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Abstract—The proliferation of innovative mobile services
such as augmented reality, networked gaming, and autonomous
driving has spurred a growing need for low-latency access
to computing resources that cannot be met solely by existing
centralized cloud systems. Mobile Edge Computing (MEC) is
expected to be an effective solution to meet the demand for low-
latency services by enabling the execution of computing tasks at
the network edge, in proximity to the end-users. While a number
of recent studies have addressed the problem of determining the
execution of service tasks and the routing of user requests to
corresponding edge servers, the focus has primarily been on
the efficient utilization of computing resources, neglecting the
fact that non-trivial amounts of data need to be pre-stored to
enable service execution, and that many emerging services exhibit
asymmetric bandwidth requirements. To fill this gap, we study
the joint optimization of service placement and request routing in
dense MEC networks with multidimensional constraints. We show
that this problem generalizes several well-known placement and
routing problems and propose an algorithm that achieves close-
to-optimal performance using a randomized rounding technique.
Evaluation results demonstrate that our approach can effec-
tively utilize available storage, computation, and communication
resources to maximize the number of requests served by low-
latency edge cloud servers.

Index Terms—Service placement, routing, joint optimization,
mobile edge computing.

I. INTRODUCTION

A. Motivation
MERGING distributed cloud architectures, such as Fog
and Mobile Edge Computing (MEC), push substantial
amounts of computing functionality to the edge of the network,
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in proximity to the end-users, thereby allowing to bypass fun-
damental latency limitations of today’s prominent centralized
cloud systems [2]. This trend is expected to continue unabated
and play an important role in next-generation 5G networks for
supporting both computation-intensive and latency-sensitive
services [3].

With MEC, services can be housed in base stations (BSs)
(or edge servers close to BSs) endowed with computing
capabilities that can be used to accommodate service requests
from users lying in their coverage regions. The computation
capacity of BSs, however, is much more limited than that
of centralized clouds, and may not suffice to satisfy all user
requests. This naturally raises the question of where to execute
each service so as to better reap the benefits of available
computation resources to serve as many requests as possible.

While there have been several interesting approaches to
determine the execution (or offloading) of services in MEC,
e.g., [4] and [5], to cite two of the most recent, an important
aspect has been hitherto overlooked. Specifically, many
services today require not only the allocation of computation
resources, but also a non-trivial amount of data that needs
to be pre-stored (or pre-placed) at the BS. In an Augmented
Reality (AR) service, for example, the placement of the
object database and the visual recognition models is needed
in order to run classification or object recognition before
delivering the augmented information to the user [6]. Yet,
the storage capacity of BSs may not be large enough to
support all offered services.

The above issue is further complicated by the services’
communication requirements. Many modern services require
uploading data from the user to be used as input for service
execution, whose output must then be downloaded for con-
sumption by the user. Such bidirectional communication may
be asymmetric in general, taking up different portions of BSs’
uplink and downlink bandwidth capacities [7].

In addition, the density of BSs has been increasing and
is expected to reach up to 50 BSs per km? in future 5G
deployments [8]. This is creating a complex multi-cell environ-
ment with users concurrently in range of multiple BSs with
overlapping coverage regions, and where the operator can use
multiple paths to route associated service requests. Figure 1
illustrates an example of such a system.

Evidently, in this context, MEC operators have a large
repertoire of service placement and routing alternatives for
satisfying the user requests. In order to serve as many requests
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Fig. 1. An example MEC system. Service placement and request routing are
constrained by the storage, computation, and bandwidth resources of BSs.

as possible from the BSs, the operator has to jointly optimize
these decisions while simultaneously satisfying storage,
computation, and communication constraints. Clearly, this is
an important problem that differs substantially from previous
related studies (e.g., see [4], [5] and the discussion of related
works in Section VII) that did not consider storage-constrained
BSs and asymmetric communication requirements. While a
few recent works [9], [10], [11] studied the impact of storage
in MEC, they neither considered all the features of these
systems discussed above nor provided optimal or approximate
solutions for the joint service placement and request routing
problem.
Given the above issues, the key open questions are:

o Which services to place in each BS to best utilize their
available storage capacity?

o How to route user requests to BSs without overwhelming
their available computation and (uplink/downlink) band-
width capacities?

o How the above decisions can be optimized in a joint
manner to offload the centralized cloud as much as
possible?

B. Methodology and Contributions

In this paper, we follow a systematic methodology in order
to answer the above questions, summarized as follows.

1) We formulate the joint service placement and request
routing problem (JSPRR) in dense multi-cell MEC net-
works aiming to minimize the load of the centralized
cloud. We consider practical features of these systems
such as overlapping coverage regions of BSs and multi-
dimensional (storage, computation, and communication)
resource constraints.

2) We identify several placement and routing problems
in literature that are special cases of JSPRR, gaining
insights into the complexity of the original problem.

3) Using a randomized rounding technique [12],
we develop a multi-criteria algorithm that provably
achieves approximation guarantees while violating the
resource constraints in a bounded way. To the best of
our knowledge, this is the first approximation algorithm
for this problem.

4) We extend the results for dynamic scenarios where the
user demand profiles change with time, and show how
to adapt the solution accordingly.

5) We carry out evaluations to demonstrate the performance
of the proposed algorithm. We show that, in many prac-
tical scenarios, our algorithm performs close-to-optimal
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and far better than a state-of-the-art method which
neglects computation and bandwidth constraints.

The rest of the paper is organized as follows. Section II
describes the system model and defines the JSPRR prob-
lem formally. We analyze the complexity of JSPRR
and present algorithms with approximation guarantees in
Section III and IV, respectively. Section V discusses practical
extensions of our approach, while Section VI presents our eval-
uation results. We review our contribution compared to related
works in Section VII and conclude our work in Section VIII.

II. MODEL AND PROBLEM DEFINITION

We consider a MEC system consisting of a set N of N € N
BSs equipped with storage, computation, and communication
capabilities, and a set i/ of U € N mobile users, subscribers of
the MEC operator, as depicted in Figure 1. The users may be
arbitrarily distributed over the (possibly overlapping) coverage
regions of the BSs, where A, C N denotes the set of BSs
covering user .

We consider multiple types of resources for the MEC BSs.
First, each BS n has storage capacity R,, (hard disk) that can
be used to pre-store data associated with services. Second,
BS n has a CPU of computation capacity (i.e., maximum
frequency) C), that can be used to execute services in an on-
demand manner. Third, BS n has uplink (downlink) bandwidth
capacity B] (B}) that can be used to upload (download) data
from (to) mobile users requesting services.

The system offers a library S of S € N latency-sensitive
services to the mobile users. Examples include augmented
reality, video streaming and networked gaming. Services may
have different requirements in terms of storage, CPU cycles,
and uplink/downlink bandwidth resources. We denote by r;
the storage space occupied by the data associated with service
5. The notation c, indicates the required computation, while b]
and b! indicate the uplink and downlink bandwidth required
to satisfy a request for service s, respectively.

The system receives service requests from the users in
a stochastic manner. Without loss of generality, we assume
that each user u performs one request for a service denoted
by s,. If a user performs multiple requests, we can split
it into multiple users. User requests can be predicted for
a certain time period (e.g., a few hours) by using learning
techniques [9]. Yet, user demand can change after that period
as users may gain or lose interest in some services. We provide
more details about this issue in Sections V and VL.

The request of user u can be routed to a nearby BS in
N, provided that service s, is locally stored and the BS has
enough computation and bandwidth resources. If there is no
such BS, we assume that the user can access the centralized
cloud, which serves as a last resort for all users. Accessing the
cloud, however, may cause high delay due to its long distance
from the users, and therefore should be avoided.

The network operator needs to decide in which BSs to
place the services and how to route user requests to them.
To model these decisions, we introduce two sets of opti-
mization variables: (i) z,s € {0, 1} which indicates whether
service s is placed in BS n (x,s = 1) or not (x,s = 0), and
(ii) Ynwu € {0,1} which indicates whether the request of user
u is routed to BS n (yn, = 1) or not (y,, = 0). Similarly,
we denote by y;, the decision to route the request of user u
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to the (centralized) cloud. We refer by service placement and
request routing policies to the respective vectors:

x = (rps €{0,1} :neN, s€8)
Y= (Ynu €{0,1} :neNU{l}, ueld)

(1
)
The service placement and request routing policies need to

satisfy several constraints. First, each user request needs to be
routed to exactly one of the nearby BSs, or the cloud:

>

neN,U{l}

Second, requests cannot be routed to BSs that are not nearby:
Ynu =0, Yu €U, n¢ N, (4)

Third, in order to route the request of user u to BS n, service
S, must be placed in BS n:

VneN, ueld (5)

Fourth, the total amount of service data placed in a BS must
not exceed its storage capacity:

Zmnsrs <R,, Vnec N

seS

Ynu < Tnsy s

(6)

Fifth, the total computation load generated by the user requests
routed to BS n must not exceed its computation capacity:

Z YnuCs, é Cn, Vn € N

ucU

@)

Sixth, the total bandwidth load generated by the requests
routed to BS n must not exceed its uplink and downlink
bandwidth capacity:

> ynubl, < Bl ¥neN ®)
uel
> ynubl, < B) ¥neN ©)
uel

The goal of the network operator is to find the joint
service placement and request routing policy that maximizes
the number of requests served by the BSs, or, equivalently,
minimizes the load of the cloud:

s.t. Constraints: (1) — (9) (10)

We refer by JSPRR to the above problem. This is an integer
optimization problem and such problems are typically chal-
lenging to solve. In the next sections, we discuss the relation to
other known problems and propose approximation algorithms.

III. RELATION TO KNOWN PROBLEMS

The JSPRR problem is NP-Hard since it generalizes the
knapsack problem by comprising multiple packing constraints
(Inequalities (6)-(9)). In this section, we investigate several
special cases of the problem and show how these can be solved
by making connections to some other well-studied placement
and routing problems in literature. All the special cases we
present make the simplifying assumption of homogeneous
service requirements (r; = ¢; = bl = bl =1 for all s € S),
while each special case makes its own extra assumptions.
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A. Special Case 1: Non-Overlapping BS Coverage Regions

In the first special case, we make the simplifying assumption
(in addition to the homogeneity of service requirements) that
the coverage regions of the BSs do not overlap with each other.
This particularly applies to sparse BS deployments where the
BSs are located far away one from the other. It follows that
the JSPRR problem can be decomposed into N independent
subproblems, one per BS n. The objective of subproblem n is
to maximize the number of requests served by BS n.

It is not difficult to show that there is always an optimal
solution to subproblem n that places in BS n the R,, most
locally popular services, i.e., the services requested by most
users inside the coverage region of BS n. Then, BS n will
admit as many requests for the placed services as its compu-
tation and bandwidth capacities C,,, BI,/ and B},/ can handle,
i.e., min{C,, B}, Bl} requests at most. Indeed, consider a
solution that places in BS n a service s; requested by fewer
users inside the respective coverage region than another service
so. Then, one could swap the two services in the placement
solution and route the same number of requests to BS n
without changing the objective function value. Therefore,
the JSPRR problem is trivial to solve in this special case.

B. Special Case 2: Non-Congestible Computation &
Bandwidth

In the second special case, we allow the coverage regions of
BSs to overlap, but we make the simplifying assumption that
the computation and bandwidth resources are non-congestible,
i.e., they always suffice to route all user requests to BSs.
In other words, we assume that the capacities C,, BJL and B}l
are greater than or equal to the demand of users, so that we
can remove Constraints (7)-(9) from the problem formulation
without affecting the optimal solution.

Without the computation and bandwidth constraints,
the problem becomes much simpler. For a given service
placement x, finding the optimal request routing policy vy is
straightforward; simply route each user request to a nearby BS
having stored the requested service, if any; otherwise route it
to the cloud. This special case has been extensively studied in
literature under the title ‘data placement’ [13] or ‘caching’
problem [14], [15]. This problem asks to place data items
(services) to caches (BSs) with the objective of maximizing
the total number of requests served by the caches.

While the data placement problem is NP-Hard, several
approximation algorithms are known in literature. The main
method used to derive such approximations is based on show-
ing the submodularity property of the optimization problem.
That is, to show that the marginal value of the objective
function never increases as more data items are placed in
the caches. Having shown the submodularity property, several
‘classic’ algorithms can be applied, with the most known being
greedy, local search, and pipage rounding [15]. Among the
three algorithms, the greedy is the simplest and fastest, and,
hence, the most practical.

C. Special Case 3: Unit-Sized Storage Capacities

In the third special case, we allow the coverage regions of
BSs to overlap and the computation and bandwidth resources
to be congestible, but we make the simplifying assumption that
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the storage capacities are unit-sized (R, = 1 for all n € N).
That is, we assume that only 1 service can be stored per BS.

The simplified JSPRR problem can be reduced to the
‘middlebox placement’ problem [21], [22]. While there exist
many different variants of the middlebox placement problem
in literature, typically, this problem asks to pick m out of p
nodes in a network to deploy middleboxes. The goal is to
maximize the total number of source-destination flows (out of
q flows) that can be routed through network paths containing
at least one middlebox, subject to a constraint k that limits the
number of flows processed by each middlebox.

Although the reduction is not straightforward, the main idea
is to construct the middlebox placement instance by creating:
(i) a distinct node for each pair of a BS and a service (p = NS
nodes in total) and (ii) a distinct flow for each user (¢ = U
flows in total). We then allow each flow to be routed through
any node whose BS-service pair satisfies that the BS covers
the respective user and the service is the one requested by that
user. The question is which m = N out of the p = NS nodes
to pick to deploy middleboxes subject to the constraint that at
most k = min{C,,, B}, B} } flows can be routed through each
node corresponding to BS n and the additional constraint that
only 1 out of the S nodes corresponding to BS n can be picked
(representing the storage constraint R,, = 1). The picked node
will determine which of the S services is placed at BS n.

Recent works have shown that the maximum flow objective
of the middlebox problem is a submodular function [21], [22].
Therefore, this problem can be solved by using the same
approximation algorithms mentioned in special case 2.

D. General Case: Non-Submodular

Although it would be tempting to conjecture that our JSPRR
problem is submodular in its general form (with overlapping
coverage regions, congestible bandwidth and computation and
large storage capacities), we can construct counter-examples
where this property does not hold. First, we introduce the
definition of submodular functions.

Definition 1: Given a finite set of elements G (ground set),
a function f : 29 — R is submodular if for any sets
A C B C G and every element g ¢ B, it holds that:

f(AU{g}) — f(A) = f(BU{g}) — f(B) (11

Next, we introduce the element e,s to denote the place-
ment of service s in BS n. The ground set is given by
{ei11,...,ens}. Every possible service placement policy can
be expressed by a subset £ C G of elements, where the
elements included in £ correspond to the service placement.
Given a service placement £, we denote by f(&) the maximum
number of user requests that can be satisfied by the BSs.

We will construct a counter-example where the function
f(&) is not submodular. Specifically, we consider a system of
N =2 BSs and U = 2 users located in the intersection of the
two coverage regions. The users request two different services
denoted by s; and so. We set the computation capacities
to C; = C = 1 (i.e., at most one service request can
be satisfied by each BS), while the storage and bandwidth
capacities are abundant. The two placement sets we consider
are A = {e11} and B = {e11,e21}, where A C B. We note
that f(A) = f(B) = 1 since in both cases only one of the
two services is stored (s;), and hence only one of the two
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requests can be served. Besides, f(AU {e12}) =1 since the
computation constraint prevents BS 1 from serving both user
requests. However, f(BU {e12}) = 2 since now each BS can
serve one user request. Therefore, the marginal performance
is larger for the set B than the A, i.e., f(BU{e12})— f(B) >
f(AU{e12}) — f(A), which means that f is not submodular.

E. General Case: Approximately-Submodular

Although JSPRR does not fall into the class of submodular
problems, we can show that it belongs to the wider class of
approximately submodular problems [24]. The complexity of
JSPRR for general and special cases is depicted in Figure 2.

Definition 2: A function f : 29 — R is d-approximately
submodular if there exists a submodular function F : 29 — R
such that for any € C G:

(1=0F(E&) < f(E) S(A+HF(E) (12)

We define by F'(£) the maximum number of user requests
that can be satisfied by the BSs given the service placement
set £ in the special case that the bandwidth and computation
resources are non-congestible (special case 2). Since there are
fewer constraints in this special case than in the general case,
it holds that f(£) < F(&). Therefore, for any § € [0,1],
we have f(€) < (14-0)F(&). What remains to find is a ¢ value
that satisfies the first inequality in (12), ie., (1 — 0)F(&) <
f(&).

We note that when computing the value of F'(£), the BS n is
allowed to satisfy all the requests for stored services generated
by users in its coverage region. We denote by ®,, the number
of these requests. In case that it happens ¢, < C,, ¢, <
B], and ®, < B} for all n € N, then the computation and
bandwidth resources are non-congestible and we have f(€) =
F(&). In the other case that, for some n € N/, it happens
®, > C, or ®, > B} or ®, > B}, then the BS n can
process up to ®,,/C,, times more requests, compared to f(&).
Similarly, the BS n can receive (deliver) data from (to) up
to ®,/B} (®,/B.) times more users. Therefore, the total
number of satisfied requests is upper bounded by:

F() < max{o, 2n 2 gy pee)

1
neN Cn ( 3)

where the value 1 inside the max operator ensures that F'(€
will never be lower than f(£). We thus can ensure that (1 —
) F(E) < f(E) by picking:

1

. By Dy )

6=1-
maXYLE./\/’{Cn/a F7 Bl

(14)

The problem of maximizing a §-approximately submodular
function has been studied in the past [24]. Based on the results
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Algorithm 1 SPR? Algorithm

1 Solve the linear relaxation of JSPRR problem to obtain
(', y") optimal solution.

2forne N, s€S do

3 | Set T, =1 with probability z],,.
end

4 for v € U do

5 | Define NV, = (n € Ny,

6 | if V), =0 then

7 | | Set g = 1 with probability ©,, given in (20).

D s, = 1).

else
—~ . . T
8 Set Ynu = 1, n € N/, with probability 2z,
9 and G, = 1 with probability

.
Yl Ten, A=2hs,)
=TT cn, (1=2hs,)

10 Among all n € N/, such that g,, = 1, pick one of
them uniformly at random.
11 if all n € N}, are such that yy,, = 0 then
12 | Pick the cloud value 7.
end
end
end

13 Output z, y

in [24], we can use a simple greedy algorithm to achieve the
approximation ratio described in the following proposition.

Proposition 1: The Greedy algorithm returns a solution set
E* such that:

1(1—(5 1

f(E€) =
]. + (S) 1 + Zn;ﬁ/éR"é

>3 max f(€)  (15)

Consider for example the case that the demand exceeds the
available resources by up to 50%, i.e., there exists a BS n for
which ®,, = 1.5C,, or ®,, = 1.5B,TL or &, = 1.53},/. Then,
0 = 1/3, and the approximation factor becomes:

1 1
e maxf(€)
4 2nen Bn

1+ 621\/’ &

f(&) = (16)

The above approximation ratio worsens as the network
becomes congested (0 increases) and the storage capacities
increase (R,,). To find a tighter approximation, we present in
next section another method based on randomized rounding.

IV. APPROXIMATION ALGORITHM

In this section, we present one of the main contributions
of this work; a novel approximation algorithm for the JSPRR
problem that leverages a randomized rounding technique and is
referred to as Service Placement and Routing via Randomized
Rounding, or SPR®. The SPR? algorithm is described in detail
below and summarized in Algorithm 1.

The SPR? algorithm starts by solving the linear relaxation of
the JSPRR problem (Line 1). That is, it relaxes the variables
{zns} and {y,,} to be fractional, rather than integer. The
Linear Relaxation of JSPRR problem, LR-JSPRR for short,
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can be expressed as follows:

min Y~y (17)
©Y ueU
s.t. Constraints: (3) — (9)
Tns €10,1], VREN, s€ S8 (18)
Ynu € [0,1], VR e NU{I}, ueld (19)

where we have replaced Equations (1)-(2) with (18)-(19).
Since the objective and the constraints of the above problem
are linear, it can be optimally solved in polynomial time using
a linear program solver [25]. We denote by {z! .} and {3}
the optimal solution values. The next step is to round these
values to obtain an integer solution, denoted by {Z,s} and
{¥nw}-. For each pair of node n and service s, the algorithm
rounds variable 7, to 1 with probability ] . (Lines 2-3). Each
rounding decision is taken independently from each other.

Finally, the algorithm uses the rounded placement vari-
ables {Z,s} to decide the rounding of the routing variables
(Lines 4-12). For each user u, it defines the set of nearby BSs
that have stored the requested service s, by N, (Line 5) and
uses this set to distinguish between two cases: (i) if user u
cannot find service s,, in any of the nearby BSs, i.e., N, = 0),
then the user request is routed to the cloud with probability
O, (Lines 6-7) given by:

]" if yju Z HNEN“, (]‘ - x;rlsu)
Ou = Yl

HneN“, (1_37']:L5u) ’

(ii) otherwise, the user is randomly routed to one of the BSs
in N/ or the cloud (Lines 8-12). The routing probabilities
depend on the fractional values {z},} and {y,}. Higher
probability is given to BSs with larger y; , values. If more than
one of the y, values are rounded to 1, only one of them is
picked uniformly at random. Routing to the cloud is considered
only if none of the BS values is picked. The notation [.]+ in
Line 9 denotes the ramp function, i.e., [a]+ = max{a, 0}.

Subsequently, we provide guarantees on the quality of the
solution returned by the SPR? algorithm. We begin with the
following lemma.

Lemma 1: SPR® algorithm routes every user request with
high probability as the BS density and service requirements
grow.

Proof: For a given user u, there are two cases when
rounding the fractional variable y, to ¥, for a BS (n €
N) or the cloud (n = I): (i) there is no nearby BS having
stored the requested service (N, = 0)) and (ii) there is at least
one such BS (N, # (). The probability that the request of
user u is routed to the cloud is given by:

Pr(yi, = 1]
= Pr [ = 1| N, = 0] Pr [N} = 0]
+Pr [ = 1| VL 2 0] Pr [N £ 0]
=0, H (1 - x;fzsu)

(20)
else

nEN,
! i
_ 1 - {I:/f S
|:ylu Hne/\fu( - 28 u,):| (]_ - H (]- - {ELS“’))
1-— Hne./\fu(l — a?ns“,) + nEN,
=y, o
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The first equation is by the definition of conditional probabil-
ity. The second equation is by replacing the probability values
in Lines 7 and 9 of the algorithm and due to the fact that
the {z] .} variables are rounded independently of one another
(hence, Pr[N;, = 0] =[], crr, (1 — 2], ))- To show the third
equation we consider two cases: (1) ylu > [pen, (1 - zhs))
and (ii) ylu < [Lhen, (1 — xf,,, ), and replace the values of
O, and [.]4 accordingly. In both cases, the end result of the
equation will be equal to leu

Similarly, the probability that the request of user w is routed
to BS n is given by:

Pr[@\nu = 1] = Pr |:?/J\nu =1 | i‘\nsu, = 1:| Pr {-%\nsu = }

+Pr [gnu =1 B, = 0} Pr [fc“n = o}

T
Y

= Dt =l (22)
Tns,

The first equation is by the definition of conditional probability
and the fact that the rounding decision of 7, variable depends
on the T, value regardless of the N, set. The second
equation is by replacing the probability value in Line 8 of
the algorithm and because Pr[y,, = 1 | Z,s, = 0] = 0.

The sum of probabilities of routing the request of user u to

the cloud or the BSs is given by:

neN, U{l}

(23)

Z yILuzl

neN,U{l}

where the first equation holds due to Equations (21) and (22),
and the second due to (3).

The above is an upper bound on the probability of routing
the request of user w except for an additive gap that goes
to zero with BS density. Specifically, the probability that the
request of user u is not routed by SPR? is given by:

Pr[ 3 y,m:o}

neN, U{l}

=Pr| Y Gau=0[ N =0|Pr[N =0
neN U{l}

+Pr[ 30 Gau =0 N AO| Pr AL £ 0] 4y
neN, U{l}

Furthermore, the probability that no nearby BS has stored
S, (in the rounded solution) can be bounded as:

PrN, = 0] = Pr[ [ {@ns, = 0}]
neNy
= H (1 - ‘(I’.ILSU)
neNy

< (25)

< (1 - mina, )N
ninl,,

u

where N, = (n € N, al,. > 0) is the set of nearby BSs
storing s,, in the fractlonal solution.
As BS density and service resource requirements increase

then |A7u| also grows, and by Equation (25) Pr {J\/}i = (Z)} — 0.
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Equation (24) then becomes:

Z @\7,,u=0|./\/;i7é®}

neN, U{l}

_ (g) H (1_ y;rzu > <1_ |:yljru_1_[n6.}\fu(1 - xILsu):| )
neN’, xlwu 1-TLen, (1 —ahe,) 14

ne./\f / xnsu
where (a) holds because the routing variables are rounded
independently of one another and in the end one of them is
picked (so the probability of not picking any of the variables
is equal to the probability of all of them being rounded to
zero). (b) holds because term [.]4 is a probability value.

As BS density and service requirements increase, the set
N grows and eventually contains a BS n that is out of range
of all the other users requesting the same service su In this
case, there is an optimal fractional solution with [, / xnsu =1
since it would be wasteful for BS n to store a larger portion
a} . than the routed portion y],, while Constraint (5) ensures
that the stored portion is larger or equal to the routed one, so it
should be equal, and the product in (26) goes to 0. O

We note that there can be also Terived worst case res}ults

3

(26)

to upper bound the probability Pr |3 _\: ) Unu = 0

1/e ~ 0.3679 in all cases and without the BS density and ser-
vice requirement assumptions of Lemma 1. These worst case
results can be derived by showing that the product function in
(26) is Schur-concave and then applying majorization theory.

By construction, SPR? routes requests only to BSs that
are nearby and have stored the respective service (N, set in
Line 5) or to the cloud. Therefore, Constraints (4) and (5) are
satisfied. Next, we study whether the remaining constraints in
(6), (7), (8), and (9) are satisfied.

Lemma 2: The solution returned by the SPR® algorithm sat-
isfies in expectation the storage, computation, and bandwidth
capacity constraints in (6), (7), (8), and (9).

Proof: We begin with the storage capacity constraint. The
expected amount of data placed in BS n is given by:

E[Z TnsTs) = ZPr Tns = 1rs = Zmnsrg =R, 27

seS SES seES

where the second equation is because the {Z,,} variables are
binary, with success probabilities the fractional values {z] 1.
The last equation is due to Constraint (6) and the fact that it
would be wasteful to not use all the storage space.

Next, we consider the computation capacity constraint. The
expected computation load of BS n is given by:

E[Z YnuCs,|= Z Pryn. = 1]cs, = Z ?Jj:,ucsu <Cn (28)
ueld ueU ueU

where the second equation holds due to Equation (22). The
inequality is by Constraint (7). Similar inequalities can be
shown for the uplink/downlink bandwidth constraints:

Z Ynub gu Z PI‘ ynu =1 bT = Z yILubL BVTL (29)
ueU ueU ueU
E[Y " Gnubl, )= Prlfnu= 1]}, =Y " yh,bl, <B} (30)
ueU ueU ueU

where we have used Equations (8), (9) and (22). O
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A similar result holds for the objective function value.
Lemma 3: The objective value returned by the SPR® algo-
rithm is in expectation equal to that of the optimal fractional
solution.
Proof: The expected number of user requests routed to
the cloud by SPR? is given by:
= vl

E[Y Gl = 3 Prlji = 1]

ueU ueU

(€19

where the second equation holds due to Equation (21). O

The above lemmas have shown that the SPR? algorithm
satisfies in expectation the capacity constraints and achieves
the optimal objective value. However, in practice, the capacity
constraints may be violated. Therefore, it is important to bound
the factor by which this happens.

Theorem 1: The amount of data placed by the SPR® algo-
rithm in BS n € N will not exceed its storage capacity by a
factor larger than 3111(8) + 4 with high probability under the
assumptions R, > ln(S and S > N.

Proof: The proof uses the following Chernoff Bound [26]:

Given [ independent variables 21, 2o, ..., zr where for all

€ [0,1] and m = E[S7_, =], it holds that Pr[Y 2 >

—e“ m

(I14+€e)m] <exp 2¥¢ .

For a given BS n € N, the products Z,,r, for all
s € § are independent random variables with expected total
value E[} _sZnsrs] = Ry (cf. Equation (27)). Moreover,
by appropriately normalizing the rs and R,, values, we can
ensure that the Z,rs variables take values within [0, 1].
Therefore, we can apply the Chernoff Bound theorem [26]
to show that for any € > 0:

§ xTL‘?rS -

seS

—e? n
(14 €)Rp] < exp 25+ (32)
Next, we find an € value for which the probability upper bound
above becomes very small. Specifically, we require that:
—e2Ry, 1
exp 2te < 53
which means that the probability bound goes quickly (at a
cubic rate) to zero as the number of services increases. In order
for this to be true, the ¢ value must satisfy:

(33)

31n(S) 9In%(S)  61n(S)
> 34
‘= 9R, +\/ iR2 R, 34
The above condition holds if we pick:
31n(S)
= 3 35
R, + (35)

since, in practice, R,, > In(S). Finally, we upper bound the
probability that any of the BS storage capacities is violated:

el S drs >
neN seS
> OPr) | Bpers >

neN s€S

1 1
<N TN (36)
where the first inequality is due to the Union Bound theorem.
The second inequality is due to Equation (33) and because

> (1+€¢)R,]

IN

(1+¢€)R,]
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the number of BSs is NN. The last inequality is because,
in practice, the service library size is larger than the number
of BSs (S > N). Therefore, with high probability, the storage
capacity of any BS n will not be exceeded by more than a
factor of 1 +¢ = 31n(s) +4. O
Theorem 2: The computatwn load of BS n € N returned
by the SPR? algorithm will not exceed its capacity by more
than a factor of 3111(8) + 4 with high probability, where \'
is the minimum computatwn load among BSs in the optimal
fractional solution, under the assumptions A\ > In(S) and
S > N.
Proof: The proof is similar to Theorem 1. For a given BS
n € N, the variables ¥y,cs, for all u € U are independent
with expected total value E[>", .y, UnuCs.] = D uey YhuCs.
(cf. Equation (28)). Moreover, they can be normalized to take
values within [0, 1]. Therefore, we can apply the Chernoff
Bound theorem:

PI‘[Z ?/J\nucsu >

ucU

2
—“ Yuecu ?/ILu“Su,
2+4e€

1+e) > vl

ucU

Cs,] <exp

(37

Unlike storage, however, the expected computation load may
not be equal to the capacity, i.e., D, o, yl.cs. # Cn. There-
fore, we cannot replace it in the above inequality To overcome
this obstacle, we use the fact that > wcu yl s, < Cp (by
Constraint (7)) and AT < > weul ynucgu (by definition of )
to show the following two inequalities:

Pr[> " Gnucs, > (14 €)Cn] < Pr[ Gnucs,
ueU ueU
> (14+6)> yhucs] (38)
ueU
—2Tueu y:ﬂuum N
exp 2+e < exp ¢ 39)
By combining Equations (37), (38), and (39), we obtain:
N
P> Guuts, = (L+6)Co] < exp 70 (40)

ucU

To complete the proof, we will find an e value for which the
probability upper bound above becomes very small, i.e., at
most 1/53. Similarly to Theorem 1, we can set ¢ = 225 4 3,
Then, we can upper bound the probability that any of the
computation capacities is violated by:

PI'[ U Z i/\nucsu > (1 + 6)0"]

neN uveld
Z Pr[z ?/J\nucs” > (1 + €)Cn]
neN ueU

NG < (41)

This means that, with high probability, the computation capac-
ity of any BS will not be exceeded by more than a factor of
1+e¢ _ 3 ln(S) +4. 0
Usmg 51m11ar arguments, the following two theorems can
be proved for the uplink and downlink bandwidth capacities.
Theorem 3: The uplink bandwidth load of BS n € N
returned by the SPR> algorlthm will not exceed its capacity by
more than a factor of ‘“n () 4 4 with high probability, where

IN
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ut is the minimum uplink bandwidth load among BSs in the
optimal fractional solution, under the assumptions it > In(S)
and S > N.

Theorem 4: The downlink bandwidth load of BS n € N
returned by the SPR> algorithm will not exceed its capacity
by more than a factor of ‘SIH(S) + 4 with high probability,
where vi is the minimum downlmk bandwidth load among
BSs in the optimal fractional solution under the assumptions
vt >1n(S) and S > N.

What remains it to describe the worst case performance of
the (in expectation optimal) SPR? algorithm.

Theorem 5: The objective value returned by the SPR® algo-
rithm is at most 1“53) + 3 times worse than the optimal with

high probability, where &' is the optimal objective value in the
linear relaxed problem under the assumption €& > In(S).

Proof: The proof is similar to the previous theorems, yet
the bound is tighter since we do not need to apply the Union
Bound theorem. We begin by showing that:

Zylu,

ueU

o
(14 €)€t] < exp 7 (42)

Since ¢F < §A where §A is the optimal integer solution value,
it also holds that:

Zylu =

ueU

2t
(1+e f] < exp 55 (43)

Next, we upper bound the right hand side of the above
inequality by 1/52. In order for this to be true, the € value
must satisfy the following condition:

In(S) In*(S)  4In(S)
€> f + \/ e + et (44)
The above condition holds if we pick:
~ 2In(S)
=T +2 (45)

since, in practice, the number of requests will be more than the
number of services (£7 > In(.S)). Thus, with high probability,
performance will be at most 1 4 € = ths) -+ 3 times worse
than optimal. O

In many practical settings, the above factors are constant,
i.e., the term that depends on the system parameters is small.
For example, consider a system with thousands of users
generating requests for services in a library of size S = 1, 000.
Each BS can process up to a thousand requests (C,, = 1,000)
and the minimum computation capacity utilization is 40%
(A" = 400). Then, the computation capacity violation factor
becomes % + 4 =~ 4.05.

The factors in Theorems 1-5 upper bound with probability
that goes to O at a quadratic rate the violation of capacity
constraints and the performance gap from optimal. While we
showed that each of the five factors holds individually, we can
also show that the five factors hold jointly, essentially binding
the factors together. This can be achieved by using again the
Union Bound Theorem where the probability that any of the
five factors in Theorems 1-5 does not hold goes to zero at a
quadratic rate 5/5% which is the sum of the right-hand sides
of Equations (36), (41) and analog equations in Theorems 3-5.
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We need to emphasize that our analysis exploits the large
scale of the MEC system (large number of base stations and
services) to derive the high probability bounds of constraint
violation and performance gap caused by the rounding process
of the SPR? algorithm. Another promising direction is to
repeat the rounding process of SPR® multiple times and
exploit this redundancy to prove tighter bounds. For example,
the pioneer work in [18] performs multiple rounding tries until
a multi-criteria solution is found, while our previous work
in [19] bounds the probability of constraint violation as a
function of the rounding tries. Such repeated rounding process
could be also added to our SPR? following similar arguments
as in [18] and [19]. The improved bounds, however, would be
at the cost of increased computation time of the algorithm.

V. EXTENSION AND PRACTICAL CASES

In this section, we discuss how to handle changes in the user
demand. In addition, we describe how to make the solution of
the SPR? algorithm satisfy the constraints, thereby making the
algorithm more practical.

A. Handling User Demand Changes

The service placement and request routing decisions are
taken for a certain time period during which the demand is
fixed and predicted. The demand, however, may change over
time, e.g., after a few hours or even at a faster timescale
depending on the scenario. The MEC operator will have to
repeatedly predict the new demand for the next time period
and adapt the service placement and request routing decisions
accordingly. For example, the MEC operator should replace
services that are no longer popular with other services that
recently gained popularity.

The adaptation of the service placement is not without cost.
In fact, replacing previously placed services with new ones
would require the BSs to download non-trivial amounts of data
from the cloud through their backhaul links. This operation
creates overheads which, depending on the timescale, can be
significant and therefore should be avoided.

The SPR? algorithm can be extended to become aware of
the service placement adaptation costs. To this end, we add a
new constraint into the JSPRR problem. This constraint upper
bounds by a constant D the total amount of data associated
with the replaced services:

DD wnsll-

neN sesS

Jrs <D (46)

where P is the placement solution in the previous time
period. Here, placing a service s at BS n (z,s = 1) adds
rs to the adaptation cost if and only if that service was not
placed in the previous time period (22, = 0).

We note that all the presented lemmas and theorems still
hold as they do not depend on the presence of constraint (46).
What remains to analyze is how likely is for the rounded
solution Z returned by the algorithm to violate constraint (46).
This is described in the following theorem.

Theorem 6: The total amount of data associated with ser-
vice placement adaptation will not exceed the upper bound D
by more than a factor of QIHT@ + 3 with high probability.
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TABLE I
RESOURCE REQUIREMENTS OF DIFFERENT TYPES OF SERVICES

Service s Uplink b (Mbps)

Storage rs (GB)

Computation ¢s (GHz)  Downlink bﬁ (Mbps)

Video Streaming (VS) - [1,10]

Face Recognition (FR) [1,8] [2,10]
Gzip [1,8] 0.02
Augmented Reality (AR)  [1,8] [2,20]

- [1,25]
[0.375,3] -
[0.04,0.32] [0.25,2]
[0.375,3] [0.25,2]

Proof: The proof is similar to the previous theorems. The
Chernoff Bound is applied for the sum of random variables
{zns(1 —aP,)rs}, the expected total value of which is D. [

B. Constructing a Feasible Solution

As the SPR? algorithm may violate the storage capacities
of the BSs by a factor of 31n(S)/R,, + 4, the MEC operator
may not be able to store all the services required to ensure the
performance guarantee of the algorithm. Similarly, the service
placement may violate the limit of allowable adaptations D,
while the request routing may overwhelm the computation and
bandwidth capacities or leave some users unserved. To respond
to such cases, the operator needs to convert the multi-criteria
solution into a feasible solution, i.e., a solution that satisfies
constraints (3), (6)-(9) and (46).

To obtain such a solution, we start with the service place-
ment Z outputted by the SPR? algorithm. Then, we iteratively
perform the removal of a service from a BS that yields the min-
imum cloud load increment. When a service is removed from
a BS, the user requests for that service previously routed to
that BS are now re-directed to other nearby BSs with available
bandwidth and computation and the requested service stored
(if any), or otherwise to the cloud. The procedure ends when
constraints (6) and (46) are satisfied. To satisfy the remaining
constraints we perform one more step. That is, we iteratively
re-direct a user request that is unserved or served by an
overloaded BS towards another BS with available resources
(if any) or to the cloud, until all the requests are served
without any overloaded BSs. The re-directions of requests
happen by ranking the users and BSs based on their indices
and examining each user-BS pair one-by-one following that
order, while ensuring that none of the constraints is violated
because of each re-direction.

VI. EVALUATION RESULTS

In this section, we carry out evaluations to show the
performance of the proposed SPR? algorithm after we convert
its solution into a feasible one (Section V.B). We consider a
similar setup as in the previous work [9], depicted in Figure 3.
Here, N =9 base stations (BSs) are regularly deployed on a
grid network inside a 500mx500m area. U = 1,000 mobile
users are distributed uniformly at random over the BS coverage
regions (each of 150m radius). Each user requests one latency-
sensitive service drawn from a library of S = 1,000 services.
The service popularity follows the Zipf distribution with shape
parameter 0.8, which is a common assumption for several
types of services such as video streaming. For each BS n,
we set the storage capacity to R,, = 200 GBs, the compu-
tation capacity to C;, = 20 GHz and the uplink (downlink)
bandwidth capacity to B, = 100 (B} = 250) Mbps. Yet, all
these values are varied during the evaluations.

500

Base stations (9, - - /
R, in 50, 250] (GBs) P VR

C, in[10,50] (GHz)

Mobile users (1000)

Uniformly random
location

Zipfian random

Bi in [25, 100] (Mbps) request generation

Meters

B} in[100, 300 (Mbps)

200
Meters

Fig. 3. Evaluation setup.

We set the resource requirements 7, Cs, bl and bi of the
S = 1,000 services randomly by mapping them to 4 real
latency-sensitive services, namely Video streaming (VS), Face
recognition (FR), Gzip (compression) and Augmented reality
(AR), listed in Table I. Video streaming requires significant
storage (1GB - 10GB) and downlink rate (1Mbps - 25Mbps)
capturing videos of various lengths and playback qualities.
The computation and uplink rate requirements are negligi-
ble for this particular service. Face recognition consumes
notable uplink bandwidth for video frame uploading (1Mbps
to 8Mbps) which depends on the resolution of the camera
(SD or HD) and the use case of interest (e.g., security and
surveillance or access control). It also consumes significant
computation (up to 3GHz) and storage (at least 2 GB) for
matching to a database of possibly thousands of frames, but the
downlink rate is negligible. The above values are inline with
the real service specifications in [27]. Gzip generates downlink
rate 4 times lower than uplink rate representing a compression
ratio of 4. The computation is set within [0.04,0.32] GHz
assuming 330 cycles per byte (or about 40 cycles per bit)
of the uploaded data [28] while the storage footprint is small
(20MB). Augmented reality is the most resource demanding
service. It requires significant bandwidth for the upload of
video frames and the download of holograms to be augmented
to the frames. The hologram sizes are set to 1/4 of the original
frames and hence the required downlink rate is lower. The
computation is set similar to the FR service while the required
storage can be more than 10 GBs [29].

We compare our algorithm with two baseline methods.

1) Linear-Relaxation (LR): The optimal (fractional) solu-
tion to the linear relaxation of JSPRR problem. This
solution is found by running a linear solver and provides
a lower bound to the optimal integer solution value.

2) Greedy [15]: Tteratively, places a service to a BS cache
that reduces cloud load the most, until all caches are
filled. Each request is routed to the nearest BS with
the service, neglecting computation and bandwidth con-
straints.
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Fig. 5. Resource utilization per type and per BS.

On one hand, LR can be used as a benchmark to gauge
the performance gap of our algorithm from optimal. On the
other hand, it is well-known that Greedy achieves near-optimal
performance for the traditional data placement (or caching)
problem, leveraging its submodular property [15]. Therefore,
a natural question to ask is whether the efficiency of Greedy is
maintained or novel algorithms are needed when the placement
of services with multidimensional resource requirements is
considered. We remark that our evaluation code is publicly
available online in [40].

We first explore the impact of storage capacity R,, Vn on
the load of the centralized cloud. In Figure 4a, R,, spans
a wide range of values, starting from 50GBs to 250GBs.
As expected, increasing storage capacities reduces cloud load
for all the algorithms as more requests can be satisfied locally
(offloaded) by the BSs. The proposed SPR? algorithm per-
forms significantly better than Greedy with gains up to 29.4%
for R, = 250GBs. At the same time, the gap from LR, and
hence optimal, is small (no more than 14.2% gap) showing
the efficiency of the proposed algorithm.

Next, we show the impact of computation capacity C,
in Figure 4b. While the cloud load reduces with C,, for all
the algorithms, SPR® performs consistently better than Greedy
and very close to LR. Especially when C), is equal to 10GHz,
the gains from Greedy climb up to 30.1% and the gap from
LR is only 3.6%. Similarly, Figure 4c depicts the cloud load
for different combinations of uplink (BJL) and downlink (B}l)
bandwidth capacities. While the cloud load reduces with each
of the B} and B}, values for all the algorithms, SPR? achieves
gains between 13.9% and 27.1% over Greedy. The gap from
LR is no more than 8.7% in all combinations.

(b) Impact of computation capacity.

Greedy
PR’
LR

50

80

60

N -

Cloud load (%)

75 200

100
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300
Downlink (Mbps)

40 50
Computation capacity (GHz)

(c) Impact of bandwidth capacities.

Cloud load for different (a) storage, (b) computation, and (c) uplink/downlink bandwidth capacities of BSs.

We take a closer look into the utilization of BS resources
when the SPR? and Greedy algorithms are used. The four
subplots in Figure 5 show the resource utilization for each
of the four resource types. We observe that both algorithms
utilize most of the available storage and computation resources
(90% or more for most BSs). Interestingly, Greedy utilizes
slightly more of these two types of resources. Yet, SPR?
manages to utilize significantly more bandwidth for almost all
BSs. Specifically, it utilizes 95.7% of BS uplink bandwidth on
average as opposed to 85.7% of the Greedy. The difference is
more pronounced for the downlink bandwidth. Such effective
balancing of load and utilization of bandwidth resources
eventually leads to superior performance.

It is worth exploring which types of service requests are
offloaded to the BSs and which are handled by the centralized
cloud when the SPR? algorithm is applied. To shed light on
this issue, Figure 6 depicts the distribution of requests across
the four types of services (VS, FR, Gzip and AR) in four
different scenarios. The values of storage, uplink and downlink
bandwidth capacities are varied in each scenario. Subfigure (a)
shows the results for the default values of R, = 200GB,
B} = 100Mbps and B! = 300Mbps. While about half of
the requests are offloaded to the BSs, most of them are for
video streaming since this type of service does not require any
computation and uplink bandwidth which are the bottleneck
resources. When we reduce the storage capacities from 200 to
100 GB (subfigure (b)), the volume of offloaded requests
decreases for all the services but Gzip. This is because Gzip
has almost zero storage footprint and therefore is not affected
by alterations in this resource. Similarly, in subfigure (c),
the reduction of the uplink rate from 100 to 25 Mbps reduces
the offloaded requests for all services but the video streaming
since the latter is the only service without any upload data
requirements. We explore how the distribution changes when
the downlink rate reduces from 300 to 100 Mbps in subfig-
ure (d). This time the service that is affected the most is video
streaming, with its share reducing from 19% to 9%. This was
expected since video streaming has the highest downlink rate
requirements (up to 25Mbps).

The above results revealed that our SPR? algorithm tends to
offload fewer requests for resource-demanding services (e.g.,
AR), depending on which are the bottleneck resources, so as
to maximize the aggregate of offloaded requests for all the
services. This is desirable when all the services are fairly
sensitive to latency. Yet, in some cases, certain services may be
more latency-sensitive than others and hence it is more critical
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Fig. 6. Distribution of requests across services for different resource
capacities: (a) default values, (b) reduced storage, (c) reduced uplink and
(d) reduced downlink.
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Fig. 7. Impact of weight value in the objective function on the aggregate
and AR offloaded requests.

to prioritize their offloading. Our algorithm can be easily
extended to handle such cases. Specifically, we can update
the objective function in (10) by multiplying the variable y;,,
for each user w requesting the critical service with a weight
value. The larger the value of this weight is, the higher priority
will be given by the algorithm to offload the requests for the
critical service. Consider for example the case in Figure 7
where the weight for the AR service is varied from 1 to 10.
While about 41% of the AR requests are offloaded for weight
equal to 1, this percentage notably increases up to 62% as the
weight increases. At the same time, the aggregate of offloaded
requests decreases in a mediocre way, as some of the requests
for the other services are “sacrificed” to favor the AR service.

Another interesting question is how much the resource
capacities are violated by algorithm before its solution is con-
verted into a feasible one. Figure 8 shows the maximal (over
all BSs) capacity violation for each type of resource. Here,
three scenarios are investigated differing in the availability of
storage, computation, uplink and downlink resources, namely
low (25GB, 5GHz, 25Mbps, 100Mbps), medium (50GB,
10GHz, 50Mbps, 200MBps), and high (250GB, 50GHz,
100Mbps, 300Mbps). Overall, the capacity violations are
much smaller than the worst case conditions in theorems 1-4
indicate. In the worst case (low scenario), the storage capacity
is violated by about 35%. Yet, the violation factors become
negligible as the capacities increase.

So far, we have assumed that the demands of the various
services can be estimated accurately. In practice, such estima-
tion is unlikely to have perfect accuracy and some estimation
error will exist. For example, estimators that rely on historical
records to predict future demands cannot estimate the demands
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TABLE I
RUNNING TIMES FOR DIFFERENT ALGORITHMS

Algorithm Running time (seconds)

U=500 U=1000 U=1500 U=2000
LR 0.6 2.1 6.8 27.6
SPR?3 0.7 2.2 7.0 27.7
Greedy 19.8 23.6 54.0 64.8

for new services that recently entered the market and hence
they do not have any records. We denote the number of these
new services by L and refer to it as the “aging factor” since
these new services represent how ‘“aged” the records of the
estimator are. We then perform additional evaluations where
the actual service popularity follows a different distribution
than the estimated one (Zipf distribution considered so far).
Specifically, we set the actual popularity distribution to be of
size S 4+ L where the L new services are augmented to the
end of the estimated popularity vector. Then, the actual service
requested by a user (s,,) is randomly set to either the estimated
service or one of the services in the L subsequent positions
of the new popularity vector. Figure 9 depicts the impact of
the aging factor L on the cloud load returned by SPR? and
Greedy. As expected, aging affects the performance of both
algorithms. However, SPR? performs consistently better than
Greedy, which shows the robustness of our method.

We finally highlight the running times of the presented
algorithms, summarized in Table II. These running times are
based on a Matlab implementation run on a MacBook Pro
laptop with 2.3 GHz Intel Core i5 processor. The proposed
SPR? algorithm requires only slightly more time than LR to
perform the rounding process regardless of the number of users
U. Greedy requires significantly more time to return a solution
and is 2.3 to 28 times slower than the proposed algorithm.
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TABLE III

RELATED WORKS ON COMPUTATION, COMMUNICATION & CACHING

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Ref. Computing  Communication  Caching  Objective Technique Solution
[4] v v X Min delay Convex optimization Heuristic
[5] v v X Min computation overhead  Greedy Heuristic

[21], [22] v v X Min # middleboxes Submodularity log(min(N, B))-approx.
[23] v v X Min # middleboxes Randomized rounding Multi-criteria-approx.
[16] v v X Min traffic cost Markov approximation  Heuristic
[17] v v X Min bandwidth Column generation e-optimal
[18] v v X Max profit Randomized rounding Multi-criteria approx.
[20] v v X Min resource cost Linear programming Optimal
[13] X X v Min delay Relaxation & rounding  10-approx.
[14] X X v Min delay Greedy & swapping 1/2-approx.
[15] X X v Min delay Submodularity e/(e — 1)-approx.
[30] X v v Max cache hits Lagrangian relaxation Heuristic
[31] X v v Max cache hits Facility location O(S)-approx.
[32] X v v Min delay Submodularity e/(e — 1)-approx.
[33] X v v Min transmit power Learning & clustering Heuristic
[34] X v v Min brown energy Sequential fixing Heuristic
[35] v X v Max quality Stochastic knapsack Heuristic
[36] v X v Min delay Conditional gradient Heuristic
[37] v X v Max revenue ADMM Heuristic
[10] v v v Max cache hits Submodularity Heuristic
[38] v v v Min cost & delay BSUM Heuristic
[39] v v v Min energy & bandwidth ADMM Heuristic

This work v v v Max cache hits Randomized rounding Multi-criteria-approx.

VII. RELATED WORKS

Most of the existing related works considered only some
of the three types of resources (computation, communication,
and storage). These works can be grouped into five categories:
(1) computation and communication, (ii) caching, (iii) caching
and communication, (iv) caching and computation, and
(v) caching, computation, and communication. We describe
these works in the sequel and list them in Table III.

A. Computation & Communication

The most common approach in the literature is to treat
services as virtual network slices that consume two types of
resources, computation and communication. In this context,
the works of [4] and [5] proposed methods to decide which
service requests to offload to the edge cloud servers or to
execute locally at the mobile devices aiming to minimize
delay and computation overhead. Another line of research
focused on the problem of placing middleboxes that are
able to host services. The question of placing a minimum
number of middleboxes together with the routing of traf-
fic flows through them subject to computation constraints
was formulated as a submodular optimization problem for
which efficient approximation algorithms are known [21], [22].
Another approximation algorithm for the same problem was
provided in [23] using randomized rounding techniques. The
problem of placing virtual machines (or functions) and rout-
ing traffic in a network was studied in [16] and a Markov
approximation was given. An extension of this work for
flows that require to traverse chains of functions in specific
order was provided in [17]. The authors applied the column
generation method to approximate the solution with the min-
imum bandwidth cost. This problem can be also casted as a
virtual network embedding (VNE) problem for which multi-
criteria approximation algorithms are known [18]. Extensions
of the VNE approach to handle multicast routing were recently

given in [19]. The fractional analog of integral routing and
function placement was studied in [20], which led to tractable
linear programming formulations. However, the above works
focused on the computation and communication resources,
neglecting that, for many services, non-trivial amounts of data
need to be stored at the servers.

B. Caching

Another related problem is the data placement or caching
problem, which asks to place popular contents into caches
distributed throughout a network, given some predicted dis-
tribution of content demand. Approximation algorithms have
been developed by applying linear relaxation and rounding in
[13], greedy and swapping methods in [14], and submodular
optimization in [15]. However, the caching problem only
considers storage ignoring the other types of resources.

C. Caching & Communication

Recently, the caching problem was extended to account
for the communication between caches and users requesting
the contents, which can be the bottleneck resource. Specifi-
cally, [30] formulated the joint content caching and request
routing problem under link bandwidth constraints so that net-
work congestion is avoided and the volume of served requests
by caches is maximized. A Langragian relaxation method
tailored to hierarchical cache topologies was presented. The
same problem was studied in [31] for a two-tier caching
network with caches installed in macro-cells and small-cells
for which a facility location inspired approximation was pro-
posed. The submodularity property was used again in [32]
for a similar network setup where the greedy algorithm was
used. For a 2-tier caching network formed by drones and
infrastructure nodes, learning and clustering techniques were
applied in [33]. For cache-nodes that operate using renewable
energy, a sequential-fixing algorithm was proposed in [34].
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D. Caching & Computation

Traditionally, caching and computation were treated as
two separate resource allocation problems. Joint caching and
computation frameworks were recently introduced in MEC
networks for satisfying user requests for videos at different
bitrates. Specifically, a lower bitrate variant can be obtained
from a higher bitrate variant via transrating or transcoding,
a process that consumes computation resources. [35] and [36]
optimized the caching of videos and allocation of computation
resources so as to improve video quality and delay. Another
joint caching and computation problem was considered in [37]
for offloading mining tasks and caching cryptographic hashes
of blocks in a blockchain network, for which an ADMM algo-
rithm was proposed. However, these works did not consider
the bandwidth allocation problem.

E. Caching, Communication & Computation

Only a few works have considered all the three types of
resources. The work in [10] studied joint service placement
and request scheduling in edge cloud systems. However,
it assumed that the coverage regions of the base stations are
non-overlapping and therefore each user can associate with
only one base station. The submodularity property was shown
for the special cases of unit-sized storage capacities and non-
congestible computation capacities. A block successive upper
bound minimization (BSUM) method was proposed in [38] for
allocating triplets of resources. However, no hard bandwidth
constraints were considered for the links. This assumption was
relaxed in [39] which applied the ADMM method. However,
these works did not provide optimal or approximate solutions
for the joint service placement and request routing problem.

VIII. CONCLUSION

In this paper, we studied service placement and request
routing in MEC-enabled multi-cell networks with multidi-
mensional resource requirements. We showed that this prob-
lem generalizes well-known problems in literature that only
consider a subset of resources, and is particularly relevant
for next-generation data, computation, and communication
intensive services (e.g., AR). Using a randomized rounding
technique, we proposed an algorithm that achieves provably
close-to-optimal performance, which, to the best of our knowl-
edge, is the first approximation for this problem. Interesting
directions for future work include studying the coordination
between BSs through backhaul links as well as the generaliza-
tion of our model to services with multiple (chained) functions.
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