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Abstract

Observational studies and cloud resolving numerical simulations have shown
that developing tropical cyclones often have markedly asymmetric distributions of
moist convection. The present study uses a shallow-water model on the f-plane
to gain further insight into the variety of vortex intensification pathways that
may exist under such conditions. The diabatic forcing associated with asymmet-
ric convection is represented by a localized mass sink displaced from the initial
center of rotation. The pathway of vortex intensification is found to depend on
whether the velocity-convergence generated by the mass sink exceeds a critical
value s., and thereby prevents the escape of fluid that flows into the mass sink.
The critical value is approximately given by s. = 2V;/p,, in which p, is the
radial size of the mass sink, and V; is the magnitude of the local vector-difference
between the broader cyclonic velocity field and the drift velocity of the mass
sink. If the convergence is supercritical so as to exceed s, the core of the vortex
reforms in the vicinity of the mass sink and rapidly intensifies. Two other modes
of intensification are found in subcritical systems. One common mode occurs at
a moderate pace and entails a gradual drift of the vortex center toward the mass
sink, coinciding with significant contraction of the radius of maximum azimuthal
velocity. A slower mode can occur when a subcritical mass sink has substantial
azimuthal drift. The slower mode resembles that expected for a symmetric system
in which the mass sink is uniformly spread over its orbital annulus, whose radius
from the vortex center is roughly constant over time. If the mass sink pulsates so
as to periodically generate modestly supercritical values of convergence, a transi-
tion may occur from a subcritical mode of intensification to a supercritical mode
as the pulsation period increases beyond a certain threshold. In a distinct set of
simulations where the mass sink drifts radially outward from the initial vortex
center with velocity r,, supercritical convergence determined with V; = r, in the

formula for s. is generally necessary for major vortex intensification.

Keywords: shallow-water model, nonlinear dynamics, vortices, tropical cyclone
intensification
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1. Introduction

Developing tropical cyclones misaligned by the continual or past action of environmental
wind shear commonly have deep convection concentrated downtilt and well away from the
center of the lower tropospheric circulation [e.g., Nguyen et al. 2017; Tao and Zhang 2014;
Rappin and Nolan 2012; Molinari and Vollaro 2010]. The extent to which the outward
displacement and asymmetric distribution of convection may hinder intensification of the
cyclonic winds has not been fully elucidated. A complete theory should be able to predict the
likelihood of transformative events that could jump-start intensification, such as vortex-core
reformation where the localized deep convection resides [e.g., Chen et al. 2018; Nguyen and
Molinari 2015]. The motivation for this paper is to gain further insight into various pathways
of intensification and their conditions of applicability in vortices subjected to asymmetric
diabatic forcing. To strengthen the conceptual foundation that may guide future investiga-
tions with cloud resolving simulations, we here revisit the fundamentals in the context of a
shallow-water model on the f-plane.

Shallow-water and nondivergent barotropic models are often used to gain basic insight
into various processes that are seen during the development of a tropical cyclone. Enagonio
and Montgomery [2001] used a shallow-water model to shed light on how axisymmetrization
processes affect intensification following the production of localized vorticity anomalies by
convective bursts. Rozoff et al. [2009] used a nondivergent barotropic model to examine
inner-core instabilities and the impact of subsequent vorticity mixing on the intensifica-
tion of a vortex that is forced by an annular vorticity source representing the influence of
convection in the azimuthal mean. Hendricks et al. [2014] conducted a similar study using a
shallow-water model in which an annular mass sink replaced direct vorticity forcing; the mass
sink locally amplified cyclonic vorticity by generating colocated convergence. Schubert et
al. [2016] developed an analytical theory for the intensification of an axisymmetric shallow-

water vortex forced by a mass sink that continually adjusts to the radial distribution of
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potential vorticity. Lahaye and Zeitlin [2016] added a moisture equation to regulate the mass
sink in a shallow-water model as they sought to improve upon earlier efforts to understand
the nature and consequences of tropical cyclone instabilities [cf. Schecter 2018 and refer-
ences therein]. The present study expands upon the foregoing line of research with a distinct
emphasis on understanding the dynamics of shallow-water vortex intensification forced by a
localized mass sink displaced from the initial center of rotation.

Of particular interest are the early and intermediate stages of tropical cyclone develop-
ment. During this time period, the coupled asymmetric distributions of deep convection and
horizontal velocity convergence in the lower part of the vortex can be strongly influenced
by factors such as vertical misalignment that are not determined solely by low-level fluid
variables. Because of this, it is deemed reasonable to let the mass sink representing convec-
tion be an independent element of the shallow-water model used herein to gain insight into the
low-level dynamics of an immature, misaligned tropical cyclone. The independent mass sinks
in our shallow-water vortices will generate convergence zones that vary in location, spatial
extent and magnitude. They will either be static, pulsate, drift azimuthally or drift radially.

The primary objective will be to understand how variation of the convergence zone
generated by an off-center mass sink affects the mechanism and time scale of vortex inten-
sification. It will be shown that the prevailing mechanism is largely determined by whether
the magnitude of convergence exceeds a critical value dependent on the size and drift velocity
of the convergence zone, and on the local velocity of the broader cyclonic circulation. When
having supercritical intensity, a convergence zone displaced from the central region of the
cyclone will generally be found to induce on-site reformation of the vortex core and rapid
intensification.’ Systems possessing subcritical convergence zones will be found to follow one
of two slower pathways of development. If the subcritical convergence zone has radial drift,
the vortex may fail to experience more than a transient period of weak-to-moderate spinup.

The preceding results are mostly new (to the author’s knowledge) and will be thoroughly

!This paper does not restrict the term “rapid intensification” to a precise meteorological definition. The
term merely refers to a process that is considerably faster than others to which it is compared.



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

explained in due course.

Despite focusing on a single-layer system, the dynamics to be studied may indirectly
offer insights into the alignment of lower and upper circulations that often coincides with
an acceleration of tropical cyclone intensification. Previous work has shown that adiabatic
alignment can occur through the decay of three-dimensional vortex Rossby waves, just as
the axisymmetrization of a shallow-water vortex can occur by the decay of two-dimensional
vortex Rossby waves [e.g., Schecter and Montgomery 2003; Reasor and Montgomery 2015].
It is proposed here that additional analogies may exist between the various responses of a
shallow-water vortex to an off-center mass sink and distinctly diabatic pathways of alignment
found in cloud resolving tropical cyclone simulations [e.g., Nguyen and Molinari 2015; Chen
et al. 2018; Rios-Berrios et al. 2018; Schecter and Menelaou 2020 (SM20)]. One of these
diabatic alignment mechanisms involves reformation of the vortex core in an area of deep
convection downtilt of the original surface-center of rotation. The conditions required for
such an event to occur might include an analog of the supercritical convergence needed for
the core reformation process that precedes rapid intensification in our shallow-water systems.
Understanding the conditions for each of the two slower modes of intensification to occur
in our subcritical shallow-water systems may also have relevance to the alignment problem.
This is because the two modes are distinguished by whether the center of the shallow-water
vortex (imagined to represent the lower part of a tropical cyclone) gradually approaches the
mass sink (imagined to represent downtilt convection) or stays far away.

The remainder of this paper is organized as follows. Section 2 describes the forced
shallow-water system and the numerics used to simulate its evolution. Section 3 explains
the essential difference between flows produced by supercritical and subcritical mass sinks.
Section 4 illustrates how this difference largely controls the pathway of vortex intensification
in a variety of shallow-water systems. Section 5 elaborates on one of the slower subcritical
modes of intensification with relatively subtle dynamics. Section 6 returns to the discussion

started above regarding the potential relevance of the shallow-water dynamics to tropical
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cyclone development. Section 7 summarizes the conclusions of this study. Appendix A
briefly discusses a cloud resolving simulation that helped guide the construction of our
simplified representation of deep convection (the mass sink) in section 2.2. Appendix B
provides supplemental details of the computational setup. Appendix C reviews the behav-
ior of symmetrically forced shallow-water vortices for comparison to the behavior of the

asymmetric systems of present interest.

2. The Forced Shallow-Water Model

2.1 Fundamental Equations

The momentum and mass continuity equations in a shallow-water system are respectively

given by?
ou, u?
o +n, xu,+V, (?* + gh*) =F, and (1a)
Oh,

in which w,(x., t.) is the horizontal velocity field, h.(x,, t.) is the height of the free surface of
the shallow-water layer, and ), (x,,t.) = V. X u,+ [z is the absolute vorticity. As usual, V.,
represents the horizontal gradient operator, z is the vertical unit vector, x, is the horizontal
position vector, and ¢, is time. The parameters f and g respectively denote the Coriolis
parameter and the effective gravitational acceleration. The “diabatic forcing” S, on the
right-hand side of the continuity equation ideally accounts for the effects of moist convection
and radiation. The area integral of the principal negative part of S, (the mass sink) within a
simulated vortex will be offset by that of a much weaker positive part spread over the entire
domain so as to conserve total mass within the shallow-water system. A specific formula for

S, is forthcoming. The frictional effects of small scale turbulence and convective momentum

2The subscript * is used here to distinguish dimensional variables and derivatives with respect to dimen-
sional variables from their nondimensional counterparts appearing throughout the paper.
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transport that could be incorporated into F, will be neglected for this study.

It is convenient to reformulate the model and express all results in nondimensional
variables. Let U (L) be the characteristic magnitude (length scale) of u,, LU™! be the
characteristic dynamical time scale, and H be the characteristic value of h,. Substituting
u,=Uu, hy, = Hh,x, = Lx (V, = L7 'V) and t, = LU 't into Eq. (1a) with F, = 0 yields

the following nondimensional momentum equation:

ou . u? L
E—F(VXU—FRO z)xu—l—V?—i-Fr Vh =0, (2a)

in which Ro = U/Lf is the Rossby number and Fr* = U?/gH is the squared Froude number.

By a similar procedure, we may write the nondimensional continuity equation as follows:

%—l—hV-u—%u-Vh:S*L

=S. (2b)

<
=

We will focus on the parameter regime in which Ro > 1 and Fr? < 1. All tropical cyclones
satisfy the preceding condition on Ro. The small Froude number assumption may be more
appropriate for immature systems than for strong hurricanes.

Equation (2a) suggests that the perturbation of the nondimensional height field from its
value h, at the periphery of a shallow-water vortex in the parameter regime of interest is of
order Fr?. Let us further assume that the temporal deviation of h, from its initial value hg

is no greater than order Fr?. If in addition S > Fr?, Eq. (2b) would suggest that
V-u— S/hy (3)

as the Froude number asymptotically approaches zero. In the same limit, the frictionless

vorticity equation [the curl of Eq. (2a)] can be simplified as follows:

0
—C+u-V( =-nV-u

ot (4)
— — ﬁS/ho,

in which ¢ = 2-(V x u) and n = (+Ro™'. The velocity u remaining in the advective term can

7
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be diagnosed from knowledge of ( and the imposed forcing S using the Helmholtz formula,
u =2z x V¢ + Vx + u,. The streamfunction (1) and velocity potential (x) appearing in this
formula are solutions to V) = ¢ and V?y = S/hy with appropriate boundary conditions
that also determine the irrotational nondivergent velocity correction u, [see section 5.2]. It
is evident that as Fr? — 0, Eq. (4) may serve as the sole prognostic equation for the vortex
evolution. This simplified model has some computational advantages in filtering out gravity
waves, but we will reserve its use primarily for theoretical considerations.

Although characteristic scales may change as a simulated vortex intensifies under the
influence of a mass sink, a fixed nondimensionalization will be used hereafter. Specifically, U
and L will equal the initial maximum azimuthal velocity of the vortex and the initial radius
at which the maximum velocity occurs. H will equal the initial height of the shallow-water
layer beyond the outer boundary of the vortex, where the velocity field is zero. Note that the
preceding choice for H implies that Ay = 1. Choosing U and L to match the characteristics
of the vortex at the end of any simulation conducted for this study would increase the Froude

and Rossby numbers, but the former would remain small compared to unity.

2.2 Formulation of the Mass Sink

There are many possible formulations of the forcing S that appears in the continuity equation.
The formulation used here may well have broader relevance, but is conceived for studies
that aim to provide insight into the early development of the lower tropospheric circulation
of a misaligned tropical cyclone having deep convection concentrated in a localized region
downtilt of the surface vortex center [e.g., appendix A]. Although the lower tropospheric
irrotational wind associated with deep convection has both convergent and divergent parts,
we here assume that the convergent part dominates in the vortex core.

The basic form of the forcing used in this study to create off-center convergence similar
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to that associated with downtilt convection is expressed as follows:

S/ho = =50 (ps — [x — x,|) + s7p%/Aa, (5)

in which ©(x) = 1 (0) for positive (negative) x, Az > p? is the area of the simulation domain,
and all other variables are defined below. The first term on the right-hand side of Eq. (5) is
a uniform circular mass sink of radius ps centered at a position x, within the vortex core.
The second term is added to restore lost mass to the shallow-water layer uniformly over the
simulation domain; it is not uncommon to relate such a mass source to radiative cooling

le.g., Ooyama 1969]. We will restrict our attention to mass sinks with magnitudes given by
s =5, + s,sin® (7t/7,) . (6)

The first term (s,) is constant in time. The second term is a squared sinusoidal pulsation
whose amplitude and wave period are s, and 7,, respectively. Note that both s, and s, are
assumed to be non-negative. The mass sink will be allowed to revolve around the initial
vortex center (the domain center) x. and move radially outward. The specific formula for

the position vector of the sink center will be given by
Xs(t) — X0 = 75(t) [cos(Qst)X + sin(Qt)y] (7)

in which x and y are orthonormal Cartesian basis vectors, r, is a time-dependent domain-
centered orbital radius, and () is a constant angular frequency. We will assume that ry =
rso + 7st, in which ry and 7, are constants. It is worth remarking that a sizeable number of
simulations will let .9 equal the initial radius at which the azimuthal velocity of the vortex
is peaked. This particular setting is motivated by the proximity of deep convection and
maximal winds found in a recent study of misaligned tropical cyclones [SM20]; the reader
may consult appendix A for an illustrative example. Bear in mind that even if 7, = 0, the
distance between the mass sink and the mobile center of rotation will usually change over

time and thereby differ from 74 [see section 4.2.3].
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One might have considered using an alternative model that self-regulates the diabatic
forcing associated with convection, which is presently imposed through S. Such an approach
commonly involves a parameterization of convection dependent on supplemental equations
for moist-thermodynamic fluid variables that duly incorporate oceanic surface fluxes [e.g.,
Ooyama 1969; Zehnder 2001; Schecter 2011; Lahaye and Zeitlin 2016; Rostami and Zeitlin
2018]. Self-regulation of the diabatic forcing would also require moving beyond a one-
layer system, if vertical misalignment of the vortex has a role in organizing the asymmetric
convection of interest.®> But achieving the objectives of this study does not require a model
more advanced than that presented above. To answer how the properties of a convergence
zone affect intensification, we may simply vary those properties directly and examine the
responses of the vortex. In the small Froude number regime where Eq. (3) is valid, speci-
fying the properties of the convergence zone is tantamount to specifying the properties
of the mass sink. We will consider a sufficiently broad range of mass sink parameters to
uncover a variety of vortex intensification pathways with potential relevance to asymmetric
tropical cyclone development.

Note finally that the mass sink in our model has no safety switch. Its continual operation
can intensify a vortex beyond natural limits and lead to locally zero fluid depth. For all cases

considered herein, such breakdown of the model occurs after the dynamics of interest.

2.8 The Initial Vortex

Description of the initial conditions and vortex dynamics requires the introduction of a
polar coordinate system in which r and ¢ respectively denote the radial and azimuthal
coordinates, while u and v respectively denote the radial and azimuthal velocity fields. The

initial state of all systems considered herein consists of an azimuthally symmetric cyclone

3This is not to say that one-layer models are incapable of generating localized off-center convection
through mechanisms unrelated to vertical misalignment. For example, the one-layer model of Lahaye and
Zeitlin [2016] produced localized off-center convection in the aftermath of a circular shear-flow instability.

10
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whose vorticity distribution is of the form

2
1—e

2
Ty

CZQF”Q— ]Wm—ﬂ7 (8)

in which (, = 3.575, v = 1.179 and r, = 5.525. The corresponding azimuthal velocity is

given by

v = E/OT dir((7) =

r

Co 2 1-— 6_77"5 9
2yr

The aforementioned combination of values for (,, v and r, ensures that the maximum of v
is 1 at » = 1. The initial radial velocity u is set to zero. The initial distribution for A is

determined by the requirement of gradient balance,

dh v? W
A Y 10
dr r<r+R0)’ (10)

in conjunction with the condition h = 1 for » > r,. Figure 1 depicts the initial structure of

the cyclone for Ro=1.47 and arbitrary Fr.*
2.4 Numerics

Numerical integrations of the shallow-water equations are as in Schecter and Montgomery
[2006] with the straightforward addition of S in the continuity equation. The integration
technique is based on the enstrophy-conserving staggered grid model of Sadourny [1975].
The flow is evolved forward in time using a fourth-order Runge-Kutta method. Hyperdiffu-
sion is employed to dissipate grid-scale fluctuations and ensure numerical stability. At radii
well beyond 7, a sponge-ring partially absorbs outward propagating inertia-gravity waves
and keeps the peripheral fluid near rest.

The simulation domain is a square box with doubly periodic boundary conditions. The

4Needless to say, Fr must be sufficiently small to prevent the solution of Eq. (10) for A from becoming
negative as r tends toward zero.

11
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fluid variables are distributed on two nested square grids. The inner and outer grid lengths
are approximately 6 and 20 times the cyclone’s initial radius of maximum azimuthal velocity.
In the same units, the inner grid spacing dx is approximately 0.01. The outer grid spacing of
60x is relatively large but adequate for resolving the outer flow in our simulations. Appendix

B provides a more precise and complete specification of the computational parameters.

2.5 Vortex-Centered and Sink-Centered Reference Frames

The structure of a shallow-water cyclone is often analyzed in a moving vortex-centered refer-
ence frame. The vortex center [x.(t)] serving as the origin of the coordinate system is found
here by a variant of a commonly used algorithm. The streamfunction ¢ of the rotational
flow is computed from the vorticity distribution on a uniform mesh with grid spacing dz
covering the entire doubly periodic domain, and is defined to have a mean value of zero.
The search region is limited to where 1 is negative and less than a specific fraction (usually
eight-tenths) of its instantaneous minimum value. The location of x.. is provisionally equated
to the grid point in the search region where centering a polar coordinate system maximizes
the peak value of v(r), defined as the p-averaged azimuthal velocity distribution. If shifting
the coordinate center a distance dx/2 in any grid direction increases the peak value of v,
X, is reset to this more appropriate location. Searching for the peak value of v is generally
restricted to r > r., in which r. is a minimum core radius to be specified and discussed in
section 4.2.

A sink-centered reference frame is sometimes more convenient for theoretical discussions.
As the name implies, the coordinate center of this reference frame coincides with the center
of the moving mass sink. The velocity of the sink-centered reference frame relative to a

stationary observer is thus given by %, = dx,/dt.

12
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3. Basic Theory of Supercritical and Subcritical Mass Sinks

The properties of convection and lower tropospheric convergence within a developing tropical
cyclone may vary considerably from case to case, owing to different histories of the storm
systems and different environmental conditions such as sea-surface temperature and vertical
wind shear. With the variability of diabatic forcing there may exist more than one pathway of
vortex intensification. It is found that the specific pathway of intensification in our shallow-
water model crucially depends on the initial flow structure in the vicinity of the mass sink.
The present section describes two basic flow structures of central importance, their condi-
tions of applicability, and their theoretical consequences. Some simplifications are made to
reduce the mathematics and to facilitate the introduction of key concepts. The discussion
starts by considering highly localized, non-pulsating mass sinks that are positioned well away

from the center of the vortex. Other scenarios are addressed later on.

3.1 Off-Center Sinks

To begin with, assume that the Froude number is sufficiently small for the applicability of
Egs. (3) and (4). Furthermore, let s, = 0 in order for the magnitude of the mass sink to
maintain a constant value (s,) over time. Let us also suppose that p; < rs ~ 1. Then, to a
reasonable approximation, one may eliminate spatial variation from the velocity field of the
broader cyclone in the local region of the mass sink.

Let u; = u — x, denote the local fluid velocity field in the sink-centered reference frame.
In addition, let (p,d) denote a polar coordinate system centered at x,, with § = 7/2 corre-

sponding to the initial direction of u; at p = 0.> With the preceding conventions, the initial

SInitially, if the mass sink is not exceptionally strong, u; at its center is virtually equivalent to u; at large
radii. Note that a “large” radius p in a local context satisfies ps < p < 1.

13
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local velocity field can be written as follows:

u; = (Vl sin§ — So2ps z—<> p+ Vicos 00, (11)
>

in which V; = Jw(p=0)| = {[v(rs) — 7:Q]% + 72}Y/2, and p- (p<) is the greater (lesser)
of p and p,. For the systems considered herein, v in the preceding formula for V; corresponds
to the right-hand side of Eq. (9). It should be mentioned that Eq. (11) tacitly neglects a
small correction to the divergent component of u; associated with the second term on the
right-hand side of Eq. (5), under the implicit assumption that p < /Ag.

Stagnation points of u; exist where both of its components are zero. Vanishing of the
azimuthal component requires that ¢ = (2n — 1)7/2, in which n € {1,2}. Vanishing of the
radial component requires that n = 1 and

_ Wips
Ps P<

(12)

So

The preceding equation can be solved only if s, is greater than or equal to the critical value

2V
se= L (13)

S

in which case the stagnation radii occur at p = p+ = p,(s,/s.)*. The outer stagnation point
at p, is a saddle point, whereas the inner stagnation point at p_ is a point of attraction in
the sense that it pulls in nearby fluid from all directions. Henceforth, a mass sink initially
possessing (lacking) a point of attraction will be called supercritical (subcritical). Similar
terminology will be used to describe the resulting dynamics.

Figure 2a shows the initial streamlines of u; in the neighborhood of a selected super-
critical mass sink. In the imaginary scenario of a frozen velocity field, the region of fluid
flowing to the point of attraction is bounded by a separatrix emanating from the outer

stagnation point. An equation for the separatrix is readily obtained from the streamfunc-

tion ¢ of the outer nondivergent velocity field. The streamfunction outside the mass sink is

14
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defined implicitly by uw; = z x V4, and given explicitly by
Sop?
v(p,0) = 786+pr089, (14)

in which p > ps and —7/2 < 6 < 37/2. The equation for the separatrix is given by
P(p,0) = ms,p?/4, in which the right-hand side corresponds to that of Eq. (14) evaluated at
the outer stagnation point (p,,m/2). As p — 00, the separatrix equation can be solved only
if @ — —m/2 or 37/2. Let & = pcos#, and define the half-width of the separatrix , by the
limit of |Z| as p — oo along the separatrix. By Eq. (14) and our previous considerations,
we obtain T, = mpsS,/S. = mpy. It is worth remarking that for a mass sink with a non-
negative radial drift velocity r,, the outer stagnation point will be displaced from x, toward
the center or along the local tangent of the broader cyclonic flow. It follows that the local
overlap between the region of fluid drawn into the mass sink and the inward section of the
broader cyclone will have a characteristic length scale of p, or z,. Either way, the length
scale of the overlap is of order pys,/s..

Assuming that it persists, the existence of a point of attraction within the mass sink
when s, > s, is expected to have major dynamical consequences. Without a point of attrac-
tion, Lagrangian fluid elements pass through the mass sink [see Fig. 2b] and transport their
moderately amplified vorticity to other regions of the broader cyclone. With a point of
attraction, fluid elements flowing into the mass sink get trapped. Equation (4) suggests
that vorticity in the vicinity of the point of attraction will grow in a manner similar to
¢ ~ et in which (; depends on local conditions at t = 0 and a constant additive correc-
tion has been ignored. With this in mind, it is reasonable to hypothesize that the rotational
center of a cyclone containing a supercritical mass sink will jump to a relatively small but
intense vorticity core that emerges in the neighborhood of the mass sink by a time propor-
tional to s, !. Following the formation of a new central core, the cyclone should continue to
intensify on a similar time scale. By contrast, we anticipate slower and possibly incomplete

motion of the rotational center toward a subcritical mass sink. Moreover, since fluid escapes

15



359

360

361

362

363

364

365

366

367

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

the vorticity amplification process in a subcritical mass sink, we anticipate a less efficient
mode of vortex intensification.

The prediction that supercriticality (s, > s.) should enable local convergence to trap
fluid in the mass sink and thereby activate fast vortex intensification by way of core reforma-
tion seems consistent with basic dynamical considerations. It is readily seen that 7. = s, ! =
ps/2V} is the time required for the background flow in the sink-centered reference frame to
advect a fluid parcel across one-half the radius of the mass sink. Furthermore, 7, = s, is
one-half the exponential decay time for the radius of a circular ring of fluid within an isolated
mass sink. Without having conducted a detailed analysis of the flow structure in the vicinity
of the mass sink, one might have reasonably guessed that fluid trapping should occur when
T, is appreciably less than 7., or equivalently when s, appreciably exceeds s..

Note that there are several ways to transition from subcritical to supercritical dynamics.

One way is to increase the magnitude (s,) of the mass sink . Another way is to increase the

core radius pg of the mass sink. A third way is to reduce V; by changing r, €25 or 7.
3.2 Pulsating and Initially Centered Sinks

The condition for supercritical dynamics is generally more subtle for a pulsating mass sink.
To simplify the discussion, suppose that the offset s, of the squared sinusoidal pulsation is set
to zero, so that the sink magnitude oscillates between 0 and s, [see Eq. (6)]. The condition
sp > s, would seem to be required for a point of attraction to appear within the mass sink
during part of the oscillation cycle, and is presumably necessary for supercritical dynamics.
If the wave period 7, is much less than 7., one might also expect to find that s,/2 > s is a
sufficient condition for supercritical dynamics, considering that s,/2 is the time average of s
over each successive pulse. The seemingly more complicated scenario in which s,/2 < s. < s,
and 7, is arbitrary will be examined in section 4.2.4.

On another matter, it is natural to question whether the condition for supercritical

dynamics derived for systems with non-pulsating mass sinks in section 3.1 remains valid
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as rs — 0. In the preceding limit, any formal theory that includes a nonzero contribu-
tion of the broader cyclone to the local flow would have to take into account its curvature
and radial variation. On the other hand, suppose that a mass sink initialized with 4 = 0
drifts outward with a radial velocity 7 of order unity. Since the magnitude of the velocity
field of the broader cyclone near r = 0 is substantially less than unity, —r;X would provide
the main contribution to the local background flow observed in the sink-centered reference
frame. Under this scenario, 7. = ps/(275) is a good approximation for the time scale of

! still provides a reasonable

background advection across the mass sink. Moreover, 7, = s
estimate for the characteristic time scale of inflow within the mass sink. Thus, the basic
expectation of supercritical dynamics when 7, < 7. remains consistent with the condition
So > S., with V; = 7, in the definition of s.. The foregoing expectation will be tested for

systems in which 7 is comparable to unity (as supposed) or moderately smaller. Note that

a mass sink with r; = 7y = 0 is supercritical for any s, owing to a point of attraction at p = 0.

4. Simulations of Cyclones with Supercritical and Subcritical Mass Sinks

4.1 The Data Set

A large number of numerical simulations have been conducted to verify the predicted transi-
tion from slow to fast modes of vortex intensification as the status of the mass sink changes
from being subcritical to supercritical. Each simulation belongs to one of four groups that
are distinguished by the time dependence and motion of the mass sink. The mass sink is
either Stationary and Time-Independent (STI), Pulsating (P), Azimuthally Drifting (AD),
or Radially Drifting (RD).

Table I summarizes the pertinent parameters of each simulation group. All simulations
are initialized to have Froude numbers much less than unity and Rossby numbers of order
unity. Furthermore, all mass sinks have small radii relative to the cyclone’s initial radius of

maximum velocity (ps < 1). The STI, AD and RD mass sinks do not pulsate (s, = 0) and
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have static magnitudes (values of s,) straddling the critical value s.. The STI mass sinks
are distinguished by having Qs = 7, = 0. The AD mass sinks have zero radial velocity (7)
relative to the initial vortex center, but have finite angular velocities (values of ;) ranging
from 0.25 to 0.75 times the initial characteristic cyclone rotation frequency. The RD mass
sinks have zero angular velocity, and radial velocities between 0.25 and 1 times the initial
maximum velocity of the cyclone. Moreover, the RD mass sinks differ from all others in
having no initial displacement from the vortex center (rg9 = 0). The P mass sinks are
stationary and off-center like the STI mass sinks, but are distinguished in having s, = 0
and a finite pulsation amplitude. The selected pulsation amplitude (s, = 1.33s,) yields peak
and pulse-averaged intensities that are respectively above and below s.. The scaled wave
period (s.7,) varies over three orders of magnitude, from 0.2 to 150.

Figure 3 illustrates possible positions and drifts of various mass sinks within a simulated
shallow-water system. The properties of the mass sinks including their magnitudes are inten-
tionally diverse to cover a broad spectrum of scenarios that may be relevant to a developing
tropical cyclone. Appendix A illustrates the potential relevance of a quasi-stationary mass
sink and the associated off-center convergence zone over a prolonged period of vortex evolu-
tion. Drifting mass sinks are deemed analogous to drifting concentrations of cumulus activity
that are commonly found in cloud resolving simulations of asymmetric tropical cyclone devel-
opment amid environmental wind shear [e.g., Rios-Berrios et al. 2018; Tao and Zhang 2014;
Rappin and Nolan 2012]. One notable result of the forthcoming computational survey will
be an explicit demonstration of how substantial drift of the mass sink and the associated
convergence zone can radically change the mode and effectiveness of subcritical intensifica-
tion. Simulations in the supercritical parameter regime will not only verify the theoretical
prediction of faster vortex spinup, but could also prove useful for understanding plausibly
realistic intensification pathways that involve core reformation [see section 6]. Although
the majority of simulations have mass sinks with time-independent magnitudes to facilitate

discussion of the essentials of asymmetric intensification, pulsating mass sinks are included
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in the computational survey to touch upon the less purified dynamics of natural systems

where convection may wax and wane on a range of time scales.

4.2 Intensification Forced by Off-Center Mass Sinks

The present subsection considers the intensification of vortices containing off-center mass
sinks with 7¢ = 0 and hence r, = ry. The time scale for intensification is equated to the
time required for the maximum value of ¥ beyond a minimum core radius . (in the vortex-
centered coordinate system) to increase by a factor of 3, and is denoted t3. In relation to
tropical cyclone development, t3 is comparable to the time required for a tropical depression
to become a modest hurricane. The minimum radius r, = 0.138 is imposed on the search for
the maximum azimuthal velocity, because the supercritical intensification process typically
leads to the formation of exceptionally small tornado-like vortices near the point of attrac-
tion. The present study is more concerned with intensification on length scales no smaller
than the eyewall radius of a mature hurricane, which is unlikely to be smaller than one-tenth

the length scale of the tropical depression.

4.2.1 Cyclones with Stationary Time-Independent Mass Sinks

Consider first the intensification of cyclones with STI mass sinks displaced from x. by
a distance equal to the initial radius of maximum azimuthal velocity, such that r, = 1.
Figure 4 illustrates the variation of the scaled intensification time s,t3 with the ratio of
S, to the theoretical critical value s.. The variation is shown separately for systems with
ps = 0.18 [Fig. 4a] and p, = 0.37 [Fig. 4b]. Filled data points are for cyclones whose initial
conditions yield Fr=0.042 and Ro=1.47; unfilled data points are for cyclones initialized with
twice the strength in the same environment. The scaled intensification time invariably decays
as S,/s. increases from 0.33 to unity, whereupon it remains nearly constant. The decay is

roughly 3-fold (2-fold) for ps = 0.18 (0.37), regardless of the initial vortex strength.
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Figure 5 illustrates the sensitivity of the preceding results to the location of the mass
sink. Here the data are confined to cyclones whose initial conditions yield Fr=0.042 and
Ro=1.47, irrespective of whether the mass sink is relatively small [Fig. 5a] or large [Fig. 5b].
Increasing r, to 2.17 generally extends the time required for intensification. Increasing r;
also moves the end point of the transition from slow to fast intensification to a value of
So/S. that measurably exceeds unity. The end point moves farther beyond unity when the
mass sink is relatively small. Decreasing r, to 0.38 drops s,t3 closer to a semi-analytical
prediction for axisymmetric intensification in the limit rs — 0, shown by the dashed line
and explained in appendix C2. Slower development is still discernible at subcritical values
of s,, but the slowdown is minimal for systems with the larger mass sink. The latter result
is unsurprising given that the reduction of r, causes the larger mass sink to nearly overlap
the initial center of the cyclone.

In summary, the curves representing the dependence of s,t3 on the normalized sink
magnitude s,/s. change quantitatively but not qualitatively with the substantial variations
of ps, rs and cyclone intensity covered by the foregoing numerical experiments. While the
effect becomes more subtle as r, decreases toward p;, the curves generally indicate transitions
from relatively slow to fast intensification mechanisms as s, increases beyond the neighbor-
hood of the ideal critical value s.. Forthcoming analysis [see sections 4.2.3 and 5] will
shed more light on the fundamental differences between the subcritical and supercritical

intensification mechanisms.

4.2.2 Cyclones with Azimuthally Drifting Mass Sinks

A distinct and exceptionally slow mode of intensification can be found in systems with
azimuthally drifting mass sinks. Figure 6 shows s,t3 versus s,/s. for cyclones with AD mass
sinks circulating around x. with an orbital radius of r, = 1 and angular velocities ranging

from Q, = 0.25 to 0.75. The data cover systems with Fr=0.042, Ro=1.47, p, = 0.18 [Fig. 6a]
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and ps = 0.37 [Fig. 6b]. Dashed reference curves are shown for similar systems with non-
drifting (STT) mass sinks.

Regardless of the size and angular velocity of the AD mass sink, decreasing s,/s. from 2
toward subcritical values eventually leads to an abrupt departure of s, t3 from the dashed
reference curve. The departure occurs at greater values of s,/s. as (), increases toward unity.
The departure marks a transition to a mode of intensification several times slower than the
subcritical mode of systems with STI mass sinks. The exceptionally long intensification times
are close to those for axisymmetric development when the mass sink component of S (in the
disc at x;) is uniformly redistributed over the annulus defined by rs — ps <7 < rg+ ps, in
which r is measured from the initial vortex center. The theory outlined in appendix C1
shows that the maximum of © in the symmetrized system stays within the annulus and
triples in magnitude over the scaled time period s,t3 = 147 (35) when p, = 0.18 (0.37),
which is comparable to the largest value in Fig. 6a (6b). The preceding result suggests that
giving the mass sink a sufficiently large azimuthal velocity, while lowering its magnitude to
keep s,/s. fixed, can effectively transform the asymmetric system into a symmetric system
with a rigid annular mass sink whose mean radius from the center of the vortex is close
to rs. Section 4.2.3 will verify that the asymmetric systems exhibiting exceptionally slow
intensification resemble the symmetric system, in that the radius of maximum azimuthal
velocity and the distance separating the circulating mass sink from the vortex center tend
to maintain values near r,; considerable deviations may occur but do not persist over time.

Note that increasing 25 toward unity while leaving s, unchanged would simultaneously
increase s,/s. toward infinity, since s. = 2|v(rs) — rQ|/ps and v(rs) = rs = 1 for systems
with the AD mass sinks under present consideration. This fact together with Fig. 6 suggests
that increasing {2, alone could either slow or accelerate intensification. Moreover, increasing
Q) at constant s, may result in nonmonotonic variation of ¢3. For example, the small white
circles in Fig. 6a show three simulations with s, = 4.34, for which s,t3 changes from 36.6

to 130.8 to 11.5 as €2 increases from 0 to 0.5 to 0.75. That is to say, increasing €25 alone
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changes a moderately fast subcritical mode of intensification (with s,/s. = 0.4) to a slower

pseudo symmetric mode (with s,/s. = 0.8) to a rapid supercritical mode (with s,/s. = 1.6).

4.2.8 Structural Changes to the Cyclone During Supercritical and Subcritical Development

Distinct developmental pathways generally coincide with structural differences of the shallow-
water cyclones at the end of the 3-fold intensification period (¢t = t3). One basic structural
parameter denoted r,, is the radius of maximal v in the vortex-centered reference frame,
measured outside the assumed minimal core radius r, of a mature hurricane. Another basic
parameter is the distance between the centers of the mass sink and the vortex, given by
¢ = |xs — X¢|. The values of r,, and ¢ at t = t3 are respectively denoted by r,,3 and /.

Figure 7a shows a scatter plot of r,,3 versus /3 for all previously considered systems
having STI and AD mass sinks with r¢ = 1 and p, = 0.18. The white data correspond
to systems with empirically supercritical mass sinks, defined as those for which s,t3 lies
in close proximity to the small and roughly constant value found when s,/s. appreciably
exceeds unity. That is to say, the white data account for the systems with s,t3 between
10.5 and 14.6. The grey data account for the systems with subcritical mass sinks and s,t3
between 23.5 and 40.7. The black data correspond to the very slowly developing systems
with AD mass sinks and s,t3 between 128.4 and 167.2. All plotted data points satisfy the
relation |r,,3 — ¢3] < ps, meaning that the radius of maximum azimuthal velocity roughly
corresponds to the nominal radius of deep convection (concentrated convergence) measured
from the center of the vortex. On the other hand, each shaded data cluster (white, grey or
black) is well separated from the other two.

The supercritical systems are distinguished by having 7,,3 = r. and /3 < p,. In other
words, the inner core of the vortex relocates to the vicinity of the mass sink and dramatically
contracts at some point before the vortex intensity triples in magnitude. The time series of

the vortex parameters consistently indicate that the relocation occurs by the process of core
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reformation.® Near s,t = 5 or 6, depending on the cyclone strength, both 7, and ¢ abruptly
drop to values less than p,, and stay small for the remainder of the intensification period
[Figs. 8a and 8b]. At the same transition time, there is an abrupt steepening of the time
series of vy, defined as the maximum of v for r > r. [Fig. 8¢].

The systems with subcritical mass sinks belonging to the grey data set of Fig. 7a are
distinguished by having middle-range values of r,,3 and ¢3, each being larger than p, but
considerably smaller than the original radial length scale (unity) of the cyclone. Many of the
time series for r,, and ¢ [Figs. 8d and 8e] show gradual decay with an intermediate slowdown
period. Others show abrupt early drops in both r,, and ¢, reflecting core reformation events.
Following core reformation in this subgroup of subcritical systems with s, relatively close
to s, the vortex center drifts away from the mass sink (¢ increases) and the radius of
maximum azimuthal velocity (r,,) grows. The time series of v, [Fig. 8f] abruptly steepens
upon core reformation should such an event occur, but the steepening is shortly reduced.
The intensification of v, is otherwise relatively smooth.

The very slowly developing systems with AD mass sinks represented by the black data
points in Fig. 7a are distinguished by having final values of r,, and ¢ that are fairly close
to their original values of unity. The time series of the structural parameters [Figs. 8g-8i]
show a few cases in which a reformed core of smaller scale temporarily dominates, but is
later overtaken by the larger scale circulation. The thick dashed curve in Fig. 8i shows v,
for the symmetric analog system [appendix C1] whose mass sink is uniformly spread over
the orbital annulus of width 2p, centered at » = 1. The dashed curve agrees reasonably well
with the bundle of solid curves. The foregoing result corroborates our previous suggestion
that adding sufficient azimuthal drift to the mass sink while reducing s, to maintain its ratio
to s. can effectively symmetrize development.

Figure 7b shows a scatter plot of r,,3 versus ¢3 for all previously considered systems

having STI and AD mass sinks with r, = 1 and p, = 0.37. The data points are again

6Tn this paper, we consider core reformation to occur when ¢ decreases by order unity over a time interval

no greater than (commonly much less than) s; 1.
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grouped into several shades corresponding to distinct intervals of the scaled intensification
time s,t3. The white data account for systems with s,t3 between 4.4 and 6.3. The grey data
account for systems with subcritical mass sinks and s,t3 between 7.4 and 10.5. The black
data correspond to the slower developing systems with AD mass sinks and s,t3 between 27.9
and 36.9. As found for the cyclones with smaller mass sinks, /3 is positively correlated to
rm3. On the other hand, the two variables are not quite as closely matched. Moreover, the
separation between the supercritical systems (white data) and the grey subcritical systems is
less pronounced. The clearest distinguishing feature is that the grey values of r,,3 generally
exceed the minimal value r. that is characteristically found in the cyclones with supercrit-
ical mass sinks. However, the grey values of /3 are generally within the upper bound (p;)
of the spectrum that is seen in supercritical systems. Notably, this means that the vortex
centers of the grey subcritical systems eventually reach the mass sink. Time series of the
structural parameters (not shown) are similar to those found for the three groups of systems
with smaller mass sinks. A minor but notable difference is that r,, and ¢ tend to undergo

smoother (but still very rapid) transitions during core reformation events.

4.2.4 Cyclones with Pulsating Mass Sinks

Consider next the intensification of cyclones with P mass sinks whose pulsation amplitudes
are uniformly given by s, = 1.33s,, and thus satisfy the condition s,/2 < s. < s,. Figure
9a depicts the time-dependence of the sink magnitude s(¢) over the first wave period. The

mass sink is subcritical until ¢ = ¢, whereupon it becomes supercritical and maintains

c

supercritical status until ¢ = ¢I.7 The transition times are solutions to the equation

t£ = 71,cos7! (1 — 2s./s,) /(27). The width of the supercriticality interval (tf —¢) therefore

increases from 0 to 7,/2 as s, increases from s, to 2s..

"The instantaneous state of a pulsating mass sink is here called supercritical (subcritical) when s > s..
(s < s¢), in which s, is evaluated from the initial state of the cyclone. Bear in mind that this mathematical
distinction loses some physical relevance if the cyclone intensifies appreciably before s surpasses s..
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Figure 9b shows the variation of the scaled intensification time s.t3 (circles) with the
scaled wave period s.7, for systems with Fr=0.042, Ro=1.47, r; = 1 and p; = 0.18. The
dashed horizontal reference line shows the intensification time of a system with the same
parameters, but with a time independent (STI) mass sink whose magnitude s, equals the
subcritical time average (s,/2 = 0.67s.) of the P mass sink magnitude s(¢). The lower and
upper boundaries of the shaded wedge respectively correspond to s.t. and s.t}. In other
words, for a given value of the independent variable s.7,, the vertical extent of the shaded
wedge spans the (scaled) time interval during the first wave period when s(t) is supercritical.

For s.7, of order unity or less, the intensification time is approximately that obtained
when s(t) is replaced with its subcritical time average. The intensification time then sharply
drops into the supercriticality wedge as s.7, increases from approximately 10 to 20. At this
point, the supercriticality interval of the pulsation appears to be sufficiently long to permit
the faster mode of intensification that is found in supercritical STI mass sinks. The fast mode
of intensification continues to be triggered with growing delay (due to growing ¢, ) as s.7,
increases another order of magnitude. Note that when the delay becomes sufficiently large,

the slow mode of intensification can substantially amplify v,, before s becomes supercritical.

4.3 Development of Cyclones Forced by Radially Drifting Mass Sinks

Let us now consider a cyclone with an RD mass sink initially located at the center of the vortex.
The central question is whether the mass sink will escape the core of the vortex before major
intensification. One might suppose that escape can occur only if the mass sink magni-
tude s, is sufficiently small or its radial drift velocity 7 is sufficiently large. The following
suggests that the quantitative condition for escape is linked to the subcriticality condi-
tion s, < s. = 275/ ps.

Figure 10 shows one of two time periods associated with a cyclone whose initially centered
RD mass sink is characterized by ps = 0.37. One time period (t3) applies to cyclones that

triple their intensity, as measured by v,,, before the mass sink separates from the vortex
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center by a distance ¢ = 2, corresponding to twice the initial radius of maximum velocity.
To facilitate discussion, these cyclones are said to “fully develop.” The fully developed
cyclones are represented by shaded symbols. Different symbol shapes correspond to different
settings for Fr, Ro and r,. Virtually all of the fully developing systems have mass sink
magnitudes at or above the theoretical critical value s.; the only minor exception is seen
when the cyclone is relatively weak and 7, = 1, in which case full development occurs down
to s, = 0.75s.. Moreover, all of the fully developing systems triple in strength over the
short time period that is predicted by axisymmetric theory [appendix C2] and shown by the
dashed horizontal line for systems with Ro=1.47. Variation of this line with Ro is hardly
discernible over the present simulation set.

The other time period (ts) is that required for the mass sink to separate a distance
¢ = 2 from the vortex center, and applies to cyclones that fail to triple their intensity by
then. Such cyclones are said to have underdeveloped end states. Underdeveloped cyclones
are represented by white symbols. Their mass sink magnitudes are usually below s.; an
exceptional case of underdevelopment occurs at s, = s, when the cyclone is relatively strong
and 7, = 0.25. Note that the plotted value of s,ts generally exceeds the scaled time period
Sotro = 48,/ 5cps (the dashed diagonal line) required for the mass sink to reach a radius r; = 2
from the initial vortex center x.. The relation ty > t,.o results from the early, sometimes
prolonged, attraction of the actual vortex center to the mass sink.

Figure 11 shows trajectories in f-v,, phase space of cyclones that fully develop (solid
curves) and cyclones that do not (dashed curves). The centers of cyclones that fully develop
are seen to stay inside the supercritical mass sinks (¢ < p, = 0.37) that enable the rapid 3-fold
intensification process. The cyclones that fail to fully develop are seen to cease intensification
once the distance ¢ between the subcritical mass sink and the vortex center surpasses ~ 0.5.
For these cases, the smallest terminal value of v, belongs to the system with s,/s. = 0.25,
whereas the largest terminal value is shared by two systems with s,/s. = 0.75 and 1. The

latter systems can be identified in Fig. 10 as those with the largest values of s,ts.
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During the review of this paper, a number of simulations excluded from Table I were
conducted with RD mass sinks distinctly having (1) p; = 0.18 and r4 = 0, or (2) p, = 0.37
and rgo = 0.5. Common system parameters were given by 7y = 0.5, {0 = 0, Fr=0.042
and Ro=1.47. Both groups of simulations were consistent with the foregoing results in
demonstrating a transition from supercritical development to subcritical underdevelopment
as the ratio of s, to s. decreased below a value near unity (not shown). In calculating this
ratio for simulations in group 2, the working formula for the critical convergence was changed
from s, = 27,/ps to s. = 2[0%(rs) + 72]1/2/ps s0 as to appropriately take into account the
nonzero value of the azimuthal velocity field at the initial location of the mass sink.

One might speculate that the findings of this subsection offer some insight into the
vulnerability of tropical cyclone development to progressive enhancement of vertical wind
shear. Such speculation is based on the supposition that enhanced shear would act to increase
tilt and thereby nudge the lower tropospheric convergence zone associated with deep convec-
tion farther away from the surface-center of the vortex. Although continual radial drift of
the convergence zone and ultimate shutdown of development in a subcritical system would
not be expected if the shear saturates at a moderate level, intensification would be expected

to slow down if the convergence could not keep the vortex center relatively close [see Fig. 5].

5. Further Analysis of a Selected Subcritical System

The spinup of a supercritical system basically involves fluid with positive absolute vortic-
ity continually converging toward a point of attraction in the mass sink with no chance of
escape. Understanding the variability in details does not seem crucial, and is therefore set
aside. There is also little motivation to elaborate on the exceptionally slow intensification of
subcritical systems whose mass sinks have appreciable azimuthal drift. Such systems were
shown to behave much like their symmetric counterparts whose mass sinks are uniformly

spread over the orbital annulus. On the other hand, development of subcritical systems with
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minimal or no azimuthal drift can be subtle and requires further discussion.

5.1 The Spinup of a Cyclone with a Subcritical STI Mass Sink

The following analysis pertains to a cyclone possessing a subcritical STI mass sink with
So = 0.33s., ps = 0.18 and ry = 1. The initial Froude and Rossby numbers are respectively
given by Fr=0.042 and Ro=1.47. The behavior of the preceding system is considered typical
of those in the “grey zone,” i.e., those represented by the grey data in Fig. 7a.

Figure 12 depicts the evolution of the velocity and relative vorticity fields during the
intensification period. Local convergence amplifies the vorticity of fluid entering the mass
sink. Because the mass sink is subcritical, it allows this fluid to escape and continue along a
broad quasi-circular path. The initial effect is a cyclonically circulating ribbon of enhanced
vorticity emanating from the mass sink. Over time, the head of the ribbon returns to the
vicinity of the mass sink, marking the formation of a vorticity annulus. Meanwhile, the
cyclonic winds intensify and the radius of maximal v (the outer radius of the annulus)
contracts. The contraction coincides with motion of the vortex center toward the mass
sink. The concomitant emergence of mesovortices along the annulus seems attributable to
a combination of the localized forcing within the mass sink and the general susceptibility of
vorticity ribbons to roll-up instabilities [e.g., Schubert et al. 1999; Naylor and Schecter 2014].

Continual reduction of the distance ¢ between the centers of the vortex and the mass sink
distinguishes subcritical systems in the grey zone (such as that considered here) from their
slower developing counterparts with mass sinks that have appreciable azimuthal drift and
maintain a large orbital radius. Appendix C1 provides evidence that a symmetrized system
develops faster when the mass sink is closer to the vortex center. Such evidence suggests
that faster development in the grey zone is closely linked to the continual reduction of /.

If the cyclone were a point vortex in a setting with no planetary vorticity (f = 0),

the time derivative of ¢ would equal the local velocity ug, of the inflow toward x, that is
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generated by the mass sink [Eq. (5)]. An analytical expression for ug,y at low Froude number
is readily obtained by integrating the relation ¢~'d(fugny)/dl = S/ho [see Eq. (3)], resulting
in ugy = —(5,0%/20)(1 — 7f?/A4) under the assumptions that ¢ > p, and boundary effects

are negligible. It follows from df/dt = ugp, that

R | A

in which ¢, is the value of ¢ at ¢t = t;. Figure 13a compares the actual time series of /¢
to solutions of the point vortex drift model [Eq. (15)] with s,tp = 0 and 25. The model
underestimates the early decay of ¢ and overestimates the late decay. Such inaccuracy is
clearly reasonable given that the cyclone is not a point vortex and f is nonzero.

Moreover, under ordinary conditions, motion of the vortex center in a diabatic (or quasi-
diabatic) system cannot be understood simply as an advective process. A clear counterexam-
ple is the abrupt change of location that follows core reformation in a supercritical system.
Fundamentally, the vortex center x.(t) moves because the azimuthal flow centered at the end
point of the trajectory becomes stronger than the azimuthal flow centered at the starting
point. Figures 13b and 13c illustrate the dynamics for the case at hand. The left and right
r-t Hovmoller plots show the evolutions of v in the stationary coordinate systems centered
at X, = x.(0) and x.3 = X.(t3), respectively. By the end of the intensification period, the
amplification of maximal v around x.3 far exceeds the modest amplification of v around x.

Analysis of the former will follow a brief discussion of the pertinent theoretical framework.

5.2 Formulation of the Angular Momentum Budget

The equations governing the p-averaged azimuthal velocity field (without friction) and height

field are respectively
9%
a—;} =—un+&, and (16a)
8_7L _ 19(ruh) n -
ot r  Or
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in which
— Lo(ru'W
E=—uw( and &, = _190rwh) (16¢)
r  or
are the eddy forcings. Following standard practice, we have used an overbar (prime) to

denote the azimuthal mean (asymmetric perturbation) of a fluid variable. Let us further

assume that the u equation approximates to gradient balance,

Oh o (V2D

which is solved under the assumption that h = hg = 1 at r = r, > max(1,r,). Equations
(16a)-(16d) apply to both stationary and translating reference frames.

A formula for the mean radial velocity consistent with maintenance of gradient balance
during the vortex evolution is obtained by taking the partial time derivative of Eq. (16d),
and replacing 9v/0t and Oh/0t with the right-hand sides of Eqs. (16a) and (16b). The result

is the following shallow-water Sawyer-Eliassen (SE) equation [Smith 1981; Willoughby 1994]:

U 10U 7€
I WL Yy=F+F, +F 1
arz r a,r r 3 s ev eh ( 7a)

in which U = rah, £ = 20/r +Ro ™', and

98

-Fs = TE)

F., =—Fr’rég,, (17b)
98,

‘Feh = TW'

The SE equation is supplemented herein with the boundary conditions & = 0 at the origin
and at the distant radius r.. Note that as Fr? — 0, along with #’ — 0 and h — hy, the SE
equation becomes consistent with Eq. (3) in reducing to r~10(ra)/0r = S/hg. The preceding
small Froude number formula for « is obtained by integrating the SE equation in r.

Because the SE equation is linear, we may write
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U= Y U, (18)

a€{s,ev,ch}
in which U, is the solution when keeping only F, on the right-hand side. Physically, U,
represents a radial velocity field (times 7h) that would be required to maintain gradient-
balance in response to the diabatic or eddy forcing associated with F, alone. Substituting

u=U/(rh) into Eq. (16a) and using Eq. (18) yields

% za;{§76h?an + &, (19)
in which @, = U,/(rh). The angular momentum transport accounted for by —,7 would
be the sole contributor to dv/0t in a system with symmetric diabatic forcing. For systems
pertinent to the present study, asymmetric diabatic forcing creates eddies that add both
indirect (—ue,7 — Uep7) and direct (&,) contributions to the budget.

While the indirect contributions of eddy forcing are typically small, £, can be significant
and worthy of further analysis. To this end one may consider the following Helmholtz
decomposition of the velocity field: u = u, + uy + u,. The irrotational and nondivergent
contributions are respectively given by u, = Vx and uy = z x V), in which V?y = V-u and
V%) = (. The preceding Poisson equations for the velocity potential y and streamfunction )
are solved herein over a square simulation domain with doubly periodic boundary conditions.
The third component of the velocity field (u,) corresponds to the domain average of u.

Taking the Helmholtz decomposition into consideration, one may write

&y = —ub (" =yl — uaC. (20)

Because u, varies with the translational velocity of the reference frame, so too does &,. By
contrast, the instantaneous value of —u#n depends only on the instantaneous center of the

coordinate system.

31



781

782

783

784

785

786

787

788

789

791

792

793

794

796

797

798

799

800

5.8 Analysis of the Intensification of a Cyclone with a Subcritical STI Mass Sink

We are now in a position to analyze the spinup of the subcritical system of section 5.1
in a stationary coordinate system whose origin resides at x.3, and therefore coincides with
the vortex center at the end of the intensification period. Figure 14a shows the running
time integral of the right-hand side of Eq. (19) with initial conditions matching those of
the simulation. The result is virtually indistinguishable from the simulation output for
v [Fig. 13c], thus verifying the accuracy of the SE approximation for @. Further investigation
has shown that the SE approximation for « is virtually indistinguishable from the solution
to the low Froude number equation, r19(ru)/Or = S/hgy. The foregoing result suggests that
Ug > Uy, Uep, Which has been duly verified. Equally important, the eddy forcing driven by
nondivergent winds (—W) has been found to largely control the time integral of &£,; other
contributions are relatively minor.

Figures 14b and 14c show the two principal contributions to the change of v over the
intensification period. The time integral of —usn [Fig. 14b] alone would amplify the vortex
by roughly a factor of 6. Persistent damping by the primary eddy forcing implied by the
increasingly negative running time integral of —W [Fig. 14c| is crucial to reducing the
actual amplification factor to 3. While the negative eddy forcing has not been thoroughly
studied, one contributing factor could be the continual advection of localized sink-enhanced
vorticity out of the inner core centered at x.3, most apparent in the lower-left panel of Fig. 12.

It is instructive to compare the preceding angular momentum budget to that observed
in the moving vortex-centered reference frame. Here too, it is found that the theoretical
approximation of 0v/dt [Eq. (19)] is excellent and g >> ey, Uep. Figure 15a shows the
evolution of v taken directly from the simulation. The radius of maximal v stays near but
outside the contracting radial coordinate (¢) of the mass sink. Figure 15b shows the partially

reconstructed velocity field

t
vy = 0(r,0) — / usn dt
0
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obtained when only the influx of absolute vorticity driven by us &~ u contributes. The veloc-
ity boost associated with —usn is smaller than its counterpart in the stationary coordinate
system considered previously, but sufficient to triple the peak value of v. Instead of broadly
countering the intensification induced by —u,n, the cumulative effect of the eddy forcing is
to shift the peak of ¥ from r = 0.58 to 0.42. As before, the time integral of _W [Fig. 15¢]
tends to be larger than the time integrals of other contributions to &,, but the combined

influence of —u/ (" and —wu,(" is appreciable [Fig. 15d].
6. Discussion
6.1 Pathway of Tropical Cyclone Development

The theory of tropical cyclone intensification has a long and venerable history [see Montgomery
and Smith 2014; Emanuel 2018]. The present study is among others suggesting that a
complete theory must address which of several distinct pathways of intensification is most
likely to operate under specific conditions, especially during the early stages of development
when strong asymmetries may exist [cf. Nicholls and Montgomery 2013]. The shallow-water
model hints that the prevailing pathway may depend on whether conditions facilitate or
hinder the emergence and maintenance of a convergence zone of supercritical intensity. It is
therefore of interest to ask whether a supercritical convergence zone can actually exist in a
real tropical cyclone.

The following range of estimates for s. suggest that a supercritical convergence zone
is within the realm of possibilities. Consider an incipient tropical cyclone with a mean

azimuthal velocity Ve of 10-20 m s™!

in the vicinity of an off-center convergence zone
associated with vigorous deep convection.® Suppose that the convergence zone has an effec-
tive radius ps of 50-75 km, and propagates with azimuthal velocity eVrc. Letting e vary from

0 to 0.7 would yield s. = 2Vrc(1 —¢€)/ps = 8 x 107> —8 x 107* 571, The smallest estimate of

8The asterisk denoting dimensional variables elsewhere is dropped for the present discussion.
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S is obtained from the lower limit of Virq, the upper limit of €, and the upper limit of p,; the
largest estimate is obtained from the opposite limits. One might imagine a number of other
reasonable parameter variations that give similar results. Taking the smallest estimate for s,
and only a slightly greater value for the average intensity s, of the convergence zone, the time
scale s, ! for supercritical dynamics to start having an impact would be approximately 3.5 h.
Even this upper-end value for the time scale seems physically sound in falling within the
reported range of achievable lifetimes for “extreme convection” in oceanic tropical weather
systems [e.g., Gray 1998]. Moreover, an average intensity s, exceeding the smallest estimate
of s. seems plausible based in part on documented studies of developing systems simulated
with cloud resolving models [e.g., Chen et al. 2018]. That being said, the actual probability
of pairing s, with smaller s, in nature is unknown at this time.

Whether the shallow-water condition for supercriticality (s, > s.) would really enable
core reformation and rapid intensification in a tropical cyclone is another unresolved issue.
The answer is presently unclear, not least because the shallow-water model neglects three-
dimensional processes that generally complicate the flow within a moist-convective conver-
gence zone. Moreover, the shallow-water model considered herein neglects frictional dissi-
pation of angular momentum. Such neglect would seem unjustifiable when the convergence
zone does not extend far above the frictional boundary layer. The present shallow-water
model also neglects modifications to a natural convergence zone that may occur as friction
and other factors influencing convection change after a potential core reformation process
begins. Further study with cloud resolving simulations will be necessary to gain a firmer

understanding of the qualitative applicability of shallow-water theory in its present form.

6.2 Symmetric versus Asymmetric Forcing

The findings of this study suggest that symmetrization of an off-center mass sink in a shallow-

water cyclone commonly slows down the intensification process.” Such a result may seem

9Compare the small values of s,t3 given by filled circles in Fig. 4a (4b) to the large minimum of Soty for
rs = 1 in Fig. Cla (C1b). Note that the aforementioned minimum of s,t4 is the semi-analytical prediction
for s,t3 in the symmetrized system.
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at odds with the conventional view that symmetric convection facilitates the development
of a tropical cyclone. Therefore, it is important to clarify what has actually been shown.
In the present context, symmetrization constrains the distance between the mass sink and
the vortex center to the initial value of /. The asymmetric system has no such constraint,
and (when €2 and 7 are minimal) permits the reduction of ¢ to values at which the symmetric
component of the mass sink can more rapidly accelerate v in the vortex-centered reference
frame. In axisymmetric tropical cyclone models where convection is dynamically coupled
to the vortex structure, the mean radius of the main updraft (effective annular mass sink)
generally contracts during development. Such contraction may allow symmetric pathways of
tropical cyclone intensification to occur faster than asymmetric pathways of spinup resem-
bling those considered herein.

Note further that the tendency of an asymmetrically forced shallow-water system to
intensify faster than its symmetric counterpart with ¢ fixed to its initial value does not
imply that the attendant eddy forcing of v has a major positive role in the amplification
of v,,. Such was evident from the analysis of section 5 pertaining to a selected subcritical
system with an STI mass sink that developed roughly four times faster than its symmetric
counterpart. In a stationary coordinate system centered where x. was located at the end of
the intensification period, asymmetric eddy forcing strongly opposed the primary positive
spinup tendency associated with the inflow of angular momentum induced by the symmetric
component of the mass sink. In the moving vortex-centered reference frame, asymmetric
eddy forcing appeared to have a relatively modest role in modulating the symmetrically
amplified distribution of . Thus, the present results do not contradict the common view
that the symmetric component of diabatic forcing within a tropical cyclone should provide
the dominant positive contribution to the intensification of v [e.g., Nolan and Grasso 2003;

Nolan et al. 2007].1°

10Bear in mind that angular momentum transport by asymmetric eddies can be fairly complex in real-
world or realistically simulated tropical cyclones [e.g., Nguyen et al. 2008; Persing et al. 2013; SM20]. There
is no intention to suggest that the present findings on eddy transport in a simplified shallow-water simulation
should qualitatively apply to all conceivable circumstances in nature.
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7. Summary and Conclusions

This paper has examined the evolution of a shallow-water cyclone that contains an off-center
convergence zone induced by a mass sink. Study of such a basic system was motivated by
its possible relevance to the development of a misaligned tropical cyclone, in which conver-
gence associated with deep convection is commonly enhanced in the downtilt sector of the
lower tropospheric vortex. The pathway of vortex intensification was shown to depend on
whether the magnitude of convergence generated by the mass sink exceeds a critical value
se = 2V;/ps, in which pg is the radial size of the mass sink, and V; is the magnitude of
the local vector-difference between the broader cyclonic velocity field and the drift velocity
of the mass sink. Figure 16 illustrates some essential differences between the asymmetric
pathways of intensification found to result from convergence above and below the critical
value. Convergence exceeding s. traps fluid undergoing vorticity amplification within the
mass sink, whereas convergence less than s. allows the fluid to escape. Consequently, super-
critical convergence in our simulations generally enabled core reformation in the vicinity of
the mass sink [Fig. 16a] followed by rapid intensification of the new and smaller core. Subcrit-
ical convergence generally coincided with a slower and more subtle spinup mechanism.
Systems possessing stationary time independent (STT) mass sinks of subcritical magni-
tude intensified through a process during which vorticity enhanced by the mass sink recircu-
lates and the vortex center x, gradually drifts toward the sink center x, [Figs. 16b and 12].
In these and all other systems, contraction of the distance ¢ between the centers of the
vortex and the mass sink coincided with contraction of the radius of maximum azimuthal
velocity 7,,. In a case study selected for detailed examination, the drift of x. toward x, did
not closely follow the path predicted by a simplified model in which the extended cyclone
was reduced to a point vortex passively drawn into the mass sink. Such a discrepancy was
to be expected, not least because of continual vorticity production within the mass sink.

The intensification of the maximum p-averaged azimuthal velocity v,, was analyzed in the
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moving vortex-centered reference frame, and in a stationary reference frame centered where
X resides at the end of the intensification period. In both cases, the influx of absolute vortic-
ity driven by the symmetric component of the sink-induced radial velocity field () provided
the dominant positive contribution to the intensification of v,,. Eddy forcing had a modulat-
ing influence in the vortex-centered reference frame, and a strongly negative influence in the
stationary reference frame. Similar to the behavior of symmetric systems [Fig. 16¢], increas-
ing/decreasing the initial distance between an STT mass sink and x. lengthened /shortened
the intensification period.

Giving the mass sink sufficient azimuthal velocity (rs{2s), while simultaneously decreasing
the magnitude s, of the sink-induced convergence to conserve its ratio to s., revealed a much
slower mode of intensification. The slower mode featured minimal long-term decay of /,
and a time series for v,, resembling that of a symmetric system in which the mass sink
is uniformly spread over its orbital annulus. Transitions to the slower mode of intensifica-
tion were found when starting from either subcritical or slightly supercritical systems whose
mass sinks were stationary. Increasing €2, from zero while keeping s, constant can ultimately
change a subcritical system with a moderately paced asymmetric mode of intensification to
a supercritical system with a much faster mode by reducing s.. However, as shown by an
illustrative example, the effectively symmetric slowest mode of intensification can occur in
an intermediate frequency band.

Allowing the mass sink to pulsate adds another dimension to the evolution of a shallow-
water cyclone. A subsection of the present study examined stationary, pulsating mass sinks
generating convergence with a peak value s, between s. and 2s.. For a pulsation period 7,
substantially less than 1/s.— the time scale for the broader cyclone to advect a fluid parcel
across the mass sink —the cyclone slowly intensified as though it possessed a subcritical STI
mass sink generating steady convergence of magnitude s,/2 < s.. Increasing s.7, substan-
tially above unity allowed core reformation and rapid intensification to occur during the first

supercritical phase of the pulsation. A similar scenario unfolded with increasing delay as

37



934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

s.T, was taken up to values of order 100.

A distinct set of numerical simulations considered the behavior of a shallow-water cyclone
with a radially drifting (non-pulsating) mass sink starting at the center of the vortex. As
usual, the behavior depended on whether the magnitude of sink-induced convergence s,
exceeded the critical value s., here calculated with V; equaling the radial drift velocity 7.
Subcritical mass sinks with s, < s. generally escaped the trailing core of the cyclone before
completion of the intensification process. By contrast, supercriticality (s, > s.) generally

guaranteed rapid intensification and full development.
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Appendix A: Asymmetric Convergence in a Simulated Tropical Cyclone

The main purpose of this appendix is to illustrate the localized off-center convergence in
the lower troposphere said to be common in cloud resolving simulations of misaligned tropi-
cal cyclones. Figures Ala-Alc show a 6-h time-averaged view of a misaligned tropical
cyclone simulated by Schecter and Menelaou [SM20] prior to the onset of rapid intensifi-
cation. Configurational details of the simulation— named DSPD-X400Z5 —can be found
in the foregoing reference. Consistent with statements in the main text, convergence of the
horizontal velocity field is clearly enhanced near the off-center focal point of deep convection
in the downtilt sector of the lower tropospheric vortex [Fig. Alal. Although patches of diver-
gence exist within the vortex core, their subdominance at this time is evident in that the

irrotational wind over the entire vortex core streams into the region of enhanced convergence.
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Note also that the principal region of convection and convergence occurs near the radius of
maximum cyclonic velocity [Fig. Alb]. Qualitative aspects of the preceding scenario seem
fairly normal throughout the early and intermediate stages of development of the system at
hand. Another nice illustration of concentrated off-center lower tropospheric convergence in
a more realistically simulated system can be found in Fig. 4 of Chen et al. [2018].

While not an explicit part of our shallow-water model, the moisture dynamics regulating
deep convection and the associated lower tropospheric convergence merits some discussion.
Figure Alc offers some insight into the moisture dynamics involved in maintaining asymmetric
off-center convection in the tropical cyclone under present consideration. Convection downtilt
of the surface-center of rotation is seemingly supported by an incoming stream of bound-
ary layer air possessing moderately enhanced equivalent potential temperature (.). The
relatively high 6, inflow appears to come partly from the outer vortex and partly from recir-
culating air in the core. Oceanic surface fluxes presumably help the recirculating air recover
from exposure to any low 6, downdrafts that may be connected to precipitation. The uptilt
sector of the vortex is distinguished in part by having low humidity in the lower-middle tropo-
sphere, which among other possibilities may increase the negative feedback of entrainment
on any local attempt to establish vigorous deep convection. Two factors that can contribute
to low humidity uptilt are subsidence and ventilation by the horizontal winds of the middle
tropospheric circulation [SM20].

Figures Ald and Ale verify that downtilt localization of the convergence zone near the
radius of maximum wind speed is a persistent feature of the tropical cyclone under present
consideration. The depicted 65-h time frame covers a period after genesis and before the

onset of rapid intensification. The plotted convergence profiles are defined by

M, (1, t) = — (r.V, - u,) and My(p,t,) = — (r.V,-u,) (A1)

vz rz’

in which 7, is the (dimensional) radius and ¢ is the azimuth in a surface vortex centered

polar coordinate system. The operator (...) - 0 the definition of M, denotes an average
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over the full azimuthal circuit and the vertical interval 0 < z, < 3 km, in which z, is the
height above sea-level. In the Boussinesq approximation, where —V, - u, = Ow,/0z,, the
integral of M, over an arbitrary radial interval is directly proportional to the net upward
mass current at z, = 3 km on the annulus spanning that interval. It is seen that M.
stays peaked near the dashed curve tracing the radius of maximum wind during much of
the evolution. The operator (...), in the definition of M, denotes an average over the
radial interval 0 < r, < 200 km and the vertical interval 0 < z, < 3 km. In the Boussinesq
approximation, the integral of M, over an arbitrary interval of ¢ is proportional to the net
upward mass current at z, = 3 km on the corresponding sector of a surface vortex centered
disc with a radius of 200 km. It is seen that M., stays fairly concentrated near the white
curve that traces the orientation angle of the tilt vector, which by definition points from the
surface center to the middle tropospheric center of rotation.

Figure A1lf shows the evolution of the g-averaged azimuthal velocity near the surface
of the tropical cyclone in the surface vortex centered reference frame. The absence of any
abrupt change to the slow intensification during the depicted time interval is similar to what
may be expected for a subcritical shallow-water system [see sections 3 and 4]. Subcritical
behavior of a system whose convergence zone of radius ps, has a small drift velocity relative
to the local azimuthal velocity v, is consistent with —(V, - u,)ps«/2v, having a characteristic
value less than unity in the convergence zone. A characteristic value of order one-tenth
is readily gleaned from Figs. Ala and Alb. Section 6.1 discusses the possibility of other

asymmetric tropical cyclones behaving like supercritical shallow-water systems.

Appendix B: Computational Parameters

The computational parameters of the numerical model are defined in appendix C of Schecter
and Montgomery [2006], and are listed in Table II. Briefly stated, Lg (Lcg) denotes the

full length of the inner fine grid (outer coarse grid), dz (AX) denotes the fine (coarse)
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grid spacing, 6t denotes the time step, 7spng (07spng) denotes the inner radius (edge width)
of the peripheral sponge ring, 5 denotes the momentum damping rate associated with the
sponge-ring, and g denotes the fourth-order hyperdiffusion coefficient on the fine grid. The
hyperdiffusion coefficient on the coarse grid is given by veg = (AX/dx)*1. All tabulated
values are nondimensionalized using L and LU ! as the characteristic scales, in which L and
U are defined in the last paragraph of section 2.1. For example, 6x = dx,/L and §t = Udt. /L,

in which the asterisk as usual denotes a dimensional version of the variable.

Appendix C: Axisymmetric Development

C.1 Cyclones with Annular Mass Sinks

This appendix discusses the behavior of an azimuthally symmetric analog of an asymmet-
rically forced cyclone. Both systems are assumed to have the same initial distribution of
v, given by the right-hand side of Eq. (9). The forcing term in the continuity equation of
the asymmetric system is given by S in Eq. (5). The mass sink in S is assumed to have a
constant value of ry (greater than p,) and no pulsation (s, = 0). The symmetric system is
obtained by transforming the mass sink component of S from an off-center circular disc to
a uniform distribution within an annulus defined by r_ <r <r,, in which rL = r, + p, and

r is measured from x.. The transformed forcing term is denoted Sgyr, and given by

2 2
ho ry—1r2 d

Somlt) _ 2ol o )0, — 1) + O Al 1), ()

Equation (C1) guarantees that

/ SeymdA = / SdA, (C2)
A A

in which the area A of integration can be (1) any circular disc of radius r less than r_, (2)
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any circular disc of radius 7 between r; and \/m, or (3) the annular region defined by
r_ < r < ry. Thus, the symmetric and asymmetric systems pump mass into the shallow-
water layer at equivalent rates between any two radii that are both in region 1 or both in
region 2. Moreover, the two systems pump mass out of the principal annular sink region at
the same rate.

The time scale for symmetric intensification depends partly on the speed at which the
radial velocity field advects angular momentum inward from the periphery of the cyclone.
As usual, we will consider the regime of asymptotically small Froude numbers to permit the
use of Eq (3). Integrating the aforementioned equation for the divergence of radial velocity

in the symmetric system yields

0 r<r_
2 2
SoTP2T  Sop?
Usym (1) = oA, or X9 (r2=r2)/(rt —r2) ro<r<ry (C3)
1 r>ry,

under the assumption that r < \/As/7.
Conservation of absolute angular momentum in the symmetric system can be expressed

as the following equation for the symmetric azimuthal velocity field:

2 2
TUsym (7, 1) + T ToUsym (70, 0) + 21%07 (C4)

in which r,(r,t) is the initial radius of the fluid ring having radius r at time ¢. A formula
for r, is found by solving the equation Or,/0t = —usym(r,) with the boundary condition
ro(r,0) = r. For values of r beyond the radius very close to r_ where ug,,, becomes negative,

and for values of ¢ sufficiently large to ensure that r, > r,, one finds that

A 2 or? —r2\" —mp2s,t
2 _ . _ > + — PsSo
oS () (R ()],

in which r- (r.) is the greater (lesser) of r and r, 0 = 1 — w(r2 — r?)/A; and p =
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m(rl —r2)/(0A4). Note that for r > ry and mp2s,t/Aq < 1, Eq. (C5) simplifies to r2 ~
r? + p2 (1 — w2 /Ayg) sot.

The time at which vy, reaches a threshold vy at a specific radius r within or outside
the principal negative annulus of the mass sink is found by numerically solving Eq. (C4) for
t after replacing vgym(,t) with vy and r, with the right-hand side of Eq. (C5). Let us denote
the solution by ¢4 (r). Figure Cla shows s,t4 versus r for the case in which vy = 3, or thrice
the initial maximum velocity of the vortex. Different curves correspond to systems whose
mass sinks have different values of r¢ ranging from 0.33 to 1.67; in all cases, p; = 0.18. Each
curve begins at a radius slightly greater than r_/[1 — w(r2 — r2)/A4)"?, where tugm = 0
and Vs, remains constant over time according to Eq. (16a) with £, = 0. In general, vgym
first reaches vy (ty is minimized) at a radius less than r, but the velocity at ry achieves the
same milestone shortly thereafter. Note also that increasing r, increases the minimum time
required for vgym, to reach vy. Figure Clb demonstrates that the radial dependence of s,t4

is qualitatively the same when p, = 0.37.
C.2 Cyclones with Centered Circular Mass Sinks

Cyclones whose mass sinks are parameterized by Eq. (5) with r; = 0 are azimuthally symmet-
ric without modification. As before, one may substitute a formula for r,(r,t) into Eq. (C4)
and solve for the time ¢ at which vy, at 7 on the left-hand side equals a specific threshold.

The appropriate formula is given by

2 p 2/[Aa/(mp3)—1] —mpPsot
1—(1—-—=> s _PsTo” C6
( Ag ) (T<) o ( Ag ) 7 (9

in which r- (r-) is the greater (lesser) of ps and r. The preceding equation is valid for any

A
200 4) — d
) =+

r, but assumes r, > ps. The values of ¢3 producing the dashed lines in Fig. 5 correspond to

the solutions of Egs. (C4) and (C6) for ¢t with veym(r,t) — 3 and r — 7. < ps.
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1167

1168

sink type So/Se Sp/Ses ScTp Q, T T's0 Ps Fr Ro
STI 0.33-2.0 0, — 0 0 0.38-2.17 | 0.18-0.37 | 0.042-0.084 | 1.47-2.95
AD 0.33-2.0 0, — 0.25-0.75 0 1.0 0.18-0.37 0.042 1.47
RD 0.25-2.0 0, — 0 0.25-1.0 0 0.37 0.021-0.084 | 0.74-2.95
P 0 1.33, 0.2-150 0 0 1.0 0.18 0.042 1.47

TABLE I. Physical parameters for simulations categorized by sink type.

parameter values
Lyy 5.97
Ly 19.6
dr x 103 9.21
AX x 103 55.3
5t x 10* 1.84, 3.68, 7.37
Tspng 8.84
OTspng 0.37
B 90.5, 45.3, 22.6
vig X 108 4.00, 2.00, 1.00

TABLE II. Nondimensional values of various computational parameters. From left to right,
comma-separated values correspond to simulations initialized with (Fr,Ro) = (0.021,0.74),

(0.042,1.47), and (0.084,2.95).
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Figure 1: Relative vorticity (¢), azimuthal velocity (v) and height anomaly (6h = h — 1) of
the initial axisymmetric vortex. The height anomaly is computed with Ro=1.47 and divided
by Fr? so as not to depend on the Froude number.
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Figure 2: (a) Initial streamlines of u; in the vicinity of a supercritical mass sink (grey disc)
with s,/s. = 2. Each x marks the location of a stagnation point, whereas the thick dashed
curve separates fluid drawn into the mass sink from untrapped fluid. (b) As in (a) but for
w; in the vicinity of a subcritical mass sink with s,/s. = 0.5. Note that the sink-centered
polar coordinates defined in section 3.1 relate to the depicted Cartesian coordinates by
p=+/72+ 7% and 0 = tan~1 (/7).
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Figure 3: Illustration of possible positions and drifts of various sinks (shaded discs) within
a shallow-water cyclone. The sink centers are labeled x,, whereas the domain center that
coincides with x. is marked by the +. The arrows stemming from the AD and RD mass
sinks show the directions of their drifts. The dashed circle centered on x. is the orbital
path of the AD mass sink. The thick shaded arrow depicts the azimuthal velocity v of the
cyclone prior to any substantial change of the vortex center. Note: although the figure shows
multiple sinks, each simulation has only one.
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Figure 4: Normalized intensification period (s,t3) versus the ratio of the sink magnitude s,
over the theoretical critical value s, for cyclones possessing STI mass sinks with r, = 1.0 and
(a) ps = 0.18 or (b) ps = 0.37. Filled and empty circles correspond to systems with distinct
pairs of Fr and Ro, as indicated in the legend. Here and elsewhere [Figs. 5-7], the legend
in (a) is for (b) as well.
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(a) STI mass sinks: ps =0.18 (b) ps=0.37
re=2.17
100 A ® 1 25 ]
0.38
80 Fr = 0.042 20 -
iy Ro = 1.47 o
" "y
60 7 15 -
40 A 1
o0 107 o
L (]
° °
20 7 51 ® o o ° °
%¢00 0 ° °
0 T T T T 0 T . T .
0.5 1.0 So/Se 1.5 2.0 0.5 1.0 SofSe 1.5 2.0

Figure 5: As in Fig. 4, but for cyclones possessing STI mass sinks at various radial distances
from the initial vortex center. Different symbols represent systems with different values of
rs, as shown in the legend. The dashed lines show s,t3 when ry = 0. In all cases, Fr=0.042

and Ro=1.47.
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Figure 6: As in Fig. 4, but for cyclones possessing AD mass sinks with ¢ = 1 and various
angular velocities. Different shaded symbols represent systems with different values of €2,
as shown in the legend. The dashed curves show s,t3 when €2, = 0. Small white circles in
(a) mark the simulations mentioned near the end of section 4.2.2 with s, = 4.34 and (left to

right) Q5 = 0, 0.5 and 0.75. In all cases, Fr=0.042 and Ro=1.47.
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Figure 7: (a) Radius of maximal v in the vortex-centered reference frame (r,,3) versus the
distance between the mass sink and vortex centers (¢3) at the end of the intensification period
for all systems possessing STI or AD mass sinks with p;, = 0.18 and r4 = 1.0. The shape
of each symbol indicates the value of €2,. The shade of each symbol indicates the mode of
intensification, as explained in the main text. The dashed line corresponds to 7,3 = ¢3. (b)

0.9

(b)
0.8 1

0.7 1

0.3 1

0.2 1

0.1 4

0s=037 rs=1.0

FEIITO e A

floor —

0.2 0.4 IR 0.6

As in (a) but for systems possessing mass sinks with p; = 0.37.
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Figure 8: (a-c) Time series of (a) 7, (b) ¢ and (c) v, for all systems having supercritical
STI or AD mass sinks with ps = 0.18 and ry = 1, represented by the white data in Fig. 7a.
Solid (dashed) curves correspond to systems with Fr=0.042 (0.084) and Ro = 1.47 (2.95).
(d-f) As in (a-c) but for systems with subcritical mass sinks represented by the grey data
in Fig. 7a. All curves are solid regardless of differences in Fr and Ro. The thick solid
curves correspond to the system analyzed in section 5, possessing an STI mass sink with
So/Se = 0.33. (g-i) As in (a-c) but for systems with subcritical AD mass sinks represented
by the black data in Fig. 7a. The thick dashed curve in (i) corresponds to the maximum
over 7 of Vg (7, t) in the symmetrized system described in appendix C1.
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Figure 9: (a) Time dependence of the normalized magnitude s/s. of a pulsating (P) mass
sink with s, = 1.33s. over the first wave cycle. (b) Wave period (7,) dependence of the
intensification period (t3, circles) of a cyclone possessing a P mass sink with p, = 0.18,
rs = 1, and the waveform in (a). Both the wave period and intensification period are
normalized to 1/s.. The Froude (Rossby) number is 0.042 (1.47). The shaded regions in (a)
and (b) correspond to when s is supercritical during the first wave cycle. The horizontal
dashed line in (b) shows s.t3 when the P mass sink is replaced with an STI mass sink having
the same size and location with s, = s,/2.
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Figure 10: Graphical synopsis of the behavioral variation of cyclones possessing RD mass
sinks with ps = 0.37. As shown in the legend, different symbol-shapes correspond to systems
with different settings for Fr, Ro and 7. Shaded data: normalized intensification period (s,t3
versus S,/s.) for cyclones that fully develop. White data: normalized time for separa-
tion (s,te versus s,/s.) between the mass sink and the center of a cyclone that fails to
fully develop. The dashed lines are explained in the main text.
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Figure 11: The ¢-v,, phase space trajectories of cyclones that fully develop (solid curves) or

fail to fully develop (dashed curves) when forced by RD mass sinks. The trajectories account
for all systems in Fig. 10.
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Figure 12: Development of a cyclone possessing an STI mass sink with p; = 0.18, 4 = 1
and s, = 0.33s.. The Froude and Rossby numbers are respectively 0.042 and 1.47. Top:
snapshots of the streamlines and magnitude of the velocity field u in the stationary domain-
centered reference frame. The white + marks the center of the vortex denoted in the main
text by x., whereas the black x marks the center of the mass sink denoted by x,. Bottom:
corresponding snapshots of the logarithm of relative vorticity ¢ divided by (, = 54.3. Regions
with vorticity less than 1073, (greater than (,) are shaded black (white). The dashed circle
is centered at x.(f) and has a radius equal to 7, (¢). The solid circle is centered at x.(¢3) and
has a radius equal to 7,,(t3), in which t3 = 36.58s, 1.
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Figure 13: (a) Time series of ¢ for the simulation shown in Fig. 12. The simulation result
(solid curve) is compared to hypothetical time series of ¢ (dashed curves) that would result
upon replacing the relative vorticity distribution with a single point vortex at x. and elimi-
nating planetary vorticity at the beginning of the simulation or after moderate development
has occurred. (b,c) Evolution of © in stationary coordinate systems centered at (b) x.
and (c) x.(t3) for the same system; the contour interval is 0.2 units.
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Figure 14: Analysis of the intensification of the cyclone in Fig. 12 in a stationary reference
frame centered at x.(t3). (a) Precise reconstruction of v (denoted vgg) from a running time
integral of the right-hand side of Eq. (19), in which @ is obtained from a solution to the SE
equation. The contour interval is 0.2 units. (b) Primarily positive contribution to the time
integral from —usn. (c) Primarily negative contribution to the time integral from —W.
The grey scale to the right of (b) and (c) applies to the partial velocity change (6v) in either
panel. In (b) and (c), solid black/white contours correspond to positive/negative values of
0v spaced 0.3 units apart; dotted white curves are zero contours; the tick extending upward
from the bottom axis at » = 0.37 indicates where the center of the mass sink resides.
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Figure 15: Intensification of the cyclone in Fig. 12 as seen in the moving vortex-centered
reference frame. (a) Evolution of o. Solid black contours are spaced 0.2 units apart. The
thick solid white curve here and in (b)-(d) traces the radius of maximal ©. The thick dashed
white curve traces the location of the sink center. (b) Hypothetical v (denoted ;) that would
be generated by adding only the running time integral of —t,7 to the initial conditions. The
contour spacing is 0.2 units. (c,d) Running time integrals of (c) —W and (d) —(u} + uq)(’
In (¢) and (d), thin solid black/white contours correspond to positive/negative values; thin
dotted white curves are zero contours; the contour interval is 0.15 units.
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Figure 16: (a,b) Schematic illustrations of a shallow-water vortex undergoing (a) supercritical
and (b) subcritical asymmetric intensification. Black curves with arrows convey the fluid
motion within the vortex. Large light grey discs convey the presence of the broader vorticity
distribution. The smaller mass sinks (convergence zones) shown in dark grey are taken
to be stationary to simplify the illustrations. It is seen that the rotational center of the
vortex (x.) abruptly jumps to the localized mass sink in the supercritical system, and more
gradually drifts to the localized mass sink in the subcritical system. Other key aspects of
the dynamics are noted in each panel. Bear in mind that if a subcritical mass sink has
substantial azimuthal velocity, the displacement of x. can be limited. (c) The symmetric
intensification process reviewed in appendix C and depicted here for reference. In contrast to
the asymmetric systems in (a) and (b), here the mass sink is annular and x. remains fixed.
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Figure Al: (a)-(c) Snapshot of the misaligned tropical cyclone in simulation DSPD-X400Z5
of SM20. All plotted fields are time-averaged between hours 160 and 166 of the simula-
tion. The + marker shows the 6-h time-averaged center of rotation in the boundary layer,
whereas the x marker shows the same at height z, ~ 7.7 km. The former (latter) is denoted
Xes (Xem) in SM20. The downtilt direction points from + to x. (a) Convergence of the
lower tropospheric horizontal velocity field u, (shading) and streamlines of the irrotational
component u,. of that velocity field (white curves). The black solid and dashed curves
respectively represent positive and negative contours of vertical velocity w, at z, = 8.9 km.
The contour spacing is 0.5 m s~!, and the zero-line is excluded for clarity. (b) Magnitude
(shading) and streamlines (grey curves) of the nondivergent component uy, of the lower
tropospheric velocity field. The black contours are as in (a). All lower tropospheric fields
in (a) and (b) are vertically averaged between the sea-surface and z, = 3 km. See section
5.2 for precise definitions of u,. and uy.. (c) Boundary layer equivalent potential tempera-
ture (shading), boundary layer streamlines (grey curves), lower-middle tropospheric relative
humidity (black contours; %), and the surface moist enthalpy flux where it is peaked (white
contours; W m~2). The boundary layer equivalent potential temperature and velocity field
are vertically averaged over the interval 0 < z, < 1 km, whereas the lower-middle tropo-
spheric relative humidity is averaged over the interval 2.3 < 2z, < 7.7 km. The convergence
distribution in (a), w, in (a) and (b), and all moist-thermodynamic fields in (c¢) are Gaussian
smoothed in z, and y, with a standard deviation parameter of 6.25 km. (d)-(e) Hovmoller
plots of the convergence profiles M, and M, normalized to their maximum values over the
depicted time frame. M, (M,,) is Gaussian smoothed with standard deviation parameters
of 6.25 km in r, (7/16 radians in ¢) and 2 h in ¢,. (f) Hovmoller plot of the yp-averaged
azimuthal velocity (v) at z, = 25 m with contour labels in m s™'. The dashed curves in (d)
and (f) trace the radius of maximal v, whereas the white curve in (e) traces the orientation

angle of the tilt vector depicted in (c). .
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Figure Cl: (a) Normalized time s,t4 required to increase vgym to 3 at a given radius r in a
cyclone possessing an annular mass sink with p; = 0.18 and an adjustable central radius (rs).
Different curves are for systems with different values of r,, as indicated in the graph. The
dashed vertical grid lines coincide with the locations of r;. The Rossby number of each
system is 1.47. (b) As in (a) but for cyclones possessing mass sinks with ps = 0.37.
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