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Abstract

An adjunction is a pair of functors related by a pair of natural transformations, and relating
a pair of categories. It displays how a structure, or a concept, projects from each category to
the other, and back. Adjunctions are the common denominator of Galois connections, repre-
sentation theories, spectra, and generalized quantifiers. We call an adjunction nuclear when its
categories determine each other. We show that every adjunction can be resolved into a nuclear
adjunction. The resolution is idempotent in a strict sense. The resulting nucleus displays the
concept that was implicit in the original adjunction, just as the singular value decomposition
of an adjoint pair of linear operators displays their canonical bases.

The two composites of an adjoint pair of functors induce a monad and a comonad. Monads
and comonads generalize the closure and the interior operators from topology, or modalities
from logic, while providing a saturated view of algebraic structures and compositions on one
side, and of coalgebraic dynamics and decompositions on the other. They are resolved back
into adjunctions over the induced categories of algebras and of coalgebras. The nucleus of
an adjunction is an adjunction between the induced categories of algebras and coalgebras. It
provides new presentations for both, revealing algebras on the side where the coalgebras are
normally presented, and vice versa. The new presentations elucidate the central role of idem-
potents, and of the absolute limits and colimits in monadicity and comonadicity. They suggest
interesting extensions of the monad and comonad toolkits, particularly for programming.

In his seminal early work, Ross Street described an adjunction between monads and comon-
ads in 2-categories. Lifting the nucleus construction, we show that the resulting Street monad
on monads is strictly idempotent, and extracts the nucleus of a monad. A dual treatment
achieves the same for comonads. This uncovers remarkably concrete applications behind a
notable fragment of pure 2-category theory. The other way around, driven by the tasks and
methods of machine learning and data analysis, the nucleus construction also seems to un-
cover remarkably pure and general mathematical content lurking behind the daily practices of
network computation and data analysis.

*Supported by NSF and AFOSR.
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1 Introduction

We begin with an informal overview of the main result here in Sec. 1, and motivate it through
the general examples in Sections 2-5. A categorically minded reader may prefer to start from the
categorical definitions in Sec. 5, proceed to the general constructions in Sections 6—9, and come
back for examples and explanations. Some general definitions can be found in the Appendix.

1.1 Nuclear adjunctions and the adjunction nuclei
1.1.1 Definition.

We say that an adjunction F = (F* 4 F, : B— A) is nuclear when the right adjoint F, is monadic
and the left adjoint F* is comonadic. This means that the categories A and B determine one another,
and can be reconstructed from each other:

e F,is monadic when B is equivalent to the category AF of algebras for the monad F=F J
A — A, whereas

e F* is comonadic when A is equivalent to the category BF of coalgebras for the comonad
77) =F'F,:B—- B.

The situation is reminiscent of Maurits Escher’s “Drawing hands” in Fig.1.
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=

Figure 1: An adjunction (F* 4 F.,) is nuclear when A =~ BF and B ~ AF.

1.1.2 Result

The nucleus construction %extracts from any adjunction F its nucleus <gJ?F
F=(F'4F.:B—> A)
< - ()
NF = (F” A Fy AT 5 ]BF)
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The functor F is formed by composing the forgetful functor AF 5 A with the comparison functor
A — BF, whereas F* is the composite of the forgetful functor B — B with the comparison
B — A’. Hence the left-hand square in Fig. 2. We show that the functors F* and F y are adjoint,

)
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Figure 2: The nucleus construction induces an idempotent monad on adjunctions.
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which means that we can iterate the nucleus construction 9t in (1) and induce a tower of adjunctions

F— NF - ANF — RANF — --- )

We show that NF = (F “4F ﬂ) is a nuclear adjunction, which means that the right-hand square
in Fig. 2 is an equivalence of adjunctions. The tower in (2) thus settles at the second step. The

P
Jt-construction is an idempotent monad on adjunctions. Since the adjunctions form a 2-category,

N is a 2-monad. We emphasize that its idempotence is strict, i.e. (up to a natural family of equiv-
alences), and not /ax (up to a natural family of adjunctions). While lax idempotence is frequently
encountered and well-studied in categorical algebra [48, 50, 81, 85], strictly idempotent categori-
cal constructions are relatively rare, and occur mostly in the context of absolute completions. The
nucleus construction suggests a reason [74].

1.1.3 Upshot

The fact that the the adjunction FF 4 F 4 in nuclear means that, for any adjunction F' = (F* 4 F,),
the category of algebras AF and the category of coalgebras BE can be reconstructed from one

another: A¥ as a category of algebras over BF and BF as a category of coalgebras over AF They
are always an instance of the Escher situation in Fig. 1. Simplifying these mutual reconstructions
provides a new view of the final resolutions of monads and comonads, complementing the original

'"Monads over 2-categories and bicategories have been called doctrines [58], and the lax idempotent ones are often
called the Kock-Zoberlein doctrines [81].



Eilenberg-Moore construction [27]. It was described in [75] as a programming tool, and was used
as a mathematical tool in [74]. Presenting algebras and coalgebras as idempotents provides a
rational reconstruction of monadicity (and comonadicity) in terms of idempotent splitting, echoing
Paré’s explanations in terms of absolute colimits [65, 66], and contrasting with Beck’s fascinating
but somewhat mysterious proof of his fundamental theorem in terms of split coequalizers [14, 15].
Concrete applications of the nuclei spread in many directions, some of which are indicated in the
examples, which had to be trimmed, in some cases radically.

1.1.4 Background

Nuclear adjunctions have been studied since the early days of category theory, albeit without a
name. The problem of characterizing situations when the left adjoint of a monadic functor is
comonadic is the topic of Michael Barr’s paper in the proceedings of the legendary Battelle con-
ference [8]. From a different direction, in his seminal work on the formal theory of monads, Ross
Street identified the 2-adjunction between the 2-categories of monads and of comonads [80, Sec. 4].
This adjunction leads to a formal view of the nucleus construction on either side, as a 2-monad.
We show that this construction is idempotent in the strong sense. On the side of applications, the
quest for comonadic adjoints of monadic functors continued in descent theory, and an important
step towards characterizing them was made by Mesablishvili in [63]. Coalgebras over algebras,
and algebras over coalgebras, have also been regularly used for a variety of modeling purposes in
semantics of computation (see e.g. [7, 41, 43], and the references therein).

As the vanishing point of monadic descent, nuclear adjunctions arise in many branches of
geometry, tacitly or explicitly. In abstract homotopy theory, they are tacitly in [44, 78], and ex-
plicitly in [1]. There are, however, different ways in which monad-comonad couplings may arise.
In [1], Applegate and Tierney formed such couplings on the two sides of comparison functors
and their adjoints, and they found that such monad-comonad couplings generally induce further
monad-comonad couplings along the further comparison functors, and may form towers of transfi-
nite length. We describe this in more detail in Sec. 10. Confusingly, the Applegate-Tierney towers
of monad-comonad couplings formed by comparison functor adjunctions left a false impression
that the monad-comonad couplings formed by the adjunctions between categories of algebras over
coalgebras, of coalgebras over algebras, etc. also lead to towers of transfinite length. This impres-
sion blended into folklore, and the towers of alternating monads over coalgebras and comonads
over algebras, extending out of sight, persist in categorical literature.>

There is an interesting exception outside the categorical literature. In a fax message sent to Paul Taylor on 9/9/99
[53], a copy of which was kindly provided after the present paper appeared on arxiv, Steve Lack set out to determine
the conditions under which the tower of coalgebras over algebras, which "a priori continues indefinitely", settles to
equivalence at a finite stage. Within 7 pages of diagrams, the question was reduced to splitting a certain idempotent.
While the argument is succinct, it does seem to prove a claim which, together with its dual, implies our Prop. 7.4. The
claim was, however, not pursued in further work. This amusing episode from the early life of the nucleus underscores
its message: that a concept is technically within reach whenever there is an adjunction, but it does need to be spelled
out and applied to be recognized.



1.1.5 Terminology

Despite all of their roles and avatars, adjunctions where the right adjoint is monadic and the left
adjoint is comonadic were not given a name. We call them nuclear because of the link with nu-
clear operators on Banach spaces, which generalize the spectral decomposition of hermitians and
the singular value decomposition of matrices and lift them all the way to linear operators on topo-
logical vector spaces. This was the subject of Grothendieck’s thesis, where the terminology was
introduced [34]. We describe this conceptual link in Sec. 3, for the very special case of finite-
dimensional Hilbert spaces.

1.1.6 Schema

Fig. 3 maps the paths that lead to the nucleus. We will follow it as an itinerary, first through familiar

matrices extensions localizations nuclei

Mnd
EM MN
A P
/ /N\’/
Nuc
AC NC
P A
KGC CN
Cmn

Figure 3: The nucleus setting

Mat — Y25 Adj

examples and special cases in Sections 2—4, and then as a general pattern. Most definitions are in
Sec. 5. Some readers may wish to skip the rest of the present section, have a look at the examples,
and come back as needed. For others we provide here an informal overview of the terminology,
mostly just naming names.

Who is who. While the production line of mathematical tools is normally directed from theory
to applications, ideas often flow in the opposite direction. The idea of the nucleus is familiar, in
fact central, in data mining and concept analysis, albeit without a name, but has remained elu-
sive in general [47]. Data analysis usually begins from data matrices, which we view as objects
of an abstract category Mat. To be analyzed, data matrices are usually completed or extended
into some sort of adjunctions, which we view as objects of an abstract category Adj. The functor
MA : Mat — Adj represents this extension. The adjunctions are then localized along the functors
AM : Adj— Mnd and AC : Adj— Cmn at monads and comonads, which form categories Mnd and
Cmn. In some areas and periods of category theory, a functor is called a localization when it has
a full and faithful adjoint. The functors AM and AC in Fig. 3 have both left and right adjoints,

7



both full and faithful. We display only the right adjoint EM : Mnd — Adj of AM, which maps a
monad to the adjunction induced by its (Eilenberg-Moore) category of algebras, and the left ad-
joint KC : Cmn — Adj, which maps a comonad to the adjunction induced by its (Kleisli) category
of cofree coalgebras. The nucleus construction is composed of such couplings. Alternatively, it can
be composed of the left adjoint KM : Mnd — Adj of AM and the right adjoint EC : Cmn — Adj of
AC. There is, in general, an entire gamut of different adjunctions localized along AM : Adj— Mnd
at the same monad. We call them the resolutions® of the monad. Dually, the adjunctions localized
along AC : Adj— Cmn at the same comonad are the resolutions of that comonad. For readers un-
familiar with monads and comonads, we note that monads over posets are called closure operators,
whereas comonads over posets are the interior operators. In general, the (Kleisli) cofree coalgebra
construction KC : Cmn — Adj in Fig. 3 (and the free algebra construction KM : Mnd — Adj that is
not displayed) captures the initial resolutions of comonads (resp. monads); whereas the (Eilenberg-
Moore) algebra construction EM : Mnd — Adj (and the coalgebra construction EC : Cmn — Adj
that is not displayed) captures the final resolutions of monads (resp. comonads). For closure oper-
ators and interior operators over posets, and more generally for idempotent monads and comonads
over categories, the initial and the final resolutions coincide. In any case, the categories Mnd and
Cmn are embedded in Adj fully and faithfully; idempotent monads and comonads are mapped to
their unique resolutions, whereas monads, in general, are embedded in two extremal ways, with a
gamut of resolutions in-between. The composites of these extremal resolution functors from Mnd
and Cmn to Adj with the localizations from Adj to Mnd and Cmn induce the idempotent monad

W = EM o AM over Adj which maps any adjunction to the Eilenberg-Moore resolution of the

induced monad, and the idempotent comonad @) = KC o AG, still over Adj, which maps any ad-
junction to the Kleisli resolution of the induced comonad. Just as there is a category of categories,
there is thus a monad of monads, and a comonad of comonads; and both happen to be idempotent.
Since the subcategories fixed by idempotent monads or comonads, in general, are usually viewed
as localizations, we view monads and comonads as localizations of adjunctions; and we call all
the adjunctions that induce a given monad (or comonad) its resolutions. The resolution functors

not displayed in Fig. 3 induce a comonad m = KM o AM, mapping adjunctions to the Kleisli

resolutions of the induced monads, and a monad <E_C = EC o AC, mapping adjunctions to the
Eilenberg-Moore resolutions of the induced comonads. They are all spelled out in Sec. 5.

The category Nuc of nuclei is the intersection of Mnd and Cmn, as embedded into Adj along
their resolutions in Fig. 3. However, we will see in Sec. 7 that any other resolutions will do, as
long as the last one is final. The nucleus of an adjunction can thus be viewed as the joint resolution
of the induced monad and comonad.

1.2 The Street monad
The composites € = AM o KC and €, = AC o EM in Fig. 3 are adjoint to one another, and thus

form a monad % = €, o €" on the category Cmn of comonads, and a comonad _@) = ¢ o C,

3This terminology was proposed by Jim Lambek. Although it does not seem to have caught on, it is convenient in
the present context, and naturally extends from its roots in algebra.



on the category Mnd of monads. The initial (Kleisli) resolution KM of the monads and the final
(Eilenberg-Moore) resolution EC of comonads give the adjoints M* = ACoKM and 9, = AMoEC,

which form a monad I = I, o " on the category Mnd of monads, and a comonad M = M o pA
on the category Cmn of comonads. All is summarized in Figures 14 and 15. In Ross Street’s paper
on the Formal theory of monads, the latter adjunction between monads and comonads is spelled out
directly [80, Thm. 11]. This was the main result of that seminal analysis, and remains the central
theorem of the theory. We prove that Street’s monad is strictly idempotent. This added wrinkle
steers the theory into the practice: the adjunctions, and their monads and comonads, are not just
the foundation of the categorical analysis, but also a convenient tool for concept mining from it.
The nucleus of a monad, or of a comonad, displays its conceptual content.

1.3 A simplifying assumption

The claimed results have been verified for the general 2-categories of adjunctions, monads and
comonads, and the earlier drafts of this paper attempted to present the claims in full generality. The
present version presents them under the simplifying assumption that the 2-cell components of the
morphisms of adjunctions, monads, and comonads are invertible. This restriction cuts the length
of the paper by half. While suppressing the general 2-cells simplifies some of the verifications, it
does not eliminate or modify any of the presented structures, since all 2-categorical equipment of
the nucleus construction already comes with invertible 2-cells. The general 2-categorical theory
of nuclei is thus a conservative extension of the simplified theory presented here: it does not
introduce any additional structure or side-conditions, but only a more general domain of validity,
and verification. The suppressed 2-cell chasing is, of course, interesting and important on its own;
yet it does not seem to provide any information specific to the nucleus construction itself. Our
efforts to present the result in its full 2-categorical generality therefore seemed to be at the expense
of the main message. We hope that suitable presentation tools under development* will soon make
the results of this kind communicable with a more rational communication overhead.

1.4 Overview of the paper

We begin with simple and familiar examples of the nucleus, and progress towards the general con-
struction. In the posetal case, the nucleus construction boils down to the fixed points of a Galois
connection. It is familiar and intuitive as the posetal method of Formal Concept Analysis, which
is presented in Sec. 2. The spectral methods of concept analysis, based on Singular Value Decom-
position of linear operators, are perhaps even more widely known from their broad applications
on the web. They also subsume under the nucleus construction, this time in linear algebra. This
is the content of Sec. 3. Sec. 4 pops up to the level of an abstract categorical version of the nu-
cleus, that emerged in the framework of *-autonomous categories and semantics of linear logic, as
the separated-extensional core of the Chu construction. We discuss a modification that combines

*Our hopes have been vested in the framework of string diagrams for 2-categories, where the 2-cells are the vertices,
the 1-cells are the edges, and the O-cells are the faces of the underlying graphs. The project of drawing a sufficient
supply of diagrams for the present paper remained beyond our reach, but it might soon come within reach [39].



the separated-extensional core with the spectral decomposition of matrices and refers back to the
conceptual roots in early studies of topological vector spaces. In Sec. 5, we introduce the gen-
eral categorical framework for the nucleus of adjoint functors, and we state the main theorem in
Sec. 6. The proof of the main theorem is built in Sec. 7, through a series of lemmas, propositions,
and corollaries. As the main corollary, Sec. 8 presents a simplified version of the nucleus, which
provides alternative presentations of categories of algebras for a monad as algebras for a corre-
sponding comonad; and analogously of coalgebras for a comonad as arising from a corresponding
monad. These presentations are used in Sec. 9 to present a weaker version of the nucleus con-
struction, obtained by applying the Kleisli construction at the last step, where the Eilenberg-Moore
construction is applied in the stronger version. Although the resulting weak nuclei are equivalent
to strong nuclei only in degenerate cases, the categories of strong nuclei and of weak nuclei turn
out to be equivalent. In Sec. 10 we discuss how the nucleus approach compares and contrasts with
the standard localization-based approaches to homotopy theory, from which the entire conceptual
apparatus of adjunctions, extensions, and localizations originally emerged. In the final section of
the paper, we discuss the problems that it leaves open.

2 Example 1: Concept lattices and poset bicompletions

2.1 From context matrices to concept lattices, intuitively

Consider a market with A sellers and B buyers. Their interactions are recorded in an adjacency
matrix A X B i 2, where 2 is the set {0, 1}, and the entry @, is 1 if the seller a € A at some point

sold goods to the buyer b € B; otherwise it is 0. Equivalently, a matrix A X BAg 2 can be viewed as
the binary relation ® = {{a,b) € A X B| ®,, = 1}, in which case we write a®b instead of ®,, = 1.
In Formal Concept Analysis [17, 31, 30], such matrices or relations are called contexts, and used
to extract some relevant concepts. .

The idea is illustrated in Fig. 4. The binary relation ® C A X B is displayed as a bipartite graph.
If buyers ay and a4 have farms, and sellers by, b, and b5 sell farming equipment, but seller b, does
not, then the sets X = {ay, a4} and Y = {by, b,, b3} form a complete subgraph (X, Y) of the bipartite
graph @, which corresponds to the concept "farming". 1f the buyers from the set X" = {ay, a;, a, a3}
have cars, but the buyer a4 does not, and the sellers Y’ = {by, by, b,} sell car accessories, but the
seller b3 does not then (X', Y’) is another complete subgraph, corresponding to the concept "car”.
The idea is thus that a context is viewed as a bipartite graph, and the concepts are then extracted as
its complete bipartite subgraphs.

2.2 Formalizing concept analysis

A pair (U, V) € YA x ¢B forms a complete subgraph of a bipartite graph O CAxBif

U= xealxdy V=(veBludy)

veV ueU

10
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Figure 4: A context @, its four concepts, and their concept lattice

It is easy to see that such pairs are ordered by the relation
U,Vy<U,V)y < UcCU AV2V 3)

and that they in fact form a lattice, which is a retract of the lattice §)A x §)°B, where ¢JA is the set
of subsets of A ordered by the inclusion C, while §)°B is the set of subsets of B ordered by reverse

inclusion 2. This is the concept lattice D induced by the context matrix ® CAXB, along the lines
of Fig. 3.
In general, the sets A and B may already carry partial orders, e.g. from earlier concept analyses.

11



The category of context matrices is thus

IMat,| = U Pos(A° x B, 2) 4)
A,BePos
Mat(®, W) = {(h k) € Pos(A,C) x Pos(B, D) | ®(a, b) = ¥(ha, kb)}

where ® € Pos(A? X B,2) and ¥ € Pos(C? x D, 2) are matrices with entries from the poset
2 = {0 < 1}. When working with matrices in general, it is often necessary or convenient to use
their comprehensions, i.e. to move along the correspondence

o
Pos(A°x B,2) =2 Sub/AxB’ (5)
X

d® >  DO={x,)eAXB|D(x,y) =1}

1 if{x,y)eS

' —  (Scaxp)
0 otherwise

XS(X,)’) = [

A comprehension @ of a matrix @ is thus lower-closed in the first component, and upper-closed in
the second:

a<d ANaddb Ab<b = abdb (6)

To extract the concepts from a context ® C A x B, we thus need to explore the candidate lower-
closed subsets of A, and the upper-closed subsets of B, which form complete semilattices (A, \/)
and (B, \), where

JA = {LCA|la<d el = acl} (7
1B = {UCB|U>b <b = U > b} (8)

so that \/ in |JA and /\ in }B are both set union. It is easy to see that the embedding A AR JA,
mapping a € A into the lower set Ya = {x € A | x < a}, is the join completion of the poset A,

whereas B = 1B, mapping b € B into the upper set Ab = {y € B | b <y}, is the meet completion
of the poset B. These semilattice completions support the context matrix extension ® C |JA X B
defined by

LOU < VaeLVbe U adb 9)
As a matrix between complete semilattices, @ is representable in the form

OLCU & LOU < L2d.U (10)

12



where the adjoints now capture the complete-bipartite-subgraph idea from Fig. 4:

L uA () -0y
yeU
o |4 |, (11)
ﬂ x®, 1B U

xeL

Here &y = {x € A | x®y} and xO, = {y € B | xa;y} define the transposes ,® : B — |JA and
®, : A—> fBof ® : A2 x B — 2. Poset adjunctions like (11) are often also called Galois
connections. They form the category

|Adj,| = u {(O*, D,) € Pos(A, B) X Pos(B,A) | d*'x <y < x<d,y} (12)
A,BePos
Adj,(®,¥) = {(H,K) e Pos(A,C)x Pos(B,D) | KO =¥Y'H A HD, = ¥,H)

The first step of concept analysis is thus the matrix extension

MA, : Mat, — Adj, (13)
O - (P 4D,:B— JA) asin(11)

To complete the process of concept analysis, we use the full subcategories of Adj, spanned by the
closure and the interior operators, respectively:

Mndo

{(®" 41 D,) € Adj, | DD, = id} (14)

Cmn,

{(®" 4 D,) € Adj, | D.O" = id} (15)
It is easy to see that

e Mnd, is equivalent with the category of posets A equipped with closure operators, i.e. mono-

) — —— — .
tone maps A — A such that x < Ox = ®Dux, for © = ©,0; while

e Cmny is equivalent with the category of posets B equipped with interior operators, i.e. mono-
3 - —— —
tone maps B — Bsuch thaty > @y = Oy, for & = O*D,.

The functors AM, : Adj, - Mnd, and AC,, : Adj, -» Cmn, are thus inclusions, and their resolu-
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tions are
EMy : Mndy > Adj, (16)

AR = &
) g

where UA® = {U € JA| U = OU)

KCo: Cmn, » Adj, (17)
(B 2, B) o (ﬂB6 45:{ ﬂB)
(_D) —_
where 11B® = (V€ 1B| DV = V)

Mnd, thus turns out to be a reflective subcategory of Adj,, and Cmn, coreflective. The category
Nuc, of concept lattices is their intersection, thus is coreflective in Mnd, and reflective in Cmn,.
In fact, these posetal resolutions turn out to be adjoint to the inclusions both on the left and on the
right; but that is a peculiarity of the posetal case. Another posetal quirk is that the category Nuc,
boils down to the category Pos of posets, because an operator that is both a closure and an interior
must be an identity. That will not happen in general.

2.3 Summary
Going from left to right through Fig. 3 with the categories defined in (4), (12), (14) and (15), and
reflecting everything back into Adj,, we made the following steps

D:A°XB—>2

D,
* _ b
O = MA®D = (uA T ﬂB)

o

EM,®* = (UA = UA‘T’) KG,d" = (ﬂBE; REEN ﬂB) (18)

W
S T A 145
iROCD_(ﬂB /‘\_)kUA)

ot

where Wo = EM, o AM,, and @0 = KCy o ACy, and 9?0 defines the poset nucleus (which will be
subsumed under the general definition in Sec. 6). For posets, the final step happens to be trivial,
because of the order isomorphisms

JAY = D = 8% (19)
where ©

D = (LU elJAXB|L=0.U N O°L=U} (20)
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is the familiar lattice of Dedekind cuts. The images of the context ® in Mnd,, Cmn, and Nuc, thus
give three isomorphic views of the concept lattice. But this is a degenerate case.

Comment. The situation when the two resolutions of an adjunction (the one in Mnd and the one
in Cmn) are isomorphic is very special. E.g., when A = B = Q is the field of rational numbers,
and @ = (<) is their partial order, then MA,*® is the set of pairs (L, U), where L is an open and
closed lower interval, U is an open or closed upper interval, and L < U. The resolutions eliminate
the rational points between L and U, by requiring that L contains all lower bounds of U and U all
upper bounds of L. The nucleus then comprises the Dedekind cuts. But any Dedekind cut (L, U)
is also completely determined by L alone, and by U alone. Hence the isomorphisms (19). The
same generalizes when A = B is a partial order, and the nucleus yields its Dedekind-MacNeille
completion: it adjoins all joins and meets that are missing while preserving those that already
exist. When A and B are different posets, and ® is a nontrivial context between them, we are in
the business of concept analysis, and generate the concept lattice — with similar generation and
preservation requirements like for the Dedekind-MacNeille completion. In a sense, the posets A
and B are "glued together" along the context ® C A X B into the joint completion D, where the
joins are generated from A, and the meets from B. On the other hand, any meets that may have
existed in A are preserved in D; as are any joins that may have existed in B.

It is a remarkable fact of category theory that no such tight bicompletion exists in general, when
the poset P is generalized to a category [55, 40]. It also is well known that this phenomenon is
closely related to the idempotent monads induced by adjunctions, and by profunctors in general
[1].

The phenomenon is, however, quite general, and in a sense, hides in plain sight.

3 Example 2: Nuclei in linear algebra

3.1 Matrices and linear operators

The nucleus examples in this section take us back to undergraduate linear algebra. The first part is
in fact even more basic. To begin, we consider matrices A x B — R, where R is an arbitrary ring,
and A, B are finite sets. We denote the category of all sets by Set, its full subcategory spanned by
finite sets by Set, and generally use the dot to mark finiteness, so that A, B € Set c Set. Viewing
both finite sets A, B and the ring R together in the category of sets, we define

IMat,| = U Set(A x B, R) 1)
A,BeSet
Mat,(®,¥) = {<H, K) € RYC x RBD | K = ‘PH}

where RA*C abbreviates Set(A x C, R), and ditto RB*P_ The matrix composition is written left to
right
(F,G) ~ (GF)y = ) Fij-Gy

JEB
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When R is a field, Mat; is the arrow category of finite-dimensional R-vector spaces with chosen
bases. When R is a general ring, Mat, is the arrow category free R-modules with finite generators.
When R is not even a ring, but say the rig ("a ring without the negatives") N of natural numbers,
then Mat, is the arrow category of free commutative monoids. Sec. 3.2 applies to all these cases,
and Sec. 3.3 applies to real closed fields. Since the goal of this part of the paper is to recall familiar
examples of the nucleus construction, we can just as well assume that R is the field of real numbers.
The full generality of the construction will emerge in the end.

3.2 Nucleus as an automorphism of the rank space of a linear operator

Since finite-dimensional vector spaces always carry a separable inner product, the category Mat;
over the field of real numbers R is equivalent to the arrow category over finite-dimensional real
Hilbert spaces with chosen bases. This assumption yields a canonical matrix representation for
each linear operator. Starting, on the other hand, from the category Hilb of finite-dimensional
Hilbert spaces without chosen bases, we define the category Adj, as the arrow category Hilo,/Hilb
of linear operators and their commutative squares, i.e.

IAdj,| = ]_[ Hilb(A, B) (22)
A,BeHilo
Adj,(@,'¥) = {(H.K) € Hilb(A,C) x Hilb(B,D) | KO = VH|

The finite-dimensional Hilbert spaces A and B are still isomorphic to R4 and R® for some finite
spaces A and B of basis vectors; but the particular isomorphisms would choose a standard basis for
each of them, so now we are not given such isomorphisms. This means that the linear operators
like H and K in (22) do not have standard matrix representations, but are given as linear functions
between the entire spaces. The categories Mnd; and Cmn; will be the full subcategories of Adj,
spanned by

Mnd;, = {® € Adj, | is surjective } (23)
Cmn, = [® e Adj, | D" is surjective } (24)

where @ is the adjoint of ® € Hilb(A, B), i.e. the operator ®* € Hilb(B, A) satisfying
(b|Day: = (D*b|ay,

where (—|—)y denotes the inner product on the space H.

3.2.1 Hilbert space adjoints: Notation and construction

In the presence of inner products’ (—|-) : A X A — R, it is often more convenient to use the
bra-ket notation, where a vector @ € A is written as a "bra" |a), and the corresponding linear

3If R were not a real closed field, the inner product would involve a conjugate in the first argument. Although this
is for most people the more familiar situation, the adjunctions here do not depend on conjugations, so we omit them.
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functional @* = {d|-) € A" is written as the "ket" (a|. If A is the A-dimensional space R4, then

the basis vectors &, i = 1,2, ..., A are written |1),]2), ..., |A), whereas the basis vectors of A* are
(11,¢2|, ..., (Al], and the base decompositions become
o lay =34, liXila) instead of @ = 4, a;&;, and

o (al = Y4 (ali)il instead of @ = Y4 a,&".

For convenience, here we assume that the finite sets A, B, ... € Set are ordered, i.e. reduce Set
to N. In practice, the difference between A and A* is often ignored, because any basis induces a
linear isomorphism A* = A, and is uniquely determined by it [19]; but it creeps from under the
carpet when vector spaces are combined or aligned with other structures, as we will see further on.
Writing ( j|®[i) for the entries @ j; of a matrix ® = ((D ji)nXA gives

o (ji®la) = YL, (jIDli)ila) instead of (®d); = YL, ©;a;,

o (blOli) = 22 (blj)(jlDli) instead of (Eicp)i =35 b;®;, and

o (BDla) = 34, TF (BIj)(jIDli)ila) instead of bidd = T, TF | b0 a;
and hence the inner-product adjunction

(bl®ays = (bl®la) = (D*blays (25)

where we adhere to the usual abuse of notation, and denote both the matrix and the induced linear
operator by ®. The dual matrix and the induced adjoint operator are ®*. If (25) is the Hilbert space
version of (10), then (11) becomes

B
ja) RA Dbl

=

ol o (26)

A
Z JOli)ila) RE (bl

i=1

nge D) = Zle(j|<j|(l)|i) is the i-th column of @, transposed into a row, whereas (j|®, =
Zf‘: 1 {JI®I[i)]i) 1s its j-th row vector, transposed into a column.
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3.2.2 Factorizations

The maps in (26) induce the functor MA; : Mat; — Adj,, for A = RA and B = RB. This functor 18,
of course, tacit in the practice of representing linear operators by matrices, and identifying them
notationally. The functors AM; : Adj, = Mnd, and AC, : Adj, = Cmny, on the other hand, require
factoring linear operators through their rank spaces:

(27)

where we define

&
<
Il

{@F[b) | 1b) € B} with (xly),5 = (Ux|Uy)a
A = (®la)|lay € A} with (xly),5 = (VHIVy)s

It is easy to see that the adjoints EM; : Mnd; — Adj, and KC; : Cmn; — Adj, can be viewed as
inclusions. To define MN; : Mnd; — Nuc; and CN; : Cmn; — Nuc,, note that

(UiUx|y)gz = (Ux|Ups = x|y

Since finite-dimensional Hilbert spaces are separable, this implies that U*U = id and that U* is
thus a surjection. So we have two factorizations of @

% —
A —» BY
)
//
g (28)
CN}0AC (D)=
AC{(D 1 1
H®) MN; oAM () AM; (@)
\
//
© K
A%y - > B

The definitions of CN; and MN; for general objects of Cmn; and Mnd; proceed similarly, by
factoring the adjoints.

3.3 Nucleus as matrix diagonalization

When the field R supports spectral decomposition, the above factorizations can be performed di-
rectly on matrices. The nucleus of a matrix then arises as its diagonal form. In linear algebra, the
process of the nucleus extraction thus boils down to the Singular Value Decomposition (SVD) of
a matrix [32, Sec. 2.4], which is yet another tool of concept analysis [5, 20].
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To set up this version of the nucleus setting we take Adj, = Mat, = Mat, and let MA, : Mat, — Adj,

be the identity. The categories Mnd, and Cmn, will again be full subcategories of Adj,, this time
spanned by

[® € Set(d x B,R) | (kD) = L ki0)) (29)
{® € Set(Ax B,R) | <i|<<17|j> = A} (30)

Mnd2

Cmn,

where

- — ) ) — - — —
o & = OO and ® = O*D, with the entries (k|D|€) = Dy (| D]j) = Dy,

'<i|j>={l ifi= },and

0 otherwise

e A, and A; are scalars.

In the theory of Banach spaces, operators that yield to this type of representation have been called
nuclear since [34]. Hence our terminology. For finite-dimensional spaces, definitions (29-30) say
that for a matrix ® € Mat, holds that

®eMnd, D is diagonal
®eCmn, < D is diagonal
. % ﬁ . .
Since both ® and @ are self-adjoint:

(D*Da | d'y = (Pa| D’y = (D¥a|dd) (a | D*Da’)
(b | DOy = (D*b | DY) = (Db | D)y = (DHD*D | ') = (OD*b | b')

their spectral decompositions yield real eigenvalues A. Assuming for simplicity that each of their
eigenvalues has a one-dimensional eigenspace, we define

A” = {IweR”|{(y)=1A3A,. D) =4,|v)} (31
38 = {lu) e RE | <ulu) =1 A3A,. $|u> = A,u)} (32)
Hence the matrices
- S U \% 5
B XA —m8— R «—— A”XB
<|u), i> — U; Ve «— <|v), f>

which isometrically embed B® into A = R4 and A® into B = RE. It is now straightforward to show
that AM, : Adj, » Mnd, and AC, : Adj, » Cmn, are still given according to the schema in (27),
i.e. by

= AMy(D)
= AC,(D)

Vi (33)
oU (34)

d
d
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They satisfy not only the requirements that ®'® and ®d* be diagonal, as required by (29) and
(30), but also that

b = Ot = D did=d0=0

Repeating the diagonalization process on each of them leads to the following refinement of (27):

(35)

This diagram displays a bijection between the eigenvertors in B® and A®. The diagonal matrix
between them is the nucleus of ®. The singular values along its diagonal measure, in a certain

— -
sense, how much the operators ® and ®, induced by composing ® and ®*, deviate from being
projectors onto the respective rank spaces.

3.4 Summary

The path from a matrix to its nucleus can now be summarized by

®:AxB—>R

oF

D

U= 0 V=E,®
g

RA CA&? B@WRB

—
L

/] I

R* ———— R?

Note that the isomorphisms from (19) are now replaced by the diagonal matrix ﬁl(b LB s A(‘E,

wich is still invertible as a linear operator, and provides a bijection between the bases B® and A®
of the rank spaces of ® and of ®*, respectively. But the singular values along the diagonal of
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— .= e
9N, @ quantify the relationships between the corresponding elements of B® and A®. This is, on the
one hand, the essence of the concept analysis by singular value decomposition [56]. Even richer
conceptual correspondences will, on the other hand, emerge in further examples.

4 Example 3: Nuclear Chu spaces

4.1 Abstract matrices

So far we have considered matrices in specific frameworks, first of posets, then of Hilbert spaces.
In this section, we broaden the view, and study an abstract framework of matrices. Suppose that S
is a category with finite products, R € S is an object, and S C S is a full subcategory. The objects
of S are also marked by a dot, and are thus written A, B, ..., X € S. Now consider the following
variation on the theme of (4) and (21):

Mats| = | | S(AxBR) (36)
A,BeS
Maty(@, %) = {(f",£.) € S@A,C) x S(D, B) | ©(a, f.d) = ¥(f*a, d)}

where ¥ € S(C x D, R), as illustrated in Fig. 5. We consider a couple of examples.
AxD
ixt. YD
o f L
AXB — CxD
@ w
R

Figure 5: A Chu-morphism f = (f*, f.) : ®— ¥ in Mat;

4.1.1 Posets

Let the category S = S be the category Pos of posets, and let R be the poset 2 = {0 < 1}. The
poset matrices in Mat;°® then differ from those in Mat, by the fact that they are covariant in both
arguments, i.e. they satisfy a’'®b” A @’ <a AN b’ <b — a®db instead of (6). Any poset A is

Pos

A
represented both in Mat; and in Mat;*° by the matrix (<) : A X A — 2. But they are quite different

B
objects in the different categories. If (<) : B’ X B— 2 is another such matrix, then
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A B
e in Maty, a morphism in the form (A, k) is required to satisfy x < X’ <= hx < kx’ for all
x, x' € A, whereas

e in Matgos, a morphism in the form (f*, f.) is required to satisfy x < f.y & f*x <y for

allxe Aandy € B.

The Mat§°s isomorphisms are thus the poset adjunctions (a.k.a. Galois connections), whereas the
Mat,-morphisms in the form (k, k) are the order isomorphisms.

4.1.2 Linear spaces

Let S be the category Set of sets, S the category Set of finite sets, and let R be the set of real
numbers. Then the objects of Mat'gi” are the real matrices, just like in Mat;, but the morphisms in
Mat'gin are a very special case of those in Mat;. A Mat,;-morphism (H, K) from (21) boils down to
a pair of functions (f*, f.) from (36) precisely when the matrices H and K comprise of Os, except
that H has precisely one 1 in every row, and K has precisely one 1 in every column. With such
constrained morphisms, Mat'gin does not support the factorizations on which the constructions in
Mat; were based. The completions will afford it more flexible morphisms. Mat;’s morphisms are

already complete matrices, which is why we were able to take Adj, = Mat, = Mat;.

4.1.3 Categories

Let S be the category CAT of categories, small or large; let R be the category Set of sets; and let
S be the category Cat of small categories. The matrices in MatgAT are then distributors [16, Vol.
I, Sec. 7.8], also also called profunctors, or bimodules. The MatgAT—morphisms are generalized
adjunctions, as discussed in [47]. Any small category A occurs as the matrix hom; € CAT(A? x
A, Set) in Mat$™. The Mat$""-morphisms between the matrices in the form hom, and homy, are
precisely the adjunctions between the categories A and B.

4.2 Representability and completions

A matrix @ : A x B— R is said to be representable when there are matrices A : A x A — R and
B : Bx B— R and a morphism f = (f*, f.) € Mat;(A, B) such that ® = A o (A X f.) = B(f* x B).
Inside the category Mats, this means that the morphism f can be factorized through @, as displayed
in Fig. 6. Inside Mat3CAT, a distributor ® : A° x B — Set is representable if and only if there is an
adjunction F* 4 F, : B— A such that A(x, F.y) = ®(x,y) = B(F*x,y).

4.3 Abstract adjunctions

In the category of adjunctions Adj;, all matrices from Mat; become representable. This is achieved
by dropping the "finiteness" requirement A, B, C, D € S from Mat;, and defining

IAdjy| = ]_[ S(A X B,R) (37)
A,BES
Adj;(@,¥) = {{f", f) €SA,C)xSD,B)|¥(fa,d) = O(a, f.d)}
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AXB

idxid
L G
X

. (f*id) . .
B Y

Ve

AXA - A

N,

o
X
oy

(0]
R
(id.f) (f*.id)

Figure 6: A matrix @ representable in Mat; by factoring (f*, f.) = (A — O — B)

4.3.1 The Chu-construction

The readers familiar with the Chu-construction will recognize Adj; as Chu(S,R). The Chu-
construction is a universal embedding of monoidal categories with a chosen dualizing object into
x-autonomous categories. It was spelled out by Barr and his student Chu [9], and extensively stud-
ied in topological duality theory and in semantics of linear logic [10, 11, 12, 13, 21, 61, 70, 76].
Its conceptual roots go back to the early studies of infinite-dimensional vector spaces [61]. Our
category Mat; can be viewed as a "finitary" part of a Chu-category, where an abstract notion of
"finiteness" is imposed by requiring that the matrices are sized by a "finite" category S C S.

4.3.2 Representing matrices as adjunctions

The functor MA; : Mat; — Adj; will be the obvious embedding. When S = S, it boils down to the
identity. The difference between (36) and (37) is technically, of course, a minor wrinkle. But when
the object R is exponentiable, in the sense that there is a functor R : S — S such that

S(AxB,R) = S(A,R?) (38)

holds naturally in A and B, then the Mat;-matrices can be represented as Adj;-morphisms. Each
matrix appears in four avatars

S(A,R?) =~ S(AxB,K) = S(BxA,K) =SB, RY
w w w w (39)
o o) o* @,

and the leftmost and the rightmost represent it as the abstract adjunction in Fig. 7. The objects
R* and R?, that live in S but not in S will play a similar role to JA and 1B in Sec. 2, and to the
eponymous Hilbert spaces Sec. 3. They are the abstract "completions". We come back to this in
Sec. 4.5.
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AXB

Axdy \\QixB

AxRA RB x B

Figure 7: The adjunction (®* 4 @,) € Adj;(€4,3;) representing the matrix ® : A x B — R from
Mat3

4.3.3 Separated and extensional adjunctions

The correspondences in (39) assert that any matrix @ : A X B— R can be viewed as

" . , . R .
e amap A — R5, assigning a "matrix row" ®*(a) to each basis element a € A;

(D* . . . .
e amap B — R, assigning a "matrix column" @, (b) to each basis element b € B.

The elements a and a’ are indistinguishable for ® if ®*(a) = ®*(a’); and the elements b and b’ are
distinguishable for © if ®.(b) = ©.(b’). The idea of Barr’s separated-extensional Chu construction
[10, 12] is to quotient out any indistinguishable elements. A Chu space is called

e separated if ®*(a) = ®*(a’) = a=d,and
e extensional if ®.(b) = O.(b')) = b=1D".

To formalize this idea, we assume the category S is given with a family M of abstract monics,
so that @ is separated if ®* € M and extensional if @, € M. To extract such an M-separated-
extensional nucleus from any given @, the family M is given as a part of a factorization system
& ' M, such that R® € M. For convenience, an overview of factorization systems is given in
Appendix A. The construction yields an instance of Fig. 3 for the full subcategories of Adj, defined
by

Mnd; ={® € Adj; | ®* € M} = Chuy(S,R) (40)
Cmn; ={® € Adj; | . € M} = Chu,(S,R) 41
Nuc; ={® € Adj; | @*, @, € M} = Chu,(S,R) 42)

where Chu,(S, R) and Chu,(S, R) are the full subcategories of Chu(S, R) spanned, respectively,
by the separated and the extensional Chu spaces, as constructed in [10, 12]. The reflections and
coreflections, induced by the factorization, have been analyzed in detail there. The separated-
extensional nucleus of a matrix is constructed through the factorizations displayed in Fig. 8, where
we use Barr’s notation. The functor AM; corresponds to Barr’s Chuy, the functor AC5 to Chu,.
Proving that A” = A” and B’ = B” gives the nucleus Chu,(®) = Chu,,(®) in Nuc;.
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AxB 23R

* (I)*
A—2Y RB B—2 v R4
E(D* Chu(® E(D,. Chu,(®
A ( )»A,> U()>RB B ( )»B,> U()>RA
B &(Chuy(®) B Chu(®) R A &(Chu, (D) A7 Chu(®) RE

Figure 8: Overview of the separated-extensional Chu construction

4.4 What does the separated-extensional nucleus capture in examples 4.1?

4.4.1 Posets

. . . o . .
Restricted to the poset matrices in the form A? X B — 2, as explained in Sec. 4.1.1, the separated-
extensional nucleus construction gives the same output as the concept lattice construction in Sec. 2.
The factorizations Chug and Chu, in Fig. 8 correspond to the extensions ®* and @, in (11).

4.4.2 Linear spaces

Extended from finite bases to the entire spaces generated by them, the Chu view of the linear alge-
bra example in 4.1.2 captures the rank space factorization and Nuc,, but the spectral decomposition
into Nuc, requires a suitable completeness assumption on R.

4.4.3 Categories

The separated-extensional nucleus construction does not seem applicable to the categorical exam-
ple in 4.1.3 directly, as none of the familiar functor factorization systems satisfy the requirement
R® C M. This provides an opportunity to explore the role of factorizations in extracting the nuclei.
In Sec. 4.5 we explore a variation on the theme of the factorization-based nucleus. In Sec. 4.6 we
spell out a modified version of the separated-extensional nucleus construction that does apply to
the categorical example in 4.1.3.

4.5 Discussion: Combining factorization-based approaches

Some factorization-based nuclei, in the situations when the requirement R C M is not satisfied,
arise from a combination of the separated-extensional construction from Sec. 4.3.1 and the diago-
nalization factoring from Sec. 3.
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4.5.1 How nuclei depend on factorizations?

As explained in the Appendix, every factorization system & ¢ M in any category S can be viewed
as an algebra for the Arr-monad, where Arr(S) = S8 is the category consisting of the S-arrows
as objects, and the pairs of arrows forming commutative squares as the morphisms. An arbitrary
factorization system & ¢ M on S thus corresponds to an algebra ¢ : S,/S — S; and a factorization
system that satisfies the requirements for the separated-extensional Chu construction lifts to an
algebra ¢ : Adj;/Adj; — Adj;. To see this, note the natural bijection S(A X B,R) = S(A, R®)
induces an isomorphism of Adj; = Chu(S, R) with the comma category SR = S/R™, whose
arrows are in the form *
A—Lsc

o 1
’ (43)
RB Ry RD
B ﬁ D
Such squares permit & : M-factorization whenever R® C M. If we now set

Mat, = Adij (44)
Adi, = Adj,/Adj (45)

then the isomorphism Adj; = SR liefts to of Adj, = SR/SR. The objects of Adj, can thus be
viewed as the squares in the form (43), and the object part of the abstract completion functor MA, :
Mat, — Adj, can be defined as in Fig. 9. One immediate consequence is that the two factorization

Mat, A Adij,

n n
AXyX%XD r\A I C/(
S
AXB — CxD Y . o
\ / w | MA,(®)

0] b4

XI \/ RB — RD
R ~ JA % ~

T MALCY) (R

Figure 9: The abstract completion functor MA, : Mat, — Adj,

P
steps of the two-step separated-and-extensional construction 9t; = Chuy,, summarized in Fig. 8,
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can now be obtained in a single sweep, by directly composing the completion with the factorization

‘o A
Ny = (Adiy =5 Adj;/Adj; - Adj,)

(46)
The fixed points of this functor are just the separated-extensional nuclei. This is, of course, just
another presentation of the same thing; and perhaps a wrongheaded one, as it folds the two steps
of the nucleus construction into one. These two steps are displayed as the two paths from left
to right through Fig. 3, corresponding to the two orders in which the steps can be taken; and of
course as the separate part and the extensional part of the separate-extensional Chu-construction.
The commutativity of the two steps is, in a sense, the heart of the matter. However, packaging a
nucleus construction into one step allows packaging two such constructions into one. What might
that be useful for?

When S is, say, a category of topological spaces, and & ! M the the dense-closed factorization,
then it may happen that the separated-extensional nucleus of a space is much bigget than the

original space. If the nucleus §3d) : A’ X B — R of amatrix ® : A X B — R is constructed

by factoring A 2, RBand B R into

A—p A 20 S RE vy RE B—3 B >y RY w3y RA

as in Fig. 8, then A and B can be dense spaces of rational numbers, and A’ and B’ can be their
closures in the space of real numbers, representable within both R* and R? for a cogenerator R.
The same effect occurs if we take S to be posets, and in many other situations where the &-maps
are not quotients. One way to sidestep the problem might be to strengthen the requirements.

4.5.2 Exercise

Given a matrix A X B 3) R, find a nucleus A’ X B’ ﬂ R such that
(a) A » A’ and B - B’ are quotients, whereas

(b) A’ >q>—*> R? and B’ g RY are closed embeddings.

Requirement (b) is from the separated-extensional construction in Sec. 4.3.1, whereas requirement
(a) is from the diagonalization factoring in Sec. 3).

4.5.3 Workout

Suppose that category S supports two factorization systems:
o &L M*, where M*® C M are the regular monics (embeddings, equalizers), and

o &t M, where &° C & are the regular epis (quotients, coequalizers).
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In balanced categories, these factorizations would coincide, because M®* = M and &° = &, and we
would be back to the situation where the separated-extensional construction applies. In general, the
two factorizations can be quite different, like in the category of topological spaces. Nevertheless,
since homming into the exponentiable object R is a contravariant right adjoint functor, it maps
coequalizers to equalizers. Assuming that R is an injective cogenerator, it also maps general epis
to monics, and vice versa. So we have

RE c M RECM RMce& (47)

However, & and M® generally do not form a factorization system, because there are maps that do
not have a quotient-embedding decomposition; and & and M do not form a factorization system
because there are maps whose epi-mono decomposition is not unique. The factorization E°:E does
satisfy R®" € M, but does not lift from S,/S — S to Chu,”Chu— Chu.

Our next nucleus setting will be full subcategories again:

(f foeAdiy| f"e M, f. € &} (48)
(f foeAdiy| freé&, f.e M} (49)

These two categories are dual, just like Mnd; and Cmn; were dual. In both cases, they are in fact
the same category, since switching between ® and ®* in (23-24) and between f* and f. in (48-49)
is a matter of notation. But distinguishing the two copies of the category on the two ends of the
duality makes it easier to define one as a reflexive and the other one as a coreflexive subcategory
of the category of adjunctions.

The functors EM, : Mnd; — Adj, and KC, : Cmn, — Adj, are again the obvious inclusions.
The reflection AM, : Adj, - Mnd, and the coreflection AC, : Adj, -» Cmn, are constructed in
Fig. 10. The factoring triangles on are related in a similar way to the two factoring triangles in
(27). The nucleus is obtained by composing them, in either order. More precisely, the coreflection
NM, : Mnd, - Nuc, is obtained by restricting the coreflection AC4 : Adj, -» Cmn, along the
inclusion EMy : Mnds — Adj,; the reflection NC4 : Cmny - Nuc, is obtained by restricting
AM, : Adj, - Mnd, along the inclusion KC4 : Mnd,; < Adj,. The outcome is in Fig. 11. The
category of nuclear Chu spaces is thus the full subcategory spanned by

Mnd4
Cmny

Nuc, = {(f", f)eAdiylf" fieEnM} (50)

If a factorization does not support the separated-extensional Chu-construction because it is not
stable under dualizing, but if it is dual with another factorization, like e.g. the isometric-diagonal
factorization in the category if finite-dimensional Hilbert spaces in Sec. 3, then the nucleus can still
be constructed, albeit not as a subcategory of the original category, but of its arrow category. While
the original separated-extensional Chu-construction yields a full subcategory Chu,, € Chu, here

we get the Chu-nucleus as a full subcategory 9<?4 C Chu/Chu. A Chu-nucleus is thus an arrow
(EM(DY), EM(D.,)) € Chu(®’, ®”), as seen in Fig. 11, such that

(a) A—» A’ and B -» B” are in &°,
(b) B’ <& RV and A” < RE” are in Mo,
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R RF
B’ D

M(f) E(f) \ M(f) 8'(f*)\

v
B < - D B %/ - D

Figure 10: The object parts of the functors AM, : Adj, -» Mnd, and AC, : Adj, -» Cmn,

(c) A’ 2> R and B” »> R*" are in M,
(d) EM(D*) and EM(D,) are in EN M.

o . & O
where B — R% is the transpose of A” — R®, and B” — R"" is the transpose of A” — R?".
According to (d), Chu spaces EM(DP*) and EM(D.) are thus monics in one factorization system
and epis in another one, like the diagonalizations were in diagram (28) in Sec. 3. According to (a)
and (b), EM(®P*) and EM(D,) are moreover the best such approximations of ®* and ®,, as their
largest quotients and embeddings, like the diagonalizations were, according to (27) and (35). The
difference between the current situation and the one in one in Sec. 3, is that the diagonal nucleus
there was self-dual, whereas EM(D*) and EM(D..) are not, but they are rather dual to one another.
It also transposes @’ and ®”, and the transposition does not preserve regularity, but in this case
it switches the M®-map with the M-map. Intuitively, the nucleus i;d) can thus be thought as
the best approximation of a diagonalization, in situations when the spectra of the two self-adjoints
induced by a matrix are not the same; or the best approximation of a separated-extensional core
when Chu,, and Chu,, do not coincide.
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Figure 11: The Chu-nucleus of the matrix ® : A X B— R

4.6 Towards the categorical nucleus

Although the categorical example 4.1.3 does not yield to the separated-extensional nucleus con-
struction, a suitable modification of the example suggests the suitable modification of the construc-
tion.

Consider a distributor ® : A’ x B — Set, representable in the form A(x, F.y) = ®(x,y) =
B(F*x,y) for some adjunction F* 4 F, : B — A. The factorization of representable matrices
displayed in Fig. 6 induces in Adj; the diagrams in Fig. 12. Here the representation A(x, F.y) =
®(x,y) = B(F*x,y) induces

®, : B— Set"’ O : A’ — Set”
b Ax. A(x, F.b) a— Ay.B(Fa,y)
ie. 0. =B 5 A% Set*)andd* = (A B S (Set®)"). So the Chu view of a distributor ®
representable by an adjunction F* 4 F, is based on the Kan extensions of the adjunction. The point

of this packaging is that the separated-extensional nucleus of the distributor @ for the factorization
system (Ess ¢ Ffa) in CAT where®

®This basic factorization takes scene in the final moments of the paper, in Sec. 11.4.
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l (TO ; l ’ CI l
Set?”’ a7 (SetB)O _— (SetB)o e Set*’ ——— Set"’

B+—F A A ¢ . B————38
A (cp‘ ) AF ‘. ! ) B? l A
(SetB)o (SetB)o ARy Set"’ —— Set"’ S (SetB)o

Figure 12: Separated-extensional nucleus + Kan extensions = Kleisli resolutions

e & = Ess = essentially surjective functors,
o M = Ffa = full-and-faithful functors

givesrise to the Kleisli categories A« and B for the monad F=F +F* and the comonad F = F*F v
since

|Ag| = 1Al |AF| = Bl Gh
Ac(x,x') = B(F'x, F'x') B2(,y) = A(F.y, F.y")
It is easy to see that this is equivalent to the usual Kleisli definitions, since B(F*x, F*x’) =

A(x, F.F*x') and A(F.,y, F.y’) = B(F*F.y,y’). The functors F, and F’ induced in Fig. 12 by
the factorization form the adjunction displayed in Fig. 13, because

Ae(F.y,x) = BIF'F.y,F'x) = A(F.y,F.F'x) = Bx(y, F'x)

While this construction is universal, it is not idempotent, as the adjunctions between the cate-
gories of free algebras over cofree coalgebras and of cofree coalgebras over free algebras often
form transfinite embedding chains. The idempotent nucleus construction is just a step further.
Remarkably, categorical localizations turn out to arise beyond factorizations.
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M(F.)

&

Figure 13: A nucleus F’ 4 F, spanned by the initial resolutions of the adjunction F* 4 F,

5 Example co: Nuclear adjunctions, monads, comonads

5.1 The categories

The general case of Fig. 3 involves the following categories:

e matrices between categories, or distributors (also called profunctors, or bimodules):

IMat| = U CAT(A° x B, Set) (52)
A,BeCAT
Mat(®d,¥) = {(H,K) e CAT(A,C) x CAT(B,D) | ®(a,b) = ¥(Ha, Kb))

e adjoint functors:

Adil = || || {me) eNatid, F.F) x Nat(F*F., id) | (53)

ABECAT F*cCAT(AB)
F.CAT(B.A)
eF"oF'n=F" A F.eonF,=F.,}

Adi(F,G) = ((H,K) e CAT(A,C)x CAT(B,D)|KF* ~ G'H A HF.%G.K A
Hi" 'S 6H A K& 'Y OK)
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e monads (also called triples):

Md = [ ] (@ € Natd, T) x NaTT. T) | (54)
ACCAT TeCaT(AA)
— — — — —
poTu=poul ApoTn=T =ponT}
— & —x
Mnd(T,S) — (HeCAT(A,C)|HT £ SH A
Hy' 050 A HYT £ S H)
e comonads (or cotriples):
cmnl = [ || HeveNa(T.id)x Na(T. 77| (55)
BeCAT ZeCAT(B,B)
— - - — —
Tvov=vT ovATegov=T =¢&T ov}
— = — k=
Cmn(S,T) — [K € CAT(B,D)|KS 2 TK A
Ke* 26Tk A KVS 207K)

e The category Nuc can be equivalently viewed as a full subcategory of Adj, Mnd or Cmn, and
the three versions will be discussed later.

Remark. The above definitions follow the pattern from the preceding sections. The difference
is that the morphisms, which are still structure-preserving pairs, this time of functors, now sat-
isfy the preservation requirements up to isomorphism. In each case, there may be many differ-
ent isomorphisms witnessing the structure preservation. We leave them out of picture, under the
pretext that they are preserved under the compositions. This simplification does not change the
nucleus construction itself, but it does project away information about the morphisms. Moreover,
the construction also applies to a richer family of morphisms, with non-trivial 2-cells. The chosen
presentation framework thus incurs a loss of information and generality. We believe that this is
the unavoidable price of not losing the sight of the forest for the trees, at least in this presentation.
Some aspects of the more general framework of the results are sketched in Appendix B. We leave
further explanations for the final section of the paper.

5.2 Assumption: Idempotents can be split.

An endomorphism ¢ : X — X is idempotent if it satisfies ¢ o ¢ = ¢. A retraction is a pair of
morphisms e : X — R and m : R— X such that e o m = idg. We often write retractions in the form
R @r:? X,orm: R £ X :e. Note that ¢ = m o e is an idempotent. Given an idempotent ¢, any

retraction with ¢ = moe is called the splitting of ¢. It is easy to see that the componentm : R > X
of a retraction is an equalizer of ¢ and the identity on X; and that e : X - R is a coequalizer of ¢
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and the identity. It follows that all splittings of an idempotent are isomorphic. An idempotent on X
is thus resolved by a splitting into a projection and an injection of an object R, which is called its
retract. When ¢ is a function on sets, then its idempotency means that ¢ picks in X a representative
of each equivalence class modulo the equivalence relation (x ~ y) < (¢(x) = ¢(y)), and thus
represents the quotient X/~ as a subset R C X.

The assumption that all idempotents split is the weakest categorical completeness requirement.
A categorical limit or colimit is said to be absolute if it is preserved by all functors. Since all
functors preserve equations, they map idempotents to idempotents, and preserve their splittings.
Since a splitting of an idempotent consist of its equalizer and a coequalizer with the identity, the
idempotent splittings are absolute limits and colimits. It was proved in [66] that all absolute limits
and colimits must be in this form. The concepts of absolute limit, absolute colimit, and retraction
coincide.

The absolute completion A of a given category A consists of the idempotents in A as the
objects. A morphism f € A(y, ) between the idempotents ¢ : X - X and y : Y — Y in A is an
arrow f € A(X,Y) such that Yy o f oo = f, or equivalently Yy o f = f = f o ¢. A morphism from
¢ to y thus coequalizes ¢ with the identity, and equalizes ¢ with the identity. If ¢ and ¢ splitin A
into retracts R and §, then the set A(y, ) is in a bijective correspondence with A(R, S). It follows
that A embeds into A fully and faithfully, and that they are equivalent if and only if A is absolutely
complete. While the assumption that the idempotents split can presently be taken as a matter of
convenience, we argue in Sec. 11.4, at the very end of the paper, that the absolute completeness is
not a side condition, but a central feature of categories observed through the lense of adjunctions.

The assumption that the idempotents can split does not mean that they must split. Like any
assumption, the above assumption should not be taken as a constraint. Applying it blindly would
eliminate, e.g., the categories of free algebras and coalgebras from consideration, since they are not
absolutely complete. This could be repaired by completing them, which would leave us with the
category of projective algebras on one hand, and the category of injective coalgebras on the other
hand’. This is, however, not only unnecessary, but also undesirable. Assuming that an equation
has a solution does not mean that it can only be viewed in the solved form. Assuming that the
idempotents split makes their retractions available, not mandatory. This expands our toolkit, but it
should not be misunderstood to narrow our perspective by banishing any subjects of interest.

5.3 Tools
5.3.1 Extending matrices to adjunctions

Any matrix ®: A’ x B — Set from small categories A and B can be extended along the Yonda
embeddings A 5 Set* and B > (SetB)o into an adjunction ®* 4 O, : (SetB)o — Set”” as

7 An algebra is projective if it is a retract of a free algebra. Dually, a coalgebra is injective if it is a retract of a cofree
coalgebra [75, Sec. II].
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follows:
O: A°xB — Set

®.: A”— Set” .0: B Set”’ (56)
®': Set”’ - (Sef?)’ ®,: (Set®)’ - Set"’
The second step brings us to Kan extensions. In the current context, the path to extensions leads
through comprehensions.
5.3.2 Comprehending presheaves as discrete fibrations

Following the step from (4) to (52), the comprehension correspondence (5) now lifts to

o

Cat(A’xB,Set) =>' Dfib/AxB (57)

[1]

(A@xBiSet) - (f@iAxBO)
(AOxBiSet) “ (EiAxBO)

Transposing the arrow part of @, which maps every pair f € A(a,a’) and g € B(b',b) into

g . . . .
O, b') - ®(a, b), the closure property expressed by the implication in (6) becomes the map-
ping

Aa,d’) x O(d',b")xB(b',b) — D(a,b) (58)

The lower-upper closure property expressed by (6) is now captured as the structure of the total
category f @, defined as follows:
ach

/]
beB

JO(xa.x,,) = [(fr8) € Ala,d) x BX,b) | x = Dpe(x)]

]_[ ®(a, b) (59)

It is easy to see that the obvious projection

(0]

[o % axp (60)

Xap > (a,b)

is a discrete fibration, i.e., an object of Dfib /A x B?. In general, a functor F i C is a discrete
fibration over C when for all x € F the obvious induced functors F/x i C/F x are isomorphisms.

. ! . . . e g
In other words, for every x € F and every morphism ¢ — Fx in C, there is a unique lifting #'x — x

35



of rto F, i.e., a unique F-morphism into x such that F(6") = ¢. For a discrete fibration E 5 Ax B,
such liftings induce the arrow part of the corresponding presheaf
=g A°xXB — Set
(a,by — {xe€E|Ex=/{a,b)}

because any pair of morphisms (f, g) € A(a,a’) x B°(b, b’) lifts to a function Zx(f, g) = (f,g)" :

Ep(a’,b’) = Eg(a,b). Fibrations go back to Grothendieck [35, 36]. Overviews can be found in
[42, 67]. With (4) generalized to (52), and (5) to (57), (7-8) become

JA = Dfib/A =~ Set" (61)
1B = (Dfib/B)’ = (Set®)’ (62)

Just like the poset embeddings A 5 JA and B 5 1B were the join and the meet completions, the
Yoneda embeddings A 5 JA and B 5 1B, where va = (A/a Dom, A) amd Ab = (b/B C—Od> B)
are the colimit and the limit completions, respectively.

5.4 The functors
5.4.1 The functor MA : Mat — Adj

The adjunction MA(®) = (®* 4 @,) induced by a matrix @ : A° X B — Set is defined by lifting
(11) from posets to categories:

L . U oD
LS A JA m(UHB—)UA)
o 4] o. (63)
. OL” 0<1>. 0 U
lln(]L —>A—>(ﬂB)) 1B USB

The fact that A — JA is a colimit completion means that every L € |[A is generated by the
representables, i.e. L = h_r)n(lL 5 AS UA). Any li_r)n—preserving functor ®* : JA — B thus

satisfies
. L v . L [ . L° O,
(L) = d)*(hm (IL, Lal UA)) ~ lim (IL, Lal, ﬂB) ~ lim (LO ope 2y (ﬂB)")
— — —

Analogous reasoning goes through for ®,. This completes the definition of the object part of
MA : Mat— Adj. The arrow part is completely determined by the object part.
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Remark. The limits in JA ~ Set”” and in (1B)° ~ Set® are pointwise, which means that for any
b € B and diagram D 2 Set”, the Yoneda lemma implies

(lim D)b = Seff (Ab, limD) = Cones(b, D)

— —

In words, the limit of D at a point b is the set of commutative cones in B from b to a diagram
D : f D — B constructed by a lifting like (59).

5.4.2 From adjunctions to monads and comonads, and back

The projections of adjunctions onto monads and comonads, and the embeddings that arise as their
left and right adjoints, all displayed in Fig. 14, are one of the centerpieces of the categorical toolkit.
The displayed functors are well known, but we list them for naming purposes:

EC EM
/\ . /—\f
Cmn ¥ ATc Adj ATM % Mnd
A~ T ~_ r A
KC KM

Figure 14: Relating adjunctions, monads and comonads

° EC(? :B— B) = (V* 1V,:B—> B?) «~ all coalgebras (Eilenberg-Moore)
° AC(F *4F,:B— A) = (77) =FF,:B— B) «~ adjunction-induced comonad
° KC(? :B— B) = (U* 41U, :B— B?) v~ cofree coalgebras (Kleisli)
— -
° EM(F A— A) = (V* 1V, Af - A) «~ all algebras (Eilenberg-Moore)
H
° AM(F* 1 F,:B— A) = (F =F.F:A— A) e~ adjunction-induced monad
° KM(F: A— A) = (U* 41U, : A? - A) e free algebras (Kleisli)

Here A is the category of all algebras and A« is the category of free algebras for the monad

¥ on Aj; and dually B is the category of all coalgebras for the comonad F on B, whereas B-:
is the category of cofree coalgebras. As the right adjoints, the Eilenberg-Moore constructions
of all algebras and all coalgebras thus provide the final resolutions for their respective monad
and comonad, whereas the Kleisli constructions of free algebras and cofree coalgebras as the left
adjoints provide the initial resolutions.

Note that the nucleus setting in Fig. 3 only uses parts of the above reflections: the final resolu-
tion AM 4 EM of monads, and the initial resolution KC 4 AC of comonads. Dually, we could use
KM 4 AM and AC 4 EC. Either choice induces a composite adjunction, with an induced monad on
one side, and a comonad on the other side, as displayed in Fig. 15.
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6 Theorem

The Street monads I ; Mnd — Mnd and €. Cmn — Cmn, defined by

M = AMoEC oAC o KM (64)
G = ACoEMoAMoKC (65)

as illustrated in Fig. 15, are idempotent in the strong sense: iterating them leads to natural equiv-

Mnd Mnd

M.

Figure 15: Monads and comonads on Cmn and Mnd induced by the localizations in Fig. 14

alences
— n —

— i & —
N =Nt oM CxCoC

Moreover; the induced categories of algebras coincide. More precisely, there are equivalences

cmn® ~ Nuc =~ Mnd™ (66)
where
Cmn(@ = {77) e Cmn |7V) L <(_E-1_7> (67)
Nuc = {F eAdi| FLEMF) A F 2 ‘E_(F)} (68)
Mnd® = {F eMnd| F L %‘F} (69)

for EM = EM o AM and EC = EC o AC.
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Terminology. The objects of the equivalent categories Nuc ¢ Adj, Mnd” ¢ Mnd, and Cmn® c
Cmn are nuclear adjunctions, monads, or comonads, respectively. They are the nuclei of the
corresponding adjunctions, monads, comonads.

P
Remark. For an adjunction F = (F* 4 F,), the condition F 2 EM(F) implies that F, is monadic,

and F 2 &(F ) implies that F* is comonadic. Equation (68) thus provides a more formal view
of nuclear adjunctions, where the right adjoint is monadic and the left adjoint is comonadic, as
discussed the Introduction. Although defined slightly more formally than in the Introduction, the
category Nuc is still specified as an intersection of two reflective subcategories. To ensure the
soundness of such a definition, one should prove that the two reflections commute, i.e., that the
two monads distribute over one another. Otherwise, the two reflections could alternate mapping an
object outside each other’s range, and generate chains. In the case at hand, this does not happen:

. . . F H H P . . .
the distributive law EM o EC = EC o EM is spelled out in Corollary 7.8. It arises from the nucleus

& . . . . . . .
monad Yt : Adj — Adj, which we will work on in the next section. We swept it under the carpet
just for a moment, to keep the theorem shorter.

7 Propositions

Proposition 7.1 Let F = (F* 4 F, : B— A) be an arbitrary adjunction, which induces

e the monad <I*T = F.F”" with the (Eilenberg-Moore) category of algebras AiF and the final
adjunction resolution U = (U* AU, : Af > A), and

e the comonad F = FF . with the (Eilenberg-Moore) category of coalgebras BE and the final
resolution V = (V* 4V, :B— BF).

— -
The fact that U and V are final resolutions of the monad F and the comonad F, respectively,
means that there are unique comparison functors from the adjunction F to each of them, and these
functors are:

e H': A— B?, such that F* = V* o H and F, o H* = V,,

e H:B— AF, suchthat F, = U,oHyand Hy o F* = U".
Then the functors F* = H, o V* and Fy = Hy o U, defined in Fig. 16 form the adjunction F* 4 Fy:
AF—> B?.

Proof. The object parts of the definitions of the functors Fy and F # are unfolded in Fig. 17. The
arrow part of Fy is F* and the arrow part of F #is F.,. For these F* and F 4, we shall prove that the
correspondence

AF(Fig,a) = BF (8, Fya) (70)
frof=Ffop
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F*x F.F*x
(T e ()
F*F.F*x X
- F. —
A--_LBF ¢t AF
U.
W/\
H — # -
B---1-5 AF & BF
F.F*F.y y
v | LFe e——a(lﬁ)
F*y F*F*y

Figure 17: The definitions of Fy and F 4

is a natural bijection. More precisely, the claim is that

a) f is an algebra homomorphism if and only if f is a coalgebra homomorphism: each of the

following squares commutes if and only if the other one commutes

F.FFy —1 s g ey FFEy " pFr Fx
F.e|=F%3 a — B Fya=|Fn
y— — s F
F.y 7 X y ; Fx
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b) the map f — f is a bijection, natural along the coalgebra homomorphisms on the left and along
the algebra homomorphisms on the right.

Claim (a) is proved as Lemma 7.3. The bijection part of claim (b) is proved as Lemma 7.2. The

naturality part is straightforward. O

Lemma 7.2 For an arbitrary adjunction F = F* 4 F, : B— A, any algebra F.F*x 5 x, and any
B . .
coalgebray — F*F.y in B, the mappings
=)
/N
A(F,y, x) B(y, F*x)
&_/
(=)

defined by
[=Ffop g=aokF.g

induce a bijection between the subsets

{feAF.y, )| f=aoF.F foFp

1R

{geB(,F'x)|g=F'aoF'F.gop}

illustrated in the following diagram.

F.FFy =1y F pex FFy 2%y PR Fix
N> 04
p F.g ¢ F Ff "
F.y 4)‘) X y —— F'x

Proof. Following each of the mappings "there and back" gives
f v f=Ffof >  f=aoF.FfoFf=f
g > g=aoFg +> g=FaoF'Fgof=g
O

Lemma 7.3 For any adjunction F = F* 4+ F, : B — A, algebra F.F*x 5 xin A, coalgebra

y LA F*F.y in B, arrow f € A(F.y,x)and f = F*f o S € B(x, F*y), if any of the squares (1-
4) in Fig. 18 commutes, then they all commute. In particular, a square on one side of any of
the equivalences (a—c) commutes if and only if the square on the other side of the equivalence
commutes.

Proof. The claims are established as follows.
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F.e (1) »
F.y 7 > X
(@73

F.FFy —  p ey

F.B (2) a

F.y > X

(b)
PEN

FFy —L s pRFex

B 4) F'n
y ; > F'x
(A(9)

FFy — R ey

Figure 18: Proof schema for (71)

(1) g (2):  Using the commutativity of (1) and (x) the counit equation € o8 = id for the coalgebra

B, we derive (2) as

@aoF.F'foFB 2 foF.eoF.f 2 f
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(a
2) :; (1) is proved by chasing the following diagram:

F.F*F.F*F,y mrrry s F.F'F.F'x
F.F'F.j
(2) FoFa
F.Ff
F.FFy — oy F oy
e () e )« ) >
F.y 7 > X
F.p @)
F.F*F.y T > F.F"x

The top and the bottom trapezoids commute by assumption (2), whereas the left hand trapezoid
(denoted (7)) and the outer square (denoted (O0)) commute by the naturality of €. The right hand
trapezoid (denoted (£)) commutes by the cochain condition for the algebra . It follows that the
inner square (denoted (1)) must also commute:

foFe 2

aoF.F'foF,BoF.e
aoF.F'foF.eoF,F'F.

2 GoF.co F.F*F.F*f o F.F'F.B
aoF.a" o F,F'F.F'foF.,F'F.

= aoF.F'f

(©) . (a) . . .
(4) & (3) is proven dually to (1) & (2) above. The duality consists of reversing the arrows,
switching F, and F*, and also @ and 3, and replacing & with 5.

b
2) 2:; (3) follows from Lemma 7.2. mi
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Proposition 7.4 The adjunction F* 4 F : AF = BF constructed in Prop. 7.1 is nuclear:
o F#: B7 - A(F is comonadic
o Fy: AF  BF is monadic

This construction induces the idempotent monad

P
N:Adj —» Adj
(F*4F,) — (F'4Fy

Proof. It is easy to see that the construction of <gJ?F = (F' 4 F 4) in Prop. 7.1 is functorial, and

H
that the comparison functors as used in Fig. 16 provide the monad unit F % NF. We show

that NF — MIF is always an equivalence. This means that the comparison functors from 9 F

—
to MNF are equivalences. These comparison functors are constructed in Fig. 19, still under the
names H° and H,, lifting the construction from Fig. 16. is an equivalence of categories. We prove

— —
Figure 19: The construction of the nucleus NNF = (F "4F mj) of nucleus NF = (F i ﬂ)

this only for H°. The argument for H, is dual.

- — —
Instantiating the usual definition of the comparison functor for the comonad F : A — Af to

44



the resolution F¥ 4 F 4, we get

- HO — ?
BF (AF) (72)
F*g). =
F.F*F.y > F.y
y F'B
B = F.F'F.p HO,BJ/: Fhyy  |Fs
F*F.y FF4F*

F.F'F.F'F.y %FF* Y

Since by assumption the idempotents split in B, the comparison functor H® also has a right adjoint
H,, which must be in the form

(AF) S N BF (73)
&
. Yyt S px ! FF.F'x
F.F'x ———— x | ———r
PR~ K
r
l
|
F.F*d 0 d i Ho(si Fﬁa’ =F'n FﬁFﬁFﬁa =|Fn
: F*F.e
|
~ ~ ! K—\
s FﬁFﬁQ’ *y N F*F.F*d ~
F*F.F'n
K~
F*F.r

where y is defined by splitting the idempotent £ o F*d, and d is the structure map of the coalgebra
s FfFyain AT,

— ? -
To show that the adjunction H° 4 H, : (AF ) — B’ is an equivalence, we construct natural

isomorphisms HyH" = id and H°H,, = id.
Towards the isomorphism HyH° = id, note that instantiating H°S : F*8 — F*F,F'g (the
right-hand square in (72)) as 6 : « = F iF ya (the left-hand square in (73)) reduces the right-hand
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equalizer of (73) to the following form:

&

/\

F*F.B

> > *
|
|

HoH'B\=B F'n . F*y (74)

/\

|

|

\:/ F*F.F*F.j3
F*g%——%FWF*gT__?FWFWJ

F*F.¢

It is a basic fact of (co)monad theory that every coalgebra S in BE makes diagram (74) commute
[14, Sec. 3.6].

=

F
Towards the isomorphism H°H,, = id, take an arbitrary coalgebra « S FiF ya from (AF ) and

consider (72) instantiated to 8 = Hyo. By extending the right-hand side of this instance of (72) by
the F,-image of the right-hand side of (73), we get the following diagram

F.e

m
* 3 #€ * % * *
F.F*F.y r s F,y b L > FoF'x { F.F'F.F'x
| F.F'n
: K/
| F.r
F.F*F.Hoo HH,y6 | F.Hoo F.F'p r.ry (75)
| F.F*F.e
| J/\
v F.F'F.e _RERE -
FF*FF**y%FF*F )—)FFFF* F.F*F.F*x
F.F'F.F'y ;

ﬁ\_/

F.F*F.r

The claim is now that x 2, F.F*x equalizes the parallel pair (F.F*n, F.F*d) in the first row. Since
y > F*x was defined in (73) as a split equalizer of the pair (F*n, F*d), and all functors preserve

split equalizers, it follows that F.y s F.F*x is also an equalizer of the same pair (F.F*n, F.F*d).
Hence the isomorphism x = F,y, which gives HHyb = 6.

. d . . .
To prove the claim that x »» F.F~x equalizes the first row, note that, just like the coalgebra

y Ly Ly in BF was determined up to isomorphism by the split equalizer in B, shown in (74), the

—\ F
coalgebra « % PR ya In (AF ) is determined up to isomorphism by the following split equalizer
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NG
in A
E

K ns N
a —"— FiFa 14? F*F FFFya (76)

K/ Fu’]

In A, the split equalizer (76) unfolds to the lower squares of the following diagram

F.e

)/_\

, F.F*d
SN
X » > F.F*x \ ; F.F'F.F*x
Y Y F.F*n Y
| K“_/
I
I
I'd F.F*n F.F*n
: F*F.e
| )/_\
I
v FoFd v F.F*F.,F*d ~
. —_—
F.F'x "% F,F*F.x F.F*F.F*F.x (77
I F.F*F.Fy
| N pre
I
:a F.e F.e
| F.e
| )/_\
I
¥ J ¥ F.F*d ¥
- =
Xy > F.F*x F.F*F.F'x

—

v F*F*T]

a

Since the upper right-hand squares also commute (by the naturality of 7), they also induce the
factoring of the split equalizers in the upper left-hand square. But the upper right-hand squares
in (77) are identical to the right-hand squares in (75). The fact that both F.y -3 F.F*x and

d* . . . . . . L . .
x = F,.F*x are split equalizers of the same pair yields the isomorphism F.y — x in A, which turns
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L < ?
out to be a coalgebra isomorphism H°Hyé — ¢ in (AF ) , as shown in (78).

F.F*x = S X
F.e

F.F'F.y : > F.y

F.F*d F.F*F.Hy6 F.Hyo d (78)

F.F*F,F*F,y — % S F.F*F,y
F.F*F.F*L F.F*.

~ v

F.F*F.F'x — > F.F*x

Here the outer square is §, as in (73) on the left, whereas the inner square is H'Hyd, as in (75) on
the left. The right-hand trapezoid commutes because the middle square in (75) commutes, and can
be chased down to (79) using the fact that ¢ is defined by F.e = d o t.

F.e

F.y - > X > 5 > F.Fx
N
F.Hoo F.F'y (79)
F.e
~- K_\ ~

F.F*§

F.FFFy —2C s o 20 o R P x

\_/

F,F*F.e

The commutativity of the left-hand trapezoid in (78) follows, because it is an F,F*-image of the
right-hand trapezoid. The bottom trapezoid commutes by the naturality of €. The top trapezoid
commutes because everything else commutes, and d is a monic. The commutative diagram in (78)

thus displays the claimed isomorphism H°HyS — 6.
This completes the proof that H°H,, = id. Together with the proof that HyH" = id, as seen in

«\ F —
(74), this also completes the proof that H = [HO 4 Hy : (AF ) — BF ] is an equivalence. We have

thus shown that F* : B — A is comonadic. The proof that Fy : A" — B’ can be constructed as
a mirror image. d
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Corollary 7.5 For any adjunction F* 4 F, : B — A with the nucleus F* 4 Fy : AF 5 B7 it holds

— — Ed —
that the induced monad F = FyF “ on BY and comonad F = F*F ¢ on AT are isomorphic with
those induced by the final resolutions:

(187 A ﬁuﬁ)

=) =
IR

_ (A?QBQA?)

— - — —
The monad F on B thus only depends on the comonad 7?) on B, whereas the cononad F on AF

&
only depends on the monad F on A. Neither depends on the particular adjunction from which the
nucleus originates.

Proof. Using the definitions Fy = H°U, and F* = H,F*, and chasing Fig. 16 gives

= FyF* = H'U.H\V* = H'F.V* = V.V*

=] =)

= F*Fy = H\V'H'U, = H\F'V, = U'L.
O

Corollary 7.6 All resolutions of a monad induce equivalent categories of coalgebras. More pre-

cisely, for any given monad <7_" : A — A any pair of adjunctions F* 4 F, : B — A and
G 4G, :D— A holds

— —

— — -
F=T=G = Bf=x~D (80)

where F =F'F,, 77) =F'F,, E =G.G" anda = G*G.. The equivalences are natural with respect
to the monad morphisms. Comonads satisfy the dual claim.

on the particular resolutions F* 4 F, and G* 4 G., but depend only on the monad FaT= (5, and

_ = =

must beinthe form F =2 G = T = (A(f L A U—> A?). Hence

2 () (7)< 47 oo

where Prop. 7.4 is used at the first and at the last step, and Corollary 7.5 in the middle. O
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Corollary 7.7 For any adjunction F* 4 F, : B— A, monad F and comonad F holds

(47) = (a) ) ~ ()

where A is the (Kleisli-)category of free ?—algebras, AiF is the (Eilenberg-Moore-)category of all

— -
F-algebras, and similarly B and BY. These equivalences are natural, and thus induce

[

ECoACoKM = ECoACoEM (81)
EMoAMoKC = EMoAMoEC (82)

1

Proof. The claims are special cases of Corollary 7.6, obtained by taking pairs of resolutions con-
sidered there to be the initial resolution, into free algebras (or cofree coalgebras), and the final
resolution, into all algebras (resp. coalgebras). m|

Corollary 7.8 The idempotent monads EM = EM o AM and & = EC o AC on Adj distribute over
one another, and

EMoEC = ~ ECo EM (83)
Proof. The distributivity law is displayed in Fig. 20. The comonad on AF and the monad on B are

not displayed, since they have just been spelled out in Corollary 7.5. The isomorphisms claimed
in (83) follow from the fact that they coincide. O

Remark. Fig. 20 internalizes in Adj the commutative square of the nucleus schema in Fig. 3.

Proof of Thm. 6. The monads éﬁ and <@ are in fact retracts of the monad % from Adj to Mnd and
to Cmn, respectively:

<— —
M = AMo EC o AC o KM € = ACoEMo AMo KC
Y AM o EC o AC o EM © ACoEMoAMo EC
2 AM o EC o AC o EM o AM o EM 2 ACoEMo AMo EC 0 AC o EC
:AMOECOEMOEM :ACOEMOECOEC
(83) (83)
~ AMOSTEOEM = ACOSROEC

At step (1), we use the fact that the monads m = EM o AM and E) = EC o AC are idempotent.
. . Kol B el ey — = . — n o

The natural 1somorphlsms EIR NoMNand € = € o € are derived from N = N o N, by

EM £ EMo EM or EC EC o EC and retracting into Mnd or Cmn, respectlvely The equivalences

Mnd‘th =~ Adj Cmn arise from these derivations. The fact that Adj is equivalent with the
category Nuc, defined in (68), and used in (66), follows from Corollary 7.8. O
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Figure 20: The nucleus construction 9t factorized into EM o EC = EC o EM

8 Simple nucleus

The main idea of monads and comonads is that they capture algebra and coalgebra. For any
monad F : A — A, the categories AF of all ?—algebras and A of free F—algebras frame all
analyses, since all resolutions lie in-between them [14, 27, 49]. Corollary 7.6 says that all these

resolutions induce equivalent categories of coalgebras, which lie in-between the categories (AF )ﬁ
F

=

A\ F
and (AF ) . So it also makes sense to talk about the coalgebras for a monad, and analogously about

— — ?
the algebras for a comonad. But the categories (AF )= and (AF ) of coalgebras over algebras are
F

built in two layers of structure, one on top of the other. When their interactions are discharged
and the reduncancies removed, the composite structure turns out to be simpler than either of the
components. This was spelled out in [75], with an eye on applications. The nucleus construction
explains the simplicity of this structure, and uses it as a pivot point for further developments.
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Proposition 8.1 Given an adjunction F = (F* 4 F, : B— A), consider the categories

F'x F.F'x —» x

A = [ [laeBE x| & Sa D o (84)
xelAl + ~ ~ Y
Fx o — F*x  F.F'x
B Fx =L Py
A (any) = fehAx| a 7.
Yoo, ¥
F'x — F*z
F.x F'Fu—p—»u
— ” \
B = [ [ ca®uFu | f S ey I (85)
uelB| N \ Y
Fu—p— Fu F'F.u
_ F*uﬁ)F*w
Bf(g",6") = gEBuUW)| 4 &
¥ oore ¥
Fau — F.w

a, . R . B, B
where x — F.F*xis the transpose of F*x — F*x, and F*F.u — u is the transpose of F.u — F.u.

The adjunction F* 4 F, : BT — AT defined in Fig. 21 with the comparison functors

KO:A—>A? Kl:B—>B<?
F'F,F'x F.F'F.u
cF* F.e
X — <F*F*x, ;Lx > ur— <F*F*u, ;Lu >
F*n\l/ r]F*\L

F*F.F'x F.F*F.u
is equivalent to the nucleus, i.e.

«— " b

N(F'4F.) = (Fi4F)
Lemma 8.2 Ifp o ¢ = ¢ = moe, where m is a monic and e is an epi, then e o m = id.

Proof. moeomoe =¢op =¢ =moeimplieseomoe = e because m is a monic, and e o m = id
because e is epi. m|
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A e K s AF
(X, @) (F.u, F'3")
Fl 4 |F Fi| 4 | Fy
(F*x, F.ay) (u, )
- — s BT

Figure 21: The simple nucleus F% 4 F, of F* 4 F,

F.a, at ay ~ . .
Lemma 8.3 If(F*F*x —5 F*F*x) = (F*F*x > X F*F*x), where @, = F.a, o n, is a monic
and o* is an epi, then a* o n, = id.
Proof. a@,0a* = F.a,on,0oa® = @, 0a*on,oa” implies a* = a* o7, o a* because @, is a monic,
and id = a* o i, because a* is epi. O

F.ay

Proof of Prop. 8.1. Still writing F.F*x % x5 F.F*x for the decomposition of F.F*x —
F.F*x, we have
ato@, =id, and a*on, =id, (86)

from Lemma 8.2 and Lemma 8.3, respectively. Similar lemmata lead to the equations

a'oF.F'a* = a'oF.ep,

a,oa" = F.ep,oF.F'a,
which, together with (86), say that F.F*x %, xisan algebra in AiF and that @, € A?(oﬂ, Uy) 1s an

-\ F =
algebra homomorphism, and in fact a coalgebra over a* in (AF ) . Hence the functor from A

=

\ F
to (AF ) , which turns out to be an equivalence upon straightforward checks. A similar argument

—

= N\ F
leads to a similar functor from B to (BF ) . Hence the equivalences
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On the other hand, the equivalences
AT BT 57 o AF
are spelled out and verified in [75]. Every object (x, F*x 5F *x) € AT is shown to be isomorphic

to one in the form (F.y, F*F, 5 y LA F*F.y) for some y € B and a coalgebra S € Bﬁ. It follows
that both squares in the following diagram commute

Fx > F'F.F*x
HS
F*L& F*F.F*.
F*F.y o S F*F.F*F.y
& F*F.e
@x y > B > F*F.y @y (87)
B F*F.8
F*F.,y Tl F*F.F*F.y
D (S
Fr. F'F.F*t
v K Fn ~ ~N
F'x > F*F. . F*x

for x <:—» F.y an isomorphism in A. Transferring the nuclear adjunction F* 4 Fy : AF _ BF

along the equivalences yields the nuclear adjunction F% 4 F , : Bf — AT with the natural
correspondence

Af(a,, F,8")

14

B (Ffa,,")
- f ~ n . F.f
(F x—>u) - f:(x—>F*Fx—>F*u)
The adjunction correspondence F* 4 F, : B— A lifts to F7 4 F, : B — AT because each of the

following squares commutes if and only if the other one does:

F(f)

F.Fx —L y pu FFx — 2 s PR
Foax B — it[ Fp (88)
F.Fr’x —> F.u Fix ——> F*F.u
F.f F*(f)
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Suppose that the left-hand side square commutes. To see that the right-hand side square commutes
as well, take its F*-image and precompose it with the outer square from (87), as in the following
diagram.

F(f)

a F*Foa Fp" (89)

| L,

F*F.f

F*x >T> F*F.,F*x ———— F*F.u
F(f)
The two outer paths around this diagram are the paths around right-hand square in (88). The
implication is analogous. O

Remarks. The constructions A7 and BY are given with respect to an adjunction F* 4 F, : B— A,

rather than just a monad <170r justa comonad?. The constructions for a monad or a comonad alone
can be extrapolated by applying the above constructions to their Kleisli or Eilenberg-Moore reso-
lutions. Corollary 7.6 says that all resolutions lead to equivalent categories. The Kleisli resolution
gives a smaller object class, but that is not always an advantage. Some adjunctions give simpler
simple nuclei than other adjunctions. The objects of the category A built over the Eilenberg-
Moore resolution of a monad (I*T turn out to be the projective (I*T—algebras, but the morphisms are

not just the ?—algebra homomorphisms, but also the homomorphisms of F -coalgebras. The ob-
jects can be viewed as triples in the form (x, o, @,) which make the following diagrams commute.

- —  ——— — ——
X o Fx FFx —%y—> Fx —Fa,— FFx
7
i ’ L ’ (90)
id \l/ \L
— —
X Fx o —> X a— Fx

Here we do not display just (84) instantiated to U* 4 U, : AF 5 A, but also the data that are
implied: the middle filling in the rectangle on the right must be a* because Fn is the splitting of
both (IFa/ and u. This makes it clear that o* is an <I7 algebra, whereas @, is an algebra homomor-
phism that embeds it as a subalgebra of the free F algebra ,u Soa*isa prOJGCthe algebra. On the

other hand, @, is also an F -coalgebra structure over the - -algebra a*. An AF -morphism from
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(x, @, @) to (z,v", ¥,y 1s an arrow f € A(x, z) that makes the following diagram commute.

—

F

E
o — x —a.— Fx

X
?fj/ Jf 7r 91)
B 1

(_
7 —ry—z —%n— Fz

The left-hand square says that f is an ?—algebra homomorphism. The right-hand square says
—

that it is also an F -coalgebra homomorphism. So we are not looking at a category of projective

— Ead -

algebras in AT, but at a category of F -coalgebras over it, which turns out to be equivalent to B,

as Prop. 7.4 established. The conundrum that F -coalgebras boil down to projective F—algebras,

-
but that the F -coalgebra homomorphisms satisfy just two out of three conditions required from
the ?—algebra homomorphisms was discussed and used in [75].

Corollary 8.4 If a given adjunction F* 4 F, : B— A is nuclear, then

a) every object x € A is a retract of F.F*x, and thus of an image along F.;

b) every object u € B is a retract of F*F.x, and thus of an image along F*.

Proof. By Thm. 6, F = (F* 4 F,) is nuclear if and only if EI<_E(F) =~ F. By Prop. 8.1, Nuc(F) =
(F "4 F u). The claim thus boils down to proving that (a) every a, € A? is a retract of an F,Fa,,

and (b) every B, € B is a retract of an F*F, yB.. The following derivation establishes (a). Case (b)
is analogous.

< X, Frx ax S Frx >
(F*x, F.F'x Fuay — F*F*x>
ax\L F. UA-\L \LF Uy
<F*x, F.F*X —— F.a, — F*F*x>
<F*F*x, F*F.F*x — F'Foa, = F*F*F*x>
vl . Qi Lre
< X, Fx ax—— F'x >
dXI F*&AI IF*&X
<F*F*x, F*F.F*x — F'Fa, = FFFx>
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Discussion. We know that an F—algebra structure Fx < X makes the F—algebra a into a quotient
of the free algebra Frxs Fx, but that the epimorphism Fx>x only splits by the unit x s F
when projected down into A by the forgetful functor U, : AF o A, and generally not in the
category of algebras A? itself. In other words, the F—algebra homomorphism a € A(F(p, a) induces
a retraction U.a € A(Fx, x), with n € A(Fx, X) as its inverse only within A, but i is not an F—

algebra homomorphism, and the splitting does not live in A”. This is where concept of reflecting
the U.-split coequalizers in Beck’s characterization of monadicity of U, comes from. It is not hard

to show that 7 is an F—algebra homomorphism only when it is an isomorphism, which makes « into
a free F—algebra. More generally, when the algebra homomorphism a € A?(,u, a) has a splitting
a € A?(oz, (), with the underlying map that may be different from n € A(x, Fx), then the algebra
a is projective. This thread was pursued in [75].

It may seem curious that Corollary 8.4 now says that x is always a retract of F xin AF More
precisely, any - algebra Fx S x with whrch X may appear in AF is a retraction, and has a

splitting x SEN F x. Does this not say that all F algebras are projective? The following explains
that it does not.

=

- o\ F
Remember that the category A’ is the simple form of the category (AF ) , and that it is

equivalent with the category of F—coalgebras B?, and certainly not with the category of F—algebras

— Ed L F
A" In the category of F -coalgebras over F—algebras, an object @, € (AF ) , like any coalgebra,

=

e\ F
comes with the coalgebra monic @, € (AF ) (@y,v) into the cofree coalgebra v. This monic

B —

—\ F «\ F —
generally does not split in (AF ) but the forgetful functor V* : (AF ) — A maps it into a
split monic, and its splitting in AF 1s the comonad counit F a* — a”. The underlymg map of
this counit 1s the structure map F x 2 xin A. The underlying map of the F -coalgebra @, has

the form x > Fx x, and the fact that it is a V*-split equalizer means that a* o @, holds in A.
Just as the forgetful functor BY — B makes the F—coalgebra embeddings into split equalizers in

=

«\ F - =
B, the forgetful functor (AF ) — A" makes the F -coalgebra embeddings into split equalizers in

AF. But there, the split equalizers display some F—algebras as retracts of free F—algebras. The

-\ F -
equivalence (AF ) ~ B’ thus presents F—coalgebras as projective F—algebras. Corollary 8.4

therefore does not say that all <1‘7—algebras are projective, but that all F—coalgebras can be presented
by some projective F—algebras. This was the pivot point of [75].

Note, however, that this representation does not imply that the F—coalgebra category BF is
equivalent with the category of projective F—algebras, viewed, e.g., as a subcategory of AF Ttis
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= . o . .
not, because the F'-algebra morphisms between projective algebras are strictly more constrained
—

than the F -coalgebra homomorphisms between the same projective algebras. This was explained
in [75].

The coequalizers that become split when projected along the forgetful functor from algebras are
crux of Beck’s Monadicity Theorem [15, 14, Sec. 3.3]. The equalizers that split along the forgetful
functor from coalgebras play the analogous role in the dual theorem, characterizing comonadicity.
The fact that such a peculiar structure is so prominent in such fundamental theorems has been a
source of wonder and mystery. In his seminal early work [65, 66], Paré explained it as an avatar
of a fundamental phenomenon: of reflecting absolute colimits into coeqalizers (in the case of
monadic functors), or of absolute limits into equalizers (in the case of comonadic functors). In the
framework of simple nuclei, such reflections are finally assigned the role of first-class citizens that
they deserve, and made available for categorical concept analysis.

9 Little nucleus

We define the [little nucleus to be the initial (Kleisli) resolution gE)F of the (big) nucleus EI(_EF of an
adjunction F' = (F* 4 F,). The little nucleus of a monad F (and of a comonad 77)) will be the
monad € F (resp. the comonad MiF') induced by the little nucleus of any of the resolutions of

3 (resp. of 77)). The constructions _(E) and ‘fi are the comonads on Mnd and Cmn, respectively,
constructed in Fig. 14, displayed in the statement of Thm. 6.

We say that an adjunction F* 4 F,. : B — A is subnuclear if the categories can be reconstructed
from each other as initial resolutions of the induced monad and comonad: A is equivalent to

the Kleisli category B for the comonad F = FF . . B— B, and B is equivalent to the Kleisli
category A for the monad F=F F* 1 A— A. More precisely, the comparison functors B-; NN

E' . . o .
and A — B are required to be equivalences. If the two Kleisli constructions are construed as
essentially surjective / fully faithful factorizations

b 1
F* o= (AE»A?>E—>B)
F. = (BEB7>@>A)

(see Fig. 13), then the requirement that E' and E, are equivalences means that F* and F, in a
subnuclear adjunction must be essentially surjective. But, as mentioned at the end of Sec. 4, while
the adjunction between the Kleisli categories is subnuclear itself, its resolutions may not be. The
upshot is that the little nucleus must be extracted from the big nucleus. The situation is summarized
in Fig. 22. The little nucleus arises as the initial resolution

W(F*4F,:B—A) = (F‘*b A Fy (AF)= 5 (B7)=)
F F
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Ub Vv*
/ / !
Ag »-mmmmm- B! ------- + B -------- Hy -------- » AF
F 7
-7 : \\\\ =
. v . A N
(AF)= % 7777777 EO 7777777 % BF 77777777 T > (AF)
F

Ve
/ / :

(B?))b oo Y —— N > (BF)
F “ o

Figure 22: The resolutions of an adjunction F' = (F* 4 F,) and of its nucleus (9_tF =(F'4F )

of the (big) nucleus, which is the final resolution
— — -
N(F*4F, :BoA) = (F“ —|Fﬁ:AF—>BF)

. . . H HH H . . .
Since Corollary 7.7 implies MIL(F) =~ NI (F), and Prop. 7.4 says that 9 is idempotent, tracking
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the equivalences through

!

VRF) — NR(F)
|
\ :

= (F)

| :

REW —3 N(F)

|

92)

=
— =

yields a natural family of equivalences W(F ) =~ a(F ). But spelling out these equivalences, of
categories of coalgebras over algebras and algebras over coalgebras, is an unwieldy task. The flood
of structure can be dammed by reducing the (big) nucleus to the simple form from Sec. 8

(_
N(F*4F,:B— A)

(F” \FyBF —>AF)
and defining the little nucleus in the form

ﬁ
N(F*4F,:B— A)

(Fb AFy: Ae B?)

where the categories A7 and B? are defined by the factorizations in Fig. 23. The category B?

X

Figure 23: Little nucleus RE defined by factoring simple nucleus NF

>
~ ]

gty
R f—

w —

&

=

&

thus consists of A © -objects and B ¥ -morphisms, whereas A? is the other way around®. Unpacking

8A very careful reader may at this point think that we got the notation wrong way around, because B consists
of B-objects and A-morphisms, whereas A consists of A-objects and B-morphisms. Fig. 24 explains this choice of
notation.



the definitions gives:

F'x F.F'x —>» x

Bl = [[{eeBFxFo| o Su w4 93)
xelAl \2 ~ ~N Y
F*x o — *x  F.F*x
F.F'x =% F.F*;
Be(@ny,) = gEBFXNFD)| rl,
~ Fug ~
F.F'x — F.,F'z
F.x F'Fu—p—»u
U ~N
|A?| = U ﬁ € A(F*I/l, F*I/l) | ﬁlu \,3" F*p" I (94)
uelB| ~ \,1 ~
Fou—p — Fau F'F.u
FFu 25 FRw
A?(’Bu,&/) — f € A(F.u, F.w) F*Iﬁ“ F*I6W

A ~
F.u — F*F.w

The adjunction F° 4 F), : B? — A? is obtained by restricting F* A Fy : BY — AT along the

embeddings B— — B F and A - AT Hence the functor
= b
N(F' 4F.:B—>A) = (F —|Fb:B?—>A?) (95)

— -
To see that it is an idempotent comonad, in addition to the natural equivalences 99t (F) ~ N(F)

from (92), we need a counit gf(F ) 5 F. The salient feature of the presentation in (94-93) is that
it shows the forgetful functors B? — Ag and A? — B, which complement the equivalences

BF ~ AF and AT ~ B in Fig. 24.
Proposition 9.1 The little nucleus construction

N Ad — Adj (96)
(F*4F, B> A) +— (Fb—|Fb:B?—>A?) 97)
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A B A BF — ~_ AF
_ & s ———

i U |

B Ac B AF _ ~_, BT

Figure 24: The counit RF S F and the unit of F 5 NF in Adj

is an idempotent comonad. An adjunction is subnuclear if and only if it is fixed by this comonad.
The category of subnuclear adjunctions

Luc = {F e Adj | R(F) £ F} 98)
is equivalent to the category of nuclear adjunctions:
Luc =~ Nuc

Proof. The only claim not proved before the statement is the equivalence Luc ~ Nuc. The functor
&
Luc — Nuc can be realized by restricting 9t from Adj to Luc ¢ Adj. The functor Nuc — Luc can

be realized by restricting 5?) from Adj to Nuc c Adj. The idempotency of both restricted functors
implies that they form an equivalence. O

Theorem 9.2 The comonads I : Cmn— Cmn and - Mnd — Mnd, defined

—

¢ = AMoKC oAC oEM (99)
M = ACoEMoAMoEC (100)

are idempotent. Iterating them leads to the natural equivalences

e Sl P = 2 e
Nio N =~ M CoCx=C

[®
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Moreover, their categories of coalgebras are equivalent:

Cmnﬁ ~ Luc = Mndf‘:j (101)

with Luc as defined in (98), and

cmn¥ = {?eCmnﬁ%(?)é?} (102)
2 — 2(S) 5 <
Mnd® = SFeMnd|M|F|=F (103)

2

Dm

/ﬁ Mnd‘Jﬁ
* *
~N- ~
Nuc

¢ E+—1—>E
o o
—

Mnd &= Mnd® Mnd
AM
¥
EM
A
Adj

\

KC

< Luc
AC AN
\l/
Cmn /_‘Mp cmn® Cmn h» Cmn™
- -
¢ Nt

Figure 25: Relating little and big nuclei

The proof boils down to straightforward verifications with the simple nucleus formats. Fig. 25
summarizes and aligns the claims of Theorems 6 and 9.2.

10 Example 0: The Kan adjunction

Our final example of a nucleus construction arises from the first example of an adjoint pair of
functors. The concept of adjunctions goes back, of course, at least to Evariste Galois, or, depending
on how you conceptualize it, as far back as to Heraclitus [54], and into the roots of logics [57];
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yet the definition of an adjoint pair of functors between genuine categories goes back to the late
1950s, to Daniel Kan’s work in homotopy theory [44]. Kan defined the Kan extensions to capture
a particular adjunction, perhaps like Eilenberg and MacLane defined categories and functors to
define certain natural transformations.

10.1 Simplices and the simplex category

One of the seminal ideas of algebraic topology arose from Eilenberg’s computations of homology
groups of topological spaces by decomposing them into simplices [24]. An m-simplex is the set

Apy = {X’E[O,l]’””| Zx,-:l} (104)
i=0

with the product topology induced by the open intervals on [0, 1]. The relevant structure of a
topological space X is captured by families of continuous maps A,, — X, for all m € N. Some
such maps do not embed simplices into a space, like triangulations do, but contain degeneracies,
or singularities. Nevertheless, considering the entire family of such maps to X makes sure that any
simplices that can be embedded into X will be embedded by some of them. Since the simplicial
structure is captured by each Ap,;’s projections onto all Ayys for £ < m, and by A,’s embed-
dings into all Ap,;s for n > m, a coherent simplicial structure corresponds to a functor of the form
A;_; : A— Esp, where Esp is the category of topological spaces and continuous maps’, and A is
the simplex category. Its objects are finite ordinals

[m] = {0<1<2<---<mj

while its morphisms are the order-preserving functions [28]. All information about the simplicial
structure of topological spaces is thus captured in the matrix

T: AxEsp — Set (105)
[ml xX +—  Esp (A, X)

This is, in a sense, the "context matrix" of homotopy theory, if it were to be translated to the
language of Sec. 2, and construed as a geometric "concept analysis".

10.2 Kan adjunctions and extensions

Daniel Kan’s work was mainly concerned with computing homotopy groups in combinatorial terms
[45]. That led to the discovery of categorical adjunctions as a tool for Kan’s extensions of the

9We denote the category of topological spaces by the abbreviation Esp of the French word espace, not just because
there are other things called Top in the same contexts, but also as authors’ reminder-to-self of the tacit sources of the
approach [36, 3].
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simplicial approach [44]. Applying the toolkit from Sec. 5.3, the matrix Y’ from (105) gives rise to
the following functors
T: A’ X Esp— Set
T.: A—> NEsp .I: Esp— [JA (106)

T": UJA— NEsp T.: TEsp— (A
where

e |A = Dfib/A ~ §etA0 is the category of simplicial sets K : A’ — Set, or equivalently of
complexes f K : K— A, comprehended along the lines of Sec. 5.3.2;

e NEsp = (Ofib /Esp)’ is the opposite category of discrete opfibrations over Esp, i.e. of

Dy
functors D 2 Esp which establish isomorphisms between the coslices x/D = Dx/Esp.

The Yoneda embedding A 5 JA makes A into a colimit-completion of A, and induces the exten-
sion Y*: JA— MEsp of T,: A— ffEsp. The Yoneda embedding Esp 5 fTEsp makes f1Esp into a
limit-completion of Esp, and induces the extension Y,: fEsp — A of ,T: Esp — [A.

However, Esp is a large category, and the category TEsp lives in another universe. Moreover,
Esp already has limits, and completing it to fEsp obliterates them, and adjoins the formal ones.
Kan’s original extension was defined using the original limits in Esp, and there was no need to form
TEsp. Using the standard notation sSet for simplicial sets Set”’, or equivalently for complexes
JA, Kan’s original adjunction boils down to

K5 A sSet (AH /x 2om, A)
4| (107)
. K A
h_r)n (K - A— Esp) Esp X

where
Ay A . A
o T, = (A — Esp — ﬂEsp), is truncated to A — Esp;
e ,T: NEsp— |A from (63), restricted to Esp leads to
yLn(l X, Esp -5 Dfib /A) - (AH /x 2om, A)

The adjunction MA(T) = ((* 4 T, : Esp — sSet), displayed in (107), has been studied for many
years. The functor T : sSet — Esp is usually called the geometric realization [64], whereas
T, : Esp — sSet is the singular decomposition on which Eilenberg’s singular homology was
based [24]. Kan spelled out the concept of adjunction from the relationship between these two
functors [44, 46].
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The overall idea of the approach to homotopies through adjunctions was that recognizing this
abstract relationship between 1™ and (', should provide a general method for transferring the invari-
ants of interest between a geometric and an algebraic or combinatorial category. For a geometric
realization Y*K € Esp of a complex K € sSet, the homotopy groups can be computed in purely
combinatorial terms, from the structure of K alone [45]. Indeed, the spaces in the form Y*K boil
down to Whitehead’s CW-complexes [64, 83]. What about the spaces that do not happen to be in
this form?

10.3 Troubles with localizations

The upshot of Kan’s adjunction Y* 4 Y,: Esp — sSet is that for any space X, we can construct

a CW-complex TX = T*7,. X, with a continuous map Tx 5 X, that arises as the counit of
Kan’s adjunction. In a formal sense, this counit is the best approximation of X by a CW-complex.
When do such approximations preserve the geometric invariants of interest? By the late 1950s, it
was already known that such combinatorial approximations work in many special cases, certainly

whenever ¢ is invertible. But in general, even WX 5 _'Y'>X is not always invertible.

The idea of approximating topological spaces by combinatorial complexes thus grew into a
quest for making the units or the counits of adjunctions invertible. Which spaces have the same in-
variants as the geometric realizations of their singular'® decompositions? For particular invariants,
there are direct answers [25, 26]. In general, though, localizing at suitable spaces along suitable
reflections or coreflections aligns (106) with (18) and algebraic topology can be construed as a ge-
ometric extension of concept analysis from Sec. 2, extracting concept nuclei from context matrices
as the invariants of adjunctions that they induce. Some of the most influential methods of algebraic
topology can be interpreted in this way. Grossly oversimplifying, we mention three approaches.

The direct approach [29, 16, Vol. I, Ch. 5] was to enlarge the given category by formal inverses
of a family of arrows, usually called weak equivalences, and denoted by X. They are thus made
invertible in a calculus of fractions, generalizing the one for making the integers, or the elements
of an integral domain, invertible in a ring. When applied to a large category, like Esp, this calculus
of fractions generally involves manipulating proper classes of arrows, and the resulting category
may even have large hom-sets.

Another approach [22, 78] is to factor out the XZ-arrows using two factorization systems. This
approach is similar to the constructions outlined in Sections 3 and 4.5.3, but the factorizations of
continuous maps that arise in this framework are not unique: they comprise families of fibrations
and cofibrations, which are orthogonal by lifting and descent, thus only weakly. Abstract homotopy
models in categories thus lead to pairs of weak factorization systems. Sticking with the notation
&E* t M and & 1 M* for such weak factorization systems, the idea is thus that the family X is now
generated by composing the elements of &° and M®. Localizing at the arrows from & N M, that
are orthogonal to both M*® and &°, makes X invertible. It turns out that suitable factorizations can
be found both in Esp and in sSet, to make the adjunction between spaces and complexes into an

19The word "singular" here means that the simplices, into which space may be decomposed, do not have to be
embedded into it, which would make the decomposition regular, but that the continuous maps from their geometric
realizations may have singularities.
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equivalence. This was Dan Quillen’s approach [77, 78].
- &
The third approach [1, 2] tackles the task of making the arrows T'X — X invertible by mod-
H

ifying the comonad " until it becomes idempotent, and then localizing at the coalgebras of this
idempotent comonad. Note that this approach does not tamper with the continuous maps in Esp,
be it to make some of them formally invertible, or to factor them out. The idea is that an idem-

potent comonad, call it ?w : Esp — Esp, should localize any space X at a space ?MX such that
- = £ =

TowToX = TX. That means that Y, is an idempotent monad. The quest for such a monad is
illustrated in Fig. 26. Esp” denotes the category of coalgebras for the comonad T = T7,, the

Figure 26: Iterating the comonad resolutions for?

adjunction V* 4V, : Esp— Esp" is the final resolution of this comonad, and Y* is the couniversal

comparison functor into this resolution, mapping a complex K to the coalgebra 1K 2, oy, K.
H
Since sSet is a complete category, Y has a right adjoint Yy, and they induce the comonad Y’ on

—

_)

EspT. If T was idempotent, then the final resolution V* 4 V, would be a coreflection, and the
— —

comonad T’y would be (isomorphic to) the identity. But Y is not idempotent, and the construc-

-
-

To
tion can be applied to _T)o again, leading to (EspT) , with the final resolution generically denoted
v )T = \To
Vi 4 V,:Esp — (Esp ) , and the comonad Y'; on (Esp ) . Remarkably, Applegate and
Tierney [1] found that the process needs to be repeated transfinitely before the idempotent monad

_‘Y')oo is reached. At each step, some parts of a space that are not combinatorially approximable are
eliminated, but that causes some other parts, that were previously approximable, to cease being
so. And this may still be the case after infinitely many steps. A transfinite induction becomes
necessary. The situation is similar to Cantor’s quest for accumulation points of the convergence
domains of Fourier series, which led him to discover transfinite induction in the first p_l}ace.

The nucleus of the same adjunction is displayed in Fig. 27. The category Esp” comprises
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sSet &<—— 10v, —— Esp" < a > sSet”

/rﬁ_|'rﬁ T 4Ty

T 4 ‘I/ x/
Esp &< v — SSe’tT = ? ESP?

Figure 27: The nucleus of the Kan adjunction

spaces that may not be homeomorphic with a geometric realization of a complex, but are their
. H .

retracts, projected along the counit Y'X 5 X, and included along the structure coalgebra X »—

- -

T X. But the projection does not preserve simplicial decompositions; i.e., it is not an Y’ -coalgebra

. . . . %
homomorphism. The transfinite construction of the idempotent monad ', was thus needed to
extract just those spaces where the projection boils down to a homeomorphism. But Prop. 8.1

implies that simplicial decomp031t10ns of spaces in Esp can be equivalently viewed as objects
of the s1mple nucleus category sSet™ Any space X decomposed along a coalgebra X »— TX
in ESp can be equivalently viewed in sSet as a complex K with an idempotent Y*K 5 TK.
This idempotent secretly splits on X, but the category SSet? does not know that. It does know

=

Corollary 8.4, though, which says that the object px = <K, TK S T*K> is a retract of Y ¢g;

and Y ¢g secretly splits on ?X . The space X is thus represented in the category sSet” by the

= -
idempotent ¢, which is a retract of T ¢k, representing I’ X. Simplicial decompositions of spaces
along coalgebras in Esp” can thus be equivalently captured as idempotents over simplicial sets
within the simple nucleus category sSet” . The idempotency of the nucleus construction can be
interpreted as a suitable completeness claim for such representations.

— -
To be continued. How is it possible that X is not a retract of TX in ESpT, but the object ¢,

-
representing X in the equivalent category sSet”, is recognized as a retract of the object T ¢k,

representing ¥’ X? The answer is that the retractions occur at different levels of the representation.

=

0 ' T
Recall, first of all, that sSet” is a simplified form of (sSetT) . The reader familiar with Beck’s

H
Theorem, this time applied to comonadicity, will remember that X can be extracted from Y’ X using
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an equalizer that splits in Esp, when projected along a forgetful functor V* : Esp” — Esp. This

split equalizer in Esp lifts back along the comonadic V* to an equalizer in Esp”, which is generally
AT
not split. On the other hand, the splitting of this equalizer occurs in (SSetT) as the algebra

carrying the corresponding coalgebra. In sSet ", this splitting is captured as the idempotent that it

induces. We have shown, of course, that all three categories are equivalent. But sSet™ internalizes
the absolute limits that get reflected along the forgetful functor V*. It makes them explicit, and
available for computations. But they have to be left for after the break.

11 What?

11.1 What we did

We studied nuclear adjunctions. To garner intuition, we considered some examples. Since every
adjunction has a nucleus, the reader’s favorite adjunctions provide additional examples and appli-
cations. Our favorite example is in [74]. In any case, the abstract concept arose from concrete
applications, so there are many [47, 71, 72, 73, 75, 82, 84]. Last but not least, the nucleus con-
struction itself is an example of itself, as it provides the nuclei of the adjunctions between monads
and comonads.

11.2 What we did not do

We studied adjunctions, monads, and comonads in terms of adjunctions, monads, and comonads.
We took category theory as a language and analyzed it in that same language. We preached what
we practice. There is, of course, nothing unusual about that. There are many papers about the
English language that are written in English.

However, self-applications of category theory get complicated. They sometimes cause chain
reactions. Categories and functors form a category, but natural transformations make them into
a 2-category. 2-categories form a 3-category, 3-categories a 4-category, and so on. Unexpected
things already happen at level 3 [33, 38]. Strictly speaking, the theory of categories is not a part of
category theory, but of higher category theory [6, 59, 60, 79]. Grothendieck’s homotopy hypothesis
[37, 62] made higher category theory into an expansive geometric pursuit, subsuming homotopy
theory. While most theories grow to be simpler as they solve their problems, and dimensionality
reduction is, in fact, the main tenet of statistics, machine learning, and concept analysis, higher
category theory makes the dimensionality increase into a principle of the method. This opens up
the realm of applications in modern physics but also presents a significant new challenge for the
language of mathematical constructions.

Category theory reintroduced diagrams and geometric interactions as first-class citizens of the
mathematical discourse, after several centuries of the prevalence of algebraic prose, driven by the
facility of printing. Categories were invented to dam the flood of structure in algebraic topology,
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but they also geometrized algebra. In some areas, though, they produced their own flood of struc-
ture. Since the diagrams in higher categories are of higher dimensions, and the compositions are
not mere sequences of arrows, diagram chasing became a problem. While it is naturally extended
into cell pasting by filling 2-cells into commutative polygons, diagram pasting does not boil down
to a directed form of diagram chasing, as one would hope. The reason is that 1-cell composition
does not extend into 2-cell composition freely, but modulo the middle-two interchange law (a.k.a.
Godement’s naturality law). A 2-cell can thus have many geometrically different representatives.
This factoring is easier to visualize using string diagrams, which are the Poincaré duals of the
pasting diagrams. The duality maps 2-cells into vertices, and 0-cells into faces of string diagrams.
Chasing 2-categorical string diagrams is thus a map-coloring activity.

In the earlier versions of this paper, the nucleus was presented as a 2-categorical construction.
We spent several years validating some of the results at that level of generality, and drawing colored
maps to make them communicable. Introducing a new idea in a new language is a bootstrapping
endeavor. It may be possible when the boots are built and strapped, but not before that. At least
in our early presentations, the concept of nucleus and the diagrams of its 2-categorical context
evolved two narratives. This paper became possible when we gave up on one of the narratives, and
factored out the 2-categorical aspects.

11.3 What needs to be done

In view of Sec. 10, a higher categorical analysis of the nucleus construction seems to be of in-
terest. The standard reference for the 2-categories of monads and comonads is [80], extended in
[52]. The adjunction morphisms were introduced in [4]. Their 1-cells, which we sketch in the Ap-
pendix, are the lax versions of the morphisms we use in Sec. 5. The 2-cells are easy to derive from
the structure preservation requirement, though less easy to draw, and often even more laborious to
read. Understanding is a process that unfolds at many levels. The language of categories facilitates
understanding by its flexibility, but it is can also obscure its subject when imposed rigidly. The
quest for categorical methods of geometry has grown into a quest for geometric methods of cate-
gory theory. There is a burgeoning new scene of diagrammatic tools [18, 39]. If pictures help us
understand categories, then categories will help us to speak in pictures, and the nuclear methods
will help us mine concepts as invariants.

11.4 What are categories and what are their model structures?

The spirit of category theory is that the objects should be studied as black boxes, in terms of the
morphisms coming in and out of them. If categories themselves are studied in the spirit of category
theory, then they should be studied in terms of the functors coming in and out. A functor is defined
by specifying an object part and an arrow part, and confirms that a category consists of objects and
arrows. Any functor G : A — B can be decomposed!!, as displayed in Fig. 28, into a surjection on
the objects, and an injection on the arrows, through the category A, with the objects of A and the
arrows of B. The orthogonality of the essentially surjective functors E € Ess and full-and-faithful

' An overview of the basic structure of factorization systems is in Appendix A.
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Ess(G)

Ag «—— A

A /

|AG| Ffa(G) G
B(Gu, Gv)

AG(M, V)

B

Figure 28: Factoring of an arbitrary functor G through (Ess ¢ Ffa)

functors M € Ffa, is displayed in Fig. 29. Since E is essentially surjective, for any object y in B

AL)@
et
HE=U ~ Hy=UE"() el ow |m
MH=V ~ Hf=M"'V(f) A
B——>D

Figure 29: The orthogonality of an essential surjection E € Ess and a full-and-faithful M € Ffa

there is some x in A such that Ex = y, so we take Hy = Ux. If Ex’ = y also holds for some other
x"in A then MUx = VEx = Vy = VEX" = MUX' implies Ux = Ux’, because M is full-and-
faithful. The arrow part is defined using the bijections between the hom-sets provided by M. The
factorization system (Ess ¢ Ffa) can be used as a stepping stone into category theory. It confirms
that functors see categories as comprised of objects and arrows.

Functors are not the only available morphisms between categories. Many mathematical theo-
ries study objects that are instances of categories, but require morphisms for which the functoriality
is not enough. E.g., a topology is a lattice of open sets, and a lattice is, of course, a special kind
of category. A continuous map between two topological spaces is an adjunction between the lat-
tices of opens: the requirement that the inverse image of a continous map preserves the unions of
the opens means that it has a right adjoint. The general functors between topologies, i.e. merely
monotone maps between the lattices of opens, are seldom studied because they do not capture
continuity, which is the subject of topology. For an even more general example, consider basic
set theory. Functions are defined as total and single-valued relations. A total and single-valued
relation between two sets is an adjunction between the two lattices of subsets: the totality is the
unit of the adjunction, and the single-valuedness is the counit [69]. A general relation induces a
monotone map, i.e. a functor between the lattices of subsets. But studying functions means study-
ing adjunctions. There are many mathematical theories where the objects of study are categories
of some sort, and the morphisms between them are adjunctions.

What are categories in terms of adjunctions? We saw in Sec. 4.6 that applying the factorization
system (Ess ¢ Ffa) to a pair of adjoint functors gives rise to the two initial resolutions of the
adjunction: the (Kleisli) categories of free algebras and coalgebras. Completing them to the final

71



>
=l
|

[ {F*x o x| (84)}

xelA|

=]
o
Il

]_[ {F*u L (85)}

uelB|

BF(R*[Y)“R*')’:) B F (Bu’y‘/) — AF (L*,By, L*6W)

=
R
2

[

Figure 30: Factoring the adjunction F' = (F* 4 F.,) through (C* %) and (C¢tF°)

resolutlons lifts F1g 28 to F1g 30. This lifting is yet another perspective on the equivalences

R AF — BF and L, BF — AF from Sec. 8 and [75, Theorems III.2 and III.3]. Note
that the adjunctions are taken here as morphisms in the direction of their lefth-hand component
(like functions, and unlike the continuous maps), so that the functors C(F) and ¥ *(F) in Fig. 30,
as components of a right adjoint, are displayed in the opposite direction. That is why the C*-
component is drawn with a tail, although in the context of left-handed adjunctions it plays the role
of an abstract epi. The weak factorization systems (C* ¢ ¥) and (C ¢ F°) are comprised of the
families

~ F ={(F* 4 F.)| F* is comonadic},

¢

C* ={(F* 4 F.)| F* is a comparison functor for a comonad},

¢

={(F" 4 F,) | F. is monadic},
~ F* ={(F*4F,)|F,is acomparison functor for a monad}.

To see how these factorizations are related with (Ess ¢ Ffa), and how Fig. 30 arises from Fig. 28,
recall from Sec. 4.6 that the (Ess:Ffa)-decomposition of F* gives the initial resolution A, whereas

the (Ess ¢ Ffa)-decomposition of F, gives the initial resolution B;. However, A — AF ~ B F

factors through the (C ¢ ¥*)-decomposition of F'., whereas B — BF ~ AF factors through the
(C* 1 F)-decomposition of F*. In particular, while

a) the Ess-image A« of A in B along F* is spanned by the isomorphisms y = F"x,
b) the C*-image AF of A in B along F~ is spanned by the retractions y = F*x

It is easy to check that such retractions in B correspond to 77)—coalgebras. Worked out in full detail,

this correspondence is the equivalence R*: A ~ BF. Looking at the (C*¥)-decompositions from

the two sides of this equivalence aligns the orthogonality of C‘ and F with the orthogonality of Ess
and Ffa, as indicated in Fig. 31. Since any object @, of AF 1nduces a retraction F xS x oo Fx

and the comparison functor £ maps x to Ex = <F x, F *F X —» F*x >—> F*F x>, the image Va, splits
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A%}D8
HE=U ~» Ha,= Va/xﬁ<>V(—>I/VEx—MUx) l
MH=V ~» Hf=V() v -

AF T}D

Figure 31: The orthogonality of a comparison functor E € C* and a comonadic M € ¥

into VEx % Va, A VEx. But the isomorphism VEx = MUx and the comonadicity of M imply
that the M-split equalizer Va, Y VEx = MUx lifts to DC. This lifting determines Ha,. The

conservativity of M assures that H is well-defined, and that the V-images of the A ¥ -morphisms in
D lift to coalgebra homomorphisms in D°.

Moral. Lifting the canonical factorization (Ess ¢ Ffa) of functors to the canonical factorizations
(C*1F) and (C F*) of adjunctions thus boils down to generalizing from isomorphisms to retrac-
tions. If the (Ess ¢ Ffa)-factorization confirmed that a category, from the standpoint of functors,
consists of objects and arrows, then the factorizations (C* ¢ ) and (C ¢ ¥°) suggest that from
the standpoint of adjunctions, a category also comprises the absolute limits and colimits, a.k.a.
retractions. In summary,

functors adjunctions

category = objects + arrows category = objects + arrows + retractions

This justifies the assumption that all idempotents can be split, announced and explained in Sec. 5.2.
The readers familiar with Quillen’s homotopy theory [78] may notice a homotopy model structure
lurking behind the weak factorizations (C* ¢ ) and (C?F*). Corollary 8.4 suggests that the family
of weak equivalences, split by the nucleus construction, consists of the functors which do not only
preserve, but also reflect the absolute limits and colimits.
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A Appendix: Factorizations

Definition A.1 A factorization system (&t M) in a category C a pair of subcategories E, M C C,
which contain all isomorphisms, and satisfy the following requirements:

o C=Mo&: forevery f € C there are e € &E and m € M such that f = m o e, and

o ELM: foreverye € Eand m € M, and for any f, g € C such that mu = ve there is a unique
h € C such that u = he and v = mh, as displayed in (108).

.
'Jl
a

B m (108)

Y

=
&)

If h is not uniquely determined by this property, then the factorization system is weak. The elements
of & and of M are respectively called (abstract) epis amd monics.

Proposition A.2 In every factorization system & M, the families of abstract epis and monics
determine each other by

E=*"M={ecC|ei M)} and M=8E ={meC|ELm)

where e Lm means that e and m satisfy (108) for all u,v, and eL X and X Lm mean that e L x and
xLm hold for all x € X.
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Proposition A.3 Factorization systems in any category form a complete lattice with respect to the
ordering

EM<E M) = EC&E AMIM (109)
The suprema and the infima in this lattice are respectively in the forms
o /\je](aj 2 Mj) = (SZM) where & = Njes &) and M = &,
* i (Sj 2 Mj) = (S 2 M) is determined by M= Mjes M, and & = *M.

Remark. If the category C is large, the lattice of its factorization systems is also large.

Definition A.4 The arrow monad Arr : CAT — CAT maps every category C to the induced arrow
category Arr(C) = C/C, supported by the monad structure

C 7 Arr(C) K Arr (Arr(C))
A A A—sc
|
A L ild go=uf — SO\L l«p
+ v
A D B——D

Proposition A.5 Algebras for the arrow monad Arr(C) = C/C [51, 68] monad Arr : CAT — CAT
correspond to factorization systems.

Proof. The free Arr-algebra C/C comes with the canonical factorization system A v, where
A= {{ fyeC*|elso) v = {(f,1) € C*| € Iso}

where Is0 is the family of all isomorphisms in C. The canonical factorization of a morphism
(f, g) € Arr(C)(¢, ¥) thus splits its commutative square into two triangles, along the main diagonal
g o ¢ = o f, which is the canonical (A, V)-image of the factored morphism:

A——a—L s
tpl Rfso® :i% f* \L\y
B D D (110)
R T} R? —— R
B % D D

A Chu-algebra Chu(C) % C determines a matrix factorization in C by

E = {a(e) | e en} M ={a(m)|m e v}
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The other way around, any matrix ® € C(A, R?) lifts to Chu(C) as the morphism (@, ®°) €
ChuC(n,, idgs, which is factorized in the form

A A—2 3 RP
L e
RA B B (111)
R WR —R
RA <q>—DB B

The factorization of @ in C is now induced by the algebra Chu(C) % C. The cochain condition for
this algebra gives

a(A, A RR' RY = A and a(R®, R® M RE, B)=B
. . (id,@"( (D,id), . . . .
The factorization 74 % ® —— idgs is then projected by @ from Chu(C) to C, and the in-
duced factorization is thus
A e > RP
\ /’ (112)
a(id,®?) a(d,id)
a(D)
O
For a more detailed overview of abstract factorization systems, see [16, Vol. I, Sec. 5.5].
B Appendix: Adjunctions, monads, comonads
B.1 Matrices (a.k.a. distributors, profunctors, bimodules)
IMat| = U Dfib /A x B (113)
A,BeCAT
Mat(®,¥) = U ( Dfib /A x BO)((D, (H x K°)"¥P)
HeCAT(A,C)
KeCAT(B,D)

where ¥ € Dfib /C x D, and (H x K°)*W is its pullback along (H X K°) : A X B? — C x D°.
Obviously, @ € Dfib /A x B°.
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B.2

B.3

B4

B.S

Adjunctions
adi = || || {®e eNatid F.F") x Nat(F*F.,id) | (114)
A,BeCAT F*eCAT(A,B)
F.eCAT(B,A)
eF*oF'n=F" A F.eonF, = F*}
Adi(F,G) = {",v.) € Nat(KF*, G"H) x Nat(HF., G.K) |
HeCAT(A,C)
KeCAT(B,D)
e°KoG'v, ov'F, =Ke" A n°H =G, v ov,F* o HnF}
Monads
R —— =
IMnd| = {(n, ) € Nat(id, T) x Nat(T T, T) | (115)
ASCAT TeoaT(AA)
— — — — —
poTu=poul ApoTn=T =ponT}
— & — —
Mnd(7.5) = || freNaTHHS)|
HeCAT(A,C)
xon' H=Hnp A Hy® oxS oTy=you H)
Comonads
cmnl = [] ] Kewne Nat(T',id) x Nat(T, T'T) |
BeCAT 7 ccaT(B,B)
- - - - -
Tvov=vT ovATgov=T =T ov} (116)
Cmn (?7) = U {K € Nat(KS , TK) |
KeCAT(B,D)

g’'Kok=Ke /\?KOKE)OKVS :VSKOK}

The initial (Kleisli) resolutions KM : Mnd — Adj and KC : Cmn — Ad]

P
The Kleisli construction assigns to the monad 7 : A — A the resolution KT = (Tb ATt Ag— A)
where the category A consists of

e free algebras as objects, which boil down to |Acl = |Af;
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Figure 32: Pasting equations for adjunction F* 4 F,.

~
a
£
Il
s

A - D d| = D
N e Jo
C C

Figure 33: Pasting equations for adjunction 1-cell (H, K, v*,v.) : F — G.
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id A A A
™ r
T
A=—o|r = |1 = A —E—= |71
T
! h e ~N- nﬂ N
A A id A

~

— ——
HS %HSS
Hy

e

Figure 35: Commutative diagrams for monad 1-cell (H, y) : TS,

84



Figure 37: Commutative diagrams for comonad 1-cell (K, k) : ST,
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e algebra homomorphisms as arrows, which boil down to A<T—(x, X)) =AM, Tx);
with the composition
Ac(x, x') % A<T—(x’, X — Ac(x, x")
T
(x Loy RN Tx"y — (x Lre e & Tx")

and with the identity on x induced by the monad unitn : x— Tx

B.6 The final (Eilenberg-Moore) resolutions EM : Mnd — Adj and EC :
Cmn — Adj

The Eilenberg-Moore construction assigns to the monad 7 : A — A the resolution gT = (TN ATy AT S A)
where the category AT consists of

e all algebras as objects:

|A(f| = Z{aeA(Tx,x)laon:id AN aoTa=aou}
xelA|

e algebra homomorphisms as arrows:

A(T—(Txiwc,Tx'l)x') = {feAX) | foa=yoTf}

C Appendix: Split equalizers

Split equalizers and coequalizers[14, 15] are conventionally written as partially commutative dia-
grams: the straight arrows commute, the epi-mono splittings compose to identities on the quotient
side, and to equal idempotents on the other side.

Proposition C.1 Consider the split equalizer diagram

. f
AR e e— 117
q w
where
qgoi=1idy roj=idg forof=jorof
Then

e ro fisidempotent and

e [ is the equalizer of f and j if and only ifioq =ro f.
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