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ABSTRACT

Recent advances in network virtualization and programmability
enable innovative service models such as Service Chaining (SC),
where flows can be steered through a pre-defined sequence of ser-
vice functions deployed at different cloud locations. A key aspect
dictating the performance and efficiency of a SC is its instantia-
tion onto the physical infrastructure. While existing SC Embedding
(SCE) algorithms can effectively address the instantiation of SCs
consuming computation and communication resources, they lack
efficient mechanisms to handle the increasing data-intensive na-
ture of next-generation services. Differently from computation and
communication resources, which are allocated in a dedicated per
request manner, storage resources can be shared to satisfy multiple
requests for the same data. To fill this gap, in this paper, we formu-
late the data-intensive SCE problem with the goal of minimizing
storage, computation, and communication resource costs subject
to resource capacity, service chaining, and data sharing constraints.
Using a randomized rounding technique that exploits a novel data-
aware linear programming decomposition procedure, we develop a
multi-criteria approximation algorithm with provable performance
guarantees. Evaluation results show that the proposed algorithm
achieves near-optimal resource costs with up to 27.8% of the cost
savings owed to the sharing of the data.

CCS CONCEPTS

« Networks — Cloud computing; - Theory of computation —
Rounding techniques.

KEYWORDS
Service Chain Embedding, Data Sharing, Randomized Rounding.

This work was supported in part by the National Science Foundation under Grants CNS
1815676 and 1619129, the Army Research Office under Agreement Number W911NF18-
10-378, and the Office of Naval Research under Grant N00014-19-1-2566.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Mobihoc °20, October 11-14, 2020, Boston, MA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8015-7/20/10...$15.00
https://doi.org/10.1145/3397166.3409149

131

Jaime Llorca
New York University
jllorca@nyu.edu

Leandros Tassiulas
Yale University
leandros.tassiulas@yale.edu

ACM Reference Format:

Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, and Leandros
Tassiulas. 2020. Approximation Algorithms for Data-Intensive Service Chain
Embedding. In The Twenty-first ACM International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile
Computing (Mobihoc °20), October 11-14, 2020, Boston, MA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3397166.3409149

1 INTRODUCTION
1.1 Motivation

Driven by advances in network virtualization and programmability,
recent years have seen a paradigm shift in cloud computing, from
centralized towards distributed cloud architectures such as Fog [1]
and Mobile Edge Computing (MEC) [2]. Harvesting cloud resources
distributed throughout the network core and edge in proximity
to end-users (e.g., at switches and base stations) provides a clear
advantage in performing tasks with stringent latency requirements
that are hard to satisfy from centralized cloud locations.

These trends enable the realization of interesting new service
models such as Service Chaining (SC) [3]. In a nutshell, a service
chain describes a sequence of service functions that a flow needs to
pass through in a particular order so as to get a complete end-to-end
service. For example, as depicted in Figure 1, a service chain could
define that a flow is first routed from its source to a firewall for
security, next through a deep packet inspection (DPI) and a load
balancer for traffic optimization, and only then is delivered to its
destination.

A key aspect driving both performance and efficiency of a SC
is how to instantiate it onto the substrate network. This necessi-
tates the placement of service functions in the network, as well
as the routing (or steering) of flows through the appropriate func-
tion instances. This problem is further complicated by the multi-
dimensional resource requirements of the services. Many services
today require not only computation and communication resources
for executing processing tasks and delivering associated outputs to
the end users, but also non-trivial amounts of data that should be
stored in advance in the network and be available for the service
functions to access in an on demand manner. Examples of such data-
intensive services are Face Recognition and Augmented/Virtual
Reality (AR/VR) that require the availability of databases of images
and visual recognition models, possibly of several gigabytes each,
in order to run classification and recognition functions [4].

Storage differs from computation and communication resources
in that a stored data object can be shared to satisfy service requests
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Figure 1: An illustrative distributed cloud network. Requests
for data-intensive services are satisfied by steering traffic
through chains of service functions instantiated at core and
edge cloud nodes.

with the same or overlapping data requirements (e.g., the same
object database or video frames). In contrast, computation and
communication resources are typically allocated in a dedicated
manner such that each service request takes up its own portion of
resources for exclusive use and the total resource consumption at a
cloud node or a network link is the sum of resource allocations.

Major network operators have made large investments in recent
years in building both centralized and distributed data centers and
developing their own software solutions to facilitate the large-scale
storage and sharing of data among services. For example, the net-
work data layer solution [5] enables the decoupling between storage
and computation functions by providing data storage separately
from a distributed shared database. Such decoupling allows the in-
dependent scaling of storage and computation functions and brings
increased operation flexibility.

Despite the above industry efforts, a fundamental algorithmic
methodology for optimally instantiating chains of data-intensive
services into the network is still missing. Existing algorithms based
on SC Embedding (SCE) (e.g., [6], [7], [8]) have been effective in
addressing this problem by provisioning computation together with
appropriate communication resources to minimize network costs
or maximize accepted service requests. However, the shareable
nature of the stored data breaks the suitability of these algorithms.
A few recent works studied the impact of data sharing on SCE (e.g.,
see [9], [10], [11] and the discussion of related works in Section 2).
However, these works focused on services with single (not chained)
functions and required that the data object is colocated with the
function using it (hence sharing of data is constrained within the
boundaries of the same cloud node). Also, these works considered
specific (not arbitrary) network topologies representing the last-
mile (single-hop) connectivity between cloud nodes at base stations
and mobile users.

1.2 Methodology & Contributions

In this paper, we follow a systematic methodology to optimize
the deployment of data-intensive service chains, summarized as
follows:
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(1) We employ general network and service models to repre-
sent the deployment of data-intensive service chains in dis-
tributed cloud systems with three-dimensional (storage, com-
putation and communication) resource constraints. SCs are
modeled by Directed Acyclic Graphs (DAGs) while networks
of arbitrary topology and with multi-hop and multi-path
connectivity are considered.

We formulate the Data-intensive Service Chain Embedding
(DSCE) problem mathematically as an integer programming
problem with the goal of minimizing storage, computation,
and communication resource costs subject to resource ca-
pacity, service chaining, and data sharing constraints. Our
formulation differs from those in classic SCE literature in
that it contains not only variables for the embedding of ser-
vice functions and flows onto the substrate network, but also
data placement variables that capture the sharing of data
objects between service functions and end user requests.
Using a randomized rounding technique that exploits a novel
data-aware linear programming decomposition procedure,
we develop a multi-criteria algorithm that provably achieves
approximation guarantees while violating the resource ca-
pacities in a bounded way. To the best of our knowledge,
this is the first approximation algorithm for this problem.
We perform evaluations to show the efficiency of the pro-
posed algorithm. We find that, in many practical scenarios,
our algorithm achieves near optimal cost that is up to 27.8%
better than the case where storage is treated as a dedicated
resource and thus sharing of data among services is not
permitted. In most cases, there is at least one embedding
extracted by our algorithm that has minimal (less than 3%)
capacity violation while the violation factors vanish as the
available capacities increase.

The rest of the paper is organized as follows. Section 2 discusses
related works, whereas Section 3 presents the system model and
formulates the data-intensive service chain embedding problem.
We present a solution algorithm with approximation guarantees
in Section 4. Finally, we present the evaluation results in Section 5
and conclude our work in Section 6.

2 RELATED WORK

Most of the previous related works focused on services without
intensive data requirements (where the challenge is how to allocate
computation and communication resources that are dedicated/non-
shareable) or without chaining constraints (where a single function
constitutes a service). A survey of related works can be found in [12]
whereas a rough categorization based on the assumptions made
by these works is shown in Figure 2 and discussed below. We note
that our DSCE problem generalizes all this body of works.

2.1 Services without intensive data
requirements

Services such as firewalls, network address translators, load bal-
ancers and video encoders are increasingly deployed in the form
of virtual functions by network operators. Services of this family
typically do not impose intensive data requirements and therefore
their optimization depends on the allocation of computation and
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Figure 2: Classification of the related work for the service
deployment problem.

communication rather than storage resources. In the extreme case
that services do not consume even computation (or when computa-
tion capacity is not the bottleneck), then the only requirement is to
route traffic flows over the capacitated links among functions in a
network, which can be casted as a variant of the multi-commodity
flow routing problem [13]. For the more practical case that functions
require to execute some computation task, the work in [14] formu-
lated the computation and communication allocation problem as a
generalized assignment problem for which approximation algorithms
are known. Subsequent works in [15] and [16] proposed integer
linear programming formulations for the objectives of minimizing
cost or maximizing accepted requests, and solved the problem using
bargaining and conformal mapping theory, respectively.

The problem is further complicated, however, if one considers or-
der constraints in the execution of the functions known as chaining
constraints. Chained service functions can be modeled as service
graphs to be embedded into a substrate network and various al-
gorithms have been proposed for this purpose using techniques
such as randomized rounding [6], relaxation and successive con-
vex approximation [7], and shortest path routing on a multi-layer
graph [8]. Alternative modeling and solution approaches are also
known based on mixed integer linear programming [17], [18], col-
umn generation [19], sampling-based Markov approximation [20]
and queuing models [21]. However, the above works did not con-
sider functions with intensive data requirements or treated data
storage as another dedicated non-shareable resource to allocate,
just like computation and communication.

2.2 Services with intensive data requirements

Modern services such as Face Recognition and Augmented Reality
require access to non-trivial amounts of data (e.g., data base of
images, visual models, etc) which should be stored in advance at
the cloud nodes and be available for the functions to share in an on
demand manner. This can be formulated as a data placement prob-
lem [22] also referred as caching problem [23], [24] and is among
the most well-investigated problems in networking literature. How-
ever, the data placement/caching problem is much simpler than
the service deployment problem since it does not deal with the
allocation of computation resources, the execution of functions
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and the accompanying chaining constraints. Still, this problem is
NP-Hard due to the combinatorial nature of the data placement
decisions.

Recently, there have been some works that generalize the data
placement problem by adding computation allocation variables
and computation constraints to satisfy requests for data-intensive
services [9], [10], [11]. This generalized problem is referred as the
service placement problem and several approximation algorithms
for jointly allocating storage, computation, and communication
resources have been proposed. While these works considered the
shareable nature of the stored data, they assumed that each service
request is for a single function rather than a chain of functions, and
that data objects must be colocated with the services using them at
the same cloud location. Besides, these works focused on two-tier
(single-hop) network topologies.

To the best of our knowledge, our work is the first to consider all
these aspects together (shareable nature of stored data, decoupling
of data objects from computation functions, service chaining con-
straints, and arbitrary multi-hop multi-path network topologies)
and generalizes the previous works in this area.

3 MODEL AND PROBLEM FORMULATION

In this section, we formally introduce the network and service
models that will be later used to optimize the deployment of data-
intensive service chains in the distributed cloud network.

3.1 Network Model

We model the distributed cloud network as a directed graph G =
(V, &) with V vertices and & edges representing the set of net-
work nodes and links, respectively. A node in V may represent an
end-user device, an access point or a cloud node inside the core or
edge network. Each node u € V is characterized by its computation
resources (e.g., processor, microprocessor) and storage resources
(e.g., hard disk, flash memory). We denote by C,, and R, the compu-
tation and storage capacities at node u € V, respectively. The cost
of allocating one unit of processing and storage resource at node u
is ¢y, and ry, respectively. Nodes are interconnected via wireless or
wireline links, each characterized by its transmission capacity and
unit cost. Link (u,v) has transmission capacity By, and the cost
per bandwidth resource unit is by;.

3.2 Service Model

A generic service ¢ € ® can be described by a directed acyclic graph
(DAG) G? = (V?,&¢) where vertices represent service functions
and edges represent streams of information exiting one function
and entering another. An example of a service graph is shown in
Figure 3. There exist the following four types of vertices in the
service graph G¥:

(1) Source or production functions (V $5 set) are vertices with no
incoming edges of the service graph. They represent sensors
that generate real-time data streams (e.g., video cameras, IoT
sensors) associated with specific locations in the physical
network (e.g., user devices, nearby access points).

Storage functions (V97 set) are also vertices with no in-
coming edges of the service graph. They represent the stor-
age/caching of pre-generated static data (e.g., pre-coded
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eras go through decoding, classification, and 3D projection
functions before being displayed at two consumer devices.
Storage functions provide data as input to computation func-
tions.

video). There is one storage function for each computation
function that requires access to a given data object. Hence,
if multiple computation functions require access to the same
data object, we still create multiple storage functions.
Computation functions (V% set) are internal vertices of
the service graph. They take as input source, storage, or
other computation functions, and pass their output to other
computation or destination functions.

®)

Destination or consumption functions (V%9 set) are vertices
with no outgoing edges of the service graph. They represent
end devices (e.g., video displays), consuming output infor-
mation streams and are associated with specific locations in
the physical network, just like the source functions.

©

We define the storage and computation requirements of the
service functions (vertices of the service graph) as follows. A storage
function i € V%" has zero computation requirement but requires
to store a data object (e.g., video, object database, holograms for
an AR service, etc.) which consumes storage resource. We denote
by o(i) and r°() > 0 the respective data object and the required
storage resource, where the latter clearly depends on the size of
the data object. A computation function i € V%€ has zero storage
requirement but requires computation resource ¢! > 0 for task
execution. The rest of vertices (source and destination functions)
have zero storage and computation requirements.

Note that differently from existing works on single-function
placement with storage requirements (e.g., [9-11]), where a copy of
the data needs to be colocated with each function requiring access to
that data, our model decouples data from computation, allowing the
possibility of multiple functions sharing access to a common copy of
the data. We emphasize that multiple storage functions belonging to
the same or different service graphs may require to store the same
data object. For example, it may happen that o(i) = o(i") for two
storage functions i € V®" and i’ € V9" where ¢ = ¢’ or ¢ # ¢'.
In this case, the data object can be shared by the storage functions
reducing the overall storage consumption. This is a major difference
compared to computation and bandwidth resources which are non-
sharable meaning that each individual function takes up its own
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dedicated portion of resources for exclusive use. We denote by R (o)
the set of all storage functions across all service graphs ¢ € @
requiring object o.

Next, we define the bandwidth requirements of the service streams
(edges of the service graph). We denote by b/ the bandwidth re-
quirement of stream (i, j) € E?. For streams generated by a source
or computation function i, b%/ depends on the volume of generated
data (e.g., video bitrate). For streams coming out of a storage func-
tion i, b"/ depends on the size of the stored data and the rate at
which function j accesses the data.

To facilitate presentation, we denote by G® = (V?,E®) the
union of all service graphs, where V® = U¢(V¢ and &% = U¢8¢.
Similarly, V s qlr e and Y®d denote the unions of all
source, storage, computation and destination functions for all ser-
vice graphs. We also denote by S(u) and D (u) the sets of all source
and destination functions associated with a particular node u. Fi-
nally, we denote by O = U;0(i) the union of all data objects.

3.3 Mathematical Formulation

The network operator needs to decide how to embed (or map) the
vertices and edges of the collection of service graphs to the nodes
and links of the physical substrate network. To model the embed-
ding decisions, we introduce two sets of optimization variables: (i)
x!, € {0,1} which indicates whether vertex i is mapped to physical
node u (x!, = 1) or not (x}, = 0), and (ii) y7, € {0, 1} which indicates
whether edge (i, j) is mapped to a path that uses physical link (u, v)
(yu = 1) or not (yuv =0).

Differently from traditional service embedding problem formu-
lations (e.g., [6]), in our case, the network operator needs to also
decide the data placement decisions: z{, € {0, 1} which indicates
whether data object o is stored at physical node u (z = 1) or not
(29 = 0). The respective vectors of variables are the following:

x=(x)€{0,1} :ueV,ieV? (1)
y=(y, {01} : (wo) €& (1,)) € EY) )
z=(z0 €{0,1} :ueV,0€0) (3)

The above decisions need to satisfy several constraints. First,
we need to make sure that each source and destination function is
mapped to its associated node in the physical network:

xL =1, YueV,ieSu)udD) (4)

Second, we need to map each storage and computation function to
exactly one node in the physical network:

Dxh =1, Vievtrupte
ueV

©)

Third, we need to ensure that each edge (i, j) € &2 is mapped to a
path in the physical network that starts at the location of function
i and ends at the location of function j, hence respecting service
chaining requirements:

D, Vio-

(u,0) €&

Z yvu—xu_xu, uE(V(lj)Esq) (6)
(v,u)e&
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Fourth, the total computation load of services running on physical
node u must not exceed its computation capacity:

Z xyct <xy <Cy, YuevV

ieyoe

™

where x;, is an auxiliary variable whose value is equal to the com-
putation load of node u in the optimal solution of the problem. Fifth,
the total bandwidth load of services transported over physical link
(u, v) must not exceed its bandwidth capacity:

Z y,%bij < Yuo < Buo, Y(u,0) € &
i,je&®

®)

where y,, is an auxiliary variable whose value is equal to the
bandwidth load of link (u, v) in the optimal solution. To satisfy the
data requirements of services, we also need to satisfy the following
two sets of constraints:

zz(i), YueV,ieV®

A

©
(10)

i
Xy <

Z zgr? <

0€0
The first of the two constraints ensures that a storage function i
can be mapped to a node u (x, = 1) only if the latter has stored
the required data object o(i). The second set of constraints ensures
that the total storage capacity of a node u is not exceeded, where
zy is an auxiliary variable whose value is equal to the storage
load of node u in the optimal solution. It is important to note that
the storage resource load is computed using the data placement
variables zJ, 0 € O, and not the storage function variables xfu i€

zu <Ry, YueV

VP hence allowing the sharing of storage resources between
multiple functions storing the same data object.

The goal of the network operator is to make the embedding (x,y)
and data placement (z) decisions that minimize the total resource
consumption costs:

;n;r; Zuey (Xuty + zyry) + 2 (u,0) €& Yuobuo (11)
s.t. constraints: (1) — (10)

We refer to the above as the Data-Intensive Service Chain Embedding
(DSCE) problem. It is not difficult to show that the DSCE problem is
NP-Hard since it generalizes the data placement problems in [22],
[23] and [24] by augmenting additional variables and constraints
into the problem formulation. Therefore, it is unlikely to find opti-
mal solutions and the use of approximation algorithms is justified.
In the next section, we present such an algorithm and formally
prove its approximation guarantees.

4 APPROXIMATION ALGORITHM

In this section, we present one of the main contribution of this
paper; an approximation algorithm for the DSCE problem. Our
algorithm, termed DSCE-RR, leverages a Randomized Rounding
technique that chooses an embedding of the service collection G®
extracted from the linear programming (LP) relaxation of the DSCE
problem following a novel data-aware decomposition procedure.

4.1 Algorithm Description

The DSCE-RR algorithm is described in Algorithm 1. DSCE-RR iter-
atively extracts service embeddings from the LP solution (X, ¢, )
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Algorithm 1: DSCE-RR Algorithm

1 Input: Network graph G, service graph G* = Ug G?
2 Solve the linear relaxation of the DSCE problem to obtain (X, 7, Z)
3 Set M=0,y=1k=1
4 while y > 0 do
5 Set my = (m,‘cl, mf) =(0,0)
6 SetQ =0
7 Compute mapping of source nodes according to Algorithm 2
8 Compute mapping of storage nodes according to Algorithm 3
9 Compute mapping of computation nodes, destination nodes and service
edges according to Algorithm 4
10 Set Wy = {x}, |i € V', u=m) (i)}
U{Giio | (.)) € E®, (u,0) e mE (i, )}
11 Set pr = min Wy
12 Setw=w-—pr,Vw e Wy
13 Sety =y —pk
14 Set M = MU (mg, px)
15 Setk=k+1

end
16 Choose embedding my. with probability pj
17 Setxl, =1,Vie V% ue m,‘c/(i)
18 Set Gy = 1,Y(i, ) € E%u € mE (i, j)
19 Set 23 = maX;er(o) X, Yo € O,u € V
20 Output: X, 9,z

Algorithm 2: Source Node Mapping

1 Input: X, m,‘(/, Q

for i € VS do
Set Q= QU {i}
Find the node u € V with 321’4 =1
Set ml‘c/ (iy=u

end

6 Output: m}:, Q

a A W N

(line 2) by mapping each vertex and edge in the service collection
G? onto the substrate network G. It uses Algorithm 2 to map the set
of source functions (line 7), Algorithm 3 to map the set of storage
functions (line 8), and Algorithm 4 to map the sets of computation
functions, destination functions, and service edges (line 9).

Of particular relevance is the procedure that maps the storage
functions in Algorithm 3. Note how storage functions are mapped
by first finding a physical node u with positive fractional data
placement value zJ, for each unique object 0 € O (line 6), and
then mapping to that location all storage functions in R(0) with
positive fractional placement value x/; (lines 8-12). Importantly,
this procedure favors the extraction of service embeddings from the
LP solution that colocate storage functions associated with the same
object, which in turn leads to more sharing of data among services
and saves storage resources.

Once source and storage functions are mapped via Algorithm 2
and Algorithm 3, and the set Q containing currently mapped func-
tions is updated, the DSCE-RR algorithm calls Algorithm 4 for
mapping the service edges (representing data streams) and the re-
maining computation and destination functions. Algorithm 4 visits
every single edge in the service graph G® and maps it onto a path in
the physical network G, mapping also the remaining computation
and destination functions. Note how in the case that we have nodes
with multiple incoming edges in G®, Algorithm 4 makes sure those
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Algorithm 3: Storage Node Mapping

Algorithm 4: Computation Node and Link Mapping

1 Input: x, 2, mZ, Q

2 foro € O do
3 Set X = R(0)
4 SetY =V
5 while |X| > 0 do
6 Pick a node u € Y with z5 > 0
7 Set Y = Y\{u}
8 fori € X do
9 if ., > 0 then
10 Set m,‘(/(i) =u
11 Set @ =QU {i}
12 Set X = X\ {i}
end
end
end

end
13 Output: mZ, Q

computation functions are only mapped once. Note also how the
procedure in Algorithm 4 terminates when all destination functions
are mapped to their corresponding physical hosts.

After completing the mapping procedures in lines 7-9, DSCE-RR
computes the probability py associated with the extracted embed-
ding my as the minimum value among the LP variables associated
with such embedding (lines 10-11), and subtracts it from all such
variables (line 12), completing the extraction of embedding my.
Note how the parameter y that controls the termination of the de-
composition procedure is also reduced by py after the extraction of
embedding my (line 13). At the end of the decomposition procedure
(when y = 0), embedding my. is chosen with probability py. (lines 16).
In the end (lines 17-19), the associated embedding and placement
variables are computed.

4.2 Performance analysis

To facilitate the analysis of DSCE-RR algorithm, we introduce the
following definition.

DEFINITION 1. A valid embedding M = (m", mF) of service
collection G® on network G consists of a node mapping m" : V® —
YV and a link mapping mF : 8% — &, such that:

e Each source function i € VS is mapped to its corresponding
host {u € V|i e S(u)}.

e Each destination function i € Yo s mapped to its corre-
sponding host {u € Vi € D(u)}.

e Each storage functioni € V®' is mapped to one physical node
in “V that contains a copy of data object o(i) € O.

e Each computation functioni € V€ is mapped to one physical
node inV.

e Each edge (i, j) € E® is mapped to one path starting at node
mV (i) and ending at node mV ().

We then show the following two lemmas.

LEMMA 1. For a given network graph G and service graph G2,
Algorithm 1 decomposes a solution (X,1,z) to the LP relaxation of
the DSCE problem into a convex combination of valid embeddings

M = { My} with My = {my, p.}, such that 3. pr. = 1.
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1 Input: X, g,mZ,mf,Q
2 while |Q| > 0 do

3 Pick anode i € Q and remove it from set Q
4 for (i, j) € &® do
5 if m;{l(j) # 0 then
6 Find a path ¥ connecting u = mZ (i) tov = m}‘: (j), such
that g, > 0 V(a,b) € P
7 Set mf(i,j) =P
end
8 else
9 Find a path P connecting u = m,‘c/ (i) toav € V with
£J > 0, such that gijb >0V(ab) € P
10 Set mZ (J)=v
1 Set mf(i, =P
end
12 SetQ=QU {j}
end
end

Q

eV E
13 Output: my,mg,

Proor. We first show the validity of the embeddings obtained
by the DSCE-RR algorithm. To this end, we show that for each
embedding, Algorithm 1 ends up mapping every node and link in
G, and that each node and link mapping is valid. It is immediate
to see that the mapping of the source nodes is valid since source
i is mapped to the only physical node u where %}, = 1 (Algorithm
2, line 4), i.e., the node where the placement of i was initialized to
via constraint (4). Let’s now focus on the storage nodes. Note that
each storage function i € V®" is associated with a unique data
object o(i). For each o € O, Algorithm 3 updates the set of current
unmapped storage functions X associated with a given object every
time a new function is mapped, and it runs until the set is empty.
Hence, each storage function is mapped exactly once. In addition,
Line 6 assures that the node u to which storage function i is mapped
has positive placement value zJ. The mapping of computation nodes
is valid since 1) for a given edge (i, j) € &2, Algorithm 4 can only
map function j after function i has been mapped, 2) function j
can only be mapped to physical node v if there is a path from the
location of already mapped function i to v where each edge (a, b)
on the path has positive g;fb value (lines 6 and 9 in Algorithm 4),
and 3) line 5 assures that if function j is visited more than once, it
is only mapped once. Link mappings are valid since (i, j) is always
mapped to a path starting at the already mapped location of i and
ending at either the already mapped location of j (line 6) or a valid
location of j (line 9), via a path whose edges have positive g;’b
values. Finally, since each service node and link will be eventually
mapped, the overall embedding is valid. We now show that the
decomposition of valid embeddings is complete. Note that since y
starts with value 1, its value is reduced by py at each iteration, and
the procedure continues as long as y > 0, then }}; pr cannot be
smaller than 1. On the other hand, since at each iteration at least
one variable’s value is set to 0, then Y ; py cannot be larger than 1.
Hence, Algorithm 1 obtains a decomposition M = { M.} for which

2kpr =1 |
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LemMma 2. Let x(k),y(k),z(k) denote the solution obtained by
Algorithm 1 when the chosen embedding is M. Then, the expected
value of the solution obtained by Algorithm 1 is equal to the solution
to the LP relaxation of DSCE, i.e.,

E[X] =) pX(k) = %
k

Elgl = ). peg(k) = ¢
k

E[Z] = ). p(k) =2
k

Proor. We first show that the decomposition of Algorithm 1
is complete, in the sense that at the end of the decomposition
procedure, the residual values of LP variables (%, ¢, Z) are all zero.
To this end, note that 3, X}, Vi, is initially equal to 1 by constraint
(5), and that at each iteration such value is reduced by py (since
exactly one node u will be chosen as the mapping of i). Given
that }; pr = 1 from Lemma 1, it follows that at the end of the
decomposition procedure, ¥, &, — Xk px = 0, Vi, and hence all %
residual values are zero. It is clear from constraints (6) and (10) that
if all x residual values are zero, then the residual values of § and z
must also be zero.

Now focus on a particular LP variable x/,. At iteration k, its value
is decreased by py. if u is included as the mapping of i in embedding
k, and by zero otherwise. Since the decomposition is complete and
all residual values end up being zero, then ) pr1 {ml‘g (i) =u} = x..
Notice that the solution of Algorithm 1 for ¥}, is a Bernoulli ran-
dom variable with parameter ;. pkl{mx(i) = u}. Hence, E[X},] =
Dk pkl{ml‘j(i) =u} = X}, Vi, u. A similar reasoning follows for the
y and Z variables. o

Building upon the above lemmas, the following theorem follows.

THEOREM 1. Let ] andfdenote the optimal objective value and
the objective value obtained by Algorithm 1, respectively. Then,

P(] > ﬂ]]) < (m) (12)
~ e\

P (R 2 eCu) < (W) (13)
_ € 21

P (yuo = PpBuo) < (E) (14)
~ e\

P(Zy = BrRy) < (m) (15)

wheree € (0,1) andT(.y € R* are constants satisfying 2Ty > 1. The

terms By = 1+4/T7A1log(Q(1) /€), fe = 1+ IcAclog (IVI/€), Bp =
1+ \IpAplog (|El/€), and fr = 1 + I, Ay log (|V|/€) are factors

of exceeding the optimal objective value and violating the resource ca-
pacities, where A] = (]max/j)z’ Ac = (chz/cu)Z’ Ap = (sz/Buv)z,
Ar = (L} /Ru)?, with Jmax = maxy J(k), LS = maxy Xy (k), LS, =
maxy Yuu(k), LE = maxy zy (k) denoting the maximum objective
value and resource loads over all extracted embeddings.
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Proor. We first bound the probability that the computation load
at a given node X, exceeds capacity Cy, by a factor ff.. We have that:

P(Ru > feCu) < P(Fu=%u 2 (fe=1Cu) (16)
. [_zrcAckzig;a/e)cz] (18)
= exp [~2Tc log(|V|/e)] (19)

Note that (16) follows from the fact that X, < C, due to (7), and
that E[x,] = %, due to Lemma 2; (17) is due to Hoeffding’s lemma
[25] applied for one bounded variable X, € [0,LS]; (18) follows
from setting . — 1 = \/IcAc log(|V|/€) with € € (0,1), I, € R*
and A, > 0; and (19) follows from the definition of A..

Following an equivalent procedure and choosing f, = 1 +

Vo2, Tog(1E176) with Ay = (Lby/Buo)?, and By = 14T A, Tog([V1/€)

with A, = (L], /Ry)?, (14) and (15) follow.
Finally, in order to prove (12), letting J denote the objective
function value of the optimal fractional solution, we have:

P(7=p) < 2(T28J) (21)
2((y - D))
- [_ O } “
2I7A 7 log(Q(1)/€) J?
=P [_ R ] @)
= exp [—ZF] log(Q(l)/e)] (24)
- (&) @)
]

We now introduce the following definition and state the approx-
imation guarantees of the DSCE-RR algorithm.

DEFINITION 2. A multi-criteria (S}, Be, By, Br)-approximation for
the DSCE problem is a solution where the objective value exceeds that
of the optimal solution by at most a factor of fy, while the computation,
bandwidth, and storage capacity constraints are violated by at most

a factor of Be, By, and P, respectively.

THEOREM 2. As the size of G and G® grows, the DSCE-RR algo-
rithm returns with high probability a multi-criteria (B;, Be, Bp, Br)-
approximation for the DSCE problem, with (P, by, Br) as given in
Theorem 1, f; = 1+ \[TjA;log(O(|V])/e), I, Ip, I > 1 and
Iy > 0.5.

Proor. Using the union bound and Theorem 1, we have that the
probability that any of the computation and storage capacities of the
|V| nodes and the bandwidth capacities of the || links are violated
by a factor f¢, fBr, and fj, respectively, and the objective value T ex-
ceeds the optimal objective value J by a factor £}, is upper bounded

oT, o, o oT
by |(V|(ﬁ) +|’V|(ﬁ) +|8|(ﬁ) b+(—®(|€v‘)) /., where
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we have replaced Q(1) with ©(|V|) in the last term. This probabil-

. 2.1 2T, -1 2T, -1 o

1tylsequaltoe(ﬁ) +e(ﬁ) +e(ﬁ) b (@(IE’VD) ’
which goes to zero as |'V| and |&| increase for It I, I}, > 1 and
Iy > 0.5, from which Theorem 2 follows. ]

Note that Algorithm 1 only considers one rounding try (see line
16). To improve the performance, we can consider multiple rounding
tries and then pick the one with the minimum violations. This
way, we can show the following high probability bound without
requiring that the size of G and G® grows.

THEOREM 3. Given fixed-size G and G®, the DSCE-RR algorithm
returns, after n rounding tries, with probability 1 — (€)", a multi-
criteria (B, e, Py, Pr)-approximation for the DSCE problem, with

(Bes By, Br) as given in Theorem 1, By = 1+ +/TjAjlog(1/e), T(.) >
0.5, =€/4 and€ € (0,1).

Proor. Following considerations analogous to the ones in the
proof of Theorem 2, the statement in Theorem 3 readily follows.
The term € = €/4 is due to the application of union bound and the
fact that there are 4 types of violation factors we seek to bound. O

5 EVALUATION RESULTS

In this section, we perform evaluations to show the efficiency of the
proposed DSCE-RR algorithm. We find that, in practical scenarios,
DSCE-RR achieves near optimal cost that is up to 27.8% better than
the case where storage is treated as a dedicated resource and thus
sharing of data among services is not permitted. In most scenarios,
there is at least one embedding extracted by DSCE-RR that has
minimal (less than 3%) capacity violation while the violation factors
vanish as the available capacities increase.

5.1 Evaluation Setup

We consider a similar setup as in [18], depicted in Figure 4. Cloud
resources (storage and computation) are distributed across nodes of
different tiers in a network; a head office (HO) node at the higher tier
that represents a centralized data center, intermediate office (I0) and
end-office (EO) nodes, and base station (BS) nodes associated with
mobile end-users at the bottom tier. We construct service chains
with the structure shown on the right of the figure. Each chain
contains a source and a destination vertex associated with specific
locations in the cloud network as well as storage and computation
functions, the location of which can be optimized. This structure
can capture various data-intensive services such as Augmented
Reality (AR).

Based on the above structure, we construct ® = 100 AR service
chains that differ from one another in the location of source and
destination functions and the requirements of storage and compu-
tation functions. Specifically, we locate randomly the source and
destination of each service chain at one of the four BSs or the HO
node representing the demand of mobile users associated with the
BSs or the demand coming from other networks through the HO.
The data object required by each storage function is drawn from a
library of |O| = 100 data objects. For each function, the object is
picked randomly based on the Zipf probability distribution with
slope value 1 which is a common assumption for several types of
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ﬂ _ﬂ embedding

Figure 4: Distributed cloud network of |V| = 10 nodes and
|E] = 2 x 18 = 36 directed links (left) and service graph of
|'V?9| = 4 vertices and |E?| = 3 edges (right).

services [11]. This allows overlapping data requirements among
services and therefore couples their embedding decisions.

We set the size of each data object randomly within the interval
[1,20] GBs. The bandwidth required for a source (storage function)
to pass input to a computation function is set randomly (propor-
tional to the object size) within [1,10] Mbps. The output stream
of a computation function is passed to the destination node at the
aggregate data rate of the input streams coming from the source
and storage functions. The computation requirement is set within
[0.2,4] GHz assuming 200 cycles per bit of input data [11]. The
storage cost is set to r;, = $0.01133 per GB, which is equivalent to
$0.34 per GB per month [26] amortized on a daily basis assuming
that data placement decisions are made at the beginning of each
day. The computation cost is set to ¢;, = $0.036 per GHz which is
equivalent to $0.00001 per GHz per second [27] assuming that each
service lasts one hour spread over the day. Finally, the bandwidth
cost is set to by, = $0.009 per Mbps which is equivalent to $0.02
per GB of transferred data [28]. We remark that our evaluation
code is publicly available online in [29].

5.2 Evaluation Results

Throughout the evaluations, we consider three scenarios, each
characterized by its storage, computation, and bandwidth capacities:
(i) low capacity scenario with R, = 100GBs, C;, = 20GHz, By, =
100Mbps; (ii) medium capacity scenario with R, = 150GBs, C;, =
30GHz, By, = 150Mbps; and (iii) high capacity scenario with R, =
200GBs, C,, = 40GHz, By, = 200Mbps. The capacity of the links
inter-connecting the base stations with one another (X2 links in
the figure) is always half of the capacity of the rest of the links.

For each scenario, we compute the total resource cost (objective
function value in (11)) and the maximal (worst) capacity violation
across all nodes and links achieved by four algorithms: (i) the opti-
mal solution to the linear relaxation of the DSCE problem (Optimal
LP), (ii) the proposed approximation algorithm (DSCE-RR) that
extracts a number of embeddings and randomly chooses one, and
(iii)-(iv) two baseline schemes (Greedy and Dedicated) that repre-
sent the output of DSCE-RR algorithm when BSs are restricted to
store the most popular data objects (intuitive naive solution) or
when storage is regarded as a dedicated resource and thus sharing
of data objects among services is not permitted (representative of
state of-the-art SCE methods).
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Figure 5: (a) Cost and maximal capacity violation achieved by Optimal LP, DSCE-RR, Greedy and Dedicated algorithms in
low, medium and high capacity scenarios. (b) Scatter plot of cost versus maximal capacity violation across all the embeddings
extracted by DSCE-RR algorithm. (c) Different slopes of the service demand distribution are examined in medium capacity
scenario with labels representing the respective maximal capacity violation factors.
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Figure 6: (a) Cost for different portions of AR and VS services in medium capacity scenario. (b) Breakdown of cost into band-
width, computation and storage components. (c) Impact of optimizing different objectives in low capacity scenario.

Figure 5a shows the results for each scenario and algorithm.
Note that Optimal LP does not violate any of the resource capaci-
ties. However, the solution it returns may contain fractional values
and therefore it only serves as a lower bound to the optimal integer
solution in order to measure how far from optimal the other algo-
rithms perform. While in all scenarios some capacities are violated,
the violation factors are not significant. The maximal violation of
DSCE-RR is 13.5% in the low capacity scenario. However, for the
medium and high capacity scenarios DSCE-RR achieves the optimal
cost and much smaller capacity violations (2.6% and 3.6%). We note
that if we increase the capacities even more (e.g., by 25%), then all
the violation factors become zero illustrating the fact that when ca-
pacities are high, there exists an Optimal LP solution that is, in fact,
integer, and our proposed approximation algorithm is able to find
it. Besides, DSCE-RR performs better than the Greedy and Dedicated
baseline schemes, with gains up to 6.1% and 12%, respectively.

Figure 5b shows the scatter plot of cost and maximal capacity
violation corresponding to all the embeddings extracted by DSCE-
RR. A total of 17, 10 and 12 embeddings are extracted in the low,
medium and high capacity scenarios, respectively. We notice that
the values vary largely from one embedding to another, especially
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in the low capacity scenario where the maximal capacity violation
can even exceed 60%. In most cases, however, there is at least one
embedding to choose that does not incur excessive capacity violation
(less than 3% in two out of the three scenarios).

Figure 5c examines different slopes of the Zipf probability distri-
bution with which services are assigned to data objects. A higher
slope represents a steeper distribution where service requests are
concentrated on the same few data objects, and hence sharing of
data among services is more likely to happen. On the other hand, a
lower slope value represents a more shallow distribution of data
objects. To eliminate the impact of random sizes of data objects,
and focus instead on the demand distribution, we restrict all sizes
to 10GBs in this experiment. We find that the cost achieved by all
the algorithms but the Dedicated decreases with the slope value,
illustrating the fact that the effectiveness of the data placement deci-
sions improves with the steepness of the demand distribution. On the
other hand, Dedicated is unable to exploit any of the data sharing
opportunities and hence its performance does not improve with the
slope. The gains of DSCE-RR are up to 7% and 27.8% over Greedy
and Dedicated, respectively.
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So far, we focused on a specific type of services, AR. We next
examine a mixture of AR with video streaming (VS) services. The
VS service graph differs from the AR one in that there is no real-time
stream; the only stream comes from the access to the video stored in
the storage function. Therefore, the bandwidth and accompanying
computation requirements are lower than in the AR service. Figure
6a shows how the cost increases by more than a factor of 2 as we
move from the pure VS (0% on the x axis) to the pure AR (100%
on the x axis) operating point indicating the additional expenses
required to support resource hungry AR services. We also note
that DSCE-RR consistently outperforms the Greedy and Dedicated
baseline schemes. The gains are higher at the pure VS point, up to
15.82% and 27.81%, respectively.

Next, we take a close look at the components that contribute
to the overall cost. The cost breakdown in Figure 6b shows that
storage, computation and bandwidth costs are comparable to each
other where the largest contributor is the bandwidth cost. This
was expected as the other resources (storage and computation) are
usually available (or easy to deploy) to the network operator in
larger quantities and at lower prices. As we increase the available
capacities, the overall cost decreases, by 7.5% from the low to the
medium capacity scenario, and by 3.7% more from the medium to
the high capacity scenario. This is because for higher capacities,
there exist more options for allocating resources to satisfy service
requests at lower costs and the proposed DSCE-RR algorithm intel-
ligently finds these options. Specifically, DSCE-RR places more data
closer to the data demanding services, essentially trading expensive
bandwidth for cheaper storage resource units.

Next, we explore the impact of our algorithm on other metrics
such as delay. We can extend our algorithm to minimize delay by
changing the values of the coefficients in the objective function
(11). Specifically, we set ¢, and ry, equal to zero for each node u and
buy equal to the delay of each link (u,v) so that the new objective
function represents the aggregate delay of the traffic streams in the
service chains. Additional delay models may be used depending on
the exact type of service, but these are out of scope of this paper.
Figure 6¢ compares the cost and the delay of our algorithm when
we apply it with cost (original function) or delay (¢;, = r, = 0
and by, = 5msec) as objective. As expected, when we minimize
delay we can improve this metric more than when we minimize
cost and vice versa. However, the two metrics are not conflicting;
by optimizing one, benefits are also realized for the other metric.

We remark that the running time of DSCE-RR (implemented on
a MacBook laptop with 2.3 GHz Core i5) is a few seconds in all the
evaluations. Even if we increase the number of nodes or services by
10 times the running time remains of the same order indicating that
DSCE-RR is not only near-optimal but also practical and scalable.

6 CONCLUSION

In this paper, we proposed and studied the SCE problem for ser-
vices with intensive data requirements, where the same data can
be shared by multiple service functions at possibly different lo-
cations. We provided a formulation that efficiently captures SCs’
consumption of storage, computation, and bandwidth resources,
and designed the first approximation algorithm for such problem
class. The proposed algorithm is based on randomized rounding
the linear relaxation of the original problem, where the service
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embeddings to be chosen with a given probability are extracted
using a novel data-aware decomposition procedure, different from
existing SCE methods. Evaluation results show that the proposed
algorithm achieves near-optimal costs with up to 27.8% of the cost
savings owed to the sharing of the data.
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