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Abstract

The target article, “Robust Modeling in Cognitive Science”, proposes a number of
recommended practices in computational modeling in response to the growing “crisis of
confidence” facing many scientific disciplines, including psychology and neuroscience. Those of
us who do modeling, write about modeling, teach modeling, and mentor modelers worry
deeply about best practices and any new suggestions for making modeling more transparent,
trusted, and robust is welcome. Many of the recommendations seem uncontroversial. My
commentary focuses on forms of preregistration and postregistration, which constitute three of
the four key ideas highlighted as take-home recommendations at the conclusion of the target
article. | have chosen to consider these recommendations by reflecting on my own past

experiences developing new models and modeling approaches.



| applaud this distinguished team of researchers for proposing ways to make cognitive
modeling more transparent, trusted, and robust. My commentary considers how a few of these
recommendations might have impacted my own past work had these recommendations been
made years ago. Some of the recommendations regarding good practices in model fitting and
model comparison seem uncontroversial and some are embodied in some way in modern
textbook treatments of cognitive modeling (e.g., Farrell & Lewandowsky, 2018). My comments
focus on forms of preregistration and postregistration, which constitute three of the four key
ideas highlighted as take-home recommendations at the conclusion of the article.

Some of my earliest cognitive modeling projects contrasted alternative models of
category learning, such as ALCOVE (Kruschke, 1992), the Rational Model (Anderson, 1990), and
the Configural Cue Model (Gluck & Bower, 1988), on their ability to predict errors made when
learning different types of categorization problems (Nosofsky, Gluck, Palmeri, McKinley, &
Glauthier, 1994)" and learning categories at different levels of abstraction (Palmeri, 1999). |
could well imagine work like this having been preregistered. These were well-established
models, all of which could be implemented precisely following their descriptions in the
literature, with a goal that was a straightforward comparison of model predictions, fitted and
evaluated using well-established techniques, at least for their time?, with failures of certain

models that were qualitative in nature, not merely quantitative by some particular metric. From
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! An early example of “adversarial” collaboration (Kahneman & Klein, 2009) in cognitive
modeling.

2 We have certainly evolved over the years to using more robust modeling methods (Farrell &
Lewandowsky, 2018), from minimizing sum-squared-error (SSE) in these early publications, to
minimizing chi-squared or maximizing likelihood, to using Bayesian estimation and model

comparison when possible (e.g., Annis & Palmeri, 2018, 2019).



what | recollect (after many years), the way the models were fitted and evaluated were loosely
“preregistered” in that we did not deviate from the way similar models had been fitted and
evaluated in previous work. Preregistration would have memorialized decisions made before
the modeling work began.

While | remain to be entirely convinced that preregistration would have made our work
stronger (e.g., Adam, 2019), or would have facilitated the peer review process, | understand
that one prime motivator for such recommendations is a lack of trust, manifest as a “crisis of
confidence” (Pashler & Wagenmakers, 2012). Would preregistration or even a registered
modeling report have allayed the criticism about certain examples of modeling leveled by
Roberts and Pashler (2000)? Perhaps, though | suspect not. As the authors of the target article
note well, “preregistration is no substitute for good judgment.” To the extent that
preregistration — whether required or rewarded — encourages a modeler to think critically
about each step of the modeling process, this could help push modelers to engage in better (if
not best) practices.

| wonder what goes into a preregistration and how deviations from preregistered model
predictions are to be interpreted. Johansen and Palmeri (2002) had participants learn novel
categories and tracked over the course of category learning how individual participants
generalized their category knowledge to untrained test items in three experiments. Early in
learning, participants generalized on the basis of single diagnostic dimensions, consistent with
the use of simple categorization rules. Later in learning, participants generalized in a manner
consistent with the use of similarity-based exemplar retrieval, attending to multiple stimulus

dimensions.



The category structure used in Experiment 1 was first used by Medin and Schaffer
(1978) to contrast predictions of exemplar and prototype models. The category structures used
in Experiments 2 and 3 were constructed by me to contrast rule and exemplar models. | created
dozens of different category structures over the course of many weeks, testing each on what
kinds of generalization from trained items to test items would be predicted by a particular
exemplar model, the Generalized Context Model (GCM) (Medin & Schaffer, 1978; Nosofsky,
1986). | selected for Experiment 2 and 3 category structures that were different from one
another that predicted different generalization patterns depending on whether a participant
was using a single-dimension rule versus exemplar similarity to categorize. “Ideally, a
preregistered model could take the form of the precise predictions that are made by the
model” (Lee et al., in press, p. 2) — | could well have preregistered these generalization
predictions by the model, anticipating the rule generalizations early in learning and the
exemplar generalizations later in learning.

But my predictions would have been wrong. After collecting the data, we saw that in
Experiments 2 and 3, some prominent generalization patterns had emerged over the course of
category learning that | had not anticipated in my initial predictions generated using the GCM.
We ended up fitting the data using ALCOVE, a connectionist implementation of the GCM that
learns categories, and found that ALCOVE predicted at the end of learning the full distribution
of generalization patterns, including the prominent ones | had not initially predicted using GCM.
Maybe ALCOVE was too flexible? Maybe with the right choice of parameters, ALCOVE could
account for any types of generalizations? No. We conducted tens of thousands of simulations of

ALCOVE over a dense grid of possible parameter combinations (see also Pitt, Kim, Navarro, &



Myung, 2006), which took several weeks on what were state-of-the-art workstations at the
time, and found instead that ALCOVE predicted these prominent generalizations over most
parameter combinations. My predictions were wrong. | erroneously assumed that the static
GCM would make the same predictions as the learning ALCOVE model. If | had preregistered
the wrong predictions with GCM, would that have weakened the explanatory power of
ALCOVE? | hope not. ALCOVE predicts the prominent generalization patterns over a wide range
of parameter values (as well as by optimizing parameters to fit the details of observed data)
whether | preregistered those predictions beforehand or discovered those predictions after the
data were collected. Preregistering might well have highlighted my inability to anticipate the
surprises lurking in models with variability, nonlinearities, and parallelism that learn (Hintzman,
1990), but would not have impacted whether or not a model truly predicts an observation in a
(nearly) parameter-free manner.

Fitting an existing model and comparing existing models may well lend themselves to
some form of preregistration since the models are already specified and the fitting and
comparison approach can be selected, described, and justified. But it is unclear where and how
preregistration comes in when developing a new model or a new modeling approach. | have
been fortunate to work with some great collaborators on the development of new cognitive
models, such as RULEX (Nosofsky, Palmeri, & McKinley, 1994), EBRW (Nosofsky & Palmeri,
1997; Palmeri, 1997), the interactive race model (Boucher, Palmeri, Logan, & Schall, 2007), and
the gated accumulator model (Purcell, Heitz, Cohen, Schall, Logan, & Palmeri, 2010). As the
authors rightly note (Lee et al., 2019, p. 6), “model development is a creative activity that often

proceeds in [an] incremental and exploratory fashion.”



When developing EBRW, we wanted to create a model that could predict both errors
and RTs during categorization and predict how those changed with learning and expertise. We
were guided theoretically by the GCM, instance theory (Logan, 1988), and accumulation of
evidence models of decision making as our building blocks, but we did not have a fully complete
blueprint of how those blocks might come together until we started to generate simulations
and try to fit the model to data. When creating a model like the gated accumulator (Purcell et
al., 2010), we were also creating a new approach to model-based cognitive neuroscience
(Palmeri, Love, & Turner, 2017; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017) that
used the spike rates recorded from neurons in awake-behaving primates to drive an
accumulation of evidence model to predict saccade decisions. How best to use the spiking data
to drive model predictions, how to aggregate spikes and behavioral data across sessions, and
how to both evaluate the fits of the model to behavioral data and evaluate the predictions of
neural dynamics from accumulator dynamics, were all discoveries that emerged over the
course of a couple of years of model development and exploration. In all of the cases of
developing new models and modeling approaches that | have been involved with, | cannot think
of a time when it would have been most appropriate or sensible to preregister our theoretical
plans.

In such cases, the authors of the target article instead propose postregistration
documentation. Some elements of this documentation make eminent sense for any
computational laboratory, like keeping detailed modeling records, using modern version
control methods, maintaining onsite and offsite shared repositories, establishing digital

laboratory protocols (e.g., Noble, 2009; Rouder, Haaf, & Snyder, in press). Sadly, too often my



digital records are a photo of the notes on the eight foot white board in my lab using my iPhone
and my lack of diligence in establishing and enforcing digital protocols has occasionally created
challenges in finishing a project when someone leaves the lab.

But these recommendations go beyond mere digital hygiene to suggest that “in

”3 the postregistration documentation should be “made public

exploratory model development
at the time of publication or even as the research is being done” (Lee et al., in press, p. 6).
While | admit to having watched with morbid fascination the live webcam of H.M.’s famous
brain being cryogenically sliced (Annese et al., 2014), is there really a use for a public digital
record of all the undistilled hunches, the soul-crushing, time-sucking theoretical rabbit holes,
and ideas that with hindsight were sheer lunacy that are all part of forging new theoretical
ground? At least in the work | have been involved in, the most important lessons learned during
model development — the models that fail — are either given a prominent place within the body
of an article or are described in footnotes, appendices, and supplementary materials; these
failed approaches seemed like good ideas to us, so they might to someone else. Such failures
also help explain and understand what works and justify why models might need certain
complexity because simpler alternative may fail in important ways. Some of these theoretical

journeys also make their way, albeit in distilled form, into the formal classes | teach and the

informal mentoring | provide to folks working with me —and | suppose into this commentary as

3 “Exploratory” is such an unfortunate word since it is so often hedged in science in ways that
connote “merely exploratory”. Creating a model that for the first time instantiates a new set of
theoretical principles, or accounts for a new type of phenomenon, or establishes links between
brain and behavior in a new way is a deeply exploratory process. Whereas fitting an existing
model might take a few weeks for well-mentored member of a laboratory, creating a new
model or modeling approach, at least in my experience, can takes many months if not years of
deep, scientific exploration by a team of collaborators.



well. Raw thoughts are not raw data, whether when creating new models or designing new
experiments.

Keeping good records of modeling steps (in programming a model, simulating a model,
fitting a model to data, contrasting alternative models) is unquestionably important. There
must be sufficient detail in any modeling article — whether in the body of the article itself, in an
appendix, or, when article space is severely limited, in supplementary information — to allow
any competent modeler to reproduce the model predictions. It is incumbent upon authors to
be mindful about providing sufficient detail and upon editors and reviewers to demand such
detail. But, in my view, those details will be carefully distilled from the records of modeling
steps, not be a raw copy of a physical or digital laboratory notebook in a postregistration
document.

| recognize that there is a danger in being perceived as railing® against robustness. Who
would ever not want to be robust — “one might as well ask for acne” (Mook, 1983). But the
appropriate boundary conditions for when preregistration is appropriate, or even necessary,
and what kinds of information might actually be useful for science, if anything, in a
postregistration when developing new models needs very careful consideration by the field

before becoming expected — or demanded — practice in computational modeling.

* And my intent is not to rail.
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