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Abstract

Rate theories have found great utility across the chemical sciences by providing a
physically transparent way to analyze dynamical processes. Here we demonstrate the
benefits of using transition state theory and Marcus theory to study the rate of proton
transfer in HCI solutions. By using long ab initio molecular dynamics simulations
we show that good agreement is obtained between these two different formulations of
rate theory and how they can be used to study the pathways and life-time of proton
transfer in aqueous solution. Since both rate theory formulations utilize identical sets

of molecular data, this provides a self-consistent theoretical picture of the rates of



aqueous phase proton transfer. Specifically, we isolate and quantify the rates of proton
transfer, ion-pair dissociation, and solvent exchange in concentrated HCI solutions. Our
analysis predicts a concentration dependence to both proton transfer and ion-pairing.
Moreover, our estimate of the life-time for the Zundel species is 0.8 ps and 1.3 ps for
2M and 8M HCI, respectively. We demonstrate that concentration effects, can indeed
be quantified through the combination of state-of-the-art simulation and theory and
provides a picture of the important correlations between the cation (hydronium) and

the counter-ion in acid solutions.

Introduction

Discovering and quantifying the pathways and rates of proton transport and understand-
ing its multidimensional behavior to control proton conduction continues to be the central
focus of various modern energy technologies.!™ While the structures of small protonated

t°> 7 and theory®?

gas phase water clusters have been well established using both experimen
the structures formed by aqueous proton defects in the condensed phase and the mecha-
nism of their interconversion still provokes significant debate. For the case of the isolated
reactive proton defect, there have been numerous high-quality studies using reactive force
fields that yield a consistent picture of the intrinsic free-energy landscape of the isolated
hydrated proton.!%2! The speciation of the hydrated proton to the air-water interface is still
an active area of research requiring the use of difficult to interpret surface-sensitive spec-
troscopy in addition to large-scale simulation using reactive force-fields. 91315726 Moreover,
the consistency of simulation studies with the well accepted surface tension measurement of
acids remains uncertain.?”?® This requires an understanding of the correlation between the
proton (e.g. cation) with the counter ion in concentrated acid solutions.?% 33

To understand the role of counterions in acid solutions, pioneering x-ray measurements
have been undertaken to understand ion-pairing in concentrated acids under bulk homo-

29-31

geneous conditions. These studies have provided insights into the transition, as the



acid concentration is increased, from fully dissociated acids to associated (molecular or ion-
paired).?3% Moreover, extended x-ray absorption fine structure (EXAFS) measurements of
HCI detected a new correlated species, a contracted contact ion-pair, that exists between the
hydrated proton and the chloride ion over a wide range of concentrations.®' This measure-
ment suggests that when examining the structure and dynamics of the hydrated proton in
aqueous solution, the counterion cannot be treated as a spectator. This realization has pos-
sible implications for viewing the proton in analogy to a (monovalent) cation in an inorganic
salt (e.g. electrolyte) where ion-ion correlation for monovalent salts can be neglected at low
ionic strength.34% Pioneering 2D infrared (2D IR) experiments have deduced the life-time
of the hydrated Zundel complex in 4M HCI by probing the characteristic stretch and bend
modes in the first hydration shell of the proton defect.?? This novel prediction of a lower
bound on the life-time of a “Zundel” like species (480 fs3?) inspired simulation studies in
an attempt to provide a molecular picture of the findings. %3637 Napoli et. al.?” produced
long trajectories using quantum density functional theory (DFT) based interaction potentials
(with both quantum and classical nuclei) of both 2M and 4M HCI solutions. Using these
simulations they were able to demonstrate the importance of a asymmetry coordinate that
distinguishes the hydrogen bonding asymmetry of the solvating acceptor water molecules
around the proton defect. This work demonstrated that the relaxation timescale of this
asymmetry coordinated was in good agreement with the estimates of the “Zundel” life-time
measured by 2D IR.32 This suggests that what was being experimentally probed was related
to the collective reorganization of the hydrogen bond network about the proton defect and
that this is correlated to the life-time of the Zundel like complexes formed in the liquid.?”
More recently the hopping rate of protons in water was directly determined experimentally
by monitoring 2D IR chemical exchange using a methyl thiocyanate vibrational probe.3®

In the present work we use the framework of rate theory®? 33 to separate the contributions
to the dynamics of different molecular phenomena, such as ion-pairing and solvent exchange,

that occur in concert with proton transfer. In the standard application of rate theory to ion-



pairing one can employ a simple interionic distance as the reaction coordinate to investigate
ion-pairing and solvent exchange events.5¥% According to transition state theory (TST),
when the system arrives at the transition state (the top of the free energy barrier) from
the reactant state, it immediately traverses to the product state. This assumption generally
does not work using distance between reacting species as a reaction coordinate because of the
strong coupling to the fluctuating solvent bath leading to significant barrier-recrossing. The
non-equilibrium solvent effect is quantified, by multiplying the TST rate with a transmission

45,47-49,66,67 .. can be formulated in terms of the fraction

coefficient, k, as shown in Equation 1.
of the flux of reacting trajectories through dividing surface that produces the desired product

state and a small value is indicative of an inferior reaction coordinate.

o V21uB [ g2 exp [ — AW ()] dg

(1)

Here p is the reduced mass for the dynamics along the reaction coordinate, g. W(q) is the
free energy profile, wherein ¢' is the location of the transition state, and 8 = 1/kgT is the
inverse of thermal energy where kg and T are the Boltzmann constant and temperature,
respectively. In Equation 1, we considered the spherically symmetric nature of the reaction
coordinate, ¢, that leads to the ¢? Jacobian term. The more general expressions will be
employed later in the manuscript. In TST, & is assumed to be unity. However, strong non-
equilibrium solvent effects can lead to k < 1, providing significantly deviations from TST
rates. 5464

To improve upon the standard TST formulation given in Equation 1, a direct incorpora-
tion of solvent fluctuations as an additional reaction coordinate for describing the phenomena
of ion-pair dissociation and solvent exchange has been recently formulated by Roy and co-
workers. % 7 This additional complexity in defining the reaction coordinate will allow us to

compare and contrast two different approaches for investigating rate processes in condensed

phase systems. First, the standard formulation of rate theory (as stated above) in conjunc-



tion with reactive flux calculations will yield a time-dependent transmission coefficient for
the reaction coordinate outlined herein, revealing the temporal behavior of thermal energy
transfer from the coupling between the solvent to the reaction coordinate.™ Second, as we
have demonstrated in our previous studies,* ™ the (2D) representation of the reaction coor-
dinate that incorporates both distance and solvent fluctuations can be mapped to an efficient
one-dimensional Marcus-like theory. While fluctuations in both coordination number and

6870 we consider electric field to

electric field can be utilized to examine solvent fluctuations,
represent solvent fluctuations. This is because, fluctuating coordination number may lack
information about the solvent rearrangement beyond the first and second shells, whereas
the electric field that a solute molecule experiences includes the effects of solvent rearrange-
ment from the entire solvent. Furthermore, electric field has been proven to be an excellent
collective variable to examine solvent effects in vibrational spectroscopy and has been used
in modeling spectroscopic observables such as transition frequencies, dipole moments, and
polarizability. > ™ Thus, by exploring both distance and electric field within the framework
of TST and Marcus theory we wish to provide a clear, in-depth, self-consistent physical pic-

ture regarding the effects of ion-pair dissociation and solvent exchange on the kinetics and

pathways of proton transfer.

Theory and Simulation

Two-dimensional transition state theory

To formulate TST for a system described by the intrinsic reaction coordinate, R. = (¢, E(q))
with ¢ being the interionic/molecular distance and F being the solvent-exerted electric field
on the solute projected along a particular direction (see Results and Discussion for specific
cases), and the rest of the degrees of freedom as the solvent bath coordinate (B), we first
make a coordination transformation from a set of Cartesian coordinates X of 3N components

(N is the number molecules including ions) to the set of (R., B), where B has 3N — 2



components. The conjugate momenta associated with this new set are p,, pg, and Pp with
3N — 2 components, which are transformed from the Cartesian momentum Px with 3N
components. We adopt the formalism of constructing a multi-dimensional Hamiltonian in

generalized coordinate space.”™ Here the Hamiltonian can be straightforwardly expressed as:

1 1 1

= K(q)+K(E)+ K(¢q,E)+ K(B)+V(q, E, B). (2)

Zeph + Zyppepe +

The first four terms in Equation 2 are the kinetic energy terms (the cross-terms between

pg and Pp and between pgp and Pp have been ignored) and the last one is the potential

my \ Oy

- 2
energy. For a generalized coordinate, { = q or £ = E, Z; = Z;;i’NL(a—E) , where
my is the mass associated with the k™ component (z;) of the Cartesian coordinate, X.

Likewise, Z,p = Ezj’N ﬁ(c’%) <g—f;>. In the case of water exchange around hydronium

or dissociation of hydronium chloride, Z, is associated with the oxygen-oxygen or oxygen-

1 1
mo mo/cl

chlorine reduced mass, pu: Z, = 1/u = < >, where mo and mc; are the mass
of oxygen and chlorine, respectively. For the proton transfer we consider that the donor
oxygen-proton-acceptor oxygen angle is 180°; therefore, Z, = (mio + miH> .43 To determine
Z i, we consider the electric field on a solute ion or atom exerted by the remaining solution
along a chosen direction, é: E = Zlel Q; 7;, where Q; is the partial charge of the 7*®
atom/ion exerting electric field from a distance r; in the 7; direction. We utilize the Dang-
Chang model®” " to assign partial charges to H and O atoms of hydronium and water, while
-1 was assigned to Cl7. In analogy with our formulation of rate theory using coordination

number as a coordinate® 7" the expression for Zp associated with the E-space dynamics

takes the form,
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Here f; is the derivative of the electric fields (£;) on an atom of interest with the mass, M,

exerted by i atom located at a distance r;, i.c., f; = ( 5 ) = 2QZ (e 7). fj' describes
the same as fi/, but due to the ;' atom. p; is the reduced mass of the i*" atom and the

68

atom experiencing the electric field. Likewise,”® Z,g, which is associated with the correlated

motion between ¢ and E, can be expressed as:

Zf Ll @

Given knowledge of the Hamiltonian shown in Eq. 2, the joint probability distribution,

P(q,n), can be determined through integration over the variable ¢’ and E’:™

1 / dXdPxd(q — q)6(E" — E) exp(—fH), (5)

P(q, E) = 8

where C'is the normalization constant and dX and dPx are the phase space variables (which,
as aforementioned, can be transformed to the reaction coordinate variables, ¢' and E’, and
the bath variable B). Equation 5 utilizes the property of the delta functions: The integral
vanishes unless ¢’ = ¢ and E' = F, providing ensemble-averaged joint probability of finding
¢ = qand E' = E. By exploring all possible values of ¢ and E, the joint probability
distribution for these coordinates can be obtained in the entire joint space of ¢ and E. The

2D PMF, W (q, E), is related to P(q, E) via:
W(q,E) = —kgTIn P(q, E) + 2kgT In(q) + W". (6)

Here, W' is a constant introduced to shift the global minimum of W (g, E) to zero. In practice,
we obtain W (g, F) from our DFT simulations by computing a 2D-histogram of ¢ and E: If
there are dN number of cases where distance is between ¢ and ¢ + dg and the electric field is
between E and E + dFE, then W (q, E) is expressed as W(q, E) = —kgT In(dN/4mq*dqdEp)

where 47q?dqdE is the volume element of the joint ¢ — E space and p is the number density



(number of atoms/molecules/ions per unit volume). This straightforwardly resembles Eq. 6,
in addition to constants such as logarithms of p, dE, and dq that are included in W'.
The general expression for the TST rate for a dividing surface described by the parametric

equation, S(X) = 0, is given by:
1 .
% = o [ AXAPXO(3)35(S) expl-51H), (7
R

where, S = gf( C‘litX is the time derivative of S. @(S ) selects trajectories in phase space that
are initially heading towards products. Qr = fR dX dPx exp[—FH] is the reactant partition
function ( fR indicates integral over only the reactant region R). Thus, we find

Q™ =i |5 () 00 ()] ®)

where we assume that the dividing surface, S(q) = 0, only depends on the interionic distance,

q. Equation 8 further provides

st - — )
2my /K (2 — 225/ 2,)

W (¢",E) =WT'+ %KEE2 (10)

We employed the reactive flux method*’ to determine the transmission coefficient-corrected
TST timescales (1 = 1/krpkrst). The reactive flux transmission coefficient is a time-

dependent quantity defined by,

(11)

where ¢(0) and v,(0) are respectively the initial value of ¢ and associated velocity at the top

of the barrier (¢') on the W(q), and © is a Heaviside step function.



Marcus theory

Marcus theory of ion-pairing and solvent exchange allows us extract the reactant and product
states from the 2D PMF as the parabolic functions of electric field. In this theory, the

reactant, W(qr, E'), and the product, W(gp, F), free energies can be expressed as:

1
W(gr, E) = Wr(E)= 5KRE2
1
Wigp,E) = Wp(E)= §KP(E — Ep)* + AW, (12)

where Ky and Kp are the curvatures of the reactant and product parabolas with the minima,
E =0 and E = Ep, respectively. AW = Wp(Ep) — Wg(0), is the free energy difference
between the product and reactant equilibria. Marcus parabolas are diabatic states that cross
at a point through which the transitions between the reactant and product states occur
driven by solvent rearrangement. The free energy barrier corresponding to this transition
state, AW, can be determined straightforwardly (Eq. 13) by considering Kr = Kp. AWT
is related to the free energy difference between the reactant and product, AW, and the
solvent reorganization energy, A, the energy cost required for transforming the equilibrium
reactant coordination number to the equilibrium product coordination number, i.e., A =

Wr(Ep) — Wr(0).
(A + AW)?

AWT =
W A\

(13)

However, the free energy barrier can be sensitive to the difference between the curvatures of
reactant and product parabolas as discussed in our earlier study.% The curvature difference
leads to a couple of crossing points, but the reactant-to-product transition should occur

most-likely through the one with the lowest barrier as given below:%

Kp(Kp + Kp).  Kg
AW = A
w AK? TAK

—%\/ [Kp\+ AKAW]. (14)

AW




Analogous to Wigner’s TST, then the transition rate can be determined by the following

expression: %78
kgT
FMarcus = Texp[—AWT/kBT]. (15)
It is worth to note that we have chosen the prefactor, %, for simplicity, assuming that

it will not affect significantly and provide similar rates when compared to a more accurate
prefactor specific to electric field. However, if one may require, we recommend to explore
the formalism presented in our previous work?*™ for determining accurate prefactors for
specific reaction coordinates.

In the exact formulation of Marcus theory the ion-pair dissociates spontaneously leading
to the product state as soon as the crossing point between the reactant and product parabolas
is reached. Importantly, the fluctuations of the surrounding solvent that couples to the
motion along the reaction coordination can lead to barrier-recrossing, which can effectively

79,80

reduce the number of barrier crossings. The semi-classical approach of Landau and

Zener®! can be adopted to account for such solvent effect through the determination of the
associated transmission coefficient (k1z). krz depends on the probability (P) of the reactive

transitions through the crossing region as well as the location of the crossing region: %52

2P/(P+1) at “normal region”
Rl1z — . (16)
2P(1— P) at “abnormal region”.

The “normal region” and “abnormal region” denote a curve crossing region at the opposite
and same sides of the parabolas, respectively. P is related to the coupling (C') between the
reactant and product parabolas and the positive traversal velocity (vg) in electric field space

at the crossing point:
21 C?

P=1— e
exp hUE|SQ — Sl‘ ’

(17)
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dVZEEHEZET are the slopes of the parabolas at the crossing point and vg is

where S;o =
the mean value of the traversal velocity distribution, D(v), at the crossing point obtained
from the phase space trajectories of electric field. D(v) has an exponential form: D(v) =
Doexp(—v?/c?), and thereby vg can be obtained as vp = [vD(v)dv. Assuming that the

curvature of the reactant and product parabolas are unequal, the coupling C' at the crossing

point (E = ET) takes the form of; C(E) = 2% [Wr(E) — Wg(0)] [Wr(E) — Wp(E,)],
where the prefactor disappears for Kg = Kp.% The probability of reactive transition, there-
fore K1z, is dominated by the reactant-product coupling strength, C', essentially affecting the

oy . . T .
transition rates. After incorporating AW ' and kpz, the corrected Marcus rate expression

becomes:

Correct

kMarcus _ KLZkMarcus exp [ . AWTET/kBT] . (18>

Ab initio molecular dynamics simulations

We performed classical ab initio molecular dynamics simulations of concentrated hydrochloric
(HC1) acid solutions in the NVT ensemble at T=300 K under periodic boundary conditions.
The potential energy surface was represented using the GGA level of density functional

theory (DFT). 2M and 8M HCI solutions were simulated at their experimental densities. %

Dynamics were generated using the i-PI program 4%

and employed a multiple timescale
(MTS) integrator of the r-RESPA form.®¢ All simulations employed a 2.0 fs outer time
step for integrating the full forces and a 0.5 fs inner time step for integrating the reference
forces. Initial configurations for the DF'T simulations were obtained according to a multi-step
procedure detailed previously.®” 5 ps equilibration runs were performed for each trajectory
using a local Langevin thermostat with a time constant of 25 fs, while production runs used
a global stochastic velocity re-scaling (SVR) thermostat®” with a time constant of 1 ps. The

global coupling of the SVR thermostat results in negligible perturbation to the dynamics

of the systems.®® In aggregate, we performed 555 ps and 400 ps of 2M HCIl and 8M HCI,

11



respectively.

Full forces were evaluated at the DF'T level of electronic structure theory using the CP2K
program®®% and the revPBE®Y?2 GGA functional, with D3 dispersion corrections® added.
Atomic cores were represented using the dual-space Goedecker-Tetter-Hutter pseudopoten-
tials.?* Within the GPW method,” Kohn-Sham orbitals were expanded in the TZV2P basis
set, while an auxiliary plane-wave basis with a cutoff of 400 Ry was used to represent the
density. The self-consistent field cycle was converged to an electronic gradient tolerance of
escr = b x 1077 using the orbital transformation method,” with the initial guess provided

97,98

by the always-stable predictor-corrector extrapolation metho at each time step. The

MTS reference forces were evaluated at the SCC-DFTB3% level of theory using the DFTB+

01

program.'%® The 3ob parameter set was used to describe the H and O atoms,!*! and was

combined with a parameterization for hydrated halide ions.!%? Dispersion forces were in-

103

cluded via a Lennard-Jones potential,'”” whose parameters were taken from the Universal

Force Field. 104

Results and Discussion

In order to accurately employ either TST or Marcus theory utilizing a 2D reaction coordinate
R. for the problem, it is necessary that the reactant and the product states are clearly
distinguishable on the 2D-free energy surface. For the case of a concentrated HCI solution
relevant to this study, this is clearly demonstrated in Figure 1. In Figure la, we consider
the 2D reaction coordinate, R.(q, E'). Here ¢ represents the distance between a hydronium
oxygen and a chloride ion and between a hydronium oxygen and a water oxygen in the study
of ion-pair dissociation and water exchange, respectively. The electric field, E is exerted
by the solvent bath and calculated on the chloride ion or the water oxygen and projected
along the direction from the hydronium oxygen to the chloride ion or the water oxygen. For

investigating proton transfer, we use the standard difference coordinate, namely the distance

12



between the donor oxygen-proton distance (¢;) and the acceptor oxygen-proton distance (g ):
g = q1— g2 — qo = 0q — qo, Where ¢ is a constant. Here, the electric field is calculated on the
whole donor water-proton-acceptor water fragment and projected along the direction from
the donor oxygen to the proton. The concomitant 2D-free energy landscape determined
from the populations harvested using our DFT simulations (described in detail below) and
the descriptor defined in Figure la result in W (g, E') where all three cases are well-resolved,
namely proton transfer, ion-pair dissociation, and solvent exchange. By performing wavelet
transform of the proton transfer coordinate, we obtain Figure 1b wherein we indeed find that
the “Zundel” like state is frequency-resolved (1000-1500 cm™') and is red-shifted from the
“Eigen” like structure (~2500 cm™!). Having established the imperative of possessing a free-
energy with distinct extrema, we proceed to utilizing the tools of rate theory to determine
how the underlying solution conditions, namely HCI concentration, control the dynamics
and pathways of proton transfer in aqueous solution.

(a) % (b) 4000

3500
3000

& 2500
= 2000
3

1500

1000

-1.0 -05 0.0 05 1.0
3q (A)

Figure 1: 2D-reaction coordinate, R., describing proton shuttles between two water molecules
(R. = (0q, E(q1)) and vehicular motion of protons carried by H3O" through H3O-Cl~ and
H307-H,0O dissociations (R. = (¢, E(¢q)) (a). The 2D-free energy, W (dq,w), indicates that
the Eigen hydronium and Zundel states are frequency-resolved; as the proton moves away
from the Eigen states (free energy minima) towards the Zundel state (free energy barrier
plateau), its frequency gets red-shifted (b).

There are two competing mechanisms that describe proton transport in aqueous solu-
tion:7) a proton either shuttles between two water molecules, i) or gets carried by a water
molecule in the form of hydronium exhibiting vehicular motion. Our focus here is to dynam-
ically quantify and separate both of these processes using rate theory. By exploring PMF's

in the distance and electric field space we discuss the shuttling motion in Figure 2. In Figure

13
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10 025 05 075 1.0
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Figure 2: The 1D PMFs, W(dq) (a) and W (E) (c¢) and the 2D PMF, W (éq, E) (b) describ-
ing that minimum free energy pathway (white, dashed) and Marcus pathway (red, solid)
of proton transfer are in excellent agreement. Blue, dashed line indicate dividing surface
perpendicular to the minimum free energy pathway. Dotted lines in W (FE) are slices (dot-
ted line) from W (dq, F) representing the reactant, Wr(FE) and the product, Wg(FE), that
are fitted with parabolas (solid line). In W (dq, E), 8 contours are evenly placed between 0
kcal/mol and 1.2 kcal/mol.

3 we present two distinct pathways for vehicular motion. First, a pathway associated with
the dissociation of the ion-pair, H3O™-Cl~, and the second corresponding to water exchange
around hydronium that requires breaking and reforming of H3O-H,O hydrogen bonds. In
Figure 2 and Figure 3, we consider these pathways only for 8M HCI, while in the Supporting
Information (SI) (Figures S1, S2, and S3) we provide a comparison between the effects of
ionic strengths (namely, 2M and 8M HCI) on them.

The PMF in Figure 2, W (dq), is obtained by integrating W (dq, F) over the entire electric
field space, i.e. exp[—SW (dq)] = [ dE exp|—BW (dq, E)], and allows us to pinpoint the
equilibrium location of the proton at the reactant (d¢ = —0.45 A) and product hydronium
state (6¢ = 0.45 A). The slices of W (dq, ) along E at these equilibrium locations are
extracted and fitted with parabolic functions presented in Equation 12 to obtain the reactant
and product Marcus parabolas (see Table 1 and Table 2 for the parameters of Marcus model).

These parabolas are distinct with well-separated minimum in the E-space. All three PMFs,

14
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Figure 3: Dissociation of hydronium-water and hydronium-chloride, which describes the
vehicular motion of protons, is examined through exploration free energy profiles , W(q),
W(q, E), and W(E). Again, Marcus pathways (white, dashed in b and red, dashed in d)
follow the minimum free energy pathways (red, solid) in describing these phenomena.ln
Wi(q, E), 9 contours are evenly placed between 0 kcal/mol and 3.0 kcal/mol.

namely W (dq), W(dq, ), and W (FE), provide the consistent picture of the experiencing
a systematic change in electric field from the negative to positive amplitudes going from
the hydronium-bound state to neighboring water molecule. Thus, according to Marcus
theory presented here, the pathway that describes the reactant-to-product transition involves
two steps: First, solvent rearrangement-guided activation in the E-space that leads to the
transition state (crossing point between the reactant and product parabolas), and second
the transfer of a proton to the neighboring water molecule along dq as the minimum of the
product parabola is reached from the transition state.

Analogously, the transfer of a C1~ ion from the H3O"-bound state (contact ion-pair state
of H301-CI7) to the HyO-bound (solvent-separated ion-pair state of H3O™-C17) or breaking
of the H3O1-H,0 hydrogen bond accompanied by water exchange around HzO™" follows the

same mechanism but with a different electric fields profile (see Figure 3). In the H3O%-bound

15



Table 1: Parameters for Marcus theory and transmission coefficient and timescale for proton
transfer, H30O-Cl dissociation, and H3O-H;O dissociation obtained using Marcus theory and
TST for the 2M HCI solution.

Proton transfer H30O-Cl dissociation ~ H30O-H5O dissociation
Marcus theory
Kg 213.093 3625.970 3131.900
(keal /mol/ (Ea/Bohr2)
Kp 203.664 3175.210 953.597
(keal /mol/ (Ea/Bohry2)
AW (kcal/mol) 0.013 -0.009 1.022
A (kcal/mol) 1.036 0.743 4.912
AWE 4+ AWE 0712 1.225 2.378
(kcal/mol)
vp (PeLBohr -1y 0.005 0.001 0.001
C' (kcal/mol) 0.253 0.174 0.799
KLZ 0.376 0.400 0.944
7= 1/kareus (pg) 1.422 3.776 9.415
TST
KRF 0.047 0.070 0.029
T = 1//§RFkTST (ps) 2.170 3.760 21.61

state, a chloride ion or water molecule experiences a positive electric field that reduces as
the chloride ion or a water molecule moves away from the H3O% along larger ¢ direction and
fluctuates around a vanishingly small value in the solvent-separated state. Note that, for a
given ionic strength of 8M HCI water forms a stronger hydrogen bond with hydronium than
the corresponding H3O-Cl~ motif. This is indicated by the shorter equilibrium HzO™-
H,0 hydrogen-bonding distance than the H3OT-Cl~.3! Interestingly, while the H3O™-CI~
interaction strength increases with increasing HCI concentration (the solvent-separated state
dominates over the contact ion-pair state at the 2M HCI solution, which is reversed at the
8M HCI solution), the HO"-H,O interaction is barely affected (Figure S2 and S3 in the SI)
in agreement with a previous study.3!

Since the Marcus parabolas in Figure 4 cross in the “normal region” for all three cases
at 2M HCI concentration and there is a significant gap between the lower and higher en-

ergy surfaces (due to strong couplings at the crossing region), they can be treated as

16



Table 2: Parameters for Marcus theory and transmission coefficient and timescale for proton
transfer, H30O-Cl dissociation, and H3O-H;O dissociation obtained using Marcus theory and
TST for the 8M HCI solution.

Proton transfer H30O-Cl dissociation ~ H30O-H5O dissociation
Marcus theory
Ky 132.084 2709.340 2437.260
(keal /mol/ (Ea/Bohr2)
Kp 128.903 2071.410 752.544
(keal /mol/ (Ea/Bohry2)
AW (kcal/mol) 0.008 0.598 1.084
A (kcal/mol) 0.579 0.497 4.627
AWE  + AWFE' 0.697 1.232 2.398
(kcal/mol)
vp (PeLBohr -1y 0.006 0.001 0.001
C' (kcal/mol) 0.143 0.049 0.751
KLz 0.203 0.045 0.945
7= 1/kareus (pg) 2.579 28.923 9.738
TST
KRF 0.029 0.033 0.036
T = 1//§RFkTST (ps) 4.13 12.510 15.250

an adiabatic processes. To further understand the details of proton transfer pathways
and the interplay between HzOT-Cl~ dissociation and water exchange around H3O%1, we
elaborate this adiabatic picture in terms of a set of higher (W) and lower (W_) adi-

abatic surfaces generated through the relation described in the previous section, W, =

w + 1 /4[C(E)]? + [Wr(E) — Wp(E)]2. While the adiabatic picture persists for
both proton transfer and water exchange at 8M HCI concentration, the increase in concen-
tration for H3O1-Cl~ dissociation requires a non-adiabatic framework because the diabatic
states cross within the “abnormal region” close to the electric field equilibrium in the prod-
uct state. Thus, the coupling strength between the reactant and product parabolas is very
small and accessing to the higher adiabatic free energy surface is necessary to enable the
dissociation of the H3;O*-Cl~ pair.

Although we have just shown that the Marcus parabolic model can describe different rate

processes in the HCI solutions, it of interest to examine whether Marcus pathways outlined
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Figure 4: The adiabatic and non-adiabatic picture of different rates processes: The phe-
nomena of proton transfer and hydronium-water and hydronium-chloride dissociation can
be explained as the adiabatic traversal of the crossing point of the reactant and product
Marcus parabolas, except for the hydronium-chloride dissociation for 8M HCI solution that
requires incorporation of the non-adiabatic approach.

above resemble the most probable free-energy pathways between reactant and product basins
on the 2D PMF of ¢ and E. To investigate this, we obtain the minimum free energy path

(MFEP) as a solution of the dynamical equation in the mass-weighted coordinate system of

q and E:
1 d| 4 W
Td_ =-VZ ! ) (19)
Z4as\ g W
L Zq  Zgp . .
where the Z matrix is given by Z = and ds is the increment of the path length
Zeg Zg
s q
of the MFEP path vector, S = o - % . This means, ds = /(ds1)? + (ds2)2.
S9o E

The MFEP is presented along with the Marcus pathway in Figure 2 and Figure 3—their
resemblance is excellent. Thus, the construction of a Marcus picture to study both the path-
ways of rate process of protons in aqueous solutions is consistent with the free-energetically
most-likely pathways to the product state. It should be noted that, for obtaining the MFEP,
the dependency of Zp and Z,r on the distance coordinate, g, should be considered as they
show strong sensitivity to ¢ as presented in Figure S4 in the SI. Z, associates with only
atomic masses, therefore, it is always constant.

As discussed in the previous section, both Marcus theory and TST must account for
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Figure 5: The time-dependent reactive flux transmission coefficient for proton transfer and
hydronium-water and hydronium-chloride dissociation, highlighting dynamical stability of
protons at the Zundel state indicated by frequent recrossing of this state within the energy
diffusion limit.

the non-equilibrium solvent effects through the computation of transmission coefficients to
accurately determine the rates of different chemical/physical processes. Herein, we obtained
the semiclassical Landau-Zener transmission coefficient (krz) for Marcus theory and reactive
flux transmission coefficient (kgp) for TST. While the former is a time-independent quantity
as listed in Table 1 and Table 2, the latter decays with time until it reaches to a plateau
as depicted in Figure 5. In all cases, kgrp converges to a significantly smaller value than
unity as obtained from the plateau and listed in Table 1 and Table 2. This suggests that the
distance coordinate suffers from a significant solvent fluctuation-induced barrier-recrossing
and provides much slower actual timescales than the TST timescales. It is interesting to see
a rapid oscillation of xkrp until 75 ps before krr reaches the plateau in the case of proton
transfer. Such oscillation also exists for HsOT-Cl~ dissociation and water exchange around
H;0™, but it is weak and appears at a later time. This oscillatory behavior is commonly
associated with the energy diffusion limit where the thermal energy transfer from the solvent
71

to reaction coordinate is slower.

While krr at the plateau region is very similar for all concentrations and all processes, k17
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strongly depends on a specific process because of the distinct coupling between the reactant
and product electric field states. For example, at 2M HCI concentration, the coupling is
smaller and similar for both proton transfer and H;O%-Cl~ dissociation leading to smaller 1z
(< 0.4) (Table 1), while for water exchange around H3O™ the stronger coupling results in the
maximum krz (~ 1). The increase in HCI concentration to 8M reduces k17 for proton transfer
and H3O"-Cl~ dissociation due to the decrease in the reactant-product coupling. However
k1z does not change for water exchange around H3O™" as the coupling is not dependent on the
ionic strength (Table 1 and Table 2). Regardless of the difference between krp and krz, the
dynamical separation among proton transfer, H;O"-Cl~, and water exchange around H3O*
is possible to achieve using both the framework of TST and Marcus theory. For 2M HCI
concentration, proton transfer between two neighboring water molecules is the fastest process
(1-2 ps) and H30*-Cl~ dissociation is significantly slower (~ 4 ps). Finally water exchange
around H3O7 is the slowest process (9-21 ps). Importantly, our study predicts that there
is a significant concentration dependency to some of the of the processes discussed herein.
8M HCI leads to two-times slower proton transfer dynamics and four-to-seven times slower
H;O0"-Cl~ dissociation dynamics, interestingly the rate of water exchange around HzO™" is
not affected.

Although we are able to examine proton transfer timescales using Marcus theory and
TST, the time spent by a proton at the Zundel like transition state cannot be computed by
these theories. This is because the Zundel state is not a free energy minimum. However,
as indicated by the oscillatory motion of kgp(t) in Figure 5, the proton exhibits dynamical
stability at the Zundel state for a short period of time before it transfers to the neighboring
water molecule. The life-time of the Zundel state can then be obtained by determining its
time-dependent survival probability, (P(¢,t+dt),t*). It is assigned to 1 if a proton is located
within 0.05 A of the barrier top of W (dq) in Figure 2 at both times ¢ and ¢ + 6t and during
the interval of dt it does not leave the neighborhood for any continuous period of time, t*.

Otherwise, P(t,t+ dt,t*) is set to zero. The life-time of the Zundel state can be determined
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Figure 6: The life-time of the Zundel state as a function of ¢*, indicating a strong dependency
on the HCI concentration in aqueous solution.

from the normalized time correlation function of the survival probability: 1%

Ot 1) = (P(t,t+ 6, )i/ (P, 1)) (20)

Here (.....);; represents averaging over all the Zundel states and times. We find C(¢,t*) to
exhibit a bi-exponential behavior depicted in the SI (Figure S5) and show a strong sensitivity
to t*. The first exponential decay corresponds to a rapid drop of correlation, while the
second part indicates a slower decay representing actual departure of the proton from the
Zundel state. We have presented the timescales associated with the slower decay in Figure
6, where it is evident that the life-time of a Zundel state increases with increasing t* and
saturates to some extent between t* = 60 fs and t* = 100 fs. Assuming that the maximum
allowable value of t* is 75 fs, we find that the maximum life-time of the Zundel state is
concentration dependent: 800 fs for 2M HCI and 1.25 ps for 8M HCI. Thus, at a given
HCI concentration, the life-time of the Zundel state is distinguishable from the dynamics of
proton transfer between two neighboring water molecules, H3OT-C1~ dissociation, and water

exchange around HzO™.
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Summary and Conclusion

Herein, we have provided a detailed molecular picture of proton transfer in aqueous solution
using the tools of molecular simulation in conjunction with rate theory. Importantly, this
study includes the the effects of ionic strength using interaction potentials based in quantum
mechanics (DFT) in addition to treating the nuclei both classically and quantum mechani-
cally. The importance of ionic strength is known to have important consequences providing
a novel picture of the correlated local structure of the hydrated proton with the counter-ion
in concentrated HCI solutions.?!

Through the lens of rate theory in the condensed phase we can isolate the important
pathways of proton transfer in addition to ion-pair dissociation, and solvent exchange. In-
terestingly, our study finds that the reaction of proton transfer takes on a concentration
dependence that decreases the rate by a factor of 2 from 2M to 8M HCI. Not surprisingly,
the processes that takes on the largest concentration dependence is the ion-pairing between
H;0"-Cl™, whereas solvent exchange about H;O™" seems to be concentration independent. A
theoretical outcome of this study is that, we were able to reproduce the trends in the rates of
the aforementioned pathways using both a 2D formulation of TST and a novel formulation of
Marcus theory. It is unfortunate, that quantitative agreement was not achieved between the
two distinct theoretical approaches. This is most likely due to a couple of factors: First, the
one-dimensional formulation of krp, that uses only a distance criteria that is known to be an
inferior descriptor of rate processes in the condensed phase, and second, the simplification of
the prefactor in Marcus rate expression (Equation 15) that will be further examined in the
future for obtaining its more accurate description specific to electric field. Nevertheless, the
qualitative agreement between TST and Marcus theory are impressive but warrant further
investigations to their differences. This will include future exploration of different reaction
coordinates (such as the asymmetry coordinate®”) in addition to different regimes of TST
such as the energy diffusion limit. "

Last, this study allows us to weigh in on the measurement of the life-time of the Zundel
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moiety using 2D IR.3? Because the Zundel state in our formulation is not a free-energetically
stable state (e.g. it is a transition state), we cannot employ the tools of rate theory as defined
herein, to predict the life-time of the Zundel state. However, because of the slow thermal
energy transfer from the solvent to the proton transfer coordinate, the Zundel state exhibits
dynamical stability and we can estimate its life-time by determining its time-dependent sur-
vival probability. This analysis reveals that the life-time of the Zundel state is 0.8 ps at 2M
and 1.3 ps at 8M, which agrees well with the 2D IR measurements.3? It should be noted
that our AIMD simulations did not consider nuclear quantum effects; if these

effects are included in path integral-based AIMD simulations, 106109

one might
find it very challenging to define and distinguish ”Eigen”-like and ”Zundel”-
like structures.36:37:110 Qur study demonstrates that the feature of energy diffu-
sion limit, i.e., the slow thermal energy transfer from the solvent to the proton
transfer reaction coordinate is imperative to reproduce an accurate experimen-
tal estimate of the Zundel life-time. Moreover, we have shown that there is indeed a

concentration dependence to the rate of proton transfer which we leave as a prediction for

future experimental studies to verify.

Supporting Information Available

Comparison between the 2DPMF's for 2M HCI and 8M HCI (Figure S1-S3), elements of Z

matrix (Figure S4), and survival probability correlation functions (Figure S5).

Acknowledgement

S.R., C.J.M., and G.K.S. were supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.
M.D.B. was supported by MS? (Materials Synthesis and Simulation Across Scales) Initiative,

a Laboratory Directed Research and Development Program at Pacific Northwest National

23



Laboratory (PNNL). T.E.M and J.A.N were supported by the National Science Foundation

under Grant No. CHE-1652960. T.E.M also acknowledges support from the Camille Dreyfus

Teacher-Scholar Awards Program.

References

(1)

(7)

Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in Proton Conduc-
tors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenol-

ogy. Chem. Rev. 2004, 104, 4637-4678, PMID: 15669165.

Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem.

Rev. 2004, 104, 42454270, PMID: 15669155.

Heidari, S.; Mohammadi, S. S.; Oberoi, A. S.; Andrews, J. Technical feasibility of a
proton battery with an activated carbon electrode. International Journal of Hydrogen

Energy 2018, 43, 6197 — 6209.

Colomban, P. Proton conductors and their applications: A tentative historical

overview of the early researches. Solid State Ionics 2019, 33/, 125 — 144.

Shin, J.-W.; Hammer, N. I.; Diken, E. G.; Johnson, M. A.; Walters, R. S.;
Jaeger, T. D.; Duncan, M. A.; Christie, R. A.; Jordan, K. D. Infrared Signature
of Structures Associated with the H4+(H20)n (n = 6 to 27) Clusters. Science 2004,
304, 1137-1140.

Headrick, J. M.; Diken, E. G.; Walters, R. S.; Hammer, N. I.; Christie, R. A.; Cui, J.;
Myshakin, E. M.; Duncan, M. A.; Johnson, M. A.; Jordan, K. D. Spectral Signatures
of Hydrated Proton Vibrations in Water Clusters. Science 2005, 308, 1765-1769.

Guasco, T. L.; Johnson, M. A.; McCoy, A. B. Unraveling Anharmonic Effects in the

24



(10)

(11)

(12)

(13)

(14)

Vibrational Predissociation Spectra of H5O2+ and Its Deuterated Analogues. The
Journal of Physical Chemistry A 2011, 115, 5847-5858, PMID: 21214227.

Morrison, A. M.; Flynn, S. D.; Liang, T.; Douberly, G. E. Infrared Spectroscopy of
(HC)m(H20)n Clusters in Helium Nanodroplets: Definitive Assignments in the HCI
Stretch Region. The Journal of Physical Chemistry A 2010, 114, 8090-8098, PMID:
20684581.

Walewski, L.; Forbert, H.; Marx, D. Quantum Induced Bond Centering in Micro-
solvated HCl: Solvent Separated versus Contact lon Pairs. The Journal of Physical
Chemistry Letters 2011, 2, 3069-3074.

Petersen, M. K.; Iyengar, S. S.; Day, T. J. F.; Voth, G. A. The Hydrated Proton at
the Water Liquid/Vapor Interface. The Journal of Physical Chemistry B 2004, 108,
14804-14806.

Mucha, M.; Frigato, T.; Levering, L. M.; Allen, H. C.; Tobias, D. J.; Dang, L. X;
Jungwirth, P. Unified Molecular Picture of the Surfaces of Aqueous Acid, Base, and
Salt Solutions. The Journal of Physical Chemistry B 2005, 109, 76177623, PMID:
16851882.

Buch, V.; Milet, A.; Vacha, R.; Jungwirth, P.; Devlin, J. P. Water surface is acidic.
Proceedings of the National Academy of Sciences 2007, 104, 7342-7347.

Iuchi, S.; Chen, H.; Paesani, F.; Voth, G. A. Hydrated Excess Proton at Water Hy-
drophobic Interfaces. The Journal of Physical Chemistry B 2009, 113, 4017-4030.

Jagoda-Cwiklik, B.; Cwiklik, L.; Jungwirth, P. Behavior of the Eigen Form of Hydro-
nium at the Air/Water Interface. The Journal of Physical Chemistry A 2011, 115,

0881-5886, PMID: 21214229.

25



(15)

(16)

(17)

(18)

(19)

(22)

(23)

Wick, C. D. Hydronium Behavior at the Air-Water Interface with a Polarizable Mul-
tistate Empirical Valence Bond Model. The Journal of Physical Chemistry C' 2012,
116, 4026-4038.

Wick, C. D. HCl Accommodation, Dissociation, and Propensity for the Surface of Wa-
ter. The Journal of Physical Chemistry A 2013, 117, 12459-12467, PMID: 24168101.

Baer, M. D.; Kuo, I.-F. W.; Tobias, D. J.; Mundy, C. J. Toward a Unified Picture of the
Water Self-lIons at the Air-Water Interface: A Density Functional Theory Perspective.
The Journal of Physical Chemistry B 2014, 118, 8364-8372, PMID: 24762096.

Tse, Y.-L. S.; Chen, C.; Lindberg, G. E.; Kumar, R.; Voth, G. A. Propensity of
Hydrated Excess Protons and Hydroxide Anions for the Air—-Water Interface. Journal
of the American Chemical Society 2015, 137, 12610-12616, PMID: 26366480.

Biswas, R.; Tse, Y.-L. S.; Tokmakoff, A.; Voth, G. A. Role of Presolvation and Anhar-
monicity in Aqueous Phase Hydrated Proton Solvation and Transport. The Journal

of Physical Chemustry B 2016, 120, 1793-1804, PMID: 26575795.

Giberti, F.; Hassanali, A. A. The excess proton at the air-water interface: The role of

instantaneous liquid interfaces. The Journal of Chemical Physics 2017, 146, 244703.

Das, S.; Imoto, S.; Sun, S.; Nagata, Y.; Backus, E. H. G.; Bonn, M. Nature of Ex-
cess Hydrated Proton at the Water—Air Interface. Journal of the American Chemical

Society 2020, 142, 945-952, PMID: 31867949.

Petersen, P. B.; Saykally, R. J. Evidence for an Enhanced Hydronium Concentration
at the Liquid Water Surface. The Journal of Physical Chemistry B 2005, 109, 7976—
7980, PMID: 16851932.

Levering, L. M.; Sierra-Hernandez, M. R.; Allen, H. C. Observation of Hydronium

26



(25)

(26)

(27)

(29)

(30)

Ions at the Air Aqueous Acid Interface: Vibrational Spectroscopic Studies of Aqueous
HCl, HBr, and HI. The Journal of Physical Chemistry C 2007, 111, 8814-8826.

Tian, C.; Ji, N.; Waychunas, G. A.; Shen, Y. R. Interfacial Structures of Acidic and
Basic Aqueous Solutions. Journal of the American Chemical Society 2008, 150, 13033~
13039, PMID: 18774819.

Baer, M. D.; Tobias, D. J.; Mundy, C. J. Investigation of Interfacial and Bulk Disso-
ciation of HBr, HCI, and HNO3 Using Density Functional Theory-Based Molecular

Dynamics Simulations. The Journal of Physical Chemistry C' 2014, 118, 29412-29420.

Das, S.; Bonn, M.; Backus, E. H. G. The Surface Activity of the Hydrated Proton Is
Substantially Higher than That of the Hydroxide Ion. Angewandte Chemie Interna-

tional Edition 2019, 58, 15636-15639.

Weissenborn, P. K.; Pugh, R. J. Surface Tension of Aqueous Solutions of Electrolytes:
Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence. Journal
of Colloid and Interface Science 1996, 184, 550 — 563.

Pegram, L. M.; Record, M. T. Partitioning of atmospherically relevant ions between
bulk water and the water/vapor interface. Proceedings of the National Academy of

Sciences 2006, 103, 14278-14281.

Lewis, T.; Winter, B.; Stern, A. C.; Baer, M. D.; Mundy, C. J.; Tobias, D. J.; Hem-
minger, J. C. Dissociation of Strong Acid Revisited: X-ray Photoelectron Spectroscopy
and Molecular Dynamics Simulations of HNO3 in Water. The Journal of Physical

Chemistry B 2011, 115, 9445-9451, PMID: 216388845.

Lewis, T.; Winter, B.; Stern, A. C.; Baer, M. D.; Mundy, C. J.; Tobias, D. J.; Hem-
minger, J. C. Does Nitric Acid Dissociate at the Aqueous Solution Surface? The
Journal of Physical Chemistry C' 2011, 115, 21183-21190.

27



(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Baer, M. D.; Fulton, J. L.; Balasubramanian, M.; Schenter, G. K.; Mundy, C. J. Per-
sistent Ion Pairing in Aqueous Hydrochloric Acid. The Journal of Physical Chemistry
B 2014, 118, 7211-7220, PMID: 24837190.

Thamer, M.; De Marco, L.; Ramasesha, K.; Mandal, A.; Tokmakoff, A. Ultrafast 2D

IR spectroscopy of the excess proton in liquid water. Science 2015, 350, 78-82.

Lewis, N. H. C.; Fournier, J. A.; Carpenter, W. B.; Tokmakoff, A. Direct Observation
of Ton Pairing in Aqueous Nitric Acid Using 2D Infrared Spectroscopy. The Journal
of Physical Chemistry B 2019, 123, 225-238.

dos Santos, A. P.; Levin, Y. Surface tensions and surface potentials of acid solutions.

The Journal of Chemical Physics 2010, 133, 154107.

Duignan, T. T.; Parsons, D. F.; Ninham, B. W. Hydronium and hydroxide at the
air-water interface with a continuum solvent model. Chemical Physics Letters 2015,

635, 1 - 12.

Daly, C. A.; Streacker, L. M.; Sun, Y.; Pattenaude, S. R.; Hassanali, A. A.; Pe-
tersen, P. B.; Corcelli, S. A.; Ben-Amotz, D. Decomposition of the Experimental
Raman and Infrared Spectra of Acidic Water into Proton, Special Pair, and Counte-
rion Contributions. The Journal of Physical Chemistry Letters 2017, 8, 5246-5252,

PMID: 28976760.

Napoli, J. A.; Marsalek, O.; Markland, T. E. Decoding the spectroscopic features and
time scales of aqueous proton defects. The Journal of chemical physics 2018, 1/8,
222833.

Yuan, R.; Napoli, J. A.; Yan, C.; Marsalek, O.; Markland, T. E.; Fayer, M. D. Tracking
Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio

Molecular Dynamics Simulations. ACS Central Science 2019, 5, 1269-1277.

28



(39) Peters, B. Reaction rate theory and rare events; Elsevier Science: Oxford, 2016.

(40) Pollak, E.; Talkner, P. Reaction Rate Theory: What It Was, Where Is It Today, and
Where Is It Going? CHAOS 2005, 15, 026116.

(41) Eyring, H. The theory of absolute reaction rates. Trans. Faraday Soc. 1938, 3/, 41-48.
(42) Wigner, E. The transition state method. Trans. Faraday Soc. 1938, 34, 29-41.

(43) Schenter, G.; Garrett, B. C.; Truhlar, D. G. Generalized transition state theory in

terms of the potential of mean force. J. Chem. Phys. 2003, 119, 5828-5833.

(44) Truhlar, D. G.; Garrett, B. C. Variational transition state theory. Ann. Rev. Phys.

Chem. 1984, 35, 159-189.

(45) Kramers, H. Brownian motion in a field of force and the diffusion model of chemical

reactions. Physica 1940, 7, 284-304.

(46) Pollak, E. Theory of activated rate processes: A new derivation of Kramers’ expression.

J. Chem. Phys. 1986, 85, 865.

(47) Grote, R. F.; Hynes, J. T. The stable states picture of chemical reactions. II. Rate
constants for condensed and gas phase reaction models. J. Chem. Phys. 1980, 75,
2715.

(48) Bennett, C. H. Algorithms for chemical computations, ACS symposium series; Amer-

ican Chemical Society: Washington, D.C., USA, 1977.

(49) Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the tran-

sition state approximation. J. Chem. Phys. 1978, 68, 2959-2970.

(50) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status of Transition-State

Theory. J. Phys. Chem. 1996, 100, 12771.

29



(51)

(52)

(53)

(55)

(56)

(57)

(58)

(59)

(60)

Guardia, E.; Rey, R.; Padré, J. A. Potential of mean force by constraint molecular

dynamics: A sodium chloride ion-pair in water. Chem. Phys. 1991, 155, 187-195.

Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path sampling. Advances in
Chemical Physics 2002, 123, 1.

Mullen, R. G.; Shea, J. E.; Peters, B. Transmission Coefficients, Committors, and
Solvent Coordinates in lon-Pair Dissociation. J. Chem. Theory Comput. 2014, 10,
659.

Annapureddy, H. V. R.; Dang, L. X. Understanding the Rates and Molecular Mecha-
nism of Water Exchange Around Aqueous lons Using Molecular Simulations. J. Phys.

Chem. B 2014, 118, 8917.

Annapureddy, H. V. R.; Dang, L. X. Water exchange rates and molecular mechanism

around aqueous halide ions. J. Phys. Chem. B 2014, 118, 7886.

Dang, L. X.; Annapureddy, H. V. R. Computational studies of water exchange around

aqueous Li™ with polarizable potential models. J. Chem. Phys. 2013, 139, 084506.

Hermansson, K.; Wojcik, M. Water exchange around Li* and Na™ in LiCl (aq) and
NaCl (aq) from MD Simulations. J. Phys. Chem. B 1998, 102, 60809.

Wilkins, D. M.; Manolopoulos, D. E.; Dang, L. X. Nuclear quantum effects in water
exchange around lithium and fluoride ions. J. Chem. Phys. 2015, 142, 064509.

Roy, S.; Dang, L. X. Water exchange dynamics around H;O% and OH™ ions. Chem.
Phys. Lett. 2015, 628, 30-34.

Rey, R.; Hynes, J. T. Hydration shell exchange dynamics for Na™ in water. J. Phys.:

Condens. Matter 1996, 8, 9411.

30



(61)

(62)

(63)

(64)

(65)

(66)

(68)

(69)

(70)

Spangberg, D.; Wojcik, M.; Hermansson, K. Pressure dependence and activation vol-
ume for the water exchange mechanism in NaCl (aq) from MD simulations. Chem.

Phys. Lett. 1997, 276, 114.

Dang, L. X. Computational studies of water-exchange rates around aqueous Mg?* and

Be**. J. Phys. Chem. C 2014, 118, 29028.

Roy, S.; Dang, L. X. Computer simulation of methanol exchange dynamics around

cations and anions. J. Phys. Chem. B 2016, 120, 1440-1445.

Danga, L. X.; Vob, Q. N.; Nilssonb, M.; Nguyenb, H. D. Rate theory on water exchange

in aqueous uranyl ion. Chem. Phys. Lett. 2017, 671, 58.

Pluharova, E.; Baer, M. D.; Schenter, G. K.; Jungwirth, P.; Mundy, C. J. Dependence
of The Rate of LiF Ion-Pairing on The Description of Molecular Interaction. J. Phys.
Chem. B 2016, 120, 1749.

Truhlar, D. Variational transition state theory and multidimensional tunneling for
simple and complex reactions in the gas phase, solids, liquids, and enzymes; in Isotope

effects in chemistry and biology, Marcel Dekker Inc, New York, 2006; pp 579-619.

Peters, B. Inertial likelihood maximization for reaction coordinates with high trans-

mission coefficients. Chem. Phys. Lett. 2012, 55/, 248-253.

Roy, S.; Baer, M. D.; Mundy, C. J.; Schenter, G. K. Marcus theory of ion-pairing. J.
Chem. Theory Comput. 2017, 13, 3470-3477.

Roy, S.; Galib, M.; Schenter, G. K.; Mundy, C. J. On the relation between Marcus
theory and ultrafast spectroscopy of solvation kinetics. Chem. Phys. Lett. 2018, 692,
407-415.

Roy, S.; Bryantsev, V. S. Finding Order in the Disordered Hydration Shell of Rapidly

31



(72)

(73)

(74)

(77)

(78)

Exchanging Water Molecules around the Heaviest Alkali Cs™ and Fr*. J. Phys. Chem.
B 2018, 122, 12067-12076.

Reese, S. K.; Tucker, S. C.; Schenter, G. K. The reactive flux method in the energy
diffusion regime. II. Importance of the solvent’s spectral profile. J. Chem. Phys. 1995,
102, 104-118.

Roy, S.; Lessing, J.; Meisl, G.; Ganim, Z.; Tokmakoff, A.; Knoester, J.; Jansen, T.
L. C. Solvent and conformation dependence of amide I vibrations in peptides and

proteins containing proline. J. Chem. Phys. 2011, 135, 234507-234507.

Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L. Development and validation
of transferable amide I vibrational frequency maps for peptides. J. Phys. Chem. B
2011, 115, 3713-3724.

Gruenbaum, S. M.; Tainter, C. J.; Shi, L.; Ni, Y.; Skinner, J. L. Robustness of
frequency, transition dipole, and coupling maps for water vibrational spectroscopy.

J. Chem. Th. Comp. 2013, 9, 3109-3117.

Darve, E.; Pohorille, A. Calculating free energies using average force. J. Chem. Phys.

2001, 115, 9169-9183.

Dang, L. X.; Chang, T.-M. Molecular dynamics study of water clusters, liquids, and
liquid-vapor interface of water with many-body potentials. J. Chem. Phys. 1997, 106,
8149.

Roy, S.; Baer, M. D.; Mundy, C. J.; Schenter, G. K. Reaction rate theory in coordi-
nation number space: An application to ion solvation. J. Chem. Phys. C' 2016, 120,
7597-7605.

Schenter, G. K.; Garrett, B. C.; Truhlar, D. G. The Role of Collective Solvent Coor-

32



(80)

(81)

(82)

(85)

(86)

(87)

dinates and Nonequilibrium Solvation in Charge-Transfer Reactions. J. Chem. Phys.

B 2001, 105, 9672.

Landau, L. D. A theory of energy transfer on collisions. Physik. Z. Sowjet. 1932, 1,
88.

Landau, L. D. A theory of energy transfer II. Physik. Z. Sowjet. 1932, 2, 46.

Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. London 1932, 137,
696-702.

Newton, M. D.; Sutin, N. Electron transfer reactions in condensed phases. Ann. Rev.

Phys. Chem. 1984, 35, 437-480.

Green, D.; Perry, R. Perry’s Chemical Engineers’ Handbook, Eighth Edition (Chemical
Engineers Handbook); McGraw-Hill Education, 2007.

Ceriotti, M.; More, J.; Manolopoulos, D. E. i-PI: A Python interface for ab initio path
integral molecular dynamics simulations. Computer Physics Communications 2013,

185, 1019-1026.

Kapil, V.; Rossi, M.; Marsalek, O.; Petraglia, R.; Litman, Y.; Spura, T.; Cheng, B.;
Cuzzocrea, A.; Meifiner, R. H.; Wilkins, D. M., et al. i-PI 2.0: A universal force engine

for advanced molecular simulations. Computer Physics Communications 2019, 236,

214-223.

Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple time scale molecular

dynamics. The Journal of Chemical Physics 1992, 97, 1990.

Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling.

The Journal of chemical physics 2007, 126, 014101.

33



(88)

(89)

(90)

(95)

(96)

(97)

Ceriotti, M.; Parrinello, M.; Markland, T. E.; Manolopoulos, D. E. Efficient stochastic
thermostatting of path integral molecular dynamics. The Journal of chemical physics

2010, 153, 124104.

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J.
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian

and plane waves approach. Computer Physics Communications 2005, 167, 103-128.

Hutter, J.; lannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: Atomistic simula-
tions of condensed matter systems. Wiley Interdisciplinary Reviews: Computational

Molecular Science 2014, 4, 15-25.

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
Simple. Physical Review Letters 1996, 77, 3865-3868.

Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Sim-
ple”. Physical Review Letters 1998, 80, 890-890.

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 ele-

ments H-Pu. The Journal of chemical physics 2010, 152, 154104.

Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials.
Physical Review B 1996, 54, 1703-1710.

Lippert, G.; Hutter, J.; Parrinello, M. A hybrid Gaussian and plane wave density
functional scheme. Molecular Physics 1997, 92, 477-488.

VandeVondele, J.; Hutter, J. An efficient orbital transformation method for electronic

structure calculations. The Journal of Chemical Physics 2003, 118, 4365.

Kolafa, J. Time-reversible always stable predictor-corrector method for molecular dy-

namics of polarizable molecules. Journal of computational chemistry 2004, 25, 335—-42.

34



(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

Kiihne, T.; Krack, M.; Mohamed, F.; Parrinello, M. Efficient and Accurate Car-
Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Physical Review

Letters 2007, 98, 1-4.

Gaus, M.; Cui, Q.; Elstner, M. DFTB3: Extension of the self-consistent-charge
density-functional tight-binding method (SCC-DFTB). Journal of Chemical Theory

and Computation 2011, 7, 931-948.

Aradi, B.; Hourahine, B.; Frauenheim, T. DFTB+, a sparse matrix-based implemen-

tation of the DFTB method. Journal of Physical Chemistry A 2007, 111, 5678-5684.

Gaus, M.; Goez, A.; Elstner, M. Parametrization and benchmark of DF'TB3 for organic

molecules. Journal of Chemical Theory and Computation 2013, 9, 338-354.

Jahangiri, S.; Dolgonos, G.; Frauenheim, T.; Peslherbe, G. H. Parameterization of
halogens for the density-functional tight-binding description of halide hydration. Jour-

nal of Chemical Theory and Computation 2013, 9, 3321-3332.

Zhechkov, L.; Heine, T.; Patchkovskii, S.; Seifert, G.; Duarte, H. A. An efficient a pos-
teriori treatment for dispersion interaction in density-functional-based tight binding.

Journal of Chemical Theory and Computation 2005, 1, 841-847.

Rappé, A.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF,
a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics

Simulations. J. Am. Chem. Soc. 1992, 11/, 10024-10035.

Impey, R. W.; Madden, P. A.; Mcdonald, I. R. Hydration and mobility of ions in
solution. J. Phys. Chem. 1983, 87, 5071-5083.

Habershon, S.; Manolopoulos, D. E.; Markland, T. E.; III, T. F. M. Ring-polymer
molecular dynamics: quantum effects in chemical dynamics from classical trajectories

in an extended phase space. Annu. Rev. Phys. Chem. 2013, 64, 387.

35



(107) Craig, I. R.; Manolopoulos, D. E. Quantum statistics and classical mechanics: Real
time correlation functions from ring polymer molecular dynamics. J. Chem. Phys.

2004, 121, 3368.

(108) Cao, J.; Voth, G. A. The formulation of quantum statistical mechanics on the Feynman
path centroid density .IV. Algorithm for centroid molecular dynamics. J. Chem. Phys.
1994, 101, 6168.

(109) Jang, S.; Voth, G. A. A derivation of centroid molecular dynamics and other approx-
imate time evolution methods for path integral centroid variables. The Journal of

Chemical Physics 1999, 111, 2371-2384.

(110) Marx, D.; Tuckerman, M. E.; Parrinello, M. Solvated excess protons in water: quantum
effects on the hydration structure. Journal of Physics: Condensed Matter 2000, 12,

A153-A1509.

36



TOC Graphic

37



