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Abstract

An adjunction is a pair of functors related by a pair of natural transformations, and relating

a pair of categories. It displays how a structure, or a concept, projects from each category to

the other, and back. Adjunctions are the common denominator of Galois connections, repre-

sentation theories, spectra, and generalized quantifiers. We call an adjunction nuclear when its

categories determine each other. We show that every adjunction can be resolved into a nuclear

adjunction. The resolution is idempotent in a strict sense. The resulting nucleus displays the

concept that was implicit in the original adjunction, just as the singular value decomposition

of an adjoint pair of linear operators displays their canonical bases.

The two composites of an adjoint pair of functors induce a monad and a comonad. Monads

and comonads generalize the closure and the interior operators from topology, or modalities

from logic, while providing a saturated view of algebraic structures and compositions on one

side, and of coalgebraic dynamics and decompositions on the other. They are resolved back

into adjunctions over the induced categories of algebras and of coalgebras. The nucleus of

an adjunction is an adjunction between the induced categories of algebras and coalgebras. It

provides new presentations for both, revealing algebras on the side where the coalgebras are

normally presented, and vice versa. The new presentations elucidate the central role of idem-

potents, and of the absolute limits and colimits in monadicity and comonadicity. They suggest

interesting extensions of the monad and comonad toolkits, particularly for programming.

In his seminal early work, Ross Street described an adjunction between monads and comon-

ads in 2-categories. Lifting the nucleus construction, we show that the resulting Street monad

on monads is strictly idempotent, and extracts the nucleus of a monad. A dual treatment

achieves the same for comonads. This uncovers remarkably concrete applications behind a

notable fragment of pure 2-category theory. The other way around, driven by the tasks and

methods of machine learning and data analysis, the nucleus construction also seems to un-

cover remarkably pure and general mathematical content lurking behind the daily practices of

network computation and data analysis.

*Supported by NSF and AFOSR.
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1 Introduction

We begin with an informal overview of the main result here in Sec. 1, and motivate it through

the general examples in Sections 2–5. A categorically minded reader may prefer to start from the

categorical definitions in Sec. 5, proceed to the general constructions in Sections 6–9, and come

back for examples and explanations. Some general definitions can be found in the Appendix.

1.1 Nuclear adjunctions and the adjunction nuclei

1.1.1 Definition.

We say that an adjunction F = (F∗ � F∗ : B −→ A) is nuclear when the right adjoint F∗ is monadic

and the left adjoint F∗ is comonadic. This means that the categoriesA and B determine one another,

and can be reconstructed from each other:

• F∗ is monadic when B is equivalent to the categoryA
←−
F of algebras for the monad

←−
F = F∗F∗ :

A −→ A, whereas

• F∗ is comonadic when A is equivalent to the category B
−→
F of coalgebras for the comonad

−→
F = F∗F∗ : B −→ B.

The situation is reminiscent of Maurits Escher’s “Drawing hands” in Fig.1.

A B
−→
F

B A
←−
F

�

←−
F

F∗

�

�F�

−→
F

�

F∗
F�

Figure 1: An adjunction (F∗ � F∗) is nuclear when A � B
−→
F and B � A

←−
F .

1.1.2 Result

The nucleus construction
←−
N extracts from any adjunction F its nucleus

←−
NF

F = (F∗ � F∗ : B −→ A)

←−
NF =

(
F� � F� : A

←−
F −→ B

−→
F
) (1)
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The functor F� is formed by composing the forgetful functor A
←−
F −→ A with the comparison functor

A −→ B
−→
F , whereas F� is the composite of the forgetful functor B

−→
F −→ B with the comparison

B −→ A
←−
F . Hence the left-hand square in Fig. 2. We show that the functors F� and F� are adjoint,

A B
−→
F

(
A
←−
F
)=⇒F

B A
←−
F

(
B
−→
F
)⇐=F

�

←−
F

F∗

⇐=

F

�F�

�

F�� �

−→
F

F∗

=⇒

F

F�

�

F��

Figure 2: The nucleus construction induces an idempotent monad on adjunctions.

which means that we can iterate the nucleus construction
←−
N in (1) and induce a tower of adjunctions

F −→
←−
NF −→

←−
N
←−
NF −→

←−
N
←−
N
←−
NF −→ · · · (2)

We show that
←−
NF =

(
F� � F�

)
is a nuclear adjunction, which means that the right-hand square

in Fig. 2 is an equivalence of adjunctions. The tower in (2) thus settles at the second step. The
←−
N-construction is an idempotent monad on adjunctions. Since the adjunctions form a 2-category,
←−
N is a 2-monad. We emphasize that its idempotence is strict, i.e. (up to a natural family of equiv-

alences), and not lax (up to a natural family of adjunctions). While lax idempotence is frequently

encountered and well-studied in categorical algebra [48, 50, 81, 85]1, strictly idempotent categori-

cal constructions are relatively rare, and occur mostly in the context of absolute completions. The

nucleus construction suggests a reason [74].

1.1.3 Upshot

The fact that the the adjunction F� � F� in nuclear means that, for any adjunction F = (F∗ � F∗),

the category of algebras A
←−
F and the category of coalgebras B

−→
F can be reconstructed from one

another: A
←−
F as a category of algebras over B

−→
F , and B

−→
F as a category of coalgebras over A

←−
F . They

are always an instance of the Escher situation in Fig. 1. Simplifying these mutual reconstructions

provides a new view of the final resolutions of monads and comonads, complementing the original

1Monads over 2-categories and bicategories have been called doctrines [58], and the lax idempotent ones are often

called the Kock-Zöberlein doctrines [81].
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Eilenberg-Moore construction [27]. It was described in [75] as a programming tool, and was used

as a mathematical tool in [74]. Presenting algebras and coalgebras as idempotents provides a

rational reconstruction of monadicity (and comonadicity) in terms of idempotent splitting, echoing

Paré’s explanations in terms of absolute colimits [65, 66], and contrasting with Beck’s fascinating

but somewhat mysterious proof of his fundamental theorem in terms of split coequalizers [14, 15].

Concrete applications of the nuclei spread in many directions, some of which are indicated in the

examples, which had to be trimmed, in some cases radically.

1.1.4 Background

Nuclear adjunctions have been studied since the early days of category theory, albeit without a

name. The problem of characterizing situations when the left adjoint of a monadic functor is

comonadic is the topic of Michael Barr’s paper in the proceedings of the legendary Battelle con-

ference [8]. From a different direction, in his seminal work on the formal theory of monads, Ross

Street identified the 2-adjunction between the 2-categories of monads and of comonads [80, Sec. 4].

This adjunction leads to a formal view of the nucleus construction on either side, as a 2-monad.

We show that this construction is idempotent in the strong sense. On the side of applications, the

quest for comonadic adjoints of monadic functors continued in descent theory, and an important

step towards characterizing them was made by Mesablishvili in [63]. Coalgebras over algebras,

and algebras over coalgebras, have also been regularly used for a variety of modeling purposes in

semantics of computation (see e.g. [7, 41, 43], and the references therein).

As the vanishing point of monadic descent, nuclear adjunctions arise in many branches of

geometry, tacitly or explicitly. In abstract homotopy theory, they are tacitly in [44, 78], and ex-

plicitly in [1]. There are, however, different ways in which monad-comonad couplings may arise.

In [1], Applegate and Tierney formed such couplings on the two sides of comparison functors

and their adjoints, and they found that such monad-comonad couplings generally induce further

monad-comonad couplings along the further comparison functors, and may form towers of transfi-

nite length. We describe this in more detail in Sec. 10. Confusingly, the Applegate-Tierney towers

of monad-comonad couplings formed by comparison functor adjunctions left a false impression

that the monad-comonad couplings formed by the adjunctions between categories of algebras over
coalgebras, of coalgebras over algebras, etc. also lead to towers of transfinite length. This impres-

sion blended into folklore, and the towers of alternating monads over coalgebras and comonads

over algebras, extending out of sight, persist in categorical literature.2

2There is an interesting exception outside the categorical literature. In a fax message sent to Paul Taylor on 9/9/99

[53], a copy of which was kindly provided after the present paper appeared on arxiv, Steve Lack set out to determine

the conditions under which the tower of coalgebras over algebras, which "a priori continues indefinitely", settles to

equivalence at a finite stage. Within 7 pages of diagrams, the question was reduced to splitting a certain idempotent.

While the argument is succinct, it does seem to prove a claim which, together with its dual, implies our Prop. 7.4. The

claim was, however, not pursued in further work. This amusing episode from the early life of the nucleus underscores

its message: that a concept is technically within reach whenever there is an adjunction, but it does need to be spelled

out and applied to be recognized.
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1.1.5 Terminology

Despite all of their roles and avatars, adjunctions where the right adjoint is monadic and the left

adjoint is comonadic were not given a name. We call them nuclear because of the link with nu-

clear operators on Banach spaces, which generalize the spectral decomposition of hermitians and

the singular value decomposition of matrices and lift them all the way to linear operators on topo-

logical vector spaces. This was the subject of Grothendieck’s thesis, where the terminology was

introduced [34]. We describe this conceptual link in Sec. 3, for the very special case of finite-

dimensional Hilbert spaces.

1.1.6 Schema

Fig. 3 maps the paths that lead to the nucleus. We will follow it as an itinerary, first through familiar

matrices extensions localizations nuclei

Mnd

Mat Adj Nuc

Cmn

EM MN



MA

AM




AC



NM

NC

KC CN



Figure 3: The nucleus setting

examples and special cases in Sections 2–4, and then as a general pattern. Most definitions are in

Sec. 5. Some readers may wish to skip the rest of the present section, have a look at the examples,

and come back as needed. For others we provide here an informal overview of the terminology,

mostly just naming names.

Who is who. While the production line of mathematical tools is normally directed from theory

to applications, ideas often flow in the opposite direction. The idea of the nucleus is familiar, in

fact central, in data mining and concept analysis, albeit without a name, but has remained elu-

sive in general [47]. Data analysis usually begins from data matrices, which we view as objects

of an abstract category Mat. To be analyzed, data matrices are usually completed or extended
into some sort of adjunctions, which we view as objects of an abstract category Adj. The functor

MA : Mat −→ Adj represents this extension. The adjunctions are then localized along the functors

AM : Adj −→ Mnd and AC : Adj −→ Cmn at monads and comonads, which form categories Mnd and

Cmn. In some areas and periods of category theory, a functor is called a localization when it has

a full and faithful adjoint. The functors AM and AC in Fig. 3 have both left and right adjoints,
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both full and faithful. We display only the right adjoint EM : Mnd −→ Adj of AM, which maps a

monad to the adjunction induced by its (Eilenberg-Moore) category of algebras, and the left ad-

joint KC : Cmn −→ Adj, which maps a comonad to the adjunction induced by its (Kleisli) category

of cofree coalgebras. The nucleus construction is composed of such couplings. Alternatively, it can

be composed of the left adjoint KM : Mnd −→ Adj of AM and the right adjoint EC : Cmn −→ Adj of

AC. There is, in general, an entire gamut of different adjunctions localized along AM : Adj −→ Mnd

at the same monad. We call them the resolutions3 of the monad. Dually, the adjunctions localized

along AC : Adj −→ Cmn at the same comonad are the resolutions of that comonad. For readers un-

familiar with monads and comonads, we note that monads over posets are called closure operators,

whereas comonads over posets are the interior operators. In general, the (Kleisli) cofree coalgebra

construction KC : Cmn −→ Adj in Fig. 3 (and the free algebra construction KM : Mnd −→ Adj that is

not displayed) captures the initial resolutions of comonads (resp. monads); whereas the (Eilenberg-

Moore) algebra construction EM : Mnd −→ Adj (and the coalgebra construction EC : Cmn −→ Adj

that is not displayed) captures the final resolutions of monads (resp. comonads). For closure oper-

ators and interior operators over posets, and more generally for idempotent monads and comonads

over categories, the initial and the final resolutions coincide. In any case, the categories Mnd and

Cmn are embedded in Adj fully and faithfully; idempotent monads and comonads are mapped to

their unique resolutions, whereas monads, in general, are embedded in two extremal ways, with a

gamut of resolutions in-between. The composites of these extremal resolution functors from Mnd

and Cmn to Adj with the localizations from Adj to Mnd and Cmn induce the idempotent monad
←−−
EM = EM ◦ AM over Adj which maps any adjunction to the Eilenberg-Moore resolution of the

induced monad, and the idempotent comonad
−−→
KC = KC ◦ AC, still over Adj, which maps any ad-

junction to the Kleisli resolution of the induced comonad. Just as there is a category of categories,

there is thus a monad of monads, and a comonad of comonads; and both happen to be idempotent.

Since the subcategories fixed by idempotent monads or comonads, in general, are usually viewed

as localizations, we view monads and comonads as localizations of adjunctions; and we call all

the adjunctions that induce a given monad (or comonad) its resolutions. The resolution functors

not displayed in Fig. 3 induce a comonad
−−→
KM = KM ◦ AM, mapping adjunctions to the Kleisli

resolutions of the induced monads, and a monad
←−−
EC = EC ◦ AC, mapping adjunctions to the

Eilenberg-Moore resolutions of the induced comonads. They are all spelled out in Sec. 5.

The category Nuc of nuclei is the intersection of Mnd and Cmn, as embedded into Adj along

their resolutions in Fig. 3. However, we will see in Sec. 7 that any other resolutions will do, as

long as the last one is final. The nucleus of an adjunction can thus be viewed as the joint resolution

of the induced monad and comonad.

1.2 The Street monad

The composites E∗ = AM ◦ KC and E∗ = AC ◦ EM in Fig. 3 are adjoint to one another, and thus

form a monad
←−
E = E∗ ◦ E

∗ on the category Cmn of comonads, and a comonad
−→
E = E∗ ◦ E∗

3This terminology was proposed by Jim Lambek. Although it does not seem to have caught on, it is convenient in

the present context, and naturally extends from its roots in algebra.
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on the category Mnd of monads. The initial (Kleisli) resolution KM of the monads and the final

(Eilenberg-Moore) resolution EC of comonads give the adjointsM∗ = AC◦KM andM∗ = AM◦EC,

which form a monad
←−
M = M∗ ◦M

∗ on the category Mnd of monads, and a comonad
−→
M = M∗ ◦M∗

on the category Cmn of comonads. All is summarized in Figures 14 and 15. In Ross Street’s paper

on the Formal theory of monads, the latter adjunction between monads and comonads is spelled out

directly [80, Thm. 11]. This was the main result of that seminal analysis, and remains the central

theorem of the theory. We prove that Street’s monad is strictly idempotent. This added wrinkle

steers the theory into the practice: the adjunctions, and their monads and comonads, are not just

the foundation of the categorical analysis, but also a convenient tool for concept mining from it.

The nucleus of a monad, or of a comonad, displays its conceptual content.

1.3 A simplifying assumption

The claimed results have been verified for the general 2-categories of adjunctions, monads and

comonads, and the earlier drafts of this paper attempted to present the claims in full generality. The

present version presents them under the simplifying assumption that the 2-cell components of the

morphisms of adjunctions, monads, and comonads are invertible. This restriction cuts the length

of the paper by half. While suppressing the general 2-cells simplifies some of the verifications, it

does not eliminate or modify any of the presented structures, since all 2-categorical equipment of

the nucleus construction already comes with invertible 2-cells. The general 2-categorical theory

of nuclei is thus a conservative extension of the simplified theory presented here: it does not

introduce any additional structure or side-conditions, but only a more general domain of validity,

and verification. The suppressed 2-cell chasing is, of course, interesting and important on its own;

yet it does not seem to provide any information specific to the nucleus construction itself. Our

efforts to present the result in its full 2-categorical generality therefore seemed to be at the expense

of the main message. We hope that suitable presentation tools under development4 will soon make

the results of this kind communicable with a more rational communication overhead.

1.4 Overview of the paper

We begin with simple and familiar examples of the nucleus, and progress towards the general con-

struction. In the posetal case, the nucleus construction boils down to the fixed points of a Galois

connection. It is familiar and intuitive as the posetal method of Formal Concept Analysis, which

is presented in Sec. 2. The spectral methods of concept analysis, based on Singular Value Decom-

position of linear operators, are perhaps even more widely known from their broad applications

on the web. They also subsume under the nucleus construction, this time in linear algebra. This

is the content of Sec. 3. Sec. 4 pops up to the level of an abstract categorical version of the nu-

cleus, that emerged in the framework of ∗-autonomous categories and semantics of linear logic, as

the separated-extensional core of the Chu construction. We discuss a modification that combines

4Our hopes have been vested in the framework of string diagrams for 2-categories, where the 2-cells are the vertices,

the 1-cells are the edges, and the 0-cells are the faces of the underlying graphs. The project of drawing a sufficient

supply of diagrams for the present paper remained beyond our reach, but it might soon come within reach [39].
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the separated-extensional core with the spectral decomposition of matrices and refers back to the

conceptual roots in early studies of topological vector spaces. In Sec. 5, we introduce the gen-

eral categorical framework for the nucleus of adjoint functors, and we state the main theorem in

Sec. 6. The proof of the main theorem is built in Sec. 7, through a series of lemmas, propositions,

and corollaries. As the main corollary, Sec. 8 presents a simplified version of the nucleus, which

provides alternative presentations of categories of algebras for a monad as algebras for a corre-

sponding comonad; and analogously of coalgebras for a comonad as arising from a corresponding

monad. These presentations are used in Sec. 9 to present a weaker version of the nucleus con-

struction, obtained by applying the Kleisli construction at the last step, where the Eilenberg-Moore

construction is applied in the stronger version. Although the resulting weak nuclei are equivalent

to strong nuclei only in degenerate cases, the categories of strong nuclei and of weak nuclei turn

out to be equivalent. In Sec. 10 we discuss how the nucleus approach compares and contrasts with

the standard localization-based approaches to homotopy theory, from which the entire conceptual

apparatus of adjunctions, extensions, and localizations originally emerged. In the final section of

the paper, we discuss the problems that it leaves open.

2 Example 1: Concept lattices and poset bicompletions

2.1 From context matrices to concept lattices, intuitively

Consider a market with A sellers and B buyers. Their interactions are recorded in an adjacency

matrix A × B
Φ
−→ 2, where 2 is the set {0, 1}, and the entry Φab is 1 if the seller a ∈ A at some point

sold goods to the buyer b ∈ B; otherwise it is 0. Equivalently, a matrix A×B
Φ
−→ 2 can be viewed as

the binary relation Φ̂ = {〈a, b〉 ∈ A × B | Φab = 1}, in which case we write aΦ̂b instead of Φab = 1.

In Formal Concept Analysis [17, 31, 30], such matrices or relations are called contexts, and used

to extract some relevant concepts.

The idea is illustrated in Fig. 4. The binary relation Φ̂ ⊆ A×B is displayed as a bipartite graph.

If buyers a0 and a4 have farms, and sellers b1, b2 and b3 sell farming equipment, but seller b0 does

not, then the sets X = {a0, a4} and Y = {b1, b2, b3} form a complete subgraph 〈X, Y〉 of the bipartite

graphΦ, which corresponds to the concept "farming". If the buyers from the set X′ = {a0, a1, a2, a3}

have cars, but the buyer a4 does not, and the sellers Y ′ = {b0, b1, b2} sell car accessories, but the

seller b3 does not then 〈X′, Y ′〉 is another complete subgraph, corresponding to the concept "car".

The idea is thus that a context is viewed as a bipartite graph, and the concepts are then extracted as

its complete bipartite subgraphs.

2.2 Formalizing concept analysis

A pair 〈U,V〉 ∈ ℘A ×℘B forms a complete subgraph of a bipartite graph Φ̂ ⊆ A × B if

U =
⋂
v∈V

{x ∈ A | xΦ̂v} V =
⋂
u∈U

{y ∈ B | uΦ̂y}

10
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Figure 4: A context Φ, its four concepts, and their concept lattice

It is easy to see that such pairs are ordered by the relation

〈U,V〉 ≤ 〈U′,V ′〉 ⇐⇒ U ⊆ U′ ∧ V ⊇ V ′ (3)

and that they in fact form a lattice, which is a retract of the lattice℘A ×℘oB, where℘A is the set

of subsets of A ordered by the inclusion ⊆, while℘oB is the set of subsets of B ordered by reverse

inclusion ⊇. This is the concept latticeD induced by the context matrix Φ̂ ⊆ A × B, along the lines

of Fig. 3.

In general, the sets A and B may already carry partial orders, e.g. from earlier concept analyses.

11



The category of context matrices is thus

|Mat0| =
∐

A,B∈Pos

Pos(Ao × B,�) (4)

Mat0(Φ,Ψ) = {〈h, k〉 ∈ Pos(A,C) × Pos(B,D) | Φ(a, b) = Ψ(ha, kb)}

where Φ ∈ Pos(Ao × B,�) and Ψ ∈ Pos(Co × D,�) are matrices with entries from the poset

� = {0 < 1}. When working with matrices in general, it is often necessary or convenient to use

their comprehensions, i.e. to move along the correspondence

Pos(Ao × B,�)

(̂−)

�

χ

Sub�A × Bo (5)

Φ �→ Φ̂ = {〈x, y〉 ∈ A × Bo | Φ(x, y) = 1}

χS (x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 〈x, y〉 ∈ S

0 otherwise

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ �→
(
S ⊆ A × Bo

)

A comprehension Φ̂ of a matrix Φ is thus lower-closed in the first component, and upper-closed in

the second:

a ≤ a′ ∧ a′Φ̂b′ ∧ b′ ≤ b =⇒ aΦ̂b (6)

To extract the concepts from a context Φ̂ ⊆ A × B, we thus need to explore the candidate lower-

closed subsets of A, and the upper-closed subsets of B, which form complete semilattices (⇓A,
∨

)

and (⇑B,
∧

), where

⇓A = {L ⊆ A | a ≤ a′ ∈ L =⇒ a ∈ L} (7)

⇑B = {U ⊆ B | U � b′ ≤ b =⇒ U � b} (8)

so that
∨

in ⇓A and
∧

in ⇑B are both set union. It is easy to see that the embedding A
�

−→ ⇓A,

mapping a ∈ A into the lower set �a = {x ∈ A | x ≤ a}, is the join completion of the poset A,

whereas B
�

−→ ⇑B, mapping b ∈ B into the upper set �b = {y ∈ B | b ≤ y}, is the meet completion

of the poset B. These semilattice completions support the context matrix extension Φ ⊆ ⇓A × ⇑B
defined by

LΦU ⇐⇒ ∀a ∈ L ∀b ∈ U. aΦ̂b (9)

As a matrix between complete semilattices, Φ is representable in the form

Φ∗L ⊆ U ⇐⇒ LΦU ⇐⇒ L ⊇ Φ∗U (10)

12



where the adjoints now capture the complete-bipartite-subgraph idea from Fig. 4:

L ⇓A
⋂
y∈U

•Φy

⋂
x∈L

xΦ• ⇑B U

Φ∗ � Φ∗ (11)

Here •Φy = {x ∈ A | xΦy} and xΦ• = {y ∈ B | xΦ̂y} define the transposes •Φ : B −→ ⇓A and

Φ• : A −→ ⇑B of Φ : Ao × B −→ �. Poset adjunctions like (11) are often also called Galois
connections. They form the category

|Adj0| =
∐

A,B∈Pos

{〈Φ∗,Φ∗〉 ∈ Pos(A, B) × Pos(B, A) | Φ∗x ≤ y ⇐⇒ x ≤ Φ∗y} (12)

Adj0(Φ,Ψ) = {〈H,K〉 ∈ Pos(A,C) × Pos(B,D) | KΦ∗ = Ψ∗H ∧ HΦ∗ = Ψ∗H}

The first step of concept analysis is thus the matrix extension

MA0 : Mat0 −→ Adj0 (13)

Φ �→ (Φ∗ � Φ∗ : ⇑B −→ ⇓A) as in (11)

To complete the process of concept analysis, we use the full subcategories of Adj0 spanned by the

closure and the interior operators, respectively:

Mnd0 = {(Φ∗ � Φ∗) ∈ Adj0 | Φ
∗Φ∗ = id} (14)

Cmn0 = {(Φ∗ � Φ∗) ∈ Adj0 | Φ∗Φ
∗ = id} (15)

It is easy to see that

• Mnd0 is equivalent with the category of posets A equipped with closure operators, i.e. mono-

tone maps A
←−
Φ
−→ A such that x ≤

←−
Φx =

←−
Φ
←−
Φx, for

←−
Φ = Φ∗Φ

∗; while

• Cmn0 is equivalent with the category of posets B equipped with interior operators, i.e. mono-

tone maps B
−→
Φ
−→ B such that y ≥

−→
Φy =

−→
Φ
−→
Φy, for

−→
Φ = Φ∗Φ∗.

The functors AM0 : Adj0 � Mnd0 and AC0 : Adj0 � Cmn0 are thus inclusions, and their resolu-
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tions are

EM0 : Mnd0 � Adj0 (16)(
A

←−
Φ
−→ A

)
�→

(
⇓A ⇓A

←−
Φ




)

where ⇓A
←−
Φ
= {U ∈ ⇓A | U =

←−
ΦU}

KC0 : Cmn0 � Adj0 (17)(
B

−→
Φ
−→ B

)
�→

(
⇑B

−→
Φ ⇑B


)

where ⇑B
−→
Φ
= {V ∈ ⇑B |

−→
ΦV = V}

Mnd0 thus turns out to be a reflective subcategory of Adj0, and Cmn0 coreflective. The category

Nuc0 of concept lattices is their intersection, thus is coreflective in Mnd0 and reflective in Cmn0.

In fact, these posetal resolutions turn out to be adjoint to the inclusions both on the left and on the

right; but that is a peculiarity of the posetal case. Another posetal quirk is that the category Nuc0

boils down to the category Pos of posets, because an operator that is both a closure and an interior

must be an identity. That will not happen in general.

2.3 Summary

Going from left to right through Fig. 3 with the categories defined in (4), (12), (14) and (15), and

reflecting everything back into Adj0, we made the following steps

Φ : Ao × B −→ �

Φ∗∗ = MA0Φ =

(
⇓A ⇑B

Φ∗




Φ∗
)

←−−
EM0Φ

∗
∗ =

(
⇓A ⇓A

←−
Φ




)
−−→
KC0Φ

∗
∗ =

(
⇑B

−→
Φ ⇑B


)

←−
N0Φ =

(
⇑B

−→
Φ ⇓A

←−
Φ

Φ�

�

Φ� )
(18)

where
←−−
EM0 = EM0 ◦ AM0, and

−−→
KC0 = KC0 ◦ AC0, and

←−
N0 defines the poset nucleus (which will be

subsumed under the general definition in Sec. 6). For posets, the final step happens to be trivial,

because of the order isomorphisms

⇓A
←−
Φ
� D � ⇑B

−→
Φ (19)

where D

D = {〈L,U〉 ∈ ⇓A × ⇑B | L = Φ∗U ∧ Φ∗L = U} (20)
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is the familiar lattice of Dedekind cuts. The images of the context Φ in Mnd0, Cmn0 and Nuc0 thus

give three isomorphic views of the concept lattice. But this is a degenerate case.

Comment. The situation when the two resolutions of an adjunction (the one in Mnd and the one

in Cmn) are isomorphic is very special. E.g., when A = B = Q is the field of rational numbers,

and Φ = (≤) is their partial order, then MA1
∗Φ is the set of pairs 〈L,U〉, where L is an open and

closed lower interval, U is an open or closed upper interval, and L ≤ U. The resolutions eliminate

the rational points between L and U, by requiring that L contains all lower bounds of U and U all

upper bounds of L. The nucleus then comprises the Dedekind cuts. But any Dedekind cut 〈L,U〉
is also completely determined by L alone, and by U alone. Hence the isomorphisms (19). The

same generalizes when A = B is a partial order, and the nucleus yields its Dedekind-MacNeille

completion: it adjoins all joins and meets that are missing while preserving those that already

exist. When A and B are different posets, and Φ is a nontrivial context between them, we are in

the business of concept analysis, and generate the concept lattice — with similar generation and

preservation requirements like for the Dedekind-MacNeille completion. In a sense, the posets A
and B are "glued together" along the context Φ̂ ⊆ A × B into the joint completion D, where the

joins are generated from A, and the meets from B. On the other hand, any meets that may have

existed in A are preserved in D; as are any joins that may have existed in B.

It is a remarkable fact of category theory that no such tight bicompletion exists in general, when

the poset P is generalized to a category [55, 40]. It also is well known that this phenomenon is

closely related to the idempotent monads induced by adjunctions, and by profunctors in general

[1].

The phenomenon is, however, quite general, and in a sense, hides in plain sight.

3 Example 2: Nuclei in linear algebra

3.1 Matrices and linear operators

The nucleus examples in this section take us back to undergraduate linear algebra. The first part is

in fact even more basic. To begin, we consider matrices Ȧ × Ḃ −→ R, where R is an arbitrary ring,

and Ȧ, Ḃ are finite sets. We denote the category of all sets by Set, its full subcategory spanned by

finite sets by Ṡet, and generally use the dot to mark finiteness, so that Ȧ, Ḃ ∈ Ṡet ⊂ Set. Viewing

both finite sets Ȧ, Ḃ and the ring R together in the category of sets, we define

|Mat1| =
∐

Ȧ,Ḃ∈Ṡet

Set(Ȧ × Ḃ,R) (21)

Mat1(Φ,Ψ) =
{
〈H,K〉 ∈ RȦ×Ċ × RḂ×Ḋ | KΦ = ΨH

}
where RȦ×Ċ abbreviates Set(Ȧ × Ċ,R), and ditto RḂ×Ḋ. The matrix composition is written left to

right

RẊ×Ẏ × RẎ×Ż −−−→ RẊ×Ż

〈F,G〉 �→ (GF)ik =
∑
j∈B

Fi j ·G jk
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When R is a field, Mat1 is the arrow category of finite-dimensional R-vector spaces with chosen

bases. When R is a general ring, Mat1 is the arrow category free R-modules with finite generators.

When R is not even a ring, but say the rig ("a ring without the negatives") N of natural numbers,

then Mat1 is the arrow category of free commutative monoids. Sec. 3.2 applies to all these cases,

and Sec. 3.3 applies to real closed fields. Since the goal of this part of the paper is to recall familiar

examples of the nucleus construction, we can just as well assume that R is the field of real numbers.

The full generality of the construction will emerge in the end.

3.2 Nucleus as an automorphism of the rank space of a linear operator

Since finite-dimensional vector spaces always carry a separable inner product, the category Mat1
over the field of real numbers R is equivalent to the arrow category over finite-dimensional real

Hilbert spaces with chosen bases. This assumption yields a canonical matrix representation for

each linear operator. Starting, on the other hand, from the category Ḣilb of finite-dimensional

Hilbert spaces without chosen bases, we define the category Adj1 as the arrow category Ḣilb�Ḣilb

of linear operators and their commutative squares, i.e.

|Adj1| =
∐
A,B∈Ḣilb

Ḣilb(A,B) (22)

Adj1(Φ,Ψ) =
{
〈H,K〉 ∈ Ḣilb(A,C) × Ḣilb(B,D) | KΦ = ΨH

}
The finite-dimensional Hilbert spaces A and B are still isomorphic to RȦ and RḂ for some finite

spaces Ȧ and Ḃ of basis vectors; but the particular isomorphisms would choose a standard basis for

each of them, so now we are not given such isomorphisms. This means that the linear operators

like H and K in (22) do not have standard matrix representations, but are given as linear functions

between the entire spaces. The categories Mnd1 and Cmn1 will be the full subcategories of Adj1
spanned by

Mnd1 =
{
Φ ∈ Adj1 | Φ is surjective

}
(23)

Cmn1 =
{
Φ ∈ Adj1 | Φ

‡ is surjective
}

(24)

where Φ‡ is the adjoint of Φ ∈ Ḣilb(A,B), i.e. the operator Φ‡ ∈ Ḣilb(B,A) satisfying

〈b | Φa〉B = 〈Φ‡b | a〉A

where 〈−|−〉H denotes the inner product on the space H.

3.2.1 Hilbert space adjoints: Notation and construction

In the presence of inner products5 〈−|−〉 : A × A −→ R, it is often more convenient to use the

bra-ket notation, where a vector �a ∈ A is written as a "bra" |a〉, and the corresponding linear

5If R were not a real closed field, the inner product would involve a conjugate in the first argument. Although this

is for most people the more familiar situation, the adjunctions here do not depend on conjugations, so we omit them.
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functional �a‡ =
〈
�a|−

〉
∈ A∗ is written as the "ket" 〈a|. If A is the Ȧ-dimensional space RȦ, then

the basis vectors �ei, i = 1, 2, . . . , Ȧ are written |1〉, |2〉, . . . , |Ȧ〉, whereas the basis vectors of A∗ are

〈1|, 〈2|, . . . , 〈Ȧ|, and the base decompositions become

• |a〉 =
∑Ȧ

i=1 |i〉〈i|a〉 instead of �a =
∑Ȧ

i=1 ai�ei, and

• 〈a| =
∑Ȧ

i=1〈a|i〉〈i| instead of �a‡ =
∑Ȧ

i=1 ai�e
‡

i .

For convenience, here we assume that the finite sets Ȧ, Ḃ, . . . ∈ Ṡet are ordered, i.e. reduce Ṡet

to N. In practice, the difference between A and A∗ is often ignored, because any basis induces a

linear isomorphism A∗ � A, and is uniquely determined by it [19]; but it creeps from under the

carpet when vector spaces are combined or aligned with other structures, as we will see further on.

Writing 〈 j|Φ|i〉 for the entries Φ ji of a matrix Φ =
(
Φ ji

)
n×Ȧ

gives

• 〈 j|Φ|a〉 =
∑Ȧ

i=1〈 j|Φ|i〉〈i|a〉 instead of
(
Φ�a

)
j =

∑Ȧ
i=1Φ jiai,

• 〈b|Φ|i〉 =
∑Ḃ

j=1〈b| j〉〈 j|Φ|i〉 instead of
(
�b‡Φ

)
i
=

∑Ḃ
j=1 bjΦ ji, and

• 〈b|Φ|a〉 =
∑Ȧ

i=1

∑Ḃ
j=1〈b| j〉〈 j|Φ|i〉〈i|a〉 instead of �b‡Φ�a =

∑Ȧ
i=1

∑Ḃ
j=1 bjΦ jiai

and hence the inner-product adjunction

〈b|Φa〉B = 〈b|Φ|a〉 = 〈Φ‡b|a〉A (25)

where we adhere to the usual abuse of notation, and denote both the matrix and the induced linear

operator byΦ. The dual matrix and the induced adjoint operator are Φ‡. If (25) is the Hilbert space

version of (10), then (11) becomes

|a〉 RȦ
Ḃ∑

j=1

〈b| j〉〈 j|Φ•

Ȧ∑
i=1

•Φ|i〉〈i|a〉 RḂ 〈b|

Φ Φ‡ (26)

Here •Φ|i〉 =
∑Ḃ

j=1〈 j|〈 j|Φ|i〉 is the i-th column of Φ, transposed into a row, whereas 〈 j|Φ• =∑Ȧ
i=1〈 j|Φ|i〉|i〉 is its j-th row vector, transposed into a column.
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3.2.2 Factorizations

The maps in (26) induce the functor MA1 : Mat1 −→ Adj1, for A = RȦ and B = RḂ. This functor is,

of course, tacit in the practice of representing linear operators by matrices, and identifying them

notationally. The functors AM1 : Adj1 −→ Mnd1 and AC1 : Adj1 −→ Cmn1, on the other hand, require

factoring linear operators through their rank spaces:

A B
−→
Φ

A
←−
Φ B

Φ ��
AM1(Φ)

U

V

Φ‡

AC1(Φ)‡

(27)

where we define

B
−→
Φ = {Φ‡|b〉 | |b〉 ∈ B} with 〈x|y〉

B
−→
Φ
= 〈Ux|Uy〉A

A
←−
Φ = {Φ|a〉 | |a〉 ∈ A} with 〈x|y〉

A
←−
Φ
= 〈V x|Vy〉B

It is easy to see that the adjoints EM1 : Mnd1 −→ Adj1 and KC1 : Cmn1 −→ Adj1 can be viewed as

inclusions. To define MN1 : Mnd1 −→ Nuc1 and CN1 : Cmn1 −→ Nuc1, note that

〈U‡Ux | y〉
B
−→
Φ
= 〈Ux | Uy〉A = 〈x | y〉

B
−→
Φ

Since finite-dimensional Hilbert spaces are separable, this implies that U‡U = id and that U‡ is

thus a surjection. So we have two factorizations of Φ

A B
−→
Φ

A
←−
Φ B

AC1(Φ)

U‡

CN1◦AC1(Φ)=

MN1◦AM1(Φ)
AM1(Φ)

V

(28)

The definitions of CN1 and MN1 for general objects of Cmn1 and Mnd1 proceed similarly, by

factoring the adjoints.

3.3 Nucleus as matrix diagonalization

When the field R supports spectral decomposition, the above factorizations can be performed di-

rectly on matrices. The nucleus of a matrix then arises as its diagonal form. In linear algebra, the

process of the nucleus extraction thus boils down to the Singular Value Decomposition (SVD) of

a matrix [32, Sec. 2.4], which is yet another tool of concept analysis [5, 20].
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To set up this version of the nucleus setting we take Adj2 = Mat2 = Mat1 and let MA2 : Mat2 −→ Adj2
be the identity. The categories Mnd2 and Cmn2 will again be full subcategories of Adj2, this time

spanned by

Mnd2 =
{
Φ ∈ Set(Ȧ × Ḃ,R) | 〈k|

−→
Φ|�〉 = λk〈k|�〉

}
(29)

Cmn2 =
{
Φ ∈ Set(Ȧ × Ḃ,R) | 〈i|

←−
Φ| j〉 = λ j〈i| j〉

}
(30)

where

•

−→
Φ = ΦΦ‡ and

←−
Φ = Φ‡Φ, with the entries 〈k|

−→
Φ|�〉 =

−→
Φk� 〈i|

←−
Φ| j〉 =

←−
Φi j,

• 〈i| j〉 =

⎧⎪⎪⎨⎪⎪⎩1 if i = j

0 otherwise

⎫⎪⎪⎬⎪⎪⎭, and

• λk and λ j are scalars.

In the theory of Banach spaces, operators that yield to this type of representation have been called

nuclear since [34]. Hence our terminology. For finite-dimensional spaces, definitions (29-30) say

that for a matrix Φ ∈ Mat2 holds that

Φ ∈ Mnd2 ⇐⇒
−→
Φ is diagonal

Φ ∈ Cmn2 ⇐⇒
←−
Φ is diagonal

Since both
←−
Φ and

−→
Φ are self-adjoint:

〈Φ‡Φa | a′〉 = 〈Φa | Φa′〉 = 〈Φ‡‡a | Φa′〉 = 〈a | Φ‡Φa′〉

〈b | ΦΦ‡b′〉 = 〈Φ‡b | Φ‡b′〉 = 〈Φ‡b | Φ‡‡‡b′〉 = 〈Φ‡‡Φ‡b | b′〉 = 〈ΦΦ‡b | b′〉

their spectral decompositions yield real eigenvalues λ. Assuming for simplicity that each of their

eigenvalues has a one-dimensional eigenspace, we define

Ȧ
←−
Φ = {|v〉 ∈ RḂ | 〈v|v〉 = 1 ∧ ∃λv.

−→
Φ|v〉 = λv|v〉} (31)

Ḃ
−→
Φ = {|u〉 ∈ RḂ | 〈u|u〉 = 1 ∧ ∃λu.

←−
Φ|u〉 = λu|u〉} (32)

Hence the matrices

Ḃ
−→
Φ × Ȧ

U
−−−−−−−−−→ R

V
←−−−−−−−−−− Ȧ

←−
Φ × Ḃ

〈
|u〉, i

〉
�−→ ui v� �−→

〈
|v〉, �

〉
which isometrically embed Ḃ

−→
Φ into A = RȦ and A

←−
Φ into B = RḂ. It is now straightforward to show

that AM2 : Adj2 −→ Mnd2 and AC2 : Adj2 −→ Cmn2 are still given according to the schema in (27),

i.e. by

Φ̌ = AM2(Φ) = V‡Φ (33)

Φ̂ = AC2(Φ) = ΦU (34)
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They satisfy not only the requirements that Φ̌†Φ̌ and Φ̂Φ̂‡ be diagonal, as required by (29) and

(30), but also that

Φ̌Φ̌† = ΦΦ† =
←−
Φ Φ̂†Φ̂ = Φ†Φ =

−→
Φ

Repeating the diagonalization process on each of them leads to the following refinement of (27):

Ȧ Ḃ
−→
Φ

(
Ȧ
←−
Φ

)−→Φ

Ḃ Ȧ
←−
Φ

(
Ḃ
−→
Φ

)←−Φ
Φ

Φ̌
ˆ̌
Φ

MN2(Φ̂)
=

CN2(Φ̌)

U

Φ̂

∼

ˇ̂
Φ

V‡
∼

(35)

This diagram displays a bijection between the eigenvertors in Ḃ
−→
Φ and A

←−
Φ. The diagonal matrix

between them is the nucleus of Φ. The singular values along its diagonal measure, in a certain

sense, how much the operators
←−
Φ and

−→
Φ, induced by composing Φ and Φ‡, deviate from being

projectors onto the respective rank spaces.

3.4 Summary

The path from a matrix to its nucleus can now be summarized by

Φ : Ȧ × Ḃ −→ R

RȦ RḂ

Φ

Φ‡

RȦ Ȧ
←−
Φ

U=M2Φ

Ḃ
−→
Φ RḂ

V=E2Φ

Ḃ
−→
Φ Ȧ

←−
Φ

RȦ RḂ

←−
N2Φ

V

Φ

U‡

Note that the isomorphisms from (19) are now replaced by the diagonal matrix
←−
N1Φ : Ḃ

−→
Φ Ȧ

←−
Φ ,

wich is still invertible as a linear operator, and provides a bijection between the bases Ḃ
−→
Φ and Ȧ

←−
Φ

of the rank spaces of Φ and of Φ‡, respectively. But the singular values along the diagonal of
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←−
N1Φ quantify the relationships between the corresponding elements of Ḃ

−→
Φ and Ȧ

←−
Φ. This is, on the

one hand, the essence of the concept analysis by singular value decomposition [56]. Even richer

conceptual correspondences will, on the other hand, emerge in further examples.

4 Example 3: Nuclear Chu spaces

4.1 Abstract matrices

So far we have considered matrices in specific frameworks, first of posets, then of Hilbert spaces.

In this section, we broaden the view, and study an abstract framework of matrices. Suppose that S

is a category with finite products, R ∈ S is an object, and Ṡ ⊆ S is a full subcategory. The objects

of Ṡ are also marked by a dot, and are thus written Ȧ, Ḃ, . . . , Ẋ ∈ Ṡ. Now consider the following

variation on the theme of (4) and (21):

|Mat3| =
∐

Ȧ,Ḃ∈Ṡ

S(Ȧ × Ḃ,R) (36)

Mat3(Φ,Ψ) =
{
〈 f ∗, f∗〉 ∈ Ṡ(Ȧ, Ċ) × Ṡ(Ḋ, Ḃ) | Φ(a, f∗d) = Ψ( f ∗a, d)

}
where Ψ ∈ S(Ċ × Ḋ,R), as illustrated in Fig. 5. We consider a couple of examples.

Ȧ × Ḋ

Ȧ × Ḃ
f
−−→ Ċ × Ḋ

R

Ȧ× f∗ f ∗×Ḋ

Φ Ψ

Figure 5: A Chu-morphism f = 〈 f ∗, f∗〉 : Φ −→ Ψ in Mat3

4.1.1 Posets

Let the category S = Ṡ be the category Pos of posets, and let R be the poset � = {0 < 1}. The

poset matrices in MatPos
3 then differ from those in Mat0 by the fact that they are covariant in both

arguments, i.e. they satisfy a′Φ̂b′ ∧ a′ ≤ a ∧ b′ ≤ b =⇒ aΦ̂b instead of (6). Any poset A is

represented both in Mat0 and in MatPos
3 by the matrix

( A
≤
)

: Ao ×A −→ �. But they are quite different

objects in the different categories. If
( B
≤
)

: Bo × B −→ � is another such matrix, then
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• in Mat0, a morphism in the form 〈h, k〉 is required to satisfy x
A
≤ x′ ⇐⇒ hx

B
≤ kx′ for all

x, x′ ∈ A, whereas

• in MatPos
3 , a morphism in the form 〈 f ∗, f∗〉 is required to satisfy x ≤ f∗y ⇐⇒ f ∗x ≤ y for

all x ∈ A and y ∈ B.

The MatPos
3 isomorphisms are thus the poset adjunctions (a.k.a. Galois connections), whereas the

Mat0-morphisms in the form 〈h, h〉 are the order isomorphisms.

4.1.2 Linear spaces

Let S be the category Set of sets, Ṡ the category Ṡet of finite sets, and let R be the set of real

numbers. Then the objects of MatLin
3 are the real matrices, just like in Mat1, but the morphisms in

MatLin
3 are a very special case of those in Mat1. A Mat1-morphism 〈H,K〉 from (21) boils down to

a pair of functions 〈 f ∗, f∗〉 from (36) precisely when the matrices H and K comprise of 0s, except

that H has precisely one 1 in every row, and K has precisely one 1 in every column. With such

constrained morphisms, MatLin
3 does not support the factorizations on which the constructions in

Mat1 were based. The completions will afford it more flexible morphisms. Mat1’s morphisms are

already complete matrices, which is why we were able to take Adj2 = Mat2 = Mat1.

4.1.3 Categories

Let S be the category CAT of categories, small or large; let R be the category Set of sets; and let

Ṡ be the category Cat of small categories. The matrices in MatCAT
3 are then distributors [16, Vol.

I, Sec. 7.8], also also called profunctors, or bimodules. The MatCAT
3 -morphisms are generalized

adjunctions, as discussed in [47]. Any small category Ȧ occurs as the matrix homȦ ∈ CAT(Ȧo ×

Ȧ,Set) in MatCAT
3 . The MatCAT

3 -morphisms between the matrices in the form homȦ and homḂ are

precisely the adjunctions between the categories Ȧ and Ḃ.

4.2 Representability and completions

A matrix Φ : Ȧ × Ḃ −→ R is said to be representable when there are matrices A : Ȧ × Ȧ −→ R and

B : Ḃ × Ḃ −→ R and a morphism f = 〈 f ∗, f∗〉 ∈ Mat3(A,B) such that Φ = A ◦ (Ȧ × f∗) = B( f ∗ × Ḃ).

Inside the category Mat3, this means that the morphism f can be factorized throughΦ, as displayed

in Fig. 6. Inside MatCAT
3 , a distributor Φ : Ȧo × B −→ Set is representable if and only if there is an

adjunction F∗ � F∗ : B −→ A such that A(x, F∗y) = Φ(x, y) = B(F∗x, y).

4.3 Abstract adjunctions

In the category of adjunctions Adj3, all matrices from Mat3 become representable. This is achieved

by dropping the "finiteness" requirement Ȧ, Ḃ, Ċ, Ḋ ∈ Ṡ from Mat3, and defining

|Adj3| =
∐

A,B∈S

S(A × B,R) (37)

Adj3(Φ,Ψ) = {〈 f ∗, f∗〉 ∈ S(A,C) × S(D, B) | Ψ( f ∗a, d) = Φ(a, f∗d)}
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Ȧ × Ḃ

Ȧ × Ȧ
〈id, f∗〉
� Ȧ × Ḃ

〈 f ∗,id〉
� Ḃ × Ḃ

R

id× f∗
id×id

f ∗×id

A Φ B

Figure 6: A matrix Φ representable in Mat3 by factoring 〈 f ∗, f∗〉 =
(
A

〈id, f∗〉
−−−−→ Φ

〈 f ∗,id〉
−−−−→ B

)

4.3.1 The Chu-construction

The readers familiar with the Chu-construction will recognize Adj3 as Chu(S,R). The Chu-

construction is a universal embedding of monoidal categories with a chosen dualizing object into

∗-autonomous categories. It was spelled out by Barr and his student Chu [9], and extensively stud-

ied in topological duality theory and in semantics of linear logic [10, 11, 12, 13, 21, 61, 70, 76].

Its conceptual roots go back to the early studies of infinite-dimensional vector spaces [61]. Our

category Mat3 can be viewed as a "finitary" part of a Chu-category, where an abstract notion of

"finiteness" is imposed by requiring that the matrices are sized by a "finite" category Ṡ ⊂ S.

4.3.2 Representing matrices as adjunctions

The functor MA3 : Mat3 −→ Adj3 will be the obvious embedding. When Ṡ = S, it boils down to the

identity. The difference between (36) and (37) is technically, of course, a minor wrinkle. But when

the object R is exponentiable, in the sense that there is a functor R(−) : Ṡo −→ S such that

S(Ȧ × Ḃ,R) � S(Ȧ,RḂ) (38)

holds naturally in Ȧ and Ḃ, then the Mat3-matrices can be represented as Adj3-morphisms. Each

matrix appears in four avatars

S(Ȧ,RḂ) � S(Ȧ × Ḃ,K) � S(Ḃ × Ȧ,K) � S(Ḃ,RȦ)

∈ ∈ ∈ ∈ (39)

Φ∗ Φ Φ‡ Φ∗

and the leftmost and the rightmost represent it as the abstract adjunction in Fig. 7. The objects

RȦ and RḂ, that live in S but not in Ṡ will play a similar role to ⇓A and ⇑B in Sec. 2, and to the

eponymous Hilbert spaces Sec. 3. They are the abstract "completions". We come back to this in

Sec. 4.5.
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Ȧ × Ḃ

Ȧ × RȦ RḂ × Ḃ

R

Φ

Ȧ×Φ∗ Φ∗×Ḃ

∈ �

Figure 7: The adjunction (Φ∗ � Φ∗) ∈ Adj3(∈Ȧ, �Ḃ) representing the matrix Φ : Ȧ × Ḃ −→ R from

Mat3

4.3.3 Separated and extensional adjunctions

The correspondences in (39) assert that any matrix Φ : A × B −→ R can be viewed as

• a map A
Φ∗

−−→ RB, assigning a "matrix row" Φ∗(a) to each basis element a ∈ A;

• a map B
Φ∗
−−→ RA, assigning a "matrix column" Φ∗(b) to each basis element b ∈ B.

The elements a and a′ are indistinguishable for Φ if Φ∗(a) = Φ∗(a′); and the elements b and b′ are

distinguishable forΦ ifΦ∗(b) = Φ∗(b′). The idea of Barr’s separated-extensional Chu construction

[10, 12] is to quotient out any indistinguishable elements. A Chu space is called

• separated if Φ∗(a) = Φ∗(a′) ⇒ a = a′, and

• extensional if Φ∗(b) = Φ∗(b′) ⇒ b = b′.

To formalize this idea, we assume the category S is given with a family M of abstract monics,

so that Φ is separated if Φ∗ ∈ M and extensional if Φ∗ ∈ M. To extract such an M-separated-

extensional nucleus from any given Φ, the family M is given as a part of a factorization system
E � M, such that RE ⊆ M. For convenience, an overview of factorization systems is given in

Appendix A. The construction yields an instance of Fig. 3 for the full subcategories of Adj3 defined

by

Mnd3 =
{
Φ ∈ Adj3 | Φ

∗ ∈ M
}

= Chus(S,R) (40)

Cmn3 =
{
Φ ∈ Adj3 | Φ∗ ∈ M

}
= Chue(S,R) (41)

Nuc3 =
{
Φ ∈ Adj3 | Φ

∗,Φ∗ ∈ M
}
= Chuse(S,R) (42)

where Chus(S,R) and Chue(S,R) are the full subcategories of Chu(S,R) spanned, respectively,

by the separated and the extensional Chu spaces, as constructed in [10, 12]. The reflections and

coreflections, induced by the factorization, have been analyzed in detail there. The separated-

extensional nucleus of a matrix is constructed through the factorizations displayed in Fig. 8, where

we use Barr’s notation. The functor AM3 corresponds to Barr’s Chus, the functor AC3 to Chue.

Proving that A′ � A” and B′ � B” gives the nucleus Chuse(Φ) = Chues(Φ) in Nuc3.
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A × B RΦ

A RBΦ∗ B RAΦ∗

A A′ RBE(Φ∗) Chus(Φ)
B B′ RAE(Φ∗) Chue(Φ)

B B′′ RA′E(Chus(Φ)) Chuse(Φ)
A A′′ RB′E(Chue(Φ)) Chues(Φ)

Figure 8: Overview of the separated-extensional Chu construction

4.4 What does the separated-extensional nucleus capture in examples 4.1?

4.4.1 Posets

Restricted to the poset matrices in the form Ao × B
Φ
−→ �, as explained in Sec. 4.1.1, the separated-

extensional nucleus construction gives the same output as the concept lattice construction in Sec. 2.

The factorizations Chus and Chue in Fig. 8 correspond to the extensions Φ∗ and Φ∗ in (11).

4.4.2 Linear spaces

Extended from finite bases to the entire spaces generated by them, the Chu view of the linear alge-

bra example in 4.1.2 captures the rank space factorization and Nuc1, but the spectral decomposition

into Nuc2 requires a suitable completeness assumption on R.

4.4.3 Categories

The separated-extensional nucleus construction does not seem applicable to the categorical exam-

ple in 4.1.3 directly, as none of the familiar functor factorization systems satisfy the requirement

RE ⊆ M. This provides an opportunity to explore the role of factorizations in extracting the nuclei.

In Sec. 4.5 we explore a variation on the theme of the factorization-based nucleus. In Sec. 4.6 we

spell out a modified version of the separated-extensional nucleus construction that does apply to

the categorical example in 4.1.3.

4.5 Discussion: Combining factorization-based approaches

Some factorization-based nuclei, in the situations when the requirement RE ⊆ M is not satisfied,

arise from a combination of the separated-extensional construction from Sec. 4.3.1 and the diago-

nalization factoring from Sec. 3.
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4.5.1 How nuclei depend on factorizations?

As explained in the Appendix, every factorization system E � M in any category S can be viewed

as an algebra for the Arr-monad, where Arr(S) = S�S is the category consisting of the S-arrows

as objects, and the pairs of arrows forming commutative squares as the morphisms. An arbitrary

factorization system E � M on S thus corresponds to an algebra � : S�S −→ S; and a factorization

system that satisfies the requirements for the separated-extensional Chu construction lifts to an

algebra � : Adj3�Adj3 −→ Adj3. To see this, note the natural bijection S(A × B,R) � S(A,RB)

induces an isomorphism of Adj3 = Chu(S,R) with the comma category SR = S�R(−), whose

arrows are in the form

A C

RB RD

B D

f ∗

ϕ ψ

R f∗

f

(43)

Such squares permit E �M-factorization whenever RE ⊆ M. If we now set

Mat4 = Adj3 (44)

Adj4 = Adj3�Adj3 (45)

then the isomorphism Adj3 � SR liefts to of Adj4 � SR�SR. The objects of Adj4 can thus be

viewed as the squares in the form (43), and the object part of the abstract completion functor MA4 :

Mat4 −→ Adj4 can be defined as in Fig. 9. One immediate consequence is that the two factorization

Mat4
MA4

Adj4

A × D

A × B
f
−−→ C × D

R

A× f∗ f ∗×D

Φ Ψ

RRA
RRC

A C

MA4 f
−−−−−→

RB RD

RB RD

RR f ∗

RΦ∗ RΨ∗

η

f ∗

Φ∗

η

Ψ∗MA4(Φ) MA4(Ψ)

id

R f∗

id

R f∗

Figure 9: The abstract completion functor MA4 : Mat4 −→ Adj4

steps of the two-step separated-and-extensional construction
←−
N3 = Chuse, summarized in Fig. 8,
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can now be obtained in a single sweep, by directly composing the completion with the factorization

←−
N3 =

(
Adj3

MA4
−−−→ Adj3�Adj3

�
−→ Adj3

)
(46)

The fixed points of this functor are just the separated-extensional nuclei. This is, of course, just

another presentation of the same thing; and perhaps a wrongheaded one, as it folds the two steps

of the nucleus construction into one. These two steps are displayed as the two paths from left

to right through Fig. 3, corresponding to the two orders in which the steps can be taken; and of

course as the separate part and the extensional part of the separate-extensional Chu-construction.

The commutativity of the two steps is, in a sense, the heart of the matter. However, packaging a

nucleus construction into one step allows packaging two such constructions into one. What might

that be useful for?

When S is, say, a category of topological spaces, and E �M the the dense-closed factorization,

then it may happen that the separated-extensional nucleus of a space is much bigget than the

original space. If the nucleus
←−
N3Φ : A′ × B′ −→ R of a matrix Φ : A × B −→ R is constructed

by factoring A
Φ∗

−−→ RB and B
Φ∗
−−→ RA into

A A′ RB′ RB
←−
N3Φ

∗

B B′ RA′ RA
←−
N3Φ∗

as in Fig. 8, then A and B can be dense spaces of rational numbers, and A′ and B′ can be their

closures in the space of real numbers, representable within both RA and RB for a cogenerator R.

The same effect occurs if we take S to be posets, and in many other situations where the E-maps

are not quotients. One way to sidestep the problem might be to strengthen the requirements.

4.5.2 Exercise

Given a matrix A × B
Φ
−→ R, find a nucleus A′ × B′

LΦ
−−→ R such that

(a) A� A′ and B� B′ are quotients, whereas

(b) A′
Φ∗

� RB′ and B′
Φ∗

� RA′ are closed embeddings.

Requirement (b) is from the separated-extensional construction in Sec. 4.3.1, whereas requirement

(a) is from the diagonalization factoring in Sec. 3).

4.5.3 Workout

Suppose that category S supports two factorization systems:

• E �M•, where M• ⊆ M are the regular monics (embeddings, equalizers), and

• E• � M, where E• ⊆ E are the regular epis (quotients, coequalizers).
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In balanced categories, these factorizations would coincide, becauseM• =M and E• = E, and we

would be back to the situation where the separated-extensional construction applies. In general, the

two factorizations can be quite different, like in the category of topological spaces. Nevertheless,

since homming into the exponentiable object R is a contravariant right adjoint functor, it maps

coequalizers to equalizers. Assuming that R is an injective cogenerator, it also maps general epis

to monics, and vice versa. So we have

RE
•

⊆ M• RE ⊆ M RM ⊆ E (47)

However, E• and M• generally do not form a factorization system, because there are maps that do

not have a quotient-embedding decomposition; and E and M do not form a factorization system

because there are maps whose epi-mono decomposition is not unique. The factorization E• �E does

satisfy RE
•

⊆ M, but does not lift from S�S −→ S to Chu�Chu −→ Chu.

Our next nucleus setting will be full subcategories again:

Mnd4 =
{
〈 f ∗, f∗〉 ∈ Adj4 | f ∗ ∈ M, f∗ ∈ E

}
(48)

Cmn4 =
{
〈 f ∗, f∗〉 ∈ Adj4 | f ∗ ∈ E, f∗ ∈ M

}
(49)

These two categories are dual, just like Mnd1 and Cmn1 were dual. In both cases, they are in fact

the same category, since switching between Φ and Φ‡ in (23-24) and between f ∗ and f∗ in (48-49)

is a matter of notation. But distinguishing the two copies of the category on the two ends of the

duality makes it easier to define one as a reflexive and the other one as a coreflexive subcategory

of the category of adjunctions.

The functors EM4 : Mnd4 ↪→ Adj4 and KC4 : Cmn4 ↪→ Adj4 are again the obvious inclusions.

The reflection AM4 : Adj4 � Mnd4 and the coreflection AC4 : Adj4 � Cmn4 are constructed in

Fig. 10. The factoring triangles on are related in a similar way to the two factoring triangles in

(27). The nucleus is obtained by composing them, in either order. More precisely, the coreflection

NM4 : Mnd4 � Nuc4 is obtained by restricting the coreflection AC4 : Adj4 � Cmn4 along the

inclusion EM4 : Mnd4 ↪→ Adj4; the reflection NC4 : Cmn4 � Nuc4 is obtained by restricting

AM4 : Adj4 � Mnd4 along the inclusion KC4 : Mnd4 ↪→ Adj4. The outcome is in Fig. 11. The

category of nuclear Chu spaces is thus the full subcategory spanned by

Nuc4 =
{
〈 f ∗, f∗〉 ∈ Adj4 | f ∗, f∗ ∈ E ∩M

}
(50)

If a factorization does not support the separated-extensional Chu-construction because it is not

stable under dualizing, but if it is dual with another factorization, like e.g. the isometric-diagonal

factorization in the category if finite-dimensional Hilbert spaces in Sec. 3, then the nucleus can still

be constructed, albeit not as a subcategory of the original category, but of its arrow category. While

the original separated-extensional Chu-construction yields a full subcategory Chuse ⊆ Chu, here

we get the Chu-nucleus as a full subcategory
←−
N4 ⊆ Chu�Chu. A Chu-nucleus is thus an arrow

〈EM(Φ∗),EM(Φ∗)〉 ∈ Chu(Φ′,Φ′′), as seen in Fig. 11, such that

(a) A� A′ and B� B′′ are in E•,

(b) B′
Φ̃′

↪→ RA′ and A′′
Φ′′

↪→ RB′′ are in M•,
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A C

A′

AM4( f )

RB′

RB RD

B′

B D

Φ

f ∗

E•( f ∗)

Ψ

M( f ∗)

RE( f∗)RM
•( f∗)

R f∗

M•( f∗) E( f∗)

f∗

A C

C′

AC4( f )

RD′

RB RD

D′

B D

Φ

f ∗

E( f ∗)

Ψ

M•( f ∗)

RE
•( f∗)

RM( f∗)

R f∗

M( f∗) E•( f∗)

f∗

Figure 10: The object parts of the functors AM4 : Adj4 � Mnd4 and AC4 : Adj4 � Cmn4

(c) A′
Φ′

� RB′ and B′′
Φ̃′′

� RA′′ are in M,

(d) EM(Φ∗) and EM(Φ∗) are in E ∩M.

where B′
Φ̃′

−→ RA′ is the transpose of A′
Φ′

−→ RB′ , and B′′
Φ̃′′

−−→ RA′′ is the transpose of A′′
Φ′′

−−→ RB′′ .

According to (d), Chu spaces EM(Φ∗) and EM(Φ∗) are thus monics in one factorization system

and epis in another one, like the diagonalizations were in diagram (28) in Sec. 3. According to (a)

and (b), EM(Φ∗) and EM(Φ∗) are moreover the best such approximations of Φ∗ and Φ∗, as their

largest quotients and embeddings, like the diagonalizations were, according to (27) and (35). The

difference between the current situation and the one in one in Sec. 3, is that the diagonal nucleus

there was self-dual, whereas EM(Φ∗) and EM(Φ∗) are not, but they are rather dual to one another.

It also transposes Φ′ and Φ′′, and the transposition does not preserve regularity, but in this case

it switches the M•-map with the M-map. Intuitively, the nucleus
←−
N4Φ can thus be thought as

the best approximation of a diagonalization, in situations when the spectra of the two self-adjoints

induced by a matrix are not the same; or the best approximation of a separated-extensional core

when Chuse and Chues do not coincide.
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A RB

A′ A′′

←−
N4Φ

RB′ RB′′

RRA
RB

B′ B′′

RA B

η

Φ∗

E•(Φ∗)

id

EM(Φ∗)

Φ′

M•(Φ∗)

Φ′′

REM(Φ∗)

RE(Φ∗)RM(Φ∗)

RΦ∗

M•(Φ∗)

EM(Φ∗)

E•(Φ∗)

Φ∗

Figure 11: The Chu-nucleus of the matrix Φ : A × B −→ R

4.6 Towards the categorical nucleus

Although the categorical example 4.1.3 does not yield to the separated-extensional nucleus con-

struction, a suitable modification of the example suggests the suitable modification of the construc-

tion.

Consider a distributor Φ : Ao × B −→ Set, representable in the form A(x, F∗y) = Φ(x, y) =

B(F∗x, y) for some adjunction F∗ � F∗ : B −→ A. The factorization of representable matrices

displayed in Fig. 6 induces in Adj3 the diagrams in Fig. 12. Here the representation A(x, F∗y) =

Φ(x, y) = B(F∗x, y) induces

Φ∗ : B −→ SetA
o

Φ∗ : Ao −→ SetB

b �→ λx. A(x, F∗b) a �→ λy. B(F∗a, y)

i.e. Φ∗ =
(
B

F∗
−−→ A

�

−→ SetA
o)

and Φ∗ =
(
A

F∗

−−→ B
�

−→
(
SetB

)o )
. So the Chu view of a distributor Φ

representable by an adjunction F∗ � F∗ is based on the Kan extensions of the adjunction. The point

of this packaging is that the separated-extensional nucleus of the distributorΦ for the factorization

system (Ess � Ffa) in CAT where6

6This basic factorization takes scene in the final moments of the paper, in Sec. 11.4.
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A A B B A

A←−
F

B−→
F

SetA
o (

SetB
)o (

SetB
)o

SetA
o

SetA
o

B A A B B

A←−
F

B−→
F

(
SetB

)o (
SetB

)o
SetA

o
SetA

o (
SetB

)o

� (Φ∗)o

F∗

� Φ∗

F∗

�

F�

Lan�(Φ∗)o Ran�Φ∗

�

F∗

(Φ∗)o
�

F∗

Φ∗ �

F�

Lan�(Φ∗)o Ran�Φ∗

Figure 12: Separated-extensional nucleus + Kan extensions = Kleisli resolutions

• E = Ess = essentially surjective functors,

• M = Ffa = full-and-faithful functors

gives rise to the Kleisli categoriesA←−
F

andB−→
F

for the monad
←−
F = F∗F∗ and the comonad

−→
F = F∗F∗,

since ∣∣∣A←−
F

∣∣∣ = |A|
∣∣∣A←−

F

∣∣∣ = |B| (51)

A←−
F

(x, x′) = B(F∗x, F∗x′) B−→
F

(y, y′) = A(F∗y, F∗y
′)

It is easy to see that this is equivalent to the usual Kleisli definitions, since B(F∗x, F∗x′) �
A(x, F∗F∗x′) and A(F∗y, F∗y′) � B(F∗F∗y, y′). The functors F� and F� induced in Fig. 12 by

the factorization form the adjunction displayed in Fig. 13, because

A←−
F

(F∗y, x) = B(F∗F∗y, F
∗x) � A(F∗y, F∗F

∗x) = B−→
F

(y, F∗x)

While this construction is universal, it is not idempotent, as the adjunctions between the cate-

gories of free algebras over cofree coalgebras and of cofree coalgebras over free algebras often

form transfinite embedding chains. The idempotent nucleus construction is just a step further.

Remarkably, categorical localizations turn out to arise beyond factorizations.
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A B−→
F

B A←−
F

�

←−
F

F∗

E(F∗)

M(F∗)

�F�

−→
F

E(F∗)

F∗

M(F∗)

F�

Figure 13: A nucleus F� � F� spanned by the initial resolutions of the adjunction F∗ � F∗

5 Example∞: Nuclear adjunctions, monads, comonads

5.1 The categories

The general case of Fig. 3 involves the following categories:

• matrices between categories, or distributors (also called profunctors, or bimodules):

|Mat| =
∐
A,B∈CAT

CAT(Ao × B,Set) (52)

Mat(Φ,Ψ) = {〈H,K〉 ∈ CAT(A,C) × CAT(B,D) | Φ(a, b) � Ψ(Ha,Kb)}

• adjoint functors:

|Adj| =
∐
A,B∈CAT

∐
F∗∈CAT(A,B)
F∗∈CAT(B,A)

{
〈η, ε〉 ∈ Nat(id, F∗F

∗) × Nat(F∗F∗, id) | (53)

εF∗ ◦ F∗η = F∗ ∧ F∗ε ◦ ηF∗ = F∗
}

Adj(F,G) =
{
〈H,K〉 ∈ CAT(A,C) × CAT(B,D) | KF∗

υ∗

� G∗H ∧ HF∗
υ∗
� G∗K ∧

HηF υ∗υ
∗

� ηGH ∧ KεF υ∗υ∗
� εGK

}
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• monads (also called triples):

|Mnd| =
∐
A∈CAT

∐
←−
T ∈CAT(A,A)

{
〈η, μ〉 ∈ Nat(id,

←−
T ) × Nat(

←−
T
←−
T ,
←−
T ) | (54)

μ ◦
←−
T μ = μ ◦ μ

←−
T ∧ μ ◦

←−
T η =

←−
T = μ ◦ η

←−
T
}

Mnd

(
←−
T ,
←−
S
)
=

{
H ∈ CAT(A,C) | H

←−
T
χ
�

←−
S H ∧

Hη
←−
T χ
� η

←−
S H ∧ Hμ

←−
T χ
� μ

←−
S H

}
• comonads (or cotriples):

|Cmn| =
∐
B∈CAT

∐
−→
T ∈CAT(B,B)

{
〈ε, ν〉 ∈ Nat(

−→
T , id) × Nat(

−→
T ,
−→
T
−→
T ) | (55)

−→
T ν ◦ ν = ν

−→
T ◦ ν ∧

−→
T ε ◦ ν =

−→
T = ε

−→
T ◦ ν

}
Cmn

(
−→
S ,
−→
T
)
=

{
K ∈ CAT(B,D) | K

−→
S
κ
�

−→
T K ∧

Kε
−→
S κ
� ε

−→
T K ∧ Kν

−→
S κ
� ν

−→
T K

}
• The category Nuc can be equivalently viewed as a full subcategory of Adj, Mnd or Cmn, and

the three versions will be discussed later.

Remark. The above definitions follow the pattern from the preceding sections. The difference

is that the morphisms, which are still structure-preserving pairs, this time of functors, now sat-

isfy the preservation requirements up to isomorphism. In each case, there may be many differ-

ent isomorphisms witnessing the structure preservation. We leave them out of picture, under the

pretext that they are preserved under the compositions. This simplification does not change the

nucleus construction itself, but it does project away information about the morphisms. Moreover,

the construction also applies to a richer family of morphisms, with non-trivial 2-cells. The chosen

presentation framework thus incurs a loss of information and generality. We believe that this is

the unavoidable price of not losing the sight of the forest for the trees, at least in this presentation.

Some aspects of the more general framework of the results are sketched in Appendix B. We leave

further explanations for the final section of the paper.

5.2 Assumption: Idempotents can be split.

An endomorphism ϕ : X −→ X is idempotent if it satisfies ϕ ◦ ϕ = ϕ. A retraction is a pair of

morphisms e : X −→ R and m : R −→ X such that e ◦ m = idR. We often write retractions in the form

R
m

e
X, or m : R X : e. Note that ϕ = m ◦ e is an idempotent. Given an idempotent ϕ, any

retraction with ϕ = m◦e is called the splitting of ϕ. It is easy to see that the component m : R� X
of a retraction is an equalizer of ϕ and the identity on X; and that e : X � R is a coequalizer of ϕ
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and the identity. It follows that all splittings of an idempotent are isomorphic. An idempotent on X
is thus resolved by a splitting into a projection and an injection of an object R, which is called its

retract. When ϕ is a function on sets, then its idempotency means that ϕ picks in X a representative

of each equivalence class modulo the equivalence relation
(
x ∼ y

)
⇐⇒

(
ϕ(x) = ϕ(y)

)
, and thus

represents the quotient X/∼ as a subset R ⊆ X.

The assumption that all idempotents split is the weakest categorical completeness requirement.

A categorical limit or colimit is said to be absolute if it is preserved by all functors. Since all

functors preserve equations, they map idempotents to idempotents, and preserve their splittings.

Since a splitting of an idempotent consist of its equalizer and a coequalizer with the identity, the

idempotent splittings are absolute limits and colimits. It was proved in [66] that all absolute limits

and colimits must be in this form. The concepts of absolute limit, absolute colimit, and retraction
coincide.

The absolute completion A of a given category A consists of the idempotents in A as the

objects. A morphism f ∈ A(ϕ, ψ) between the idempotents ϕ : X −→ X and ψ : Y −→ Y in A is an

arrow f ∈ A(X, Y) such that ψ ◦ f ◦ ϕ = f , or equivalently ψ ◦ f = f = f ◦ ϕ. A morphism from

ϕ to ψ thus coequalizes ϕ with the identity, and equalizes ψ with the identity. If ϕ and ψ split in A

into retracts R and S , then the set A(ϕ, ψ) is in a bijective correspondence with A(R, S ). It follows

that A embeds into A fully and faithfully, and that they are equivalent if and only if A is absolutely

complete. While the assumption that the idempotents split can presently be taken as a matter of

convenience, we argue in Sec. 11.4, at the very end of the paper, that the absolute completeness is

not a side condition, but a central feature of categories observed through the lense of adjunctions.

The assumption that the idempotents can split does not mean that they must split. Like any

assumption, the above assumption should not be taken as a constraint. Applying it blindly would

eliminate, e.g., the categories of free algebras and coalgebras from consideration, since they are not

absolutely complete. This could be repaired by completing them, which would leave us with the

category of projective algebras on one hand, and the category of injective coalgebras on the other

hand7. This is, however, not only unnecessary, but also undesirable. Assuming that an equation

has a solution does not mean that it can only be viewed in the solved form. Assuming that the

idempotents split makes their retractions available, not mandatory. This expands our toolkit, but it

should not be misunderstood to narrow our perspective by banishing any subjects of interest.

5.3 Tools

5.3.1 Extending matrices to adjunctions

Any matrix Φ : Ao × B −→ Set from small categories A and B can be extended along the Yonda

embeddings A
�

−→ SetA
o

and B
�

−→
(
SetB

)o
into an adjunction Φ∗ � Φ∗ :

(
SetB

)o
−→ SetA

o
as

7An algebra is projective if it is a retract of a free algebra. Dually, a coalgebra is injective if it is a retract of a cofree

coalgebra [75, Sec. II].
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follows:
Φ : Ao × B −→ Set

Φ• : Ao −→ SetB •Φ : B −→ SetA
o

Φ∗ : SetA
o
−→

(
SetB

)o
Φ∗ :

(
SetB

)o
−→ SetA

o

(56)

The second step brings us to Kan extensions. In the current context, the path to extensions leads

through comprehensions.

5.3.2 Comprehending presheaves as discrete fibrations

Following the step from (4) to (52), the comprehension correspondence (5) now lifts to

Cat(Ao × B,Set)

(̂−)

�

Ξ

Dfib�A × Bo (57)

(
Ao × B

Φ
−→ Set

)
�→

(∫
Φ
Φ̂
−→ A × Bo

)
(
Ao × B

ΞE
−−→ Set

)
�→

(
E

E
−→ A × Bo

)
Transposing the arrow part of Φ, which maps every pair f ∈ A(a, a′) and g ∈ B(b′, b) into

Φ(a′, b′)
Φ f g

−−→ Φ(a, b), the closure property expressed by the implication in (6) becomes the map-

ping

A(a, a′) ×Φ(a′, b′) × B(b′, b) −→ Φ(a, b) (58)

The lower-upper closure property expressed by (6) is now captured as the structure of the total

category
∫
Φ, defined as follows:

∣∣∣∫ Φ∣∣∣ = ∐
a∈A
b∈B

Φ(a, b) (59)

∫
Φ

(
xab, x′a′b′

)
=

{
〈 f , g〉 ∈ A(a, a′) × B(b′, b) | x = Φ f g(x′)

}
It is easy to see that the obvious projection

∫
Φ

Φ̂
−→ A × Bo (60)

xab �→ 〈a, b〉

is a discrete fibration, i.e., an object of Dfib�A × Bo. In general, a functor F
F
−→ C is a discrete

fibration over C when for all x ∈ F the obvious induced functors F/x
Fx
−−→ C/Fx are isomorphisms.

In other words, for every x ∈ F and every morphism c
t
−→ Fx in C, there is a unique lifting t!x

ϑt

−→ x
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of t to F, i.e., a unique F-morphism into x such that F(θt) = t. For a discrete fibration E
E
−→ A ×Bo,

such liftings induce the arrow part of the corresponding presheaf

ΞE : Ao × B −→ Set

〈a, b〉 �→ {x ∈ E | Ex = 〈a, b〉}

because any pair of morphisms 〈 f , g〉 ∈ A(a, a′) × Bo(b, b′) lifts to a function ΞE( f , g) = 〈 f , g〉! :

ΞE(a′, b′) −→ ΞE(a, b). Fibrations go back to Grothendieck [35, 36]. Overviews can be found in

[42, 67]. With (4) generalized to (52), and (5) to (57), (7–8) become

⇓A = Dfib�A � SetA
o

(61)

⇑B = (Dfib�Bo)o
�

(
SetB

)o
(62)

Just like the poset embeddings A
�

−→ ⇓A and B
�

−→ ⇑B were the join and the meet completions, the

Yoneda embeddings A
�

−→ ⇓A and B
�

−→ ⇑B, where �a =
(
A/a

Dom
−−−→ A

)
amd �b =

(
b/B

Cod
−−→ B

)
are the colimit and the limit completions, respectively.

5.4 The functors

5.4.1 The functor MA : Mat −→ Adj

The adjunction MA(Φ) = (Φ∗ � Φ∗) induced by a matrix Φ : Ao × B −→ Set is defined by lifting

(11) from posets to categories:

L
L
−→ A ⇓A lim

←−−

(
U

U
−→ B

•Φ
−−→ ⇓A

)

lim
←−−

(
Lo Lo

−→ Ao Φ•−−→ (⇑B)o
)

⇑B U
U
−→ B

Φ∗ � Φ∗
(63)

The fact that A
�

−→ ⇓A is a colimit completion means that every L ∈ ⇓A is generated by the

representables, i.e. L = lim
−−→

(
L

L
−→ A

�

−→ ⇓A

)
. Any lim

−−→
-preserving functor Φ∗ : ⇓A −→ ⇑B thus

satisfies

Φ∗(L) = Φ∗
(

lim
−−→

(
L

L
−→ A

�

−→ ⇓A

) )
= lim
−−→

(
L

L
−→ A

Φo
•

−−→ ⇑B

)
= lim
←−−

(
Lo Lo

−→ Ao Φ•−−→ (⇑B)o
)

Analogous reasoning goes through for Φ∗. This completes the definition of the object part of

MA : Mat −→ Adj. The arrow part is completely determined by the object part.
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Remark. The limits in ⇓A � SetA
o

and in (⇑B)o � SetB are pointwise, which means that for any

b ∈ B and diagram D
D
−→ SetB, the Yoneda lemma implies(

lim
←−−

D
)

b = SetB
(
�b, lim

←−−
D
)
= Cones(b, D̂)

In words, the limit of D at a point b is the set of commutative cones in B from b to a diagram

D̂ :
∫

D −→ B constructed by a lifting like (59).

5.4.2 From adjunctions to monads and comonads, and back

The projections of adjunctions onto monads and comonads, and the embeddings that arise as their

left and right adjoints, all displayed in Fig. 14, are one of the centerpieces of the categorical toolkit.

The displayed functors are well known, but we list them for naming purposes:

Cmn Adj Mnd






KC

EC

AC






EM

KM

AM

Figure 14: Relating adjunctions, monads and comonads

• EC
(−→
F : B −→ B

)
=

(
V∗ � V∗ : B −→ B

−→
F
)

� all coalgebras (Eilenberg-Moore)

• AC
(
F∗ � F∗ : B −→ A

)
=

(
−→
F = F∗F∗ : B −→ B

)
� adjunction-induced comonad

• KC
(−→
F : B −→ B

)
=

(
U∗ � U∗ : B −→ B−→

F

)
� cofree coalgebras (Kleisli)

• EM
(←−
F : A −→ A

)
=

(
V∗ � V∗ : A

←−
F −→ A

)
� all algebras (Eilenberg-Moore)

• AM
(
F∗ � F∗ : B −→ A

)
=

(←−
F = F∗F∗ : A −→ A

)
� adjunction-induced monad

• KM
(←−
F : A −→ A

)
=

(
U∗ � U∗ : A−→

F
−→ A

)
� free algebras (Kleisli)

Here A
←−
F is the category of all algebras and A←−

F
is the category of free algebras for the monad

←−
F on A; and dually B

−→
F is the category of all coalgebras for the comonad

−→
F on B, whereas B−→

F
is the category of cofree coalgebras. As the right adjoints, the Eilenberg-Moore constructions

of all algebras and all coalgebras thus provide the final resolutions for their respective monad

and comonad, whereas the Kleisli constructions of free algebras and cofree coalgebras as the left

adjoints provide the initial resolutions.

Note that the nucleus setting in Fig. 3 only uses parts of the above reflections: the final resolu-

tion AM � EM of monads, and the initial resolution KC � AC of comonads. Dually, we could use

KM � AM and AC � EC. Either choice induces a composite adjunction, with an induced monad on

one side, and a comonad on the other side, as displayed in Fig. 15.
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6 Theorem

The Street monads
←−
M : Mnd −→ Mnd and

←−
E : Cmn −→ Cmn, defined by

←−
M = AM ◦ EC ◦ AC ◦ KM (64)
←−
E = AC ◦ EM ◦ AM ◦ KC (65)

as illustrated in Fig. 15, are idempotent in the strong sense: iterating them leads to natural equiv-

Mnd

Adj

Cmn

−→
E

⊥




AM

AC

EM

KC

←−
E

E
∗ � E∗

Mnd

Adj

Cmn

←−
M

⊥




AM

AC

KM

EC

−→
M

M∗�M
∗

Figure 15: Monads and comonads on Cmn and Mnd induced by the localizations in Fig. 14

alences
←−
M

η
�
←−
M ◦

←−
M

←−
E
η
�
←−
E ◦

←−
E

Moreover, the induced categories of algebras coincide. More precisely, there are equivalences

Cmn
←−
E � Nuc � Mnd

←−
M (66)

where

Cmn
←−
E
=

{
−→
F ∈ Cmn |

−→
F
η
�

←−
E
−→
F
}

(67)

Nuc =

{
F ∈ Adj | F

η
�

←−−
EM(F) ∧ F

η
�

←−−
EC(F)

}
(68)

Mnd
←−
M =

{
←−
F ∈ Mnd |

←−
F
η
�

←−
M
←−
F
}

(69)

for
←−−
EM = EM ◦ AM and

←−−
EC = EC ◦ AC.
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Terminology. The objects of the equivalent categories Nuc ⊂ Adj, Mnd
←−
M ⊂ Mnd, and Cmn

←−
E ⊂

Cmn are nuclear adjunctions, monads, or comonads, respectively. They are the nuclei of the

corresponding adjunctions, monads, comonads.

Remark. For an adjunction F = (F∗ � F∗), the condition F
η
�

←−−
EM(F) implies that F∗ is monadic,

and F
η
�

←−−
EC(F) implies that F∗ is comonadic. Equation (68) thus provides a more formal view

of nuclear adjunctions, where the right adjoint is monadic and the left adjoint is comonadic, as

discussed the Introduction. Although defined slightly more formally than in the Introduction, the

category Nuc is still specified as an intersection of two reflective subcategories. To ensure the

soundness of such a definition, one should prove that the two reflections commute, i.e., that the

two monads distribute over one another. Otherwise, the two reflections could alternate mapping an

object outside each other’s range, and generate chains. In the case at hand, this does not happen:

the distributive law
←−−
EM ◦

←−−
EC �

←−−
EC ◦

←−−
EM is spelled out in Corollary 7.8. It arises from the nucleus

monad
←−
N : Adj −→ Adj, which we will work on in the next section. We swept it under the carpet

just for a moment, to keep the theorem shorter.

7 Propositions

Proposition 7.1 Let F = (F∗ � F∗ : B −→ A) be an arbitrary adjunction, which induces

• the monad
←−
F = F∗F∗ with the (Eilenberg-Moore) category of algebras A

←−
F and the final

adjunction resolution U =
(
U∗ � U∗ : A

←−
F −→ A

)
, and

• the comonad
−→
F = F∗F∗ with the (Eilenberg-Moore) category of coalgebras B

−→
F and the final

resolution V =
(
V∗ � V∗ : B −→ B

−→
F
)
.

The fact that U and V are final resolutions of the monad
←−
F and the comonad

−→
F , respectively,

means that there are unique comparison functors from the adjunction F to each of them, and these
functors are:

• H0 : A −→ B
−→
F , such that F∗ = V∗ ◦ H0 and F∗ ◦ H0 = V∗,

• H1 : B −→ A
←−
F , such that F∗ = U∗ ◦ H1 and H1 ◦ F∗ = U∗.

Then the functors F� = H1 ◦ V∗ and F� = H0 ◦ U∗ defined in Fig. 16 form the adjunction F� � F� :

A
←−
F −→ B

−→
F .

Proof. The object parts of the definitions of the functors F� and F� are unfolded in Fig. 17. The

arrow part of F� is F∗ and the arrow part of F� is F∗. For these F� and F�, we shall prove that the

correspondence

A
←−
F (F�β, α) � B−→F (β, F�α) (70)

f �→ f = F∗ f ◦ β
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A B
−→
F

B A
←−
F

�

←−
F

F∗

H0

V∗

�F�

−→
F

H1

F∗
F�

U∗

Figure 16: The nucleus F� � F� of F∗ � F∗ consists of F� = H1 ◦ V∗ and F� = H0 ◦ U∗

x

( F∗x
↓ F∗η

F∗F∗F∗x

) ( F∗F∗x
↓ α
x

)

A B
−→
F A

←−
F

B A
←−
F B

−→
F

y

(
F∗F∗F∗y
↓ F∗ε

F∗y

) ( y
↓ β

F∗F∗y

)

H0 F�

U∗

H1 F�

V∗

Figure 17: The definitions of F� and F�

is a natural bijection. More precisely, the claim is that

a) f is an algebra homomorphism if and only if f is a coalgebra homomorphism: each of the

following squares commutes if and only if the other one commutes

F∗F∗F∗y F∗F∗x

F∗y x

F∗F∗ f

=F�βF∗ε α

f

⇐⇒

F∗F∗y F∗F∗F∗x

y F∗x

F∗F∗ f

f

β F�α= F∗η (71)
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b) the map f �→ f is a bijection, natural along the coalgebra homomorphisms on the left and along

the algebra homomorphisms on the right.

Claim (a) is proved as Lemma 7.3. The bijection part of claim (b) is proved as Lemma 7.2. The

naturality part is straightforward. �

Lemma 7.2 For an arbitrary adjunction F = F∗ � F∗ : B −→ A, any algebra F∗F∗x
α
−→ x, and any

coalgebra y
β
−→ F∗F∗y in B, the mappings

A(F∗y, x) B(y, F∗x)

(−)

(−)

defined by
f = F∗ f ◦ β g = α ◦ F∗g

induce a bijection between the subsets{
f ∈ A(F∗y, x) | f = α ◦ F∗F

∗ f ◦ F∗β
}
�

{
g ∈ B(y, F∗x) | g = F∗α ◦ F∗F∗g ◦ β

}
illustrated in the following diagram.

F∗F∗F∗y F∗F∗x

F∗y x

F∗F∗ f

α

f

F∗β
F∗g

�

F∗F∗y F∗F∗F∗x

y F∗x

F∗F∗g

F∗ f
F∗α

g

β

Proof. Following each of the mappings "there and back" gives

f �−→ f = F∗ f ◦ β �−→ f = α ◦ F∗F
∗ f ◦ F∗β = f

g �−→ g = α ◦ F∗g �−→ g = F∗α ◦ F∗F∗g ◦ β = g

�

Lemma 7.3 For any adjunction F = F∗ � F∗ : B −→ A, algebra F∗F∗x
α
−→ x in A, coalgebra

y
β
−→ F∗F∗y in B, arrow f ∈ A(F∗y, x) and f = F∗ f ◦ β ∈ B(x, F∗y), if any of the squares (1-

4) in Fig. 18 commutes, then they all commute. In particular, a square on one side of any of
the equivalences (a–c) commutes if and only if the square on the other side of the equivalence
commutes.

Proof. The claims are established as follows.
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F∗F∗F∗y F∗F∗x

(1)

F∗y x

F∗F∗ f

F∗ε α

f

F∗F∗y F∗F∗F∗x

(4)

y F∗x

F∗F∗ f

f

β F∗η

(a) " " (c)

F∗F∗F∗y F∗F∗x

(2)

F∗y x

F∗F∗ f

α

f

F∗β

(b)
⇔

F∗F∗y F∗F∗F∗x

(3)

y F∗x

F∗F∗ f

F∗α

f

β

Figure 18: Proof schema for (71)

(1)
(a)
⇒ (2): Using the commutativity of (1) and (∗) the counit equation ε◦β = id for the coalgebra

β, we derive (2) as

α ◦ F∗F
∗ f ◦ F∗β

(1)
= f ◦ F∗ε ◦ F∗β

(∗)
= f
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(2)
(a)
⇒ (1) is proved by chasing the following diagram:

F∗F∗F∗F∗F∗y F∗F∗F∗F∗x

(2)

F∗F∗F∗y F∗F∗x

(†) (1) (‡)

F∗y x

(2)

F∗F∗F∗y F∗F∗x

F∗F∗F∗F∗ f

F∗ε

F∗F∗α

F∗εF∗ε

F∗F∗F∗β

F∗F∗ f

α

f

F∗β

F∗F∗ f

α

The top and the bottom trapezoids commute by assumption (2), whereas the left hand trapezoid

(denoted (†)) and the outer square (denoted (�)) commute by the naturality of ε. The right hand

trapezoid (denoted (‡)) commutes by the cochain condition for the algebra α. It follows that the

inner square (denoted (1)) must also commute:

f ◦ F∗ε
(2)
= α ◦ F∗F

∗ f ◦ F∗β ◦ F∗ε
(†)
= α ◦ F∗F

∗ f ◦ F∗ε ◦ F∗F
∗F∗β

(�)
= α ◦ F∗ε ◦ F∗F

∗F∗F
∗ f ◦ F∗F

∗F∗β
(‡)
= α ◦ F∗α

∗ ◦ F∗F
∗F∗F

∗ f ◦ F∗F
∗F∗β

(2)
= α ◦ F∗F

∗ f

(4)
(c)
⇔ (3) is proven dually to (1)

(a)
⇔ (2) above. The duality consists of reversing the arrows,

switching F∗ and F∗, and also α and β, and replacing ε with η.

(2)
(b)
⇔ (3) follows from Lemma 7.2. �
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Proposition 7.4 The adjunction F� � F� : A
←−
F −→ B

−→
F constructed in Prop. 7.1 is nuclear:

• F� : B
−→
F −→ A

←−
F is comonadic

• F� : A
←−
F −→ B

−→
F is monadic

This construction induces the idempotent monad

←−
N : Adj −→ Adj

(F∗ � F∗) �→ (F� � F�)

Proof. It is easy to see that the construction of
←−
NF = (F� � F�) in Prop. 7.1 is functorial, and

that the comparison functors as used in Fig. 16 provide the monad unit F
η
−→
←−
NF. We show

that
←−
NF

←−
Nη
−−→

←−
N
←−
NF is always an equivalence. This means that the comparison functors from

←−
NF

to
←−
N
←−
NF are equivalences. These comparison functors are constructed in Fig. 19, still under the

names H0 and H1, lifting the construction from Fig. 16. is an equivalence of categories. We prove

B
−→
F

(
A
−→
F
)⇐=F

A
←−
F A

←−
F

�

⇐=

F

F�

H0

V∗

�F��

=⇒

F

H1

F�� F�

U∗

Figure 19: The construction of the nucleus
←−
N
←−
NF =

(
F�� � F��

)
of nucleus

←−
NF =

(
F� � F�

)

this only for H0. The argument for H1 is dual.

Instantiating the usual definition of the comparison functor for the comonad
=⇒

F : A
←−
F −→ A

←−
F to
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the resolution F� � F�, we get

B
−→
F H0

−−−−−−−−−−−−−−−−−→

(
A
←−
F
)=⇒F

(72)

y

F∗F∗y

β �−→

F∗F∗F∗y F∗y

F∗F∗F∗F∗F∗y F∗F∗F∗y

F∗F∗F∗β

F�β

F∗εy =

F∗β

F�F�F
�β

= F∗ε−→F y

= F�ηβH0β

Since by assumption the idempotents split in B, the comparison functor H0 also has a right adjoint
H0, which must be in the form

(
A
←−
F
)=⇒F H0

−−−−−−−−−−→ B
−→
F (73)

F∗F∗x x

F∗F∗F∗F∗x F∗F∗x

F∗F∗d

α

d

F�F�α
= F∗εF∗x

δ �−→

y F∗x F∗F∗F∗x

F∗F∗y F∗F∗F∗x F∗F∗F∗F∗F∗x

H0δ

e

=F∗ηF�α

F∗η

F∗d

r

F∗ηF�F
�F�α =

ε

F∗F∗e
F∗F∗F∗d

F∗F∗F∗η

F∗F∗r

F∗F∗ε

where y is defined by splitting the idempotent ε ◦ F∗d, and d is the structure map of the coalgebra

α
d
−→ F�F�α in A

←−
F .

To show that the adjunction H0 � H0 :
(
A
←−
F
)=⇒F

−→ B
−→
F is an equivalence, we construct natural

isomorphisms H0H0
� id and H0H0 � id.

Towards the isomorphism H0H0
� id, note that instantiating H0β : F�β −→ F�F�F�β (the

right-hand square in (72)) as δ : α −→ F�F�α (the left-hand square in (73)) reduces the right-hand
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equalizer of (73) to the following form:

y F∗F∗y F∗F∗F∗F∗y

F∗F∗y F∗F∗F∗F∗y F∗F∗F∗F∗y

= βH0H0β

β

F∗η

F∗η

F∗F∗β

ε

F∗η

ε

F∗F∗β

F∗F∗F∗F∗β

F∗F∗F∗η

F∗F∗ε

F∗F∗ε

(74)

It is a basic fact of (co)monad theory that every coalgebra β in B
−→
F makes diagram (74) commute

[14, Sec. 3.6].

Towards the isomorphism H0H0 � id, take an arbitrary coalgebra α
δ
−→ F�F�α from

(
A
←−
F
)=⇒F

and

consider (72) instantiated to β = H0δ. By extending the right-hand side of this instance of (72) by

the F∗-image of the right-hand side of (73), we get the following diagram

F∗F∗F∗y F∗y F∗F∗x F∗F∗F∗F∗x

F∗F∗F∗F∗F∗y F∗F∗F∗y F∗F∗F∗F∗x F∗F∗F∗F∗x

F∗F∗F∗H0δ

F∗ε

F∗H0δ

F∗e

F∗F∗η

F∗F∗η

F∗F∗d

F∗r

F∗F∗η

F∗ε

F∗ε

F∗F∗F∗e
F∗F∗F∗F∗d

F∗F∗F∗F∗η

F∗F∗F∗r

F∗F∗F∗ε
H0H0δ (75)

The claim is now that x
d
� F∗F∗x equalizes the parallel pair 〈F∗F∗η, F∗F∗d〉 in the first row. Since

y
e
� F∗x was defined in (73) as a split equalizer of the pair 〈F∗η, F∗d〉, and all functors preserve

split equalizers, it follows that F∗y
F∗e
� F∗F∗x is also an equalizer of the same pair 〈F∗F∗η, F∗F∗d〉.

Hence the isomorphism x � F∗y, which gives H0H0δ � δ.

To prove the claim that x
d
� F∗F∗x equalizes the first row, note that, just like the coalgebra

y
β
−→ F∗F∗y in B

−→
F was determined up to isomorphism by the split equalizer in B, shown in (74), the

coalgebra α
δ
−→ F�F�α in

(
A
←−
F
)=⇒F

is determined up to isomorphism by the following split equalizer
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in A
←−
F

α F�F�α F�F�F�F�α
δ

F�η

F�F�δ

ε

ε

(76)

In A, the split equalizer (76) unfolds to the lower squares of the following diagram

x F∗F∗x F∗F∗F∗F∗x

F∗F∗x F∗F∗F∗x F∗F∗F∗F∗F∗x

x F∗F∗x F∗F∗F∗F∗x

d

d

F∗F∗η

F∗F∗d

α

F∗F∗η

F∗ε

F∗F∗η

α

F∗F∗d

F∗ε

F∗F∗F∗F∗d

F∗F∗F∗F∗η
F∗F∗α

F∗F∗ε

F∗ε

d
F∗F∗d

F∗F∗η

α

F∗ε

(77)

Since the upper right-hand squares also commute (by the naturality of η), they also induce the

factoring of the split equalizers in the upper left-hand square. But the upper right-hand squares

in (77) are identical to the right-hand squares in (75). The fact that both F∗y
F∗e
� F∗F∗x and

x
d∗
� F∗F∗x are split equalizers of the same pair yields the isomorphism F∗y

ι
−→ x in A, which turns
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out to be a coalgebra isomorphism H0H0δ
ι
−→
∼
δ in

(
A
←−
F
)=⇒F

, as shown in (78).

F∗F∗x x

F∗F∗F∗y F∗y

F∗F∗F∗F∗F∗y F∗F∗F∗y

F∗F∗F∗F∗x F∗F∗x

α

F∗F∗d d

F∗F∗ι

F∗F∗F∗H0δ

F∗ε

ι

F∗H0δ

F∗F∗F∗F∗ι

F∗ε

F∗F∗ι

F∗ε

(78)

Here the outer square is δ, as in (73) on the left, whereas the inner square is H0H0δ, as in (75) on

the left. The right-hand trapezoid commutes because the middle square in (75) commutes, and can

be chased down to (79) using the fact that ι is defined by F∗e = d ◦ ι.

F∗y x F∗F∗x

F∗F∗F∗F∗y F∗F∗x F∗F∗F∗F∗x

F∗e

ι

F∗H0δ

δ

F∗F∗η

F∗F∗F∗e

F∗F∗ι F∗F∗δ

F∗ε

(79)

The commutativity of the left-hand trapezoid in (78) follows, because it is an F∗F∗-image of the

right-hand trapezoid. The bottom trapezoid commutes by the naturality of ε. The top trapezoid

commutes because everything else commutes, and d is a monic. The commutative diagram in (78)

thus displays the claimed isomorphism H0H0δ
ι
−→ δ.

This completes the proof that H0H0 � id. Together with the proof that H0H0
� id, as seen in

(74), this also completes the proof that H =

⎛⎜⎜⎜⎜⎜⎜⎝H0 � H0 :
(
A
←−
F
)=⇒F
−→ B

−→
F

⎞⎟⎟⎟⎟⎟⎟⎠ is an equivalence. We have

thus shown that F� : B
−→
F −→ A

←−
F is comonadic. The proof that F� : A

←−
F −→ B

−→
F can be constructed as

a mirror image. �
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Corollary 7.5 For any adjunction F∗ � F∗ : B −→ A with the nucleus F� � F� : A
←−
F −→ B

−→
F it holds

that the induced monad
⇐=

F = F�F� on B
−→
F and comonad

=⇒

F = F�F� on A
←−
F are isomorphic with

those induced by the final resolutions:

⇐=

F �

(
B
−→
F V∗

−−→ B
V∗
−→ B

−→
F
)

=⇒

F =

(
A
←−
F U∗

−−→ B
U∗

−−→ A
←−
F
)

The monad
⇐=

F on B
−→
F thus only depends on the comonad

−→
F on B, whereas the cononad

=⇒

F on A
←−
F

only depends on the monad
←−
F on A. Neither depends on the particular adjunction from which the

nucleus originates.

Proof. Using the definitions F� = H0U∗ and F� = H1F∗, and chasing Fig. 16 gives

⇐=

F = F�F
� = H0U∗H1V∗ = H0F∗V

∗ = V∗V
∗

=⇒

F = F�F� = H1V∗H0U∗ = H1F∗V∗ = U∗U∗

�

Corollary 7.6 All resolutions of a monad induce equivalent categories of coalgebras. More pre-

cisely, for any given monad
←−
T : A −→ A any pair of adjunctions F∗ � F∗ : B −→ A and

G∗ � G∗ : D −→ A holds

←−
F �

←−
T �

←−
G =⇒ B

−→
F � D

−→
G (80)

where
←−
F = F∗F∗,

−→
F = F∗F∗,

←−
G = G∗G∗ and

−→
G = G∗G∗. The equivalences are natural with respect

to the monad morphisms. Comonads satisfy the dual claim.

Proof. By Corollary 7.5, the comonads
=⇒

F and
=⇒

G on the category A
←−
F � A

←−
T � A

←−
G do not depend

on the particular resolutions F∗ � F∗ and G∗ � G∗, but depend only on the monad
←−
F �

←−
T �

←−
G, and

must be in the form
=⇒

F �
=⇒

G �
=⇒

T =
(
A
←−
T U∗

−−→ A
U∗

−−→ A
←−
T
)
. Hence

B
−→
F �

(
A
←−
F
)=⇒F
�

(
A
←−
T
)=⇒T
�

(
A
←−
G
)=⇒G
� C

−→
G

where Prop. 7.4 is used at the first and at the last step, and Corollary 7.5 in the middle. �
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Corollary 7.7 For any adjunction F∗ � F∗ : B −→ A, monad
←−
F, and comonad

−→
F holds

(
A
←−
F
)=⇒F

�
(
A←−

F

)=⇒F (
B
−→
F
)⇐=F

�
(
B−→

F

)⇐=F
where A←−

F
is the (Kleisli-)category of free

←−
F -algebras,A

←−
F is the (Eilenberg-Moore-)category of all

←−
F -algebras, and similarly B−→

F
and B

−→
F . These equivalences are natural, and thus induce

EC ◦ AC ◦ KM � EC ◦ AC ◦ EM (81)

EM ◦ AM ◦ KC � EM ◦ AM ◦ EC (82)

Proof. The claims are special cases of Corollary 7.6, obtained by taking pairs of resolutions con-

sidered there to be the initial resolution, into free algebras (or cofree coalgebras), and the final

resolution, into all algebras (resp. coalgebras). �

Corollary 7.8 The idempotent monads
←−−
EM = EM ◦AM and

←−−
EC = EC ◦AC on Adj distribute over

one another, and
←−−
EM ◦

←−−
EC �

←−
N �

←−−
EC ◦

←−−
EM (83)

Proof. The distributivity law is displayed in Fig. 20. The comonad onA
←−
F and the monad on B

−→
F are

not displayed, since they have just been spelled out in Corollary 7.5. The isomorphisms claimed

in (83) follow from the fact that they coincide. �

Remark. Fig. 20 internalizes in Adj the commutative square of the nucleus schema in Fig. 3.

Proof of Thm. 6. The monads
←−
M and

←−
E are in fact retracts of the monad

←−
N from Adj to Mnd and

to Cmn, respectively:

←−
M = AM ◦ EC ◦ AC ◦ KM

←−
E = AC ◦ EM ◦ AM ◦ KC

(81)
� AM ◦ EC ◦ AC ◦ EM

(82)
� AC ◦ EM ◦ AM ◦ EC

(†)
� AM ◦ EC ◦ AC ◦ EM ◦ AM ◦ EM

(†)
� AC ◦ EM ◦ AM ◦ EC ◦ AC ◦ EC

= AM ◦
←−−
EC ◦

←−−
EM ◦ EM = AC ◦

←−−
EM ◦

←−−
EC ◦ EC

(83)
� AM ◦

←−
N ◦ EM

(83)
� AC ◦

←−
N ◦ EC

At step (†), we use the fact that the monads
←−−
EM = EM ◦ AM and

←−−
EC = EC ◦ AC are idempotent.

The natural isomorphisms
←−
M

η
�

←−
M ◦

←−
M and

←−
E

η
�

←−
E ◦

←−
E are derived from

←−
N

η
�

←−
N ◦

←−
N, by

←−−
EM

η
�

←−−
EM◦

←−−
EM or

←−−
EC

η
�

←−−
EC◦

←−−
EC, and retracting into Mnd or Cmn, respectively. The equivalences

Mnd
←−
M � Adj

←−
N � Cmn

←−
E arise from these derivations. The fact that Adj

←−
N is equivalent with the

category Nuc, defined in (68), and used in (66), follows from Corollary 7.8. �
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A

A
←−
F

A B
−→
F

B A
←−
F

B
−→
F

B

�

H0

←−−
EM(F)

F � �

H1

←−
NΦ

H0

←−−
EC(F) �

H1

Figure 20: The nucleus construction
←−
N factorized into

←−−
EM ◦

←−−
EC �

←−−
EC ◦

←−−
EM

8 Simple nucleus

The main idea of monads and comonads is that they capture algebra and coalgebra. For any

monad
←−
F : A −→ A, the categories A

←−
F of all

←−
F -algebras and A←−

F
of free

←−
F -algebras frame all

analyses, since all resolutions lie in-between them [14, 27, 49]. Corollary 7.6 says that all these

resolutions induce equivalent categories of coalgebras, which lie in-between the categories
(
A
←−
F
)
=⇒

F

and
(
A
←−
F
)=⇒F

. So it also makes sense to talk about the coalgebras for a monad, and analogously about

the algebras for a comonad. But the categories
(
A
←−
F
)
=⇒

F
and

(
A
←−
F
)=⇒F

of coalgebras over algebras are

built in two layers of structure, one on top of the other. When their interactions are discharged

and the reduncancies removed, the composite structure turns out to be simpler than either of the

components. This was spelled out in [75], with an eye on applications. The nucleus construction

explains the simplicity of this structure, and uses it as a pivot point for further developments.
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Proposition 8.1 Given an adjunction F = (F∗ � F∗ : B −→ A), consider the categories

|A
=⇒

F | =
∐
x∈|A|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
αx ∈ B(F∗x, F∗x)

∣∣∣ F∗x F∗F∗x x

F∗x F∗x F∗F∗x

αx αx F∗αx α̃x

αx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(84)

A
=⇒

F (αx, γz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
f ∈ A(x, z)

∣∣∣∣ F∗x F∗z

F∗x F∗z

F∗ f

αx γz

F∗ f

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

|B
⇐=

F | =
∐
u∈|B|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
βu ∈ A(F∗u, F∗u)

∣∣∣ F∗x F∗F∗u u

F∗u F∗u F∗F∗u

βu βu F∗βu

β̃u

βu

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(85)

B
⇐=

F (βu, δw) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
g ∈ B(u,w)

∣∣∣∣
F∗u F∗w

F∗u F∗w

F∗g

βu δw

F∗g

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where x

α̃x
−→ F∗F∗x is the transpose of F∗x

αx
−→ F∗x, and F∗F∗u

β̃u

−→ u is the transpose of F∗u
β
−→ F∗u.

The adjunction F� � F� : B
⇐=

F −→ A
=⇒

F defined in Fig. 21 with the comparison functors

K0 : A −−−−−−−→ A
=⇒

F K1 : B −−−−−−−→ B
⇐=

F

x �−→

〈
F∗F

∗x,

F∗F∗F∗x

F∗x

F∗F∗F∗x

εF∗

F∗η

〉
u �−→

〈
F∗F∗u,

F∗F∗F∗u

F∗u

F∗F∗F∗u

F∗ε

ηF∗

〉

is equivalent to the nucleus, i.e.

←−
N (F∗ � F∗) �

(
F� � F�

)
Lemma 8.2 If ϕ ◦ ϕ = ϕ = m ◦ e, where m is a monic and e is an epi, then e ◦ m = id.

Proof. m ◦ e ◦m ◦ e = ϕ ◦ ϕ = ϕ = m ◦ e implies e ◦m ◦ e = e because m is a monic, and e ◦m = id

because e is epi. �
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A A
=⇒

F

〈x, αx〉 〈F∗u, F∗βu〉

〈F∗x, F∗αx〉 〈u, βu〉

B B
⇐=

F

�

←−
F

F∗

K0

�F�

−→
F

K1

F∗
F�

Figure 21: The simple nucleus F� � F� of F∗ � F∗

Lemma 8.3 If
(
F∗F∗x

F∗αx
−−−→ F∗F∗x

)
=

(
F∗F∗x

αx

� x
α̃x
� F∗F∗x

)
, where α̃x = F∗αx ◦ ηx is a monic

and αx is an epi, then αx ◦ ηx = id.

Proof. α̃x ◦α
x = F∗αx ◦ ηx ◦α

x = α̃x ◦α
x ◦ ηx ◦α

x implies αx = αx ◦ ηx ◦α
x because α̃x is a monic,

and id = αx ◦ ηx because αx is epi. �

Proof of Prop. 8.1. Still writing F∗F∗x
αx

� x
α̃x
� F∗F∗x for the decomposition of F∗F∗x

F∗αx
−−−→

F∗F∗x, we have

αx ◦ α̃x = idx and αx ◦ ηx = idx (86)

from Lemma 8.2 and Lemma 8.3, respectively. Similar lemmata lead to the equations

αx ◦ F∗F
∗αx = αx ◦ F∗εF∗x

α̃x ◦ α
x = F∗εF∗x ◦ F∗F

∗α̃x

which, together with (86), say that F∗F∗x
αx

−→ x is an algebra in A
←−
F and that α̃x ∈ A

←−
F (αx, μx) is an

algebra homomorphism, and in fact a coalgebra over αx in
(
A
−→
F
)⇐=F

. Hence the functor from A
=⇒

F

to
(
A
←−
F
)=⇒F

, which turns out to be an equivalence upon straightforward checks. A similar argument

leads to a similar functor from B
⇐=

F to
(
B
−→
F
)⇐=F

. Hence the equivalences

A
=⇒

F �

(
A
←−
F
)=⇒F

B
⇐=

F �

(
B
−→
F
)⇐=F
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On the other hand, the equivalences

A
=⇒

F � B
−→
F B

⇐=

F � A
←−
F

are spelled out and verified in [75]. Every object 〈x, F∗x
αx
−→ F∗x〉 ∈ A

=⇒

F is shown to be isomorphic

to one in the form 〈F∗y, F∗F∗
ε
−→ y

β
−→ F∗F∗y〉 for some y ∈ B and a coalgebra β ∈ B

−→
F . It follows

that both squares in the following diagram commute

F∗x F∗F∗F∗x

F∗F∗y F∗F∗F∗F∗y

y F∗F∗y

F∗F∗y F∗F∗F∗F∗y

F∗x F∗F∗F∗x

F∗η

F∗ι

αx αx

F∗F∗F∗ι

ε

F∗ηF∗

F∗F∗ε

β

β F∗F∗β

F∗ηF∗

F∗η

F∗ι F∗F∗F∗ι

(87)

for x F∗yι an isomorphism in A. Transferring the nuclear adjunction F� � F� : A
←−
F −→ B

−→
F

along the equivalences yields the nuclear adjunction F� � F� : B
⇐=

F −→ A
=⇒

F , with the natural

correspondence

B
⇐=

F (F�αx, β
u) � A

=⇒

F (αx, F� β
u)(

F∗x
f
−→ u

)
�→ f̃ =

(
x

η
−−−→ F∗F

∗x
F∗ f
−−→ F∗u

)

The adjunction correspondence F∗ � F∗ : B −→ A lifts to F� � F� : B
⇐=

F −→ A
=⇒

F because each of the

following squares commutes if and only if the other one does:

F∗F∗x F∗u

F∗F∗x F∗u

F∗ f

F∗αx βu

F∗ f

⇐⇒

F∗x F∗F∗u

F∗x F∗F∗u

F∗( f̃)

αx F∗βu

F∗( f̃)

(88)
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Suppose that the left-hand side square commutes. To see that the right-hand side square commutes

as well, take its F∗-image and precompose it with the outer square from (87), as in the following

diagram.

F∗x F∗F∗F∗x F∗F∗u

F∗x F∗F∗F∗x F∗F∗u

F∗( f̃)

αx

F∗η

F∗F∗αx

F∗F∗ f

F∗βu

F∗( f̃)

F∗η

F∗F∗ f

(89)

The two outer paths around this diagram are the paths around right-hand square in (88). The

implication is analogous. �

Remarks. The constructionsA
=⇒

F and B
⇐=

F are given with respect to an adjunction F∗ � F∗ : B −→ A,

rather than just a monad
←−
F or just a comonad

−→
F . The constructions for a monad or a comonad alone

can be extrapolated by applying the above constructions to their Kleisli or Eilenberg-Moore reso-

lutions. Corollary 7.6 says that all resolutions lead to equivalent categories. The Kleisli resolution

gives a smaller object class, but that is not always an advantage. Some adjunctions give simpler

simple nuclei than other adjunctions. The objects of the category A
=⇒

F built over the Eilenberg-

Moore resolution of a monad
←−
F turn out to be the projective

←−
F -algebras, but the morphisms are

not just the
←−
F -algebra homomorphisms, but also the homomorphisms of

=⇒

F -coalgebras. The ob-

jects can be viewed as triples in the form 〈x, αx, α̃x〉 which make the following diagrams commute.

x
←−
F x

←−
F
←−
F x

←−
F x

←−
F
←−
F x

x
←−
F x x

←−
F x

α̃x

η

id
αx μ

←−
Fαx ←−

F α̃x

αx μ

αx α̃x

(90)

Here we do not display just (84) instantiated to U∗ � U∗ : A
←−
F −→ A, but also the data that are

implied: the middle filling in the rectangle on the right must be αx because
←−
Fη is the splitting of

both
←−
Fαx and μ. This makes it clear that αx is an

←−
F -algebra, whereas α̃x is an algebra homomor-

phism that embeds it as a subalgebra of the free
←−
F -algebra μ. So αx is a projective algebra. On the

other hand, α̃x is also an
=⇒

F -coalgebra structure over the
←−
F -algebra αx. An A

=⇒

F -morphism from
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〈x, αx, α̃x〉 to 〈z, γx, γ̃x〉 is an arrow f ∈ A(x, z) that makes the following diagram commute.

←−
F x x

←−
F x

←−
Fz z

←−
F z

←−
F f

αx

f

α̃x

←−
F f

γz γ̃z

(91)

The left-hand square says that f is an
←−
F -algebra homomorphism. The right-hand square says

that it is also an
=⇒

F -coalgebra homomorphism. So we are not looking at a category of projective

algebras in A
←−
F , but at a category of

=⇒

F -coalgebras over it, which turns out to be equivalent to B
−→
F ,

as Prop. 7.4 established. The conundrum that
=⇒

F -coalgebras boil down to projective
←−
F -algebras,

but that the
=⇒

F -coalgebra homomorphisms satisfy just two out of three conditions required from

the
←−
F -algebra homomorphisms was discussed and used in [75].

Corollary 8.4 If a given adjunction F∗ � F∗ : B −→ A is nuclear, then

a) every object x ∈ A is a retract of F∗F∗x, and thus of an image along F∗;

b) every object u ∈ B is a retract of F∗F∗x, and thus of an image along F∗.

Proof. By Thm. 6, F = (F∗ � F∗) is nuclear if and only if
←−
N(F) � F. By Prop. 8.1, Nuc(F) �(

F� � F�
)
. The claim thus boils down to proving that (a) every αx ∈ A

=⇒

F is a retract of an F�F�αx,

and (b) every βu ∈ B
⇐=

F is a retract of an F�F�βu. The following derivation establishes (a). Case (b)
is analogous. 〈

x , F∗x F∗x
〉

αx〈
F∗x , F∗F∗x F∗F∗x

〉
〈
F∗x , F∗F∗x F∗F∗x

〉αx

F∗αx

F∗αx F∗αx

F∗αx

〈
F∗F∗x , F∗F∗F∗x F∗F∗F∗x

〉
〈

x , F∗x F∗x
〉

〈
F∗F∗x , F∗F∗F∗x F∗F∗F∗x

〉

αx

F∗F∗αx

F∗αx F∗αx

α̃x

αx

F∗α̃x F∗α̃x

F∗F∗αx

�

56



Discussion. We know that an
←−
F -algebra structure

←−
F x

α
� X makes the

←−
F -algebra α into a quotient

of the free algebra
←−
F
←−
F x

μ
�

←−
F x, but that the epimorphism

←−
F x

α
� X only splits by the unit x

η
�

←−
F x

when projected down into A by the forgetful functor U∗ : A
←−
F −→ A, and generally not in the

category of algebrasA
←−
F itself. In other words, the

←−
F -algebra homomorphismα ∈ A

←−
F (μ, α) induces

a retraction U∗α ∈ A(
←−
F x, x), with η ∈ A(

←−
F x, x) as its inverse only within A, but η is not an

←−
F -

algebra homomorphism, and the splitting does not live in A
←−
F . This is where concept of reflecting

the U∗-split coequalizers in Beck’s characterization of monadicity of U∗ comes from. It is not hard

to show that η is an
←−
F -algebra homomorphism only when it is an isomorphism, which makes α into

a free
←−
F -algebra. More generally, when the algebra homomorphism α ∈ A

←−
F (μ, α) has a splitting

α̃ ∈ A
←−
F (α, μ), with the underlying map that may be different from η ∈ A(x,

←−
F x), then the algebra

α is projective. This thread was pursued in [75].

It may seem curious that Corollary 8.4 now says that x is always a retract of
←−
F x in A

=⇒

F . More

precisely, any
←−
F -algebra

←−
F x

αx

−→ x with which x may appear in A
=⇒

F , is a retraction, and has a

splitting x
α̃x
−→

←−
F x. Does this not say that all

←−
F -algebras are projective? The following explains

that it does not.

Remember that the category A
=⇒

F is the simple form of the category
(
A
←−
F
)=⇒F

, and that it is

equivalent with the category of
−→
F -coalgebras B

−→
F , and certainly not with the category of

←−
F -algebras

A
←−
F . In the category of

=⇒

F -coalgebras over
←−
F -algebras, an object α̃x ∈

(
A
←−
F
)=⇒F

, like any coalgebra,

comes with the coalgebra monic α̃x ∈

(
A
←−
F
)=⇒F

(α̃x, ν) into the cofree coalgebra ν. This monic

generally does not split in
(
A
←−
F
)=⇒F

, but the forgetful functor V∗ :
(
A
←−
F
)=⇒F

−→ A
←−
F maps it into a

split monic, and its splitting in A
←−
F is the comonad counit

=⇒

F αx −→ αx. The underlying map of

this counit is the structure map
←−
F x

αx

� x in A. The underlying map of the
=⇒

F -coalgebra α̃x has

the form x
α̃x
�

←−
F x

αx

� x, and the fact that it is a V∗-split equalizer means that αx ◦ α̃x holds in A.

Just as the forgetful functor B
−→
F −→ B makes the

−→
F -coalgebra embeddings into split equalizers in

B, the forgetful functor
(
A
←−
F
)=⇒F

−→ A
←−
F makes the

=⇒

F -coalgebra embeddings into split equalizers in

A
←−
F . But there, the split equalizers display some

←−
F -algebras as retracts of free

←−
F -algebras. The

equivalence
(
A
←−
F
)=⇒F

� B
−→
F thus presents

−→
F -coalgebras as projective

←−
F -algebras. Corollary 8.4

therefore does not say that all
←−
F -algebras are projective, but that all

−→
F -coalgebras can be presented

by some projective
←−
F -algebras. This was the pivot point of [75].

Note, however, that this representation does not imply that the
−→
F -coalgebra category B

−→
F is

equivalent with the category of projective
←−
F -algebras, viewed, e.g., as a subcategory of A

←−
F . It is
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not, because the
←−
F -algebra morphisms between projective algebras are strictly more constrained

than the
=⇒

F -coalgebra homomorphisms between the same projective algebras. This was explained

in [75].

The coequalizers that become split when projected along the forgetful functor from algebras are

crux of Beck’s Monadicity Theorem [15, 14, Sec. 3.3]. The equalizers that split along the forgetful

functor from coalgebras play the analogous role in the dual theorem, characterizing comonadicity.

The fact that such a peculiar structure is so prominent in such fundamental theorems has been a

source of wonder and mystery. In his seminal early work [65, 66], Paré explained it as an avatar

of a fundamental phenomenon: of reflecting absolute colimits into coeqalizers (in the case of

monadic functors), or of absolute limits into equalizers (in the case of comonadic functors). In the

framework of simple nuclei, such reflections are finally assigned the role of first-class citizens that

they deserve, and made available for categorical concept analysis.

9 Little nucleus

We define the little nucleus to be the initial (Kleisli) resolution
−→
NF of the (big) nucleus

←−
NF of an

adjunction F = (F∗ � F∗). The little nucleus of a monad
←−
F (and of a comonad

−→
F ) will be the

monad
−→
E
←−
F (resp. the comonad

−→
M
−→
F ) induced by the little nucleus of any of the resolutions of

←−
F (resp. of

−→
F ). The constructions

−→
E and

−→
M are the comonads on Mnd and Cmn, respectively,

constructed in Fig. 14, displayed in the statement of Thm. 6.

We say that an adjunction F∗ � F∗ : B −→ A is subnuclear if the categories can be reconstructed

from each other as initial resolutions of the induced monad and comonad: A is equivalent to

the Kleisli category B−→
F

for the comonad
−→
F = F∗F∗ : B −→ B, and B is equivalent to the Kleisli

categoryA←−
F

for the monad
←−
F = F∗F∗ : A −→ A. More precisely, the comparison functors B−→

F

E0
−−→ A

and A←−
F

E1

−−→ B are required to be equivalences. If the two Kleisli constructions are construed as

essentially surjective / fully faithful factorizations

F∗ =

(
A

U�

� A←−
F

E1

� B

)

F∗ =
(
B

V�
� B−→

F

E0

� A

)
(see Fig. 13), then the requirement that E1 and E0 are equivalences means that F∗ and F∗ in a

subnuclear adjunction must be essentially surjective. But, as mentioned at the end of Sec. 4, while

the adjunction between the Kleisli categories is subnuclear itself, its resolutions may not be. The

upshot is that the little nucleus must be extracted from the big nucleus. The situation is summarized

in Fig. 22. The little nucleus arises as the initial resolution

−→
N (F∗ � F∗ : B −→ A) =

(
F�� � F�� :

(
A
←−
F
)
=⇒

F
−→

(
B
−→
F
)
⇐=

F

)
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B−→
F

A B
−→
F

A←−
F

B A
←−
F

�F�

E0

�F∗

H0

U� V∗

�F�

E1

F�

H1

F∗

V�

F�

U�

(
A
←−
F
)
=⇒

F
B
−→
F

(
A
←−
F
)=⇒F

(
B
−→
F
)
⇐=

F
A
←−
F

(
B
←−
F
)=⇒F

�F��

E0

�F�

∼

U� V∗

�F��

E1

F��

∼

F�

V�

F��

U�

Figure 22: The resolutions of an adjunction F = (F∗ � F∗) and of its nucleus
←−
NF = (F� � F�)

of the (big) nucleus, which is the final resolution

←−
N (F∗ � F∗ : B −→ A) =

(
F� � F� : A

←−
F −→ B

−→
F
)

Since Corollary 7.7 implies
←−
N
−→
N(F) �

←−
N
←−
N(F), and Prop. 7.4 says that

←−
N is idempotent, tracking
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the equivalences through
−→
N
−→
N(F)

←−
N
−→
N(F)

←−
N
←−
N(F)

−→
N(F)b

←−
N(F)

�

�

�

(92)

yields a natural family of equivalences
−→
N
−→
N(F) �

−→
N(F). But spelling out these equivalences, of

categories of coalgebras over algebras and algebras over coalgebras, is an unwieldy task. The flood

of structure can be dammed by reducing the (big) nucleus to the simple form from Sec. 8

←−
N (F∗ � F∗ : B −→ A) =

(
F� � F� : B

⇐=

F −→ A
=⇒

F
)

and defining the little nucleus in the form

−→
N (F∗ � F∗ : B −→ A) =

(
F� � F� : A=⇒

F
−→ B=⇒

F

)
where the categories A=⇒

F
and B⇐=

F
are defined by the factorizations in Fig. 23. The category B⇐=

F

A=⇒
F

A
=⇒

F

B⇐=
F

B
⇐=

F

−→
NF

←−
NF

Figure 23: Little nucleus
−→
NF defined by factoring simple nucleus

←−
NF

thus consists ofA
=⇒

F -objects and B
⇐=

F -morphisms, whereasA=⇒
F

is the other way around8. Unpacking

8A very careful reader may at this point think that we got the notation wrong way around, because B−→
F

consists

of B-objects and A-morphisms, whereas A←−
F

consists of A-objects and B-morphisms. Fig. 24 explains this choice of

notation.
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the definitions gives:

|B⇐=
F
| =

∐
x∈|A|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
αx ∈ B(F∗x, F∗x)

∣∣∣ F∗x F∗F∗x x

F∗x F∗x F∗F∗x

αx αx F∗αx α̃x

αx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(93)

B⇐=
F

(αx, γz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
g ∈ B(F∗x, F∗z)

∣∣∣∣
F∗F∗x F∗F∗z

F∗F∗x F∗F∗z

F∗g

F∗αx F∗γz

F∗g

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

|A=⇒
F
| =

∐
u∈|B|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
βu ∈ A(F∗u, F∗u)

∣∣∣ F∗x F∗F∗u u

F∗u F∗u F∗F∗u

βu βu F∗βu

β̃u

βu

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(94)

A=⇒
F

(βu, δw) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
f ∈ A(F∗u, F∗w)

∣∣∣∣
F∗F∗u F∗F∗w

F∗u F∗F∗w

F∗ f

F∗βu F∗δw

F∗ f

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
The adjunction F� � F� : B⇐=

F
−→ A=⇒

F
is obtained by restricting F� � F� : B

⇐=

F −→ A
=⇒

F along the

embeddings B⇐=
F
� B

⇐=

F and A=⇒
F
� A

=⇒

F . Hence the functor

−→
N (F∗ � F∗ : B −→ A) =

(
F� � F� : B⇐=

F
−→ A=⇒

F

)
(95)

To see that it is an idempotent comonad, in addition to the natural equivalences
−→
N
−→
N(F) �

−→
N(F)

from (92), we need a counit
−→
N(F)

ε
−→ F. The salient feature of the presentation in (94–93) is that

it shows the forgetful functors B⇐=
F
−→ A←−

F
and A=⇒

F
−→ B−→

F
, which complement the equivalences

B
⇐=

F � A
←−
F and A

=⇒

F � B
−→
F in Fig. 24.

Proposition 9.1 The little nucleus construction

−→
N : Adj −→ Adj (96)

(F∗ � F∗ : B −→ A) �−→
(
F� � F� : B⇐=

F
−→ A=⇒

F

)
(97)
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A=⇒
F

B−→
F

A B
−→
F A

=⇒

F

B⇐=
F

A←−
F

B A
←−
F B

⇐=

F

−→
NF Fε

∼

η ←−
NF

∼

Figure 24: The counit
−→
NF

ε
−→ F and the unit of F

η
−→
←−
NF in Adj

is an idempotent comonad. An adjunction is subnuclear if and only if it is fixed by this comonad.
The category of subnuclear adjunctions

Luc =

{
F ∈ Adj |

−→
N(F)

ε
� F

}
(98)

is equivalent to the category of nuclear adjunctions:

Luc � Nuc

Proof. The only claim not proved before the statement is the equivalence Luc � Nuc. The functor

Luc −→ Nuc can be realized by restricting
←−
N from Adj to Luc ⊂ Adj. The functor Nuc −→ Luc can

be realized by restricting
−→
N from Adj to Nuc ⊂ Adj. The idempotency of both restricted functors

implies that they form an equivalence. �

Theorem 9.2 The comonads
−→
M : Cmn −→ Cmn and

−→
E : Mnd −→ Mnd, defined

−→
E = AM ◦ KC ◦ AC ◦ EM (99)
−→
M = AC ◦ EM ◦ AM ◦ EC (100)

are idempotent. Iterating them leads to the natural equivalences

−→
M ◦

−→
M

ε
�
−→
M

−→
E ◦

−→
E
ε
�
−→
E
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Moreover, their categories of coalgebras are equivalent:

Cmn
−→
M

� Luc � Mnd
−→
E (101)

with Luc as defined in (98), and

Cmn
−→
M
=

{
−→
F ∈ Cmn |

−→
E

(
−→
F
)
ε
�

−→
F
}

(102)

Mnd
−→
E =

{
←−
F ∈ Mnd |

−→
M

(
←−
F
)
ε
�

←−
F
}

(103)

Mnd Mnd
−→
E

Luc

Adj

Nuc

Cmn Cmn
←−
E

−→
E

�

∼

∼

�

⊥

⊥

AM

AC

EM

KC

�
∼

←−
E

�

Mnd Mnd
←−
M

Nuc

Adj

Luc

Cmn Cmn
−→
M

←−
M

�

∼

∼

�

⊥

⊥

AM

AC

KM

EC

�

∼

−→
M

�

Figure 25: Relating little and big nuclei

The proof boils down to straightforward verifications with the simple nucleus formats. Fig. 25

summarizes and aligns the claims of Theorems 6 and 9.2.

10 Example 0: The Kan adjunction

Our final example of a nucleus construction arises from the first example of an adjoint pair of

functors. The concept of adjunctions goes back, of course, at least to Évariste Galois, or, depending

on how you conceptualize it, as far back as to Heraclitus [54], and into the roots of logics [57];
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yet the definition of an adjoint pair of functors between genuine categories goes back to the late

1950s, to Daniel Kan’s work in homotopy theory [44]. Kan defined the Kan extensions to capture

a particular adjunction, perhaps like Eilenberg and MacLane defined categories and functors to

define certain natural transformations.

10.1 Simplices and the simplex category

One of the seminal ideas of algebraic topology arose from Eilenberg’s computations of homology

groups of topological spaces by decomposing them into simplices [24]. An m-simplex is the set

Δ[m] =

⎧⎪⎪⎨⎪⎪⎩�x ∈ [0, 1]m+1
∣∣∣ m∑

i=0

xi = 1

⎫⎪⎪⎬⎪⎪⎭ (104)

with the product topology induced by the open intervals on [0, 1]. The relevant structure of a

topological space X is captured by families of continuous maps Δm −→ X, for all m ∈ N. Some

such maps do not embed simplices into a space, like triangulations do, but contain degeneracies,

or singularities. Nevertheless, considering the entire family of such maps to X makes sure that any

simplices that can be embedded into X will be embedded by some of them. Since the simplicial

structure is captured by each Δ[m]’s projections onto all Δ[�]s for � < m, and by Δ[m]’s embed-

dings into all Δ[n]s for n > m, a coherent simplicial structure corresponds to a functor of the form

Δ[−] : Δ −→ Esp, where Esp is the category of topological spaces and continuous maps9, and Δ is

the simplex category. Its objects are finite ordinals

[m] = {0 < 1 < 2 < · · · < m}

while its morphisms are the order-preserving functions [28]. All information about the simplicial

structure of topological spaces is thus captured in the matrix

Υ : Δo × Esp −→ Set (105)

[m] × X �→ Esp
(
Δ[m], X

)
This is, in a sense, the "context matrix" of homotopy theory, if it were to be translated to the

language of Sec. 2, and construed as a geometric "concept analysis".

10.2 Kan adjunctions and extensions

Daniel Kan’s work was mainly concerned with computing homotopy groups in combinatorial terms

[45]. That led to the discovery of categorical adjunctions as a tool for Kan’s extensions of the

9We denote the category of topological spaces by the abbreviation Esp of the French word espace, not just because

there are other things called Top in the same contexts, but also as authors’ reminder-to-self of the tacit sources of the

approach [36, 3].
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simplicial approach [44]. Applying the toolkit from Sec. 5.3, the matrix Υ from (105) gives rise to

the following functors
Υ : Δo × Esp −→ Set

Υ• : Δ −→ ⇑Esp •Υ : Esp −→ ⇓Δ

Υ∗ : ⇓Δ −→ ⇑Esp Υ∗ : ⇑Esp −→ ⇓Δ

(106)

where

• ⇓Δ = Dfib /Δ � SetΔ
o

is the category of simplicial sets K : Δo −→ Set, or equivalently of

complexes
∫

K : K̂ −→ Δ, comprehended along the lines of Sec. 5.3.2;

• ⇑Esp = (Ofib /Esp)o is the opposite category of discrete opfibrations over Esp, i.e. of

functors D
D
−→ Esp which establish isomorphisms between the coslices x/D

Dx
� Dx/Esp.

The Yoneda embedding Δ
�

−→ ⇓Δ makes ⇓Δ into a colimit-completion of Δ, and induces the exten-

sion Υ∗ : ⇓Δ −→ ⇑Esp of Υ• : Δ −→ ⇑Esp. The Yoneda embedding Esp
�

−→ ⇑Esp makes ⇑Esp into a

limit-completion of Esp, and induces the extension Υ∗ : ⇑Esp −→ ⇓Δ of •Υ : Esp −→ ⇓Δ.

However, Esp is a large category, and the category ⇑Esp lives in another universe. Moreover,

Esp already has limits, and completing it to ⇑Esp obliterates them, and adjoins the formal ones.

Kan’s original extension was defined using the original limits in Esp, and there was no need to form

⇑Esp. Using the standard notation sSet for simplicial sets SetΔ
o
, or equivalently for complexes

⇓Δ, Kan’s original adjunction boils down to

K
K
−→ Δ sSet

(
Δ[−]/X

Dom
−−−→ Δ

)

lim
−−→

(
K

K
−→ Δ

Δ[−]

−−→ Esp
)

Esp X

Υ∗ � Υ∗ (107)

where

• Υ• =

(
Δ
Δ[−]

−−→ Esp
�

−→ ⇑Esp

)
, is truncated to Δ

Δ[−]

−−→ Esp;

• •Υ : ⇑Esp −→ ⇓Δ from (63), restricted to Esp leads to

lim
←−−

(
1

X
−→ Esp

•Υ
−−→ Dfib�Δ

)
=

(
Δ[−]/X

Dom
−−−→ Δ

)
The adjunction MA(Υ) = (Υ∗ � Υ∗ : Esp −→ sSet), displayed in (107), has been studied for many

years. The functor Υ∗ : sSet −→ Esp is usually called the geometric realization [64], whereas

Υ∗ : Esp −→ sSet is the singular decomposition on which Eilenberg’s singular homology was

based [24]. Kan spelled out the concept of adjunction from the relationship between these two

functors [44, 46].
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The overall idea of the approach to homotopies through adjunctions was that recognizing this

abstract relationship betweenΥ∗ andΥ∗ should provide a general method for transferring the invari-

ants of interest between a geometric and an algebraic or combinatorial category. For a geometric

realization Υ∗K ∈ Esp of a complex K ∈ sSet, the homotopy groups can be computed in purely

combinatorial terms, from the structure of K alone [45]. Indeed, the spaces in the form Υ∗K boil

down to Whitehead’s CW-complexes [64, 83]. What about the spaces that do not happen to be in

this form?

10.3 Troubles with localizations

The upshot of Kan’s adjunction Υ∗ � Υ∗ : Esp −→ sSet is that for any space X, we can construct

a CW-complex
−→
ΥX = Υ∗Υ∗X, with a continuous map

−→
ΥX

ε
−→ X, that arises as the counit of

Kan’s adjunction. In a formal sense, this counit is the best approximation of X by a CW-complex.

When do such approximations preserve the geometric invariants of interest? By the late 1950s, it

was already known that such combinatorial approximations work in many special cases, certainly

whenever ε is invertible. But in general, even
−→
Υ
−→
ΥX

ε
−→
−→
ΥX is not always invertible.

The idea of approximating topological spaces by combinatorial complexes thus grew into a

quest for making the units or the counits of adjunctions invertible. Which spaces have the same in-

variants as the geometric realizations of their singular10 decompositions? For particular invariants,

there are direct answers [25, 26]. In general, though, localizing at suitable spaces along suitable

reflections or coreflections aligns (106) with (18) and algebraic topology can be construed as a ge-

ometric extension of concept analysis from Sec. 2, extracting concept nuclei from context matrices

as the invariants of adjunctions that they induce. Some of the most influential methods of algebraic

topology can be interpreted in this way. Grossly oversimplifying, we mention three approaches.

The direct approach [29, 16, Vol. I, Ch. 5] was to enlarge the given category by formal inverses

of a family of arrows, usually called weak equivalences, and denoted by Σ. They are thus made

invertible in a calculus of fractions, generalizing the one for making the integers, or the elements

of an integral domain, invertible in a ring. When applied to a large category, like Esp, this calculus

of fractions generally involves manipulating proper classes of arrows, and the resulting category

may even have large hom-sets.

Another approach [22, 78] is to factor out the Σ-arrows using two factorization systems. This

approach is similar to the constructions outlined in Sections 3 and 4.5.3, but the factorizations of

continuous maps that arise in this framework are not unique: they comprise families of fibrations

and cofibrations, which are orthogonal by lifting and descent, thus only weakly. Abstract homotopy

models in categories thus lead to pairs of weak factorization systems. Sticking with the notation

E• � M and E � M• for such weak factorization systems, the idea is thus that the family Σ is now

generated by composing the elements of E• and M•. Localizing at the arrows from E ∩ M, that

are orthogonal to both M• and E•, makes Σ invertible. It turns out that suitable factorizations can

be found both in Esp and in sSet, to make the adjunction between spaces and complexes into an

10The word "singular" here means that the simplices, into which space may be decomposed, do not have to be

embedded into it, which would make the decomposition regular, but that the continuous maps from their geometric

realizations may have singularities.
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equivalence. This was Dan Quillen’s approach [77, 78].

The third approach [1, 2] tackles the task of making the arrows
−→
ΥX

ε
−→ X invertible by mod-

ifying the comonad
−→
Υ until it becomes idempotent, and then localizing at the coalgebras of this

idempotent comonad. Note that this approach does not tamper with the continuous maps in Esp,

be it to make some of them formally invertible, or to factor them out. The idea is that an idem-

potent comonad, call it
−→
Υ∞ : Esp −→ Esp, should localize any space X at a space

−→
Υ∞X such that

−→
Υ∞
−→
Υ∞X

ε
�

−→
Υ∞X. That means that Υ∞ is an idempotent monad. The quest for such a monad is

illustrated in Fig. 26. Esp
−→
Υ denotes the category of coalgebras for the comonad

−→
Υ = Υ∗Υ∗, the

sSet

Esp Esp
−→
Υ

(
Esp

−→
Υ

)−→Υ0

· · ·

Υ∗�Υ∗
Υ0�Υ0 Υ1�Υ1 Υα�Υα

−→
Υ

V∗

⊥

V∗

�

−→
Υ0

V∗

⊥

V∗

�

−→
Υ1

−→
Υα

Figure 26: Iterating the comonad resolutions for
−→
Υ

adjunction V∗ � V∗ : Esp −→ Esp
−→
Υ is the final resolution of this comonad, and Υ0 is the couniversal

comparison functor into this resolution, mapping a complex K to the coalgebra Υ∗K
η∗

−→ Υ∗Υ∗Υ
∗K.

Since sSet is a complete category, Υ0 has a right adjoint Υ0, and they induce the comonad
−→
Υ0 on

Esp
−→
Υ . If

−→
Υ was idempotent, then the final resolution V∗ � V∗ would be a coreflection, and the

comonad
−→
Υ0 would be (isomorphic to) the identity. But

−→
Υ is not idempotent, and the construc-

tion can be applied to
−→
Υ0 again, leading to

(
Esp

−→
Υ

)−→Υ0

, with the final resolution generically denoted

V∗ � V∗ : Esp
−→
Υ −→

(
Esp

−→
Υ

)−→Υ0

, and the comonad
−→
Υ1 on

(
Esp

−→
Υ

)−→Υ0

. Remarkably, Applegate and

Tierney [1] found that the process needs to be repeated transfinitely before the idempotent monad
−→
Υ∞ is reached. At each step, some parts of a space that are not combinatorially approximable are

eliminated, but that causes some other parts, that were previously approximable, to cease being

so. And this may still be the case after infinitely many steps. A transfinite induction becomes

necessary. The situation is similar to Cantor’s quest for accumulation points of the convergence

domains of Fourier series, which led him to discover transfinite induction in the first place.

The nucleus of the same adjunction is displayed in Fig. 27. The category Esp
−→
Υ comprises
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sSet Esp
−→
Υ sSet

=⇒

Υ

Esp sSet
←−
Υ Esp

⇐=

Υ

←−
Υ

Υ∗ � Υ∗

Υ0�Υ0

⇐=

Υ

Υ� � Υ�

�

Υ� � Υ�

−→
Υ

V∗�V∗

H1�H1

=⇒

Υ

�

Figure 27: The nucleus of the Kan adjunction

spaces that may not be homeomorphic with a geometric realization of a complex, but are their

retracts, projected along the counit
−→
ΥX

ε
� X, and included along the structure coalgebra X �

−→
ΥX. But the projection does not preserve simplicial decompositions; i.e., it is not an

−→
Υ-coalgebra

homomorphism. The transfinite construction of the idempotent monad
−→
Υ∞ was thus needed to

extract just those spaces where the projection boils down to a homeomorphism. But Prop. 8.1

implies that simplicial decompositions of spaces in Esp
−→
Υ can be equivalently viewed as objects

of the simple nucleus category sSet
=⇒

Υ . Any space X decomposed along a coalgebra X �
−→
ΥX

in Esp
−→
Υ can be equivalently viewed in sSet

=⇒

Υ as a complex K with an idempotent Υ∗K
ϕ
−→ Υ∗K.

This idempotent secretly splits on X, but the category sSet
=⇒

Υ does not know that. It does know

Corollary 8.4, though, which says that the object ϕK =

〈
K,Υ∗K

ϕ
−→ Υ∗K

〉
is a retract of

=⇒

ΥϕK;

and
=⇒

ΥϕK secretly splits on
−→
ΥX. The space X is thus represented in the category sSet

=⇒

Υ by the

idempotent ϕK , which is a retract of
=⇒

ΥϕK, representing
−→
ΥX. Simplicial decompositions of spaces

along coalgebras in Esp
−→
Υ can thus be equivalently captured as idempotents over simplicial sets

within the simple nucleus category sSet
=⇒

Υ . The idempotency of the nucleus construction can be

interpreted as a suitable completeness claim for such representations.

To be continued. How is it possible that X is not a retract of
−→
ΥX in Esp

−→
Υ , but the object ϕK,

representing X in the equivalent category sSet
=⇒

Υ , is recognized as a retract of the object
=⇒

ΥϕK,

representing
−→
ΥX? The answer is that the retractions occur at different levels of the representation.

Recall, first of all, that sSet
=⇒

Υ is a simplified form of
(
sSet

←−
Υ

)=⇒Υ
. The reader familiar with Beck’s

Theorem, this time applied to comonadicity, will remember that X can be extracted from
−→
ΥX using
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an equalizer that splits in Esp, when projected along a forgetful functor V∗ : Esp
−→
Υ −→ Esp. This

split equalizer in Esp lifts back along the comonadic V∗ to an equalizer in Esp
−→
Υ , which is generally

not split. On the other hand, the splitting of this equalizer occurs in
(
sSet

←−
Υ

)=⇒Υ
as the algebra

carrying the corresponding coalgebra. In sSet
=⇒

Υ , this splitting is captured as the idempotent that it

induces. We have shown, of course, that all three categories are equivalent. But sSet
=⇒

Υ internalizes

the absolute limits that get reflected along the forgetful functor V∗. It makes them explicit, and

available for computations. But they have to be left for after the break.

11 What?

11.1 What we did

We studied nuclear adjunctions. To garner intuition, we considered some examples. Since every

adjunction has a nucleus, the reader’s favorite adjunctions provide additional examples and appli-

cations. Our favorite example is in [74]. In any case, the abstract concept arose from concrete

applications, so there are many [47, 71, 72, 73, 75, 82, 84]. Last but not least, the nucleus con-

struction itself is an example of itself, as it provides the nuclei of the adjunctions between monads

and comonads.

11.2 What we did not do

We studied adjunctions, monads, and comonads in terms of adjunctions, monads, and comonads.

We took category theory as a language and analyzed it in that same language. We preached what

we practice. There is, of course, nothing unusual about that. There are many papers about the

English language that are written in English.

However, self-applications of category theory get complicated. They sometimes cause chain

reactions. Categories and functors form a category, but natural transformations make them into

a 2-category. 2-categories form a 3-category, 3-categories a 4-category, and so on. Unexpected

things already happen at level 3 [33, 38]. Strictly speaking, the theory of categories is not a part of

category theory, but of higher category theory [6, 59, 60, 79]. Grothendieck’s homotopy hypothesis
[37, 62] made higher category theory into an expansive geometric pursuit, subsuming homotopy

theory. While most theories grow to be simpler as they solve their problems, and dimensionality

reduction is, in fact, the main tenet of statistics, machine learning, and concept analysis, higher

category theory makes the dimensionality increase into a principle of the method. This opens up

the realm of applications in modern physics but also presents a significant new challenge for the

language of mathematical constructions.

Category theory reintroduced diagrams and geometric interactions as first-class citizens of the

mathematical discourse, after several centuries of the prevalence of algebraic prose, driven by the

facility of printing. Categories were invented to dam the flood of structure in algebraic topology,
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but they also geometrized algebra. In some areas, though, they produced their own flood of struc-

ture. Since the diagrams in higher categories are of higher dimensions, and the compositions are

not mere sequences of arrows, diagram chasing became a problem. While it is naturally extended

into cell pasting by filling 2-cells into commutative polygons, diagram pasting does not boil down

to a directed form of diagram chasing, as one would hope. The reason is that 1-cell composition

does not extend into 2-cell composition freely, but modulo the middle-two interchange law (a.k.a.

Godement’s naturality law). A 2-cell can thus have many geometrically different representatives.

This factoring is easier to visualize using string diagrams, which are the Poincaré duals of the

pasting diagrams. The duality maps 2-cells into vertices, and 0-cells into faces of string diagrams.

Chasing 2-categorical string diagrams is thus a map-coloring activity.

In the earlier versions of this paper, the nucleus was presented as a 2-categorical construction.

We spent several years validating some of the results at that level of generality, and drawing colored

maps to make them communicable. Introducing a new idea in a new language is a bootstrapping

endeavor. It may be possible when the boots are built and strapped, but not before that. At least

in our early presentations, the concept of nucleus and the diagrams of its 2-categorical context

evolved two narratives. This paper became possible when we gave up on one of the narratives, and

factored out the 2-categorical aspects.

11.3 What needs to be done

In view of Sec. 10, a higher categorical analysis of the nucleus construction seems to be of in-

terest. The standard reference for the 2-categories of monads and comonads is [80], extended in

[52]. The adjunction morphisms were introduced in [4]. Their 1-cells, which we sketch in the Ap-

pendix, are the lax versions of the morphisms we use in Sec. 5. The 2-cells are easy to derive from

the structure preservation requirement, though less easy to draw, and often even more laborious to

read. Understanding is a process that unfolds at many levels. The language of categories facilitates

understanding by its flexibility, but it is can also obscure its subject when imposed rigidly. The

quest for categorical methods of geometry has grown into a quest for geometric methods of cate-

gory theory. There is a burgeoning new scene of diagrammatic tools [18, 39]. If pictures help us

understand categories, then categories will help us to speak in pictures, and the nuclear methods

will help us mine concepts as invariants.

11.4 What are categories and what are their model structures?

The spirit of category theory is that the objects should be studied as black boxes, in terms of the

morphisms coming in and out of them. If categories themselves are studied in the spirit of category

theory, then they should be studied in terms of the functors coming in and out. A functor is defined

by specifying an object part and an arrow part, and confirms that a category consists of objects and

arrows. Any functor G : A −→ B can be decomposed11, as displayed in Fig. 28, into a surjection on

the objects, and an injection on the arrows, through the category AG, with the objects of A and the

arrows of B. The orthogonality of the essentially surjective functors E ∈ Ess and full-and-faithful

11An overview of the basic structure of factorization systems is in Appendix A.
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|AG | = |A|

AG(u, v) = B(Gu,Gv)

AG A

B

Ffa(G) G

Ess(G)

Figure 28: Factoring of an arbitrary functor G through (Ess � Ffa)

functors M ∈ Ffa, is displayed in Fig. 29. Since E is essentially surjective, for any object y in B

HE � U � Hy = UE−1(y)

MH � V � H f = M−1V( f )

A C

B D

E

U

M

V

H

Figure 29: The orthogonality of an essential surjection E ∈ Ess and a full-and-faithful M ∈ Ffa

there is some x in A such that Ex � y, so we take Hy = Ux. If Ex′ � y also holds for some other

x′ in A then MUx � VEx � Vy � VEx′ � MUx′ implies Ux � Ux′, because M is full-and-

faithful. The arrow part is defined using the bijections between the hom-sets provided by M. The

factorization system (Ess � Ffa) can be used as a stepping stone into category theory. It confirms

that functors see categories as comprised of objects and arrows.

Functors are not the only available morphisms between categories. Many mathematical theo-

ries study objects that are instances of categories, but require morphisms for which the functoriality

is not enough. E.g., a topology is a lattice of open sets, and a lattice is, of course, a special kind

of category. A continuous map between two topological spaces is an adjunction between the lat-

tices of opens: the requirement that the inverse image of a continous map preserves the unions of

the opens means that it has a right adjoint. The general functors between topologies, i.e. merely

monotone maps between the lattices of opens, are seldom studied because they do not capture

continuity, which is the subject of topology. For an even more general example, consider basic

set theory. Functions are defined as total and single-valued relations. A total and single-valued

relation between two sets is an adjunction between the two lattices of subsets: the totality is the

unit of the adjunction, and the single-valuedness is the counit [69]. A general relation induces a

monotone map, i.e. a functor between the lattices of subsets. But studying functions means study-

ing adjunctions. There are many mathematical theories where the objects of study are categories

of some sort, and the morphisms between them are adjunctions.

What are categories in terms of adjunctions? We saw in Sec. 4.6 that applying the factorization

system (Ess � Ffa) to a pair of adjoint functors gives rise to the two initial resolutions of the

adjunction: the (Kleisli) categories of free algebras and coalgebras. Completing them to the final
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∣∣∣A=⇒F ∣∣∣ =
∐
x∈|A|

{
F∗x

αx
−−→ F∗x | (84)

}

A
=⇒
F (αx, γz) = B

−→
F (R∗αx,R

∗γz)

A
=⇒

F A

B B
⇐=

F

F (F)
F∗

�

C•(F)

F∗

F •(F)

C(F)

∣∣∣B⇐=F ∣∣∣ =
∐
u∈|B|

{
F∗u

βu

−−→ F∗u | (85)

}

B
⇐=
F (βu, δw) = A

←−
F (L∗β

y, L∗δ
w)

Figure 30: Factoring the adjunction F = (F∗ � F∗) through (C• � F ) and (C � F •)

resolutions lifts Fig. 28 to Fig. 30. This lifting is yet another perspective on the equivalences

R∗ : A
=⇒

F −→ B
−→
F and L∗ : B

⇐=

F −→ A
←−
F from Sec. 8 and [75, Theorems III.2 and III.3]. Note

that the adjunctions are taken here as morphisms in the direction of their lefth-hand component

(like functions, and unlike the continuous maps), so that the functors C(F) and F •(F) in Fig. 30,

as components of a right adjoint, are displayed in the opposite direction. That is why the C•-

component is drawn with a tail, although in the context of left-handed adjunctions it plays the role

of an abstract epi. The weak factorization systems (C• � F ) and (C � F •) are comprised of the

families

∼ F = {(F∗ � F∗) | F∗ is comonadic},

∼ C• = {(F∗ � F∗) | F∗ is a comparison functor for a comonad},

∼ C = {(F∗ � F∗) | F∗ is monadic},

∼ F • = {(F∗ � F∗) | F∗ is a comparison functor for a monad}.

To see how these factorizations are related with (Ess � Ffa), and how Fig. 30 arises from Fig. 28,

recall from Sec. 4.6 that the (Ess�Ffa)-decomposition of F∗ gives the initial resolutionA←−
F

, whereas

the (Ess � Ffa)-decomposition of F∗ gives the initial resolution B−→
F

. However, A←−
F
↪→ A

←−
F � B

⇐=

F

factors through the (C � F •)-decomposition of F∗, whereas B−→
F
↪→ B

−→
F � A

=⇒

F factors through the

(C• � F )-decomposition of F∗. In particular, while

a) the Ess-image A←−
F

of A in B along F∗ is spanned by the isomorphisms y � F∗x,

b) the C•-image A
=⇒

F of A in B along F∗ is spanned by the retractions y F∗x.

It is easy to check that such retractions in B correspond to
−→
F -coalgebras. Worked out in full detail,

this correspondence is the equivalence R∗ : A
=⇒

F � B
−→
F . Looking at the (C•�F )-decompositions from

the two sides of this equivalence aligns the orthogonality of C• and F with the orthogonality of Ess

and Ffa, as indicated in Fig. 31. Since any object αx of A
=⇒

F induces a retraction
←−
F x

α̃x
� x

αx

�

←−
F x,

and the comparison functor E maps x to Ex =
〈
←−
F x, F∗←−F x

εF∗
� F∗x

F∗η
� F∗←−F x

〉
, the image Vαx splits
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HE � U � Hαx =

⎛⎜⎜⎜⎜⎜⎝Vαx
Vα̃x

Vαx

VEx � MUx

⎞⎟⎟⎟⎟⎟⎠
MH � V � H f = V( f )

A D
−→
G

A
=⇒

F D

E

U

M

V

H

Figure 31: The orthogonality of a comparison functor E ∈ C• and a comonadic M ∈ F

into VEx
Vα̃x
� Vαx

Vαx

� VEx. But the isomorphism VEx � MUx and the comonadicity of M imply

that the M-split equalizer Vαx
Vαx

� VEx � MUx lifts to D
−→
G . This lifting determines Hαx. The

conservativity of M assures that H is well-defined, and that the V-images of the A
=⇒

F -morphisms in

D lift to coalgebra homomorphisms in D
−→
G .

Moral. Lifting the canonical factorization (Ess � Ffa) of functors to the canonical factorizations

(C• � F ) and (C � F •) of adjunctions thus boils down to generalizing from isomorphisms to retrac-
tions. If the (Ess � Ffa)-factorization confirmed that a category, from the standpoint of functors,

consists of objects and arrows, then the factorizations (C• � F ) and (C � F •) suggest that from

the standpoint of adjunctions, a category also comprises the absolute limits and colimits, a.k.a.

retractions. In summary,

functors

category = objects + arrows
=

adjunctions

category = objects + arrows + retractions

This justifies the assumption that all idempotents can be split, announced and explained in Sec. 5.2.

The readers familiar with Quillen’s homotopy theory [78] may notice a homotopy model structure

lurking behind the weak factorizations (C• �F ) and (C �F •). Corollary 8.4 suggests that the family

of weak equivalences, split by the nucleus construction, consists of the functors which do not only

preserve, but also reflect the absolute limits and colimits.
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A Appendix: Factorizations

Definition A.1 A factorization system (E �M) in a category C a pair of subcategories E,M ⊆ C,
which contain all isomorphisms, and satisfy the following requirements:

• C =M◦ E: for every f ∈ C there are e ∈ E and m ∈ M such that f = m ◦ e, and

• E⊥M: for every e ∈ E and m ∈ M, and for any f , g ∈ C such that mu = ve there is a unique
h ∈ C such that u = he and v = mh, as displayed in (108).

A C

B D

e

u

m

v

h (108)

If h is not uniquely determined by this property, then the factorization system is weak. The elements
of E and of M are respectively called (abstract) epis amd monics.

Proposition A.2 In every factorization system E � M, the families of abstract epis and monics
determine each other by

E = ⊥M = {e ∈ C | e⊥M} and M = E⊥ = {m ∈ C | E⊥m}

where e⊥m means that e and m satisfy (108) for all u, v, and e⊥X and X⊥m mean that e⊥x and
x⊥m hold for all x ∈ X.
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Proposition A.3 Factorization systems in any category form a complete lattice with respect to the
ordering

(E �M) ≤
(
E′ � M′) ⇐⇒ E ⊆ E′ ∧ M ⊇ M′ (109)

The suprema and the infima in this lattice are respectively in the forms

•

∧
j∈J

(
E j � M j

)
=

(
Ê � M̂

)
where Ê =

⋂
j∈J E j, and M̂ = Ê⊥,

•

∨
j∈J

(
E j � M j

)
=

(
Ě � M̌

)
is determined by M̌ =

⋂
j∈J M j and Ě = ⊥M̌.

Remark. If the category C is large, the lattice of its factorization systems is also large.

Definition A.4 The arrow monad Arr : CAT −→ CAT maps every category C to the induced arrow
category Arr(C) = C/C, supported by the monad structure

C
η

−−−−−−−−−−−−−−−→ Arr(C)
μ

←−−−−−−−−−−−−−−−− Arr (Arr(C))

A �−→

A A

A D

id gϕ=ψ f �−→

A C

B D

ϕ

f

ψ

g

Proposition A.5 Algebras for the arrow monad Arr(C) = C�C [51, 68] monad Arr : CAT −→ CAT

correspond to factorization systems.

Proof. The free Arr-algebra C�C comes with the canonical factorization system 	 �
, where

	 = {〈ι, f 〉 ∈ C2 | ι ∈ Iso} 
 = {〈 f , ι〉 ∈ C2 | ι ∈ Iso}

where Iso is the family of all isomorphisms in C. The canonical factorization of a morphism

〈 f , g〉 ∈ Arr(C)(ϕ, ψ) thus splits its commutative square into two triangles, along the main diagonal

g ◦ ϕ = ψ ◦ f , which is the canonical (	,
)-image of the factored morphism:

A A C

RB RD RD

B D D

ϕ

f ∗

Ψ◦ f ∗R f∗ ◦Φ= Ψ

R f∗

f∗

(110)

A Chu-algebra Chu(C)
α
−→ C determines a matrix factorization in C by

E = {α(e) | e ∈	} M = {α(m) | m ∈ 
}
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The other way around, any matrix Φ ∈ C(A,RB) lifts to Chu(C) as the morphism 〈Φ,Φo〉 ∈

ChuC(ηA, idRA , which is factorized in the form

A A RB

RRA
RB RB

RA B B

η

Φ

Φ id

RΦ
o

Φo

(111)

The factorization of Φ in C is now induced by the algebra Chu(C)
α
−→ C. The cochain condition for

this algebra gives

α(A, A
η
−→ RRA

,RA) = A and α(RB,RB id
−→ RB, B) = B

The factorization ηA Φ idRB
〈id,Φo〉 〈Φ,id〉

is then projected by α from Chu(C) to C, and the in-

duced factorization is thus

A RB

α(Φ)

α(id,Φo)

Φ

α(Φ,id)
(112)

�

For a more detailed overview of abstract factorization systems, see [16, Vol. I, Sec. 5.5].

B Appendix: Adjunctions, monads, comonads

B.1 Matrices (a.k.a. distributors, profunctors, bimodules)

|Mat| =
∐
A,B∈CAT

Dfib�A × Bo (113)

Mat(Φ,Ψ) =
∐

H∈CAT(A,C)
K∈CAT(B,D)

(
Dfib�A × Bo

)(
Φ, (H × Ko)∗Ψ

)

where Ψ ∈ Dfib�C × D, and (H × Ko)∗Ψ is its pullback along (H × Ko) : A × Bo −−→ C × Do.

Obviously, Φ ∈ Dfib�A × Bo.
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B.2 Adjunctions

|Adj| =
∐
A,B∈CAT

∐
F∗∈CAT(A,B)
F∗∈CAT(B,A)

{
〈η, ε〉 ∈ Nat(id, F∗F

∗) × Nat(F∗F∗, id)
∣∣∣ (114)

εF∗ ◦ F∗η = F∗ ∧ F∗ε ◦ ηF∗ = F∗
}

Adj(F,G) =
∐

H∈CAT(A,C)
K∈CAT(B,D)

{
〈υ∗, υ∗〉 ∈ Nat(KF∗,G∗H) × Nat(HF∗,G∗K)

∣∣∣
εGK ◦G∗υ∗ ◦ υ

∗F∗ = KεF ∧ ηGH = G∗υ
∗ ◦ υ∗F

∗ ◦ HηF
}

B.3 Monads

|Mnd| =
∐
A∈CAT

∐
←−
T ∈CAT(A,A)

{
〈η, μ〉 ∈ Nat(id,

←−
T ) × Nat(

←−
T
←−
T ,
←−
T ) | (115)

μ ◦
←−
T μ = μ ◦ μ

←−
T ∧ μ ◦

←−
T η =

←−
T = μ ◦ η

←−
T
}

Mnd

(
←−
T ,
←−
S
)
=

∐
H∈CAT(A,C)

{
χ ∈ Nat(

←−
T H,H

←−
S )

∣∣∣
χ ◦ ηT H = HηS ∧ HμS ◦ χS ◦ Tχ = χ ◦ μT H

}
B.4 Comonads

|Cmn| =
∐
B∈CAT

∐
−→
T ∈CAT(B,B)

{
〈ε, ν〉 ∈ Nat(

−→
T , id) × Nat(

−→
T ,
−→
T
−→
T ) |

−→
T ν ◦ ν = ν

−→
T ◦ ν ∧

−→
T ε ◦ ν =

−→
T = ε

−→
T ◦ ν

}
(116)

Cmn

(
−→
S ,
−→
T
)
=

∐
K∈CAT(B,D)

{
κ ∈ Nat(K

−→
S ,
−→
T K)

∣∣∣
εT K ◦ κ = KεS ∧

−→
T κ ◦ κ

−→
S ◦ KνS = νS K ◦ κ

}

B.5 The initial (Kleisli) resolutions KM : Mnd −→ Adj and KC : Cmn −→ Adj

The Kleisli construction assigns to the monad T : A −→ A the resolution
←−
KT =

(
T � � T� : A←−

T
−→ A

)
where the category A←−

T
consists of

• free algebras as objects, which boil down to |A←−
T
| = |A|;
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A

B

A

B

F∗

id

F∗

id

η

F∗

ε

=

A

B

F∗

B

A

B

A

F∗

id

F∗

id

ε

F∗

η

=

B

A

F∗

Figure 32: Pasting equations for adjunction F∗ � F∗.

A

B C

A
υ∗
=⇒ D

C

F∗

id

H

F∗

η

K

υ∗

G∗

H G∗

=

A

C

D

C

H

G∗

id

G∗

η

B

A
υ∗
=⇒ D

B C

D

F∗ K

H
F∗

G∗

id

υ∗

K
G∗

ε

=

B

A

B

D

F∗

id

F∗

ε

K

Figure 33: Pasting equations for adjunction 1-cell 〈H,K, υ∗, υ∗〉 : F −→ G.

83



A A

A

A

T

T

T

T
μ

T

μ =

A

A

A A

T

T

T
T

μ

T

μ

A

A

A

id

T

T

η

T

μ =

A

A

T =

A

A

A

T

T

id

T
η

μ

Figure 34: Pasting equations for monad
←−
T on A.

←−
T H

←−
T
←−
T H

H
←−
T H

←−
S

H
←−
S H

←−
S
←−
S

χ

μT H

←−
T χ

ηT H

HηS
χ
←−
S

HμS

Figure 35: Commutative diagrams for monad 1-cell 〈H, χ〉 :
←−
T −→

←−
S .
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A A

A

A

S

S

S

S
ν

S

ν =

A

A

A A

S

S

S
S

ν

S

ν

A

A

A

id

S

S

ε

S

ν =

A

A

S =

A

A

A

S

S

id

S
ε

ν

Figure 36: Pasting equations for comonad
−→
S on B

−→
T K

−→
T
−→
T K

K
−→
T H

−→
S

K
−→
S K

−→
S
−→
S

εT K

νT H

−→
T κ

κ

KνS

KεS
κ
−→
S

Figure 37: Commutative diagrams for comonad 1-cell 〈K, κ〉 :
−→
S −→

−→
T .
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• algebra homomorphisms as arrows, which boil down to A←−
T

(x, x′) = A(x, T x′);

with the composition

A←−
T

(x, x′) × A←−
T

(x′, x′′)
◦
−→ A←−

T
(x, x′′)〈

x
f
−→ T x′ , x′

g
−→ T x′′

〉
�−→

(
x

f
−→ T x′

Tg
−−→ TT x′′

μ
−→ T x′′

)
and with the identity on x induced by the monad unit η : x −→ T x

B.6 The final (Eilenberg-Moore) resolutions EM : Mnd −→ Adj and EC :

Cmn −→ Adj

The Eilenberg-Moore construction assigns to the monad T : A −→ A the resolution
←−
ET =

(
T � � T� : A

←−
T −→ A

)
where the category A

←−
T consists of

• all algebras as objects:

|A
←−
T | =

∑
x∈|A|

{
α ∈ A(T x, x) | α ◦ η = id ∧ α ◦ Tα = α ◦ μ

}

• algebra homomorphisms as arrows:

A
←−
T (T x

α
−→ x, T x′

γ
−→ x′) =

{
f ∈ A(x, x′) | f ◦ α = γ ◦ T f

}

C Appendix: Split equalizers

Split equalizers and coequalizers[14, 15] are conventionally written as partially commutative dia-

grams: the straight arrows commute, the epi-mono splittings compose to identities on the quotient

side, and to equal idempotents on the other side.

Proposition C.1 Consider the split equalizer diagram

A B Ci
f

j
q

r

(117)

where
q ◦ i = idA r ◦ j = idB f ◦ r ◦ f = j ◦ r ◦ f

Then

• r ◦ f is idempotent and

• i is the equalizer of f and j if and only if i ◦ q = r ◦ f .
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