum cutoff value of the modified Nash–Sutcliffe
efficiency index

See Eq. (9)

num I ters Number of training iterations Define DRL iterations for training
policy/value networks

num Episodes Number of gameplay episodes in each training iterations Define the amount of collected gameplay
evidences

num MCT SSims Number of Monte Carlo Tree Search simulations in each
gameplay step

Control the agents’ estimations of action
probabilities

↵SCORE Decay coefficient for the protagonist’s reward See Eq. (10)

↵range Coefficient for determining “win” or “lose” of a game
episode

Set the agents’ balance between “exploration
and exploitation”

ilookback Number of gameplay iterations for training of the
policy/value networks

Control the agents’ “memory depth”

⌧train Temperature parameter for training iterations Set the agents’ balance between “exploration
and exploitation”

⌧test Temperature parameter for competitive gameplays Set the agents’ balance between “exploration
and exploitation”

Table 4
Computation costs for the DRL games.

Task Approximate CPU time (hours)

DEM Test data generation using YADE 0.1

Play one full game episode using MCTS 0.01–0.1
(depending on the complexity
of the decision tree)

Training of policy/Value networks 0.1–0.2
(depending on the size
of the game examples)

One complete model training and testing 0.2–1.0
(depending on the complexity of the model
and the training convergence of the parameters)

Experiment 1 total 10
Experiment 2 total 30
Experiment 3 total 18

and also the narrowing of inter-quantile ranges. In these intermediate training iterations, games can sometimes be
played badly, since the agents are allowed to explore various game policies such that they can avoid the convergence
to a local extremum. The strengths of the AI agents after the 0th to 9th training iterations are eventually tested
by suppressing the “exploration plays” and focusing on exploitation. The ultimate game scores show outstanding
performances.

Examples of paths (experiments) selected by the protagonist during the DRL iterations are shown in Fig. 11.
Based on all the evidence presented in these examples, the agent realizes that the Drucker–Prager model is not
designed to simultaneously replicate data from samples with different initial confinement, initial void ratio, test
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Fig. 10. Violin plots of the density distributions of game scores in each DRL iteration in Drucker–Prager model. The shaded area represents
the density distribution of scores. The white point represents the median. The thick black bar represents the inter-quantile range between
25% quantile and 75% quantile. The maximum and minimum scores played in each iteration are marked.

Fig. 11. Examples of paths (experiments) in the decision trees selected by the protagonist during the DRL training iterations for the
Drucker–Prager model.

types, and unloading–reloading paths. In the end, the agent concludes that the model is only accurate in modeling
the mechanical behavior of a single sample in TTC test with monotonic loading. Meanwhile, the adversary tries to
attack the models calibrated by the protagonist using the experiments as shown in Fig. 12. The agent progressively
comes to the conclusion that, when calibrated with monotonic TTC data, the model fails to predict DTC or DTE
experiments on other samples with unloading–reloading. Figs. 13 and 14 shows predicted constitutive responses and
the corresponding benchmarks associated to the example decision tree paths shown in Figs. 11 and 12, respectively.
They illustrate the strength of the model in replicating the hardening–softening and contraction–dilation behavior
of a densely compressed granular material. They also expose the model’s weakness in predicting the unloading–
reloading behavior, regardless of the calibration data. These conclusions on the Drucker–Prager model by the AI
agents are consistent with the judgments from human experts, but they are drawn from the reinforcement learning
on the two-player game without human knowledge.

5.2. Experiment 2: SANISAND model

The two-player non-cooperative game is played by DRL-based AI experimentalists for SANISAND model. The
formulations of the model are detailed by Eqs. (21), (22), (23), (24), (25). The initial guesses, upper and lower
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Fig. 12. Examples of paths (experiments) in the decision trees selected by the adversary during the DRL training iterations for the
Drucker–Prager model.

Fig. 13. Examples of response curves of the games played by the protagonist during the DRL training iterations for the Drucker–Prager
model. Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.

bounds of the material parameters for Dakota calibration are presented in Table 7. The game settings are N
max

path
= 5

for both the protagonist and the adversary, E
max

N S
= 1.0, E

min

N S
= �1.0. The hyperparameters for the DRL algorithm

are num I ters = 10, num Episodes = 40, numMCT SSims = 50, ↵SCORE = 1.0, ↵range = 0.2, ilookback = 4,
⌧train = 1.0, ⌧test = 0.1. The policy/value networks for both AI agents are identical to the ones used in the previous
example. In order to help explore min({E

1
N S

}) in Eq. (10), we also manually pre-select 5 experiments that have
unloading–reloading paths which need to be predicted by all calibrated SANISAND models, along with the test
data selected by the adversary.

The statistics of the game scores played for the “Calibration/Defense” by the protagonist and the “Falsifica-
tion/Attack” by the adversary during the DRL iterations are shown in Fig. 15. The AI agents only know the
experimental decision tree and the rules of the two-player game without any prior knowledge on the strengths and
weaknesses of the SANISAND model. The improvement of the protagonist’s policy is shown by the increase of
the median of game scores, and also the narrowing of inter-quantile ranges. Some lower scores encountered during
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Fig. 14. Examples of response curves of the games played by the adversary during the DRL training iterations for the Drucker–Prager
model. Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.

the later iterations of the DRL are due to random explorations of game strategies by the agent. Fig. 16 provides
some example experiments selected by the protagonist for calibration data and Fig. 18 provides some example
response curves associated to these experiments. Meanwhile, the adversary tries to attack the models calibrated by
the protagonist using some experiments as shown in Fig. 17. Fig. 19 gives example response curves associated to
these adversarial decision tree paths. These attacks inform and drive the protagonist to find more adequate calibration
data via the score systems in this game.

In the end, the protagonist concludes that the model is accurate in modeling the mechanical behavior of a single
sample in TTC test with monotonic loading. In this case, the final value explored for min({E

1
N S

}) is �0.933, which
is slightly above the lower bound E

min

N S
= �1.0 in the game score setting. Hence the decay coefficient in Eq. (10)

is not activated and the protagonist score is equal to the calibration score. The adversary concludes that, when
calibrated with this monotonic TTC data, the model is not accurate in predicting DTC, DTE, TTC experiments
on other samples with unloading–reloading. Nevertheless, based on all the game episodes played during the DRL,
the agents learn that the SANISAND model is capable of replicating the hardening–softening and contraction–
dilation behavior of a densely compressed granular material. They also learn that SANISAND is more powerful than
Drucker–Prager in replicating data from samples with different initial confinement, initial void ratio, test types, and
unloading–reloading paths. Note that he relative weak performance on calibrations and forward predictions shown
in Figs. 18 and 19 may be due to the limited choices of calibration procedures. Furthermore, as the SANISAND
model is designed to replicate constitutive responses of real sand assembles as continua, the difference between the
discrete element simulaltions and real experiments the different morphology of real sand and spherical particles,
and the resultant different topology of grain connectivity may all contribute to the discrepancy.

5.3. Experiment 3: Deep learning graph-based traction–separation model

The two-player non-cooperative game is played by DRL-based AI experimentalists for the data-driven traction–
separation model. The traction–separation law is trained via a recurrent neural network called gated recurrent unit.
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Fig. 15. Violin plots of the density distributions of game scores in each DRL iteration in the SANISAND model. The shaded area represents
the density distribution of scores. The white point represents the median. The thick black bar represents the inter-quantile range between
25% quantile and 75% quantile. The maximum and minimum scores played in each iteration are marked.

Fig. 16. Examples of paths (experiments) in the decision trees selected by the protagonist during the DRL training iterations for the
SANISAND model.

Fig. 17. Examples of paths (experiments) in the decision trees selected by the adversary during the DRL training iterations for the SANISAND
model.
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Fig. 18. Examples of response curves of the games played by the protagonist during the DRL training iterations for the SANISAND model.
Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.

Fig. 19. Examples of response curves of the games played by the adversary during the DRL training iterations for the SANISAND model.
Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.
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Fig. 20. Violin plots of the density distributions of game scores in each DRL iteration in data-driven traction–separation model. The shaded
area represents the density distribution of scores. The white point represents the median. The thick black bar represents the inter-quantile
range between 25% quantile and 75% quantile. The maximum and minimum scores played in each iteration are marked.

Similar approaches have been used to train plasticity models in [15,65] and traction–separation laws in [48,66] For
brevity, the neural network architectures and the calibration of the model are outlined in Appendix B.3.

The game settings are N
max

path
= 15 for the protagonist and N

max

path
= 10 for the adversary, E

max

N S
= 1.0, E

min

N S
= 0.8.

Hence the combination number of the selected experimental decision tree paths in this example is about 1e23.
The hyperparameters for the DRL algorithm are num I ters = 10, num Episodes = 40, numMCT SSims = 50,
↵SCORE = 2.5, ↵range = 0.1, ilookback = 4, ⌧train = 1.0, ⌧test = 0.1. The policy/value networks are identical to
the ones used in the previous examples. In this example, since the number of the possible game configurations
is enormous, we constrain the policy of the protagonist to play only the winning games (those who have got
their rewards Rewardprotagonist � R

max

p
� 0.1 ⇤ R

range

p ⇤ ↵range) in 1/5 of the 40 game episodes in each training
iteration and in the last iteration of “competitive gameplays”. Also, we manually pre-select 10 experiments that
have two loading cycles and regard them as the “shared” test data. They need to be predicted by all calibrated
traction–separation models, along with the test data selected by the adversary, in order to help explore min({E

1
N S

})
in Eq. (10). These methods are applied in addition to the general reinforcement learning framework in Section 4 to
enhance the convergence of the agents’ gameplay strategies.

The statistics of the game scores played for the “Calibration/Defense” by the protagonist and the “Falsifica-
tion/Attack” by the adversary during the DRL iterations are shown in Fig. 20. The improvement of the protagonist’s
policy is shown by the increase of the median of game scores. Fig. 21 provides some examples of experiments
selected by the protagonist for calibration data. The protagonist progressively develops the intelligence to select
experiments from multiple displacement jump angles and multiple loading cycles, instead of concentrating on
selections only cover very few angles and monotonic loading. This is consistent with intuitions from human
experts, but is automatically discovered by the AI. We further include some examples of estimated Q-values of
the experimental decision tree (Fig. 22) by the protagonist to illustrate how the agent is learning during the DRL.
We record the agent’s policy/value network ( p, v) = f✓ (s) trained after each iteration of the DRL. Each checkpoint
is used to predict the Q-value of each possible state in the experimental decision tree. The figure presents the
expectations from the protagonist, before choosing any experiments, on how beneficial if an experiment is included
in the calibration data. The evolution of the colors illustrates the progressively improved Q-value estimations learned
from the game episodes and their rewards collected during the DRL.

Meanwhile, the adversary’s scores also tend to increase as opposed to the previous examples. This could be
attributed to the fact that the increasingly well-trained model by the protagonist using more effective calibration
data, hence the corresponding prediction accuracy on unseen testing data also increases. Nevertheless, the adversarial
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Fig. 21. Examples of paths (experiments) in the decision trees selected by the protagonist during the DRL training iterations for the
traction–separation model.

Fig. 22. Examples of Q-values of all possible states in the experimental decision tree estimated by the protagonist’s policy/value network
f✓ during the DRL training iterations for the traction–separation model.

Fig. 23. Examples of paths (experiments) in the decision trees selected by the adversary during the DRL training iterations for the
traction–separation model.

game objective keeps driving the adversary to explore the model’s weakest performance. This feedback loop plays

an important role in forcing the protagonist to find more adequate calibration data to make the model more resilient

to attacks orchestrated by the adversary agent, based on improved skills learned from previous walks on the decision

tree. Some example experiments selected by the adversary for testing data along the DRL are provided in Fig. 23.
In this example, we observe a slow convergence of the game policies as shown by the score distributions in

Fig. 20. We attribute these difficulties to the following factors.

1. The game dimension of this example is 228!/(10!(228 � 10)!) ⇡ 1e23 where 228 is the total number of
leaves in the decision tree (cf. Section 2.2) and 10 is the maximum number of paths chosen by the agent
(N

max

path
), even when the agents try to follow the best policy learned from previous gameplay experiences, a

24



K. Wang, W. Sun and Q. Du Computer Methods in Applied Mechanics and Engineering 373 (2021) 113514

Fig. 24. Examples of response curves of the games played by the protagonist during the DRL training iterations for the traction–separation
model. Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.

slight deviation from this policy due to the freedom of “exploration” may lead to significant deterioration on
the game performance.

2. The ANN-based traction–separation model is highly adaptive to the calibration data. Neural networks can be
trained very accurately to a broad range of calibration data, without changing its architecture. The handcrafted
models from experts, however, are developed from fixed theory and have fixed mathematical expressions.
They are not flexible to significant changes in calibration data. This can be seen from the example response
curves in Fig. 24. Because the calibration scores are uniformly high, the performance of the protagonist
cannot be judged solely based on the calibration accuracy.

3. The performance of the protagonist mainly depends on the prediction accuracy on unseen testing data. To
ensure fairness, the assessment on the accuracy (the score the protagonist received) nevertheless also depends
on the data generated from experiments designed by the adversary and is not soely controlled by the action
of the protagonist.

At the early stage of the game, the adversary is learning from scratch without any human knowledge provided. As
a result, the Q table of the adversary may not be accurate enough to find the best way to attack the trained model
properly in the first DRL iterations. Some early gameplays from the protagonist may yield an apparently high
reward, because the adversary may design experiments very similar to that of the protagonist used for calibration.
However, such a high score should be interpreted with caution due to the lack of sufficient expolartion in the early
gameplays. For example, the protagonist may only train the model with monotonic loading and few loading angles,
whereas the adversary also test the model via similiar monotonic loadings. In this case, the gameplays have not yet
provided sufficient knowledge to the adversary to expose the potential weakness of the constitutive models at other
stress pathes. As a result, the Q tables for both agents are not sufficiently accurate to yield a score that carries the
credibility to predict the performance of the unexplored loading paths in the decision tree.

At the late stage of the game (Iteration 10), the DRL is capable of improving the blind prediction capability of
the data-driven models, as shown in Fig. 25. This result is attributed to the fact that the Q table of the protagonist
has been sufficiently improved such that it is able to design experiments that calibrate the model much better. While
adversary agent that launch the adversarial attacks are given the same opportunities to improve its own Q table and
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Fig. 25. Examples of response curves of the games played by the adversary during the DRL training iterations for the traction–separation
model. Experimental data are plotted in red dashed curves, model predictions are plotted in blue solid curves.

therefore the policy decision skills, its action no longer exposes any particularly severe weakness of the model. This
assessment is due to the non-negative Attack Game Score in this game (0.443) which is significantly higher than
the Attack Game Score in the previous two games for the Drucker–Prager model (�0.989) and the SANISAND
model (�0.29). This result indicates the machine learning traction–separation model may provide efficiently robust
predictions on the unseen cases within the decision tree.

More importantly, these three numerical experiments show that the competition between the two agents is helpful
to improve the robustness of the collective performance of both agents. This finding is consistent with the previous
efforts on the validation and blind predictions of material models such as the Sandia Fracture Challenges [17,67]
and the VELAS project [68,69]. Similar conclusions can also be found in AI for video game (cf. [70]) and simulated
biological evolution (cf. [71]) where the co-evolutionary algorithm is shown to improve the robustness of the agents.

6. Conclusion and future perspectives

We introduce a multi-agent non-cooperative meta-modeling game in which the generation of calibration/validation
data and the adversary testing data aided to falsify the model are handled by two competing artificial intelligence
experimentalist agents. Mimicking the competition between a pair of protagonist and adversary in order to
calibrate/validate and falsify a constitutive model for a path-dependent process, these two AI agents interact with
each other sequentially and exchange information until both agents reach their own objectives and further actions
do not gain better individual rewards. The winning strategies of the non-cooperative game are efficiently searched
by the deep reinforcement learning (DRL) technique. The wide-applicability and efficiency of our approach have
been shown through two elasto-plasticity models and a data-driven traction–separation model, with the number of
possible game configurations as enormous as 1.5e9 and 1e23, respectively. To the best knowledge of the authors,
this is the first time the strategies of experimentalists who provide data to validate/falsify a history-dependent
model are formulated in a non-cooperative decision-making game. Both agents are able to continuously improve
their knowledge of the constitutive law using experimental data generated by each other in a competitive DRL
framework [35,36] and establish the Nash equilibria strategies that inform us the quality of the models in the
applications represented in the decision trees. Such innovations are keys for developing powerful AI assistants that
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take over large amounts of trial-and-error burdens from human researchers for material modeling and knowledge
discoveries with decision trees that are too deep to explore manually. More importantly, the competitive nature
enables us to not only find the optimal setup of constitutive laws, but also find out the weakness of the models in
an unbiased third-party manner.

Further improvements and extensions can be made regarding the following aspects of our current framework.
(1) Experimental data from real-world granular materials, instead of DEM samples, can be used if the AI agents’
decision trees are connected with laboratory instruments. (2) The rewards of the game strategies and hence the
conclusions drawn from the game are sensitive to the game settings and the score systems (objective functions),
e.g., the hyperparameters N

max

path
, E

max

N S
, E

min

N S
, ↵SCORE. These game designs need to be tuned by human experts

in order to appropriately investigate the strengths and weaknesses of the model. (3) They also depend on the
calibration procedures, especially the elasto-plasticity models from human experts in which the material parameters
have specific meanings and require initial guesses and bounds. The neural network models, on the other hand, can
adapt to a wide range of material behavior and calibrate well, but with material parameters difficult to interpret.
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Appendix A. Preparation and experiments of DEM samples

The data for calibration and evaluation of the prediction accuracy of the constitutive models are generated by
numerical simulations on representative volume elements (RVEs) of densely-packed spherical DEM particles. The
open-source discrete element simulation software YADE for DEM is used by the AI experimentalist agents to
generate data, including the homogenized stress and strain measures and the geometrical attributes such as porosity,
coordination number and fabric tensor [72].

The RVEs for AI-guided experimentation on bulk granular materials (Section 2.1) consist of discrete element
particles having radii between 1 ± 0.3 mm with a uniform distribution. The Cundall’s elastic-frictional contact
model [73] is used for the inter-particle constitutive law. The material parameters are: interparticle elastic modulus
Eeq = 0.5 GPa, ratio between shear and normal stiffness ks/kn = 0.3, frictional angle ' = 30�, density ⇢ = 2600
kg/m3, Cundall damping coefficient ↵damp = 0.4. Firstly, a random loose packing enclosed in a parallelepiped of
edge size 50 mm is generated. The sample is then isotropically compressed to p0 = �300 kPa. e0 = 0.60 is
approximated using a fictitious frictional angle of 0.05 rad, whereas e0 = 0.55 is approximated using a frictional
angle of 0.01 rad. These samples are then isotropically compressed to higher confinements p0 = �400 kPa and
p0 = �500 kPa. The generated RVE samples for the AI experimentalists to choose are presented in Table 5. The
‘DTC’, ‘DTE’, ‘TTC’ tests are conducted quasi-statically using the YADE engine “PeriTriaxController”, and data
are recorded at every strain increment of 1e�4.

The RVEs for AI-guided experimentation on granular interfaces (Section 2.2) consist of discrete element particles
having radii between 1 ± 0.3 mm with a uniform distribution. The Cundall’s elastic-frictional contact model is
used. The material parameters are identical to those of the bulk RVEs. The sample with initially random loose
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Table 5
Initial DEM samples for AI-guided experimentation on bulk granular materials.

Sample no. ‘Sample p0’ ‘Sample e0’ p0 e0

1 ‘300 kPa’ ‘0.60’ �300 kPa 0.5955
2 ‘300 kPa’ ‘0.55’ �300 kPa 0.5554
3 ‘400 kPa’ ‘0.60’ �400 kPa 0.5936
4 ‘400 kPa’ ‘0.55’ �400 kPa 0.5538
5 ‘500 kPa’ ‘0.60’ �500 kPa 0.5917
6 ‘500 kPa’ ‘0.55’ �500 kPa 0.5521

Table 6
Initial guesses, upper and lower bounds of the material parameters for Drucker–Prager model.

Parameter Initial guess Lower bound Upper bound

G0 6e4 kPa 4e4 kPa 8e4 kPa
⌫ 0.25 0.1 0.4
a0 1.0 0.5 1.5
a1 2e4 1e2 6e4
a2 1e�5 1/Pa 5e�6 1/Pa 5e�5 1/Pa
a3 60.0 20.0 200.0
�0 0.5 0.2 0.8

packing is isotropically compressed to p0 = �1 MPa using a fictitious frictional angle of 0.01 rad. Hence the
initial traction is �1 MPa in the normal direction and 0 MPa in the tangential direction. The width between the
upper and lower surfaces of the sample is 20 mm. The mixed-mode shear tests with different loading paths are
conducted quasi-statically, and data are recorded at every displacement jump increment of 0.005 mm.

Appendix B. Material models in numerical examples

B.1. Drucker–Prager elasto-plasticity model (Section 5.1)

The model adopts a linear elasticity law with the elastic stiffness tensor

Ce = K I ⌦ I + 2G(I4
sym
� I ⌦ I

3
), (18)

where K is the elastic bulk modulus and G is the elastic shear modulus.
8
<

:
K = K0 = 2(1 + ⌫)

3(1� 2⌫)
G0

G = G0

, (19)

where G0 is the reference shear modulus and ⌫ is the Poisson ratio.
The yield surface has the form f = q +↵p, where p = 1

3 tr(� ), s = � � p I , q = p3J2 =
q

3
2ksk. The potential

surface has the form g = q + �p � cg . ↵ and � evolve according to
(
↵ = a0 + a1✏̄

p exp(a2 p � a3✏̄
p)

� = ↵ � �0
, (20)

where a0, a1, a2, a3 and �0 are material parameters to calibrate. ✏̄ p is the accumulated plastic strain.
The calibration using the nonlinear least-squares solver “NL2SOL” in Dakota software [49] requires initial

guesses, upper and lower bounds of each parameter. They are given in Table 6. The elasticity parameters G0 and ⌫
are calibrated using the first three data points of each calibration experiment. They are fixed in the later calibration
of plasticity parameters a0, a1, a2, a3, �0. The target features for calibration objectives and accuracy evaluations
include data of the pressure p, the deviatoric stress q, and the volumetric strain "v = tr(").
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B.2. SANISAND elasto-plasticity model (Section 5.2)

The model is expressed in geomechanics sign convention as in the original paper. The model adopts the nonlinear
elasticity with dependence on the mean pressure p and the void ratio e,

8
>><

>>:

K = 2(1 + ⌫)
3(1� 2⌫)

G

G = G0 pat

(2.97� e)2

1 + e
(

p

pat

)1/2
, (21)

where G0 and ⌫ are material parameters, pat = 100 kPa is the atmospheric pressure.
The yield surface has the shape of a small cone

f = ks � p↵k �
p

2/3pm, (22)

where we fix m to be 0.01.
The back stress-ratio tensor ↵ evolves according to

↵̇ = �̇(2/3)h(↵b

✓ � ↵), (23)

where �̇ is the rate of the plastic multiplier, and
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

h = b0

(↵ � ↵in) : n
b0 = G0h0(1� che)(p/pat )�1/2

↵b

✓ =
p

2/3[g(✓, c)M exp(�n
b )� m]n

g(✓, c) = 2c

(1 + c) + (1� c) cos 3✓
cos 3✓ =

p
6tr(n3)

n =
s
p
� ↵

p
2/3m

 = e � e0 + �c(p/pat )⇠

, (24)

where h0, ch , M , c, n
b, e0, �c, ⇠ are material parameters.

The plastic flow direction is defined as
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

m f low = Bn� C(n2 � 1
3

I) + 1
3

D I

B = 1 + 3
2

1� c

c
g(✓, c) cos 3✓

C = 3

r
3
2

1� c

c
g(✓, c)

D = Ad (↵d

✓ � ↵) : n
Ad = A0(1+ < z : n >)

↵d

✓ =
p

2/3[g(✓, c)M exp(nd )� m]n
ż = �cz < ��̇D > (zmax n + z)

, (25)

where A0, n
d , cz , zmax are additional material parameters.

The initial guesses, upper and lower bounds of the above parameters for Dakota’s “NL2SOL” calibration are
given in Table 7. The calibration procedure is identical to that of Drucker–Prager model.

B.3. Data-driven traction–separation model (Section 5.3)

Data-driven traction–separation models use artificial neural networks (ANNs) as universal function approximators
to continuous functions of various complexity on compact subsets of R

n (Universal approximation theorem, [74]).
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Table 7
Initial guesses, upper and lower bounds of the material parameters for SANISAND model.

Parameter Initial guess Lower bound Upper bound

G0 1e4 kPa 5e3 kPa 2e4 kPa
⌫ 0.25 0.1 0.4
M 0.75 0.5 1.0
c 0.9 0.7 1.0
e0 0.8 0.7 0.9
�c 0.0025 0.0001 0.005
⇠ 1.0 0.8 1.2
n

b 3.0 1.0 5.0
n

d 0.5 0.01 1.0
A0 1.0 0.5 1.5
h0 30.0 10.0 50.0
ch 1.0 0.5 1.5
cz 600.0 400.0 800.0
zmax 2.5 1.0 5.0

Moreover, a special type of ANNs, recurrent neural networks (RNN, e.g., long short-term memory (LSTM) [75],
gated recurrent units (GRU) [76,77]), can capture the functions of a time series of inputs, which is appropriate for
replicating the path-dependent material behaviors in granular interfaces. The data-driven model in the example firstly
uses the histories of normal, tangential, accumulated norm, and maximum experienced norm of the displacement
jumps through a RNN to predict the current normal and tangential fabrics of the interface. Then these displacement
jump and fabric features are input together into a second RNN to predict the current normal and tangential traction
across the interface. The parameters in each RNN are calibrated with training data of the corresponding input
and output features using the backpropagation. Each RNN consists of two hidden layers with 32 GRU neurons
in each layer, and the output layer is a dense layer with linear activation function. All input and output data are
pre-processed by standard scaling using mean values and standard deviations [78]. Each input feature contains its
current value and 4 history values prior to the current loading step. Each RNN is trained for 1000 epochs using the
Adam optimization algorithm [79], with a batch size of 128.
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