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Abstract

Rate theories have found great utility across the chemical sciences by providing a

physically transparent way to analyze dynamical processes. Here we demonstrate the

benefits of using transition state theory and Marcus theory to study the rate of proton

transfer in HCl solutions. By using long ab initio molecular dynamics simulations

we show that good agreement is obtained between these two different formulations of

rate theory and how they can be used to study the pathways and life-time of proton

transfer in aqueous solution. Since both rate theory formulations utilize identical sets

of molecular data, this provides a self-consistent theoretical picture of the rates of
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aqueous phase proton transfer. Specifically, we isolate and quantify the rates of proton

transfer, ion-pair dissociation, and solvent exchange in concentrated HCl solutions. Our

analysis predicts a concentration dependence to both proton transfer and ion-pairing.

Moreover, our estimate of the life-time for the Zundel species is 0.8 ps and 1.3 ps for

2M and 8M HCl, respectively. We demonstrate that concentration effects, can indeed

be quantified through the combination of state-of-the-art simulation and theory and

provides a picture of the important correlations between the cation (hydronium) and

the counter-ion in acid solutions.

Introduction

Discovering and quantifying the pathways and rates of proton transport and understand-

ing its multidimensional behavior to control proton conduction continues to be the central

focus of various modern energy technologies.1–4 While the structures of small protonated

gas phase water clusters have been well established using both experiment5–7 and theory8,9

the structures formed by aqueous proton defects in the condensed phase and the mecha-

nism of their interconversion still provokes significant debate. For the case of the isolated

reactive proton defect, there have been numerous high-quality studies using reactive force

fields that yield a consistent picture of the intrinsic free-energy landscape of the isolated

hydrated proton.10–21 The speciation of the hydrated proton to the air-water interface is still

an active area of research requiring the use of difficult to interpret surface-sensitive spec-

troscopy in addition to large-scale simulation using reactive force-fields.10–13,15–26 Moreover,

the consistency of simulation studies with the well accepted surface tension measurement of

acids remains uncertain.27,28 This requires an understanding of the correlation between the

proton (e.g. cation) with the counter ion in concentrated acid solutions.29–33

To understand the role of counterions in acid solutions, pioneering x-ray measurements

have been undertaken to understand ion-pairing in concentrated acids under bulk homo-

geneous conditions.29–31 These studies have provided insights into the transition, as the
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acid concentration is increased, from fully dissociated acids to associated (molecular or ion-

paired).29,30 Moreover, extended x-ray absorption fine structure (EXAFS) measurements of

HCl detected a new correlated species, a contracted contact ion-pair, that exists between the

hydrated proton and the chloride ion over a wide range of concentrations.31 This measure-

ment suggests that when examining the structure and dynamics of the hydrated proton in

aqueous solution, the counterion cannot be treated as a spectator. This realization has pos-

sible implications for viewing the proton in analogy to a (monovalent) cation in an inorganic

salt (e.g. electrolyte) where ion-ion correlation for monovalent salts can be neglected at low

ionic strength.34,35 Pioneering 2D infrared (2D IR) experiments have deduced the life-time

of the hydrated Zundel complex in 4M HCl by probing the characteristic stretch and bend

modes in the first hydration shell of the proton defect.32 This novel prediction of a lower

bound on the life-time of a “Zundel” like species (480 fs32) inspired simulation studies in

an attempt to provide a molecular picture of the findings.19,36,37 Napoli et. al.37 produced

long trajectories using quantum density functional theory (DFT) based interaction potentials

(with both quantum and classical nuclei) of both 2M and 4M HCl solutions. Using these

simulations they were able to demonstrate the importance of a asymmetry coordinate that

distinguishes the hydrogen bonding asymmetry of the solvating acceptor water molecules

around the proton defect. This work demonstrated that the relaxation timescale of this

asymmetry coordinated was in good agreement with the estimates of the “Zundel” life-time

measured by 2D IR.32 This suggests that what was being experimentally probed was related

to the collective reorganization of the hydrogen bond network about the proton defect and

that this is correlated to the life-time of the Zundel like complexes formed in the liquid.37

More recently the hopping rate of protons in water was directly determined experimentally

by monitoring 2D IR chemical exchange using a methyl thiocyanate vibrational probe.38

In the present work we use the framework of rate theory39–53 to separate the contributions

to the dynamics of different molecular phenomena, such as ion-pairing and solvent exchange,

that occur in concert with proton transfer. In the standard application of rate theory to ion-
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pairing one can employ a simple interionic distance as the reaction coordinate to investigate

ion-pairing and solvent exchange events.54–65 According to transition state theory (TST),

when the system arrives at the transition state (the top of the free energy barrier) from

the reactant state, it immediately traverses to the product state. This assumption generally

does not work using distance between reacting species as a reaction coordinate because of the

strong coupling to the fluctuating solvent bath leading to significant barrier-recrossing. The

non-equilibrium solvent effect is quantified, by multiplying the TST rate with a transmission

coefficient, κ, as shown in Equation 1.45,47–49,66,67κ can be formulated in terms of the fraction

of the flux of reacting trajectories through dividing surface that produces the desired product

state and a small value is indicative of an inferior reaction coordinate.

kCorrect
TST =

κ√
2πµβ

q†2 exp
[

− βW (q†)
]

∫ q†

0
q2 exp

[

− βW (q)
]

dq
. (1)

Here µ is the reduced mass for the dynamics along the reaction coordinate, q. W (q) is the

free energy profile, wherein q† is the location of the transition state, and β = 1/kBT is the

inverse of thermal energy where kB and T are the Boltzmann constant and temperature,

respectively. In Equation 1, we considered the spherically symmetric nature of the reaction

coordinate, q, that leads to the q2 Jacobian term. The more general expressions will be

employed later in the manuscript. In TST, κ is assumed to be unity. However, strong non-

equilibrium solvent effects can lead to κ ≪ 1, providing significantly deviations from TST

rates.54–64

To improve upon the standard TST formulation given in Equation 1, a direct incorpora-

tion of solvent fluctuations as an additional reaction coordinate for describing the phenomena

of ion-pair dissociation and solvent exchange has been recently formulated by Roy and co-

workers.68–70 This additional complexity in defining the reaction coordinate will allow us to

compare and contrast two different approaches for investigating rate processes in condensed

phase systems. First, the standard formulation of rate theory (as stated above) in conjunc-
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tion with reactive flux calculations will yield a time-dependent transmission coefficient for

the reaction coordinate outlined herein, revealing the temporal behavior of thermal energy

transfer from the coupling between the solvent to the reaction coordinate.71 Second, as we

have demonstrated in our previous studies,68–70 the (2D) representation of the reaction coor-

dinate that incorporates both distance and solvent fluctuations can be mapped to an efficient

one-dimensional Marcus-like theory. While fluctuations in both coordination number and

electric field can be utilized to examine solvent fluctuations,68–70 we consider electric field to

represent solvent fluctuations. This is because, fluctuating coordination number may lack

information about the solvent rearrangement beyond the first and second shells, whereas

the electric field that a solute molecule experiences includes the effects of solvent rearrange-

ment from the entire solvent. Furthermore, electric field has been proven to be an excellent

collective variable to examine solvent effects in vibrational spectroscopy and has been used

in modeling spectroscopic observables such as transition frequencies, dipole moments, and

polarizability.72–74 Thus, by exploring both distance and electric field within the framework

of TST and Marcus theory we wish to provide a clear, in-depth, self-consistent physical pic-

ture regarding the effects of ion-pair dissociation and solvent exchange on the kinetics and

pathways of proton transfer.

Theory and Simulation

Two-dimensional transition state theory

To formulate TST for a system described by the intrinsic reaction coordinate, Rc = (q, E(q))

with q being the interionic/molecular distance and E being the solvent-exerted electric field

on the solute projected along a particular direction (see Results and Discussion for specific

cases), and the rest of the degrees of freedom as the solvent bath coordinate (B), we first

make a coordination transformation from a set of Cartesian coordinates X of 3N components

(N is the number molecules including ions) to the set of (Rc, B), where B has 3N − 2
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components. The conjugate momenta associated with this new set are pq, pE, and PB with

3N − 2 components, which are transformed from the Cartesian momentum PX with 3N

components. We adopt the formalism of constructing a multi-dimensional Hamiltonian in

generalized coordinate space.75 Here the Hamiltonian can be straightforwardly expressed as:

H =
1

2
Zqp

2
q +

1

2
ZEp

2
E + ZqEpqpE +

1

2
P T
BZBPB + V (q, E,B)

= K(q) +K(E) +K(q, E) +K(B) + V (q, E,B). (2)

The first four terms in Equation 2 are the kinetic energy terms (the cross-terms between

pq and PB and between pE and PB have been ignored) and the last one is the potential

energy. For a generalized coordinate, ξ = q or ξ = E, Zξ =
∑i=3N

i=1
1
mk

(

∂ξ
∂xk

)2

, where

mk is the mass associated with the kth component (xk) of the Cartesian coordinate, X.

Likewise, ZqE =
∑i=3N

i=1
1
mk

(

∂q
∂xk

)(

∂E
∂xk

)

. In the case of water exchange around hydronium

or dissociation of hydronium chloride, Zq is associated with the oxygen-oxygen or oxygen-

chlorine reduced mass, µ: Zq = 1/µ =
(

1
mO

+ 1
mO/Cl

)

, where mO and mCl are the mass

of oxygen and chlorine, respectively. For the proton transfer we consider that the donor

oxygen-proton-acceptor oxygen angle is 180◦; therefore, Zq =
(

2
mO

+ 4
mH

)

.43 To determine

ZE, we consider the electric field on a solute ion or atom exerted by the remaining solution

along a chosen direction, ê: E = ê ·
∑N−1

i=1
Qi

r2i
r̂i, where Qi is the partial charge of the ith

atom/ion exerting electric field from a distance ri in the r̂i direction. We utilize the Dang-

Chang model59,76 to assign partial charges to H and O atoms of hydronium and water, while

-1 was assigned to Cl−. In analogy with our formulation of rate theory using coordination

number as a coordinate68,77 the expression for ZE associated with the E-space dynamics

takes the form,

ZE =
N−1
∑

i

f
′2

i

µi

+
2

M

N−2
∑

i=1

N−1
∑

j=i+1

f
′

if
′

j

~ri · ~rj
|~ri||~rj|

. (3)
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Here f
′

i is the derivative of the electric fields (Ei) on an atom of interest with the mass, M ,

exerted by ith atom located at a distance ri, i.e., f
′

i =
(

∂Ei

∂ri

)

= −2Qi

r3i
(ê · r̂i). f

′

j describes

the same as f
′

i , but due to the jth atom. µi is the reduced mass of the ith atom and the

atom experiencing the electric field. Likewise,68 ZqE, which is associated with the correlated

motion between q and E, can be expressed as:

ZqE =
N−1
∑

i

f
′

i

~ri · ~q
|~ri||~q|

. (4)

Given knowledge of the Hamiltonian shown in Eq. 2, the joint probability distribution,

P (q, n), can be determined through integration over the variable q′ and E ′:75

P (q, E) =
1

C

∫

dXdPXδ(q
′ − q)δ(E ′ − E) exp(−βH), (5)

where C is the normalization constant and dX and dPX are the phase space variables (which,

as aforementioned, can be transformed to the reaction coordinate variables, q′ and E ′, and

the bath variable B). Equation 5 utilizes the property of the delta functions: The integral

vanishes unless q′ = q and E ′ = E, providing ensemble-averaged joint probability of finding

q′ = q and E ′ = E. By exploring all possible values of q and E, the joint probability

distribution for these coordinates can be obtained in the entire joint space of q and E. The

2D PMF, W (q, E), is related to P (q, E) via:

W (q, E) = −kBT lnP (q, E) + 2kBT ln(q) +W ′. (6)

Here,W ′ is a constant introduced to shift the global minimum ofW (q, E) to zero. In practice,

we obtain W (q, E) from our DFT simulations by computing a 2D-histogram of q and E: If

there are dN number of cases where distance is between q and q+ dq and the electric field is

between E and E + dE, then W (q, E) is expressed as W (q, E) = −kBT ln(dN/4πq2dqdEρ)

where 4πq2dqdE is the volume element of the joint q−E space and ρ is the number density
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(number of atoms/molecules/ions per unit volume). This straightforwardly resembles Eq. 6,

in addition to constants such as logarithms of ρ, dE, and dq that are included in W
′

.

The general expression for the TST rate for a dividing surface described by the parametric

equation, S(X) = 0, is given by:

k2D
TST =

1

QR

∫

dXdPXΘ(Ṡ)Ṡδ(S) exp[−βH], (7)

where, Ṡ = ∂S
∂X

d
dt
X, is the time derivative of S. Θ(Ṡ) selects trajectories in phase space that

are initially heading towards products. QR =
∫

R
dXdPX exp[−βH] is the reactant partition

function (
∫

R
indicates integral over only the reactant region R). Thus, we find

QRk
TST = Tr

[

e−βHδ (q)
d

dt
q θ

(

d

dt
q

)]

, (8)

where we assume that the dividing surface, S(q) = 0, only depends on the interionic distance,

q. Equation 8 further provides

QRk
TST =

e−βW †

2π
√

KE

(

ZE − Z2
qE/Zq

)

(9)

W
(

q†, E
)

= W † +
1

2
KEE

2 (10)

We employed the reactive flux method49 to determine the transmission coefficient-corrected

TST timescales (τ = 1/κRFkTST). The reactive flux transmission coefficient is a time-

dependent quantity defined by,

κRF(t) =
〈vq(0)Θ[q(t)− q†]δ(q(0)− q†)〉
〈vq(0)Θ[vq(0)]δ(q(0)− q†)

, (11)

where q(0) and vq(0) are respectively the initial value of q and associated velocity at the top

of the barrier (q†) on the W (q), and Θ is a Heaviside step function.
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Marcus theory

Marcus theory of ion-pairing and solvent exchange allows us extract the reactant and product

states from the 2D PMF as the parabolic functions of electric field. In this theory, the

reactant, W (qR, E), and the product, W (qP, E), free energies can be expressed as:

W (qR, E) = WR(E) =
1

2
KRE

2

W (qP, E) = WP(E) =
1

2
KP(E − EP)

2 +∆W, (12)

where KR and KP are the curvatures of the reactant and product parabolas with the minima,

E = 0 and E = EP, respectively. ∆W = WP(EP) − WR(0), is the free energy difference

between the product and reactant equilibria. Marcus parabolas are diabatic states that cross

at a point through which the transitions between the reactant and product states occur

driven by solvent rearrangement. The free energy barrier corresponding to this transition

state, ∆W †, can be determined straightforwardly (Eq. 13) by considering KR = KP. ∆W †

is related to the free energy difference between the reactant and product, ∆W , and the

solvent reorganization energy, λ, the energy cost required for transforming the equilibrium

reactant coordination number to the equilibrium product coordination number, i.e., λ =

WR(EP)−WR(0).

∆W † =
(λ+∆W )2

4λ
. (13)

However, the free energy barrier can be sensitive to the difference between the curvatures of

reactant and product parabolas as discussed in our earlier study.69 The curvature difference

leads to a couple of crossing points, but the reactant-to-product transition should occur

most-likely through the one with the lowest barrier as given below:69

∆W † =
KP(KR +KP)

∆K2
λ+

KR

∆K
∆W

−
√
2EPKRKP

∆K2

√

[KPλ+∆K∆W ]. (14)
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Analogous to Wigner’s TST, then the transition rate can be determined by the following

expression:68,78

kMarcus =
kBT

h
exp[−∆W †/kBT ]. (15)

It is worth to note that we have chosen the prefactor, kBT
h
, for simplicity, assuming that

it will not affect significantly and provide similar rates when compared to a more accurate

prefactor specific to electric field. However, if one may require, we recommend to explore

the formalism presented in our previous work43,77 for determining accurate prefactors for

specific reaction coordinates.

In the exact formulation of Marcus theory the ion-pair dissociates spontaneously leading

to the product state as soon as the crossing point between the reactant and product parabolas

is reached. Importantly, the fluctuations of the surrounding solvent that couples to the

motion along the reaction coordination can lead to barrier-recrossing, which can effectively

reduce the number of barrier crossings. The semi-classical approach of Landau79,80 and

Zener81 can be adopted to account for such solvent effect through the determination of the

associated transmission coefficient (κLZ). κLZ depends on the probability (P ) of the reactive

transitions through the crossing region as well as the location of the crossing region:68,82

κLZ =















2P/(P + 1) at “normal region”

2P (1− P ) at “abnormal region”.

. (16)

The “normal region” and “abnormal region” denote a curve crossing region at the opposite

and same sides of the parabolas, respectively. P is related to the coupling (C) between the

reactant and product parabolas and the positive traversal velocity (vE) in electric field space

at the crossing point:

P = 1− exp
[

− 2πC2

h̄vE|S2 − S1|
]

, (17)
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where S1,2 = dW (E)
dE

|E=E† are the slopes of the parabolas at the crossing point and vE is

the mean value of the traversal velocity distribution, D(v), at the crossing point obtained

from the phase space trajectories of electric field. D(v) has an exponential form: D(v) =

D0exp(−v2/σ2), and thereby vE can be obtained as vE =
∫

vD(v)dv. Assuming that the

curvature of the reactant and product parabolas are unequal, the coupling C at the crossing

point (E = E†) takes the form of; C(E) = KR+KP

2
√
KRKP

√

[

WR(E)−WR(0)
][

WP(E)−WP(Ep)
]

,

where the prefactor disappears for KR = KP.
68 The probability of reactive transition, there-

fore κLZ, is dominated by the reactant-product coupling strength, C, essentially affecting the

transition rates. After incorporating ∆WE†

r and κLZ, the corrected Marcus rate expression

becomes:

kMarcus
Correct = κLZkMarcus exp

[

−∆WE†

r /kBT
]

. (18)

Ab initio molecular dynamics simulations

We performed classical ab initio molecular dynamics simulations of concentrated hydrochloric

(HCl) acid solutions in the NVT ensemble at T=300 K under periodic boundary conditions.

The potential energy surface was represented using the GGA level of density functional

theory (DFT). 2M and 8M HCl solutions were simulated at their experimental densities.83

Dynamics were generated using the i-PI program84,85 and employed a multiple timescale

(MTS) integrator of the r-RESPA form.86 All simulations employed a 2.0 fs outer time

step for integrating the full forces and a 0.5 fs inner time step for integrating the reference

forces. Initial configurations for the DFT simulations were obtained according to a multi-step

procedure detailed previously.37 5 ps equilibration runs were performed for each trajectory

using a local Langevin thermostat with a time constant of 25 fs, while production runs used

a global stochastic velocity re-scaling (SVR) thermostat87 with a time constant of 1 ps. The

global coupling of the SVR thermostat results in negligible perturbation to the dynamics

of the systems.88 In aggregate, we performed 555 ps and 400 ps of 2M HCl and 8M HCl,
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respectively.

Full forces were evaluated at the DFT level of electronic structure theory using the CP2K

program89,90 and the revPBE91,92 GGA functional, with D3 dispersion corrections93 added.

Atomic cores were represented using the dual-space Goedecker-Tetter-Hutter pseudopoten-

tials.94 Within the GPW method,95 Kohn-Sham orbitals were expanded in the TZV2P basis

set, while an auxiliary plane-wave basis with a cutoff of 400 Ry was used to represent the

density. The self-consistent field cycle was converged to an electronic gradient tolerance of

ǫSCF = 5 × 10−7 using the orbital transformation method,96 with the initial guess provided

by the always-stable predictor-corrector extrapolation method97,98 at each time step. The

MTS reference forces were evaluated at the SCC-DFTB399 level of theory using the DFTB+

program.100 The 3ob parameter set was used to describe the H and O atoms,101 and was

combined with a parameterization for hydrated halide ions.102 Dispersion forces were in-

cluded via a Lennard-Jones potential,103 whose parameters were taken from the Universal

Force Field.104

Results and Discussion

In order to accurately employ either TST or Marcus theory utilizing a 2D reaction coordinate

Rc for the problem, it is necessary that the reactant and the product states are clearly

distinguishable on the 2D-free energy surface. For the case of a concentrated HCl solution

relevant to this study, this is clearly demonstrated in Figure 1. In Figure 1a, we consider

the 2D reaction coordinate, Rc(q, E). Here q represents the distance between a hydronium

oxygen and a chloride ion and between a hydronium oxygen and a water oxygen in the study

of ion-pair dissociation and water exchange, respectively. The electric field, E is exerted

by the solvent bath and calculated on the chloride ion or the water oxygen and projected

along the direction from the hydronium oxygen to the chloride ion or the water oxygen. For

investigating proton transfer, we use the standard difference coordinate, namely the distance

12









Table 1: Parameters for Marcus theory and transmission coefficient and timescale for proton
transfer, H3O-Cl dissociation, and H3O-H2O dissociation obtained using Marcus theory and
TST for the 2M HCl solution.

Proton transfer H3O-Cl dissociation H3O-H2O dissociation
Marcus theory
KR

(kcal/mol/(Eh/Bohr
e

)2)
213.093 3625.970 3131.900

KP

(kcal/mol/(Eh/Bohr
e

)2)
203.664 3175.210 953.597

∆W (kcal/mol) 0.013 -0.009 1.022
λ (kcal/mol) 1.036 0.743 4.912

∆W † + ∆WE†

r

(kcal/mol)
0.712 1.225 2.378

vE (Eh/Bohr
e

fs−1) 0.005 0.001 0.001
C (kcal/mol) 0.253 0.174 0.799
κLZ 0.376 0.400 0.944
τ = 1/kMarcus

Correct (ps) 1.422 3.776 9.415

TST
κRF 0.047 0.070 0.029
τ = 1/κRFkTST (ps) 2.170 3.760 21.61

state, a chloride ion or water molecule experiences a positive electric field that reduces as

the chloride ion or a water molecule moves away from the H3O
+ along larger q direction and

fluctuates around a vanishingly small value in the solvent-separated state. Note that, for a

given ionic strength of 8M HCl water forms a stronger hydrogen bond with hydronium than

the corresponding H3O
+-Cl− motif. This is indicated by the shorter equilibrium H3O

+-

H2O hydrogen-bonding distance than the H3O
+-Cl−.31 Interestingly, while the H3O

+-Cl−

interaction strength increases with increasing HCl concentration (the solvent-separated state

dominates over the contact ion-pair state at the 2M HCl solution, which is reversed at the

8M HCl solution), the H3O
+-H2O interaction is barely affected (Figure S2 and S3 in the SI)

in agreement with a previous study.31

Since the Marcus parabolas in Figure 4 cross in the “normal region” for all three cases

at 2M HCl concentration and there is a significant gap between the lower and higher en-

ergy surfaces (due to strong couplings at the crossing region), they can be treated as
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Table 2: Parameters for Marcus theory and transmission coefficient and timescale for proton
transfer, H3O-Cl dissociation, and H3O-H2O dissociation obtained using Marcus theory and
TST for the 8M HCl solution.

Proton transfer H3O-Cl dissociation H3O-H2O dissociation
Marcus theory
KR

(kcal/mol/(Eh/Bohr
e

)2)
132.084 2709.340 2437.260

KP

(kcal/mol/(Eh/Bohr
e

)2)
128.903 2071.410 752.544

∆W (kcal/mol) 0.008 0.598 1.084
λ (kcal/mol) 0.579 0.497 4.627

∆W † + ∆WE†

r

(kcal/mol)
0.697 1.232 2.398

vE (Eh/Bohr
e

fs−1) 0.006 0.001 0.001
C (kcal/mol) 0.143 0.049 0.751
κLZ 0.203 0.045 0.945
τ = 1/kMarcus

Correct (ps) 2.579 28.923 9.738

TST
κRF 0.029 0.033 0.036
τ = 1/κRFkTST (ps) 4.13 12.510 15.250

an adiabatic processes. To further understand the details of proton transfer pathways

and the interplay between H3O
+-Cl− dissociation and water exchange around H3O

+, we

elaborate this adiabatic picture in terms of a set of higher (W+) and lower (W−) adi-

abatic surfaces generated through the relation described in the previous section, W± =

WR(E)+WP(E)
2

± 1
2

√

4[C(E)]2 + [WR(E)−WP(E)]2. While the adiabatic picture persists for

both proton transfer and water exchange at 8M HCl concentration, the increase in concen-

tration for H3O
+-Cl− dissociation requires a non-adiabatic framework because the diabatic

states cross within the “abnormal region” close to the electric field equilibrium in the prod-

uct state. Thus, the coupling strength between the reactant and product parabolas is very

small and accessing to the higher adiabatic free energy surface is necessary to enable the

dissociation of the H3O
+-Cl− pair.

Although we have just shown that the Marcus parabolic model can describe different rate

processes in the HCl solutions, it of interest to examine whether Marcus pathways outlined
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strongly depends on a specific process because of the distinct coupling between the reactant

and product electric field states. For example, at 2M HCl concentration, the coupling is

smaller and similar for both proton transfer and H3O
+-Cl− dissociation leading to smaller κLZ

(≤ 0.4) (Table 1), while for water exchange around H3O
+ the stronger coupling results in the

maximum κLZ (∼ 1). The increase in HCl concentration to 8M reduces κLZ for proton transfer

and H3O
+-Cl− dissociation due to the decrease in the reactant-product coupling. However

κLZ does not change for water exchange around H3O
+ as the coupling is not dependent on the

ionic strength (Table 1 and Table 2). Regardless of the difference between κRF and κLZ, the

dynamical separation among proton transfer, H3O
+-Cl−, and water exchange around H3O

+

is possible to achieve using both the framework of TST and Marcus theory. For 2M HCl

concentration, proton transfer between two neighboring water molecules is the fastest process

(1-2 ps) and H3O
+-Cl− dissociation is significantly slower (∼ 4 ps). Finally water exchange

around H3O
+ is the slowest process (9-21 ps). Importantly, our study predicts that there

is a significant concentration dependency to some of the of the processes discussed herein.

8M HCl leads to two-times slower proton transfer dynamics and four-to-seven times slower

H3O
+-Cl− dissociation dynamics, interestingly the rate of water exchange around H3O

+ is

not affected.

Although we are able to examine proton transfer timescales using Marcus theory and

TST, the time spent by a proton at the Zundel like transition state cannot be computed by

these theories. This is because the Zundel state is not a free energy minimum. However,

as indicated by the oscillatory motion of κRF(t) in Figure 5, the proton exhibits dynamical

stability at the Zundel state for a short period of time before it transfers to the neighboring

water molecule. The life-time of the Zundel state can then be obtained by determining its

time-dependent survival probability, (P (t, t+δt), t⋆). It is assigned to 1 if a proton is located

within 0.05 Å of the barrier top of W (δq) in Figure 2 at both times t and t+ δt and during

the interval of dt it does not leave the neighborhood for any continuous period of time, t⋆.

Otherwise, P (t, t+ δt, t⋆) is set to zero. The life-time of the Zundel state can be determined
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Summary and Conclusion

Herein, we have provided a detailed molecular picture of proton transfer in aqueous solution

using the tools of molecular simulation in conjunction with rate theory. Importantly, this

study includes the the effects of ionic strength using interaction potentials based in quantum

mechanics (DFT) in addition to treating the nuclei both classically and quantum mechani-

cally. The importance of ionic strength is known to have important consequences providing

a novel picture of the correlated local structure of the hydrated proton with the counter-ion

in concentrated HCl solutions.31

Through the lens of rate theory in the condensed phase we can isolate the important

pathways of proton transfer in addition to ion-pair dissociation, and solvent exchange. In-

terestingly, our study finds that the reaction of proton transfer takes on a concentration

dependence that decreases the rate by a factor of 2 from 2M to 8M HCl. Not surprisingly,

the processes that takes on the largest concentration dependence is the ion-pairing between

H3O
+-Cl−, whereas solvent exchange about H3O

+ seems to be concentration independent. A

theoretical outcome of this study is that, we were able to reproduce the trends in the rates of

the aforementioned pathways using both a 2D formulation of TST and a novel formulation of

Marcus theory. It is unfortunate, that quantitative agreement was not achieved between the

two distinct theoretical approaches. This is most likely due to a couple of factors: First, the

one-dimensional formulation of κRF, that uses only a distance criteria that is known to be an

inferior descriptor of rate processes in the condensed phase, and second, the simplification of

the prefactor in Marcus rate expression (Equation 15) that will be further examined in the

future for obtaining its more accurate description specific to electric field. Nevertheless, the

qualitative agreement between TST and Marcus theory are impressive but warrant further

investigations to their differences. This will include future exploration of different reaction

coordinates (such as the asymmetry coordinate37) in addition to different regimes of TST

such as the energy diffusion limit.71

Last, this study allows us to weigh in on the measurement of the life-time of the Zundel
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moiety using 2D IR.32 Because the Zundel state in our formulation is not a free-energetically

stable state (e.g. it is a transition state), we cannot employ the tools of rate theory as defined

herein, to predict the life-time of the Zundel state. However, because of the slow thermal

energy transfer from the solvent to the proton transfer coordinate, the Zundel state exhibits

dynamical stability and we can estimate its life-time by determining its time-dependent sur-

vival probability. This analysis reveals that the life-time of the Zundel state is 0.8 ps at 2M

and 1.3 ps at 8M, which agrees well with the 2D IR measurements.32 It should be noted

that our AIMD simulations did not consider nuclear quantum effects; if these

effects are included in path integral-based AIMD simulations,106–109 one might

find it very challenging to define and distinguish ”Eigen”-like and ”Zundel”-

like structures.36,37,110 Our study demonstrates that the feature of energy diffu-

sion limit, i.e., the slow thermal energy transfer from the solvent to the proton

transfer reaction coordinate is imperative to reproduce an accurate experimen-

tal estimate of the Zundel life-time. Moreover, we have shown that there is indeed a

concentration dependence to the rate of proton transfer which we leave as a prediction for

future experimental studies to verify.
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