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ABSTRACT

Recent advances in network virtualization and programmability

enable innovative service models such as Service Chaining (SC),

where flows can be steered through a pre-defined sequence of ser-

vice functions deployed at different cloud locations. A key aspect

dictating the performance and efficiency of a SC is its instantia-

tion onto the physical infrastructure. While existing SC Embedding

(SCE) algorithms can effectively address the instantiation of SCs

consuming computation and communication resources, they lack

efficient mechanisms to handle the increasing data-intensive na-

ture of next-generation services. Differently from computation and

communication resources, which are allocated in a dedicated per

request manner, storage resources can be shared to satisfy multiple

requests for the same data. To fill this gap, in this paper, we formu-

late the data-intensive SCE problem with the goal of minimizing

storage, computation, and communication resource costs subject

to resource capacity, service chaining, and data sharing constraints.

Using a randomized rounding technique that exploits a novel data-

aware linear programming decomposition procedure, we develop a

multi-criteria approximation algorithm with provable performance

guarantees. Evaluation results show that the proposed algorithm

achieves near-optimal resource costs with up to 27.8% of the cost

savings owed to the sharing of the data.
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Rounding techniques.
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1 INTRODUCTION

1.1 Motivation

Driven by advances in network virtualization and programmability,

recent years have seen a paradigm shift in cloud computing, from

centralized towards distributed cloud architectures such as Fog [1]

and Mobile Edge Computing (MEC) [2]. Harvesting cloud resources

distributed throughout the network core and edge in proximity

to end-users (e.g., at switches and base stations) provides a clear

advantage in performing tasks with stringent latency requirements

that are hard to satisfy from centralized cloud locations.

These trends enable the realization of interesting new service

models such as Service Chaining (SC) [3]. In a nutshell, a service

chain describes a sequence of service functions that a flow needs to

pass through in a particular order so as to get a complete end-to-end

service. For example, as depicted in Figure 1, a service chain could

define that a flow is first routed from its source to a firewall for

security, next through a deep packet inspection (DPI) and a load

balancer for traffic optimization, and only then is delivered to its

destination.

A key aspect driving both performance and efficiency of a SC

is how to instantiate it onto the substrate network. This necessi-

tates the placement of service functions in the network, as well

as the routing (or steering) of flows through the appropriate func-

tion instances. This problem is further complicated by the multi-

dimensional resource requirements of the services. Many services

today require not only computation and communication resources

for executing processing tasks and delivering associated outputs to

the end users, but also non-trivial amounts of data that should be

stored in advance in the network and be available for the service

functions to access in an on demand manner. Examples of such data-

intensive services are Face Recognition and Augmented/Virtual

Reality (AR/VR) that require the availability of databases of images

and visual recognition models, possibly of several gigabytes each,

in order to run classification and recognition functions [4].

Storage differs from computation and communication resources

in that a stored data object can be shared to satisfy service requests
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Figure 1: An illustrative distributed cloudnetwork. Requests

for data-intensive services are satisfied by steering traffic

through chains of service functions instantiated at core and

edge cloud nodes.

with the same or overlapping data requirements (e.g., the same

object database or video frames). In contrast, computation and

communication resources are typically allocated in a dedicated

manner such that each service request takes up its own portion of

resources for exclusive use and the total resource consumption at a

cloud node or a network link is the sum of resource allocations.

Major network operators have made large investments in recent

years in building both centralized and distributed data centers and

developing their own software solutions to facilitate the large-scale

storage and sharing of data among services. For example, the net-

work data layer solution [5] enables the decoupling between storage

and computation functions by providing data storage separately

from a distributed shared database. Such decoupling allows the in-

dependent scaling of storage and computation functions and brings

increased operation flexibility.

Despite the above industry efforts, a fundamental algorithmic

methodology for optimally instantiating chains of data-intensive

services into the network is still missing. Existing algorithms based

on SC Embedding (SCE) (e.g., [6], [7], [8]) have been effective in

addressing this problem by provisioning computation together with

appropriate communication resources to minimize network costs

or maximize accepted service requests. However, the shareable

nature of the stored data breaks the suitability of these algorithms.

A few recent works studied the impact of data sharing on SCE (e.g.,

see [9], [10], [11] and the discussion of related works in Section 2).

However, these works focused on services with single (not chained)

functions and required that the data object is colocated with the

function using it (hence sharing of data is constrained within the

boundaries of the same cloud node). Also, these works considered

specific (not arbitrary) network topologies representing the last-

mile (single-hop) connectivity between cloud nodes at base stations

and mobile users.

1.2 Methodology & Contributions

In this paper, we follow a systematic methodology to optimize

the deployment of data-intensive service chains, summarized as

follows:

(1) We employ general network and service models to repre-

sent the deployment of data-intensive service chains in dis-

tributed cloud systems with three-dimensional (storage, com-

putation and communication) resource constraints. SCs are

modeled by Directed Acyclic Graphs (DAGs) while networks

of arbitrary topology and with multi-hop and multi-path

connectivity are considered.

(2) We formulate the Data-intensive Service Chain Embedding

(DSCE) problem mathematically as an integer programming

problem with the goal of minimizing storage, computation,

and communication resource costs subject to resource ca-

pacity, service chaining, and data sharing constraints. Our

formulation differs from those in classic SCE literature in

that it contains not only variables for the embedding of ser-

vice functions and flows onto the substrate network, but also

data placement variables that capture the sharing of data

objects between service functions and end user requests.

(3) Using a randomized rounding technique that exploits a novel

data-aware linear programming decomposition procedure,

we develop a multi-criteria algorithm that provably achieves

approximation guarantees while violating the resource ca-

pacities in a bounded way. To the best of our knowledge,

this is the first approximation algorithm for this problem.

(4) We perform evaluations to show the efficiency of the pro-

posed algorithm. We find that, in many practical scenarios,

our algorithm achieves near optimal cost that is up to 27.8%
better than the case where storage is treated as a dedicated

resource and thus sharing of data among services is not

permitted. In most cases, there is at least one embedding

extracted by our algorithm that has minimal (less than 3%)

capacity violation while the violation factors vanish as the

available capacities increase.

The rest of the paper is organized as follows. Section 2 discusses

related works, whereas Section 3 presents the system model and

formulates the data-intensive service chain embedding problem.

We present a solution algorithm with approximation guarantees

in Section 4. Finally, we present the evaluation results in Section 5

and conclude our work in Section 6.

2 RELATEDWORK

Most of the previous related works focused on services without

intensive data requirements (where the challenge is how to allocate

computation and communication resources that are dedicated/non-

shareable) or without chaining constraints (where a single function

constitutes a service). A survey of related works can be found in [12]

whereas a rough categorization based on the assumptions made

by these works is shown in Figure 2 and discussed below. We note

that our DSCE problem generalizes all this body of works.

2.1 Services without intensive data
requirements

Services such as firewalls, network address translators, load bal-

ancers and video encoders are increasingly deployed in the form

of virtual functions by network operators. Services of this family

typically do not impose intensive data requirements and therefore

their optimization depends on the allocation of computation and
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Figure 2: Classification of the related work for the service

deployment problem.

communication rather than storage resources. In the extreme case

that services do not consume even computation (or when computa-

tion capacity is not the bottleneck), then the only requirement is to

route traffic flows over the capacitated links among functions in a

network, which can be casted as a variant of the multi-commodity

flow routing problem [13]. For the more practical case that functions

require to execute some computation task, the work in [14] formu-

lated the computation and communication allocation problem as a

generalized assignment problem for which approximation algorithms

are known. Subsequent works in [15] and [16] proposed integer

linear programming formulations for the objectives of minimizing

cost or maximizing accepted requests, and solved the problem using

bargaining and conformal mapping theory, respectively.

The problem is further complicated, however, if one considers or-

der constraints in the execution of the functions known as chaining

constraints. Chained service functions can be modeled as service

graphs to be embedded into a substrate network and various al-

gorithms have been proposed for this purpose using techniques

such as randomized rounding [6], relaxation and successive con-

vex approximation [7], and shortest path routing on a multi-layer

graph [8]. Alternative modeling and solution approaches are also

known based on mixed integer linear programming [17], [18], col-

umn generation [19], sampling-based Markov approximation [20]

and queuing models [21]. However, the above works did not con-

sider functions with intensive data requirements or treated data

storage as another dedicated non-shareable resource to allocate,

just like computation and communication.

2.2 Services with intensive data requirements

Modern services such as Face Recognition and Augmented Reality

require access to non-trivial amounts of data (e.g., data base of

images, visual models, etc) which should be stored in advance at

the cloud nodes and be available for the functions to share in an on

demand manner. This can be formulated as a data placement prob-

lem [22] also referred as caching problem [23], [24] and is among

the most well-investigated problems in networking literature. How-

ever, the data placement/caching problem is much simpler than

the service deployment problem since it does not deal with the

allocation of computation resources, the execution of functions

and the accompanying chaining constraints. Still, this problem is

NP-Hard due to the combinatorial nature of the data placement

decisions.

Recently, there have been some works that generalize the data

placement problem by adding computation allocation variables

and computation constraints to satisfy requests for data-intensive

services [9], [10], [11]. This generalized problem is referred as the

service placement problem and several approximation algorithms

for jointly allocating storage, computation, and communication

resources have been proposed. While these works considered the

shareable nature of the stored data, they assumed that each service

request is for a single function rather than a chain of functions, and

that data objects must be colocated with the services using them at

the same cloud location. Besides, these works focused on two-tier

(single-hop) network topologies.

To the best of our knowledge, our work is the first to consider all

these aspects together (shareable nature of stored data, decoupling

of data objects from computation functions, service chaining con-

straints, and arbitrary multi-hop multi-path network topologies)

and generalizes the previous works in this area.

3 MODEL AND PROBLEM FORMULATION

In this section, we formally introduce the network and service

models that will be later used to optimize the deployment of data-

intensive service chains in the distributed cloud network.

3.1 Network Model

We model the distributed cloud network as a directed graph G =
(V, E) with V vertices and E edges representing the set of net-

work nodes and links, respectively. A node inV may represent an

end-user device, an access point or a cloud node inside the core or

edge network. Each node𝑢 ∈ V is characterized by its computation

resources (e.g., processor, microprocessor) and storage resources

(e.g., hard disk, flash memory). We denote by𝐶𝑢 and 𝑅𝑢 the compu-

tation and storage capacities at node 𝑢 ∈ V , respectively. The cost

of allocating one unit of processing and storage resource at node 𝑢
is 𝑐𝑢 and 𝑟𝑢 , respectively. Nodes are interconnected via wireless or
wireline links, each characterized by its transmission capacity and

unit cost. Link (𝑢, 𝑣) has transmission capacity 𝐵𝑢𝑣 and the cost
per bandwidth resource unit is 𝑏𝑢𝑣 .

3.2 Service Model

A generic service 𝜙 ∈ Φ can be described by a directed acyclic graph

(DAG) G𝜙 = (V𝜙 , E𝜙 ) where vertices represent service functions

and edges represent streams of information exiting one function

and entering another. An example of a service graph is shown in

Figure 3. There exist the following four types of vertices in the

service graph G𝜙 :

(1) Source or production functions (V𝜙,𝑠 set) are vertices with no

incoming edges of the service graph. They represent sensors

that generate real-time data streams (e.g., video cameras, IoT

sensors) associated with specific locations in the physical

network (e.g., user devices, nearby access points).

(2) Storage functions (V𝜙,𝑟 set) are also vertices with no in-

coming edges of the service graph. They represent the stor-

age/caching of pre-generated static data (e.g., pre-coded
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Figure 3: Service graph example; flows from two video cam-

eras go through decoding, classification, and 3D projection

functions before being displayed at two consumer devices.

Storage functions provide data as input to computation func-

tions.

video). There is one storage function for each computation

function that requires access to a given data object. Hence,

if multiple computation functions require access to the same

data object, we still create multiple storage functions.

(3) Computation functions (V𝜙,𝑐 set) are internal vertices of

the service graph. They take as input source, storage, or

other computation functions, and pass their output to other

computation or destination functions.

(4) Destination or consumption functions (V𝜙,𝑑 set) are vertices

with no outgoing edges of the service graph. They represent

end devices (e.g., video displays), consuming output infor-

mation streams and are associated with specific locations in

the physical network, just like the source functions.

We define the storage and computation requirements of the

service functions (vertices of the service graph) as follows. A storage

function 𝑖 ∈ V𝜙,𝑟 has zero computation requirement but requires

to store a data object (e.g., video, object database, holograms for

an AR service, etc.) which consumes storage resource. We denote

by 𝑜 (𝑖) and 𝑟𝑜 (𝑖) > 0 the respective data object and the required

storage resource, where the latter clearly depends on the size of

the data object. A computation function 𝑖 ∈ V𝜙,𝑐 has zero storage

requirement but requires computation resource 𝑐𝑖 > 0 for task

execution. The rest of vertices (source and destination functions)

have zero storage and computation requirements.

Note that differently from existing works on single-function

placement with storage requirements (e.g., [9–11]), where a copy of

the data needs to be colocatedwith each function requiring access to

that data, our model decouples data from computation, allowing the

possibility of multiple functions sharing access to a common copy of

the data. We emphasize that multiple storage functions belonging to

the same or different service graphs may require to store the same

data object. For example, it may happen that 𝑜 (𝑖) = 𝑜 (𝑖 ′) for two

storage functions 𝑖 ∈ V𝜙,𝑟 and 𝑖 ′ ∈ V𝜙′,𝑟 where 𝜙 = 𝜙 ′ or 𝜙 ≠ 𝜙 ′.

In this case, the data object can be shared by the storage functions

reducing the overall storage consumption. This is a major difference

compared to computation and bandwidth resources which are non-

sharable meaning that each individual function takes up its own

dedicated portion of resources for exclusive use. We denote by R(𝑜)
the set of all storage functions across all service graphs 𝜙 ∈ Φ
requiring object 𝑜 .

Next, we define the bandwidth requirements of the service streams

(edges of the service graph). We denote by 𝑏𝑖 𝑗 the bandwidth re-

quirement of stream (𝑖, 𝑗) ∈ E𝜙 . For streams generated by a source

or computation function 𝑖 , 𝑏𝑖 𝑗 depends on the volume of generated
data (e.g., video bitrate). For streams coming out of a storage func-

tion 𝑖 , 𝑏𝑖 𝑗 depends on the size of the stored data and the rate at

which function 𝑗 accesses the data.
To facilitate presentation, we denote by GΦ = (VΦ, EΦ) the

union of all service graphs, whereVΦ = ∪𝜙V
𝜙 and EΦ = ∪𝜙E

𝜙 .

Similarly, VΦ,𝑠 , VΦ,𝑟 , VΦ,𝑐 and VΦ,𝑑 denote the unions of all

source, storage, computation and destination functions for all ser-

vice graphs. We also denote by S(𝑢) andD(𝑢) the sets of all source
and destination functions associated with a particular node 𝑢. Fi-
nally, we denote by O = ∪𝑖𝑜 (𝑖) the union of all data objects.

3.3 Mathematical Formulation

The network operator needs to decide how to embed (or map) the

vertices and edges of the collection of service graphs to the nodes

and links of the physical substrate network. To model the embed-

ding decisions, we introduce two sets of optimization variables: (i)

𝑥𝑖𝑢 ∈ {0, 1} which indicates whether vertex 𝑖 is mapped to physical

node𝑢 (𝑥𝑖𝑢 = 1) or not (𝑥𝑖𝑢 = 0), and (ii) 𝑦
𝑖 𝑗
𝑢𝑣 ∈ {0, 1} which indicates

whether edge (𝑖, 𝑗) is mapped to a path that uses physical link (𝑢, 𝑣)

(𝑦𝑖 𝑗𝑢𝑣 = 1) or not (𝑦
𝑖 𝑗
𝑢𝑣 = 0).

Differently from traditional service embedding problem formu-

lations (e.g., [6]), in our case, the network operator needs to also

decide the data placement decisions: 𝑧𝑜𝑢 ∈ {0, 1} which indicates
whether data object 𝑜 is stored at physical node 𝑢 (𝑧𝑜𝑢 = 1) or not

(𝑧𝑜𝑢 = 0). The respective vectors of variables are the following:

𝒙 = (𝑥𝑖𝑢 ∈ {0, 1} : 𝑢 ∈ V, 𝑖 ∈ VΦ) (1)

𝒚 = (𝑦𝑖 𝑗𝑢𝑣 ∈ {0, 1} : (𝑢, 𝑣) ∈ E, (𝑖, 𝑗) ∈ EΦ) (2)

𝒛 = (𝑧𝑜𝑢 ∈ {0, 1} : 𝑢 ∈ V, 𝑜 ∈ O) (3)

The above decisions need to satisfy several constraints. First,

we need to make sure that each source and destination function is

mapped to its associated node in the physical network:

𝑥𝑖𝑢 = 1, ∀𝑢 ∈ V, 𝑖 ∈ S(𝑢) ∪ D(𝑢) (4)

Second, we need to map each storage and computation function to

exactly one node in the physical network:∑
𝑢∈V

𝑥𝑖𝑢 = 1, ∀𝑖 ∈ VΦ,𝑟 ∪VΦ,𝑐 (5)

Third, we need to ensure that each edge (𝑖, 𝑗) ∈ EΦ is mapped to a

path in the physical network that starts at the location of function

𝑖 and ends at the location of function 𝑗 , hence respecting service
chaining requirements:∑

(𝑢,𝑣) ∈E

𝑦
𝑖 𝑗
𝑢𝑣 −

∑
(𝑣,𝑢) ∈E

𝑦
𝑖 𝑗
𝑣𝑢 = 𝑥𝑖𝑢 − 𝑥

𝑗
𝑢 , ∀𝑢 ∈ V, (𝑖, 𝑗) ∈ EΦ (6)
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Fourth, the total computation load of services running on physical

node 𝑢 must not exceed its computation capacity:∑
𝑖∈VΦ,𝑐

𝑥𝑖𝑢𝑐
𝑖 ≤ 𝑥𝑢 ≤ 𝐶𝑢 , ∀𝑢 ∈ V (7)

where 𝑥𝑢 is an auxiliary variable whose value is equal to the com-

putation load of node𝑢 in the optimal solution of the problem. Fifth,
the total bandwidth load of services transported over physical link

(𝑢, 𝑣) must not exceed its bandwidth capacity:∑
𝑖, 𝑗 ∈EΦ

𝑦
𝑖 𝑗
𝑢𝑣𝑏

𝑖 𝑗 ≤ 𝑦𝑢𝑣 ≤ 𝐵𝑢𝑣, ∀(𝑢, 𝑣) ∈ E (8)

where 𝑦𝑢𝑣 is an auxiliary variable whose value is equal to the

bandwidth load of link (𝑢, 𝑣) in the optimal solution. To satisfy the
data requirements of services, we also need to satisfy the following

two sets of constraints:

𝑥𝑖𝑢 ≤ 𝑧
𝑜 (𝑖)
𝑢 , ∀𝑢 ∈ V, 𝑖 ∈ VΦ,𝑟 (9)∑

𝑜∈O

𝑧𝑜𝑢𝑟
𝑜 ≤ 𝑧𝑢 ≤ 𝑅𝑢 , ∀𝑢 ∈ V (10)

The first of the two constraints ensures that a storage function 𝑖
can be mapped to a node 𝑢 (𝑥𝑖𝑢 = 1) only if the latter has stored

the required data object 𝑜 (𝑖). The second set of constraints ensures
that the total storage capacity of a node 𝑢 is not exceeded, where

𝑧𝑢 is an auxiliary variable whose value is equal to the storage

load of node 𝑢 in the optimal solution. It is important to note that

the storage resource load is computed using the data placement

variables 𝑧𝑜𝑢 , 𝑜 ∈ O, and not the storage function variables 𝑥𝑖𝑢 , 𝑖 ∈
VΦ,𝑟 , hence allowing the sharing of storage resources between

multiple functions storing the same data object.

The goal of the network operator is to make the embedding (𝒙 ,𝒚)
and data placement (𝒛) decisions that minimize the total resource
consumption costs:

min
𝒙,𝒚,𝒛

∑
𝑢∈V (𝑥𝑢𝑐𝑢 + 𝑧𝑢𝑟𝑢 ) +

∑
(𝑢,𝑣) ∈E 𝑦𝑢𝑣𝑏𝑢𝑣 (11)

s.t. constraints: (1) − (10)

We refer to the above as the Data-Intensive Service Chain Embedding

(DSCE) problem. It is not difficult to show that the DSCE problem is

NP-Hard since it generalizes the data placement problems in [22],

[23] and [24] by augmenting additional variables and constraints

into the problem formulation. Therefore, it is unlikely to find opti-

mal solutions and the use of approximation algorithms is justified.

In the next section, we present such an algorithm and formally

prove its approximation guarantees.

4 APPROXIMATION ALGORITHM

In this section, we present one of the main contribution of this

paper; an approximation algorithm for the DSCE problem. Our

algorithm, termed DSCE-RR, leverages a Randomized Rounding

technique that chooses an embedding of the service collection GΦ

extracted from the linear programming (LP) relaxation of the DSCE

problem following a novel data-aware decomposition procedure.

4.1 Algorithm Description

The DSCE-RR algorithm is described in Algorithm 1. DSCE-RR iter-

atively extracts service embeddings from the LP solution (𝒙,𝒚, ¯𝒛)

Algorithm 1: DSCE-RR Algorithm

1 Input: Network graph G, service graph GΦ = ∪𝜙 G𝜙

2 Solve the linear relaxation of the DSCE problem to obtain (𝒙̄, 𝒚̄, 𝒛̄)
3 Set M = ∅, 𝛾 = 1, 𝑘 = 1

4 while 𝛾 > 0 do
5 Set𝑚𝑘 = (𝑚𝑉

𝑘
,𝑚𝐸

𝑘 ) = ( ∅, ∅)

6 Set Q = ∅

7 Compute mapping of source nodes according to Algorithm 2

8 Compute mapping of storage nodes according to Algorithm 3

9 Compute mapping of computation nodes, destination nodes and service
edges according to Algorithm 4

10 Set W𝑘 = {𝑥𝑖𝑢 | 𝑖 ∈ VΦ,𝑢 =𝑚𝑉
𝑘
(𝑖) }

∪ {𝑦𝑖 𝑗𝑢𝑣 | (𝑖, 𝑗) ∈ EΦ, (𝑢, 𝑣) ∈𝑚𝐸
𝑘 (𝑖, 𝑗) }

11 Set 𝑝𝑘 = minW𝑘

12 Set 𝑤 = 𝑤 − 𝑝𝑘 , ∀𝑤 ∈ W𝑘

13 Set 𝛾 = 𝛾 − 𝑝𝑘
14 Set M = M ∪ (𝑚𝑘 , 𝑝𝑘 )
15 Set 𝑘 = 𝑘 + 1

end

16 Choose embedding𝑚𝑘 with probability 𝑝𝑘
17 Set 𝑥𝑖𝑢 = 1, ∀𝑖 ∈ VΦ,𝑢 ∈𝑚𝑉

𝑘
(𝑖)

18 Set 𝑦𝑖 𝑗𝑢𝑣 = 1, ∀(𝑖, 𝑗) ∈ EΦ,𝑢 ∈𝑚𝐸
𝑘 (𝑖, 𝑗)

19 Set 𝑧̂𝑜𝑢 = max𝑖∈R(𝑜 ) 𝑥
𝑖
𝑢 , ∀𝑜 ∈ O,𝑢 ∈ V

20 Output: 𝒙,𝒚, 𝒛̂

Algorithm 2: Source Node Mapping

1 Input: 𝒙̄,𝑚𝑉
𝑘
, Q

2 for 𝑖 ∈ VΦ,𝑠 do
3 Set Q = Q ∪ {𝑖 }

4 Find the node 𝑢 ∈ V with 𝑥𝑖𝑢 = 1

5 Set𝑚𝑉
𝑘
(𝑖) = 𝑢

end

6 Output:𝑚𝑉
𝑘
, Q

(line 2) by mapping each vertex and edge in the service collection

GΦ onto the substrate network G. It uses Algorithm 2 to map the set

of source functions (line 7), Algorithm 3 to map the set of storage

functions (line 8), and Algorithm 4 to map the sets of computation

functions, destination functions, and service edges (line 9).

Of particular relevance is the procedure that maps the storage

functions in Algorithm 3. Note how storage functions are mapped

by first finding a physical node 𝑢 with positive fractional data

placement value 𝑧𝑜𝑢 for each unique object 𝑜 ∈ O (line 6), and

then mapping to that location all storage functions in R(𝑜) with
positive fractional placement value 𝑥𝑖𝑢 (lines 8-12). Importantly,

this procedure favors the extraction of service embeddings from the

LP solution that colocate storage functions associated with the same

object, which in turn leads to more sharing of data among services

and saves storage resources.

Once source and storage functions are mapped via Algorithm 2

and Algorithm 3, and the set Q containing currently mapped func-

tions is updated, the DSCE-RR algorithm calls Algorithm 4 for

mapping the service edges (representing data streams) and the re-

maining computation and destination functions. Algorithm 4 visits

every single edge in the service graph GΦ and maps it onto a path in

the physical network G, mapping also the remaining computation

and destination functions. Note how in the case that we have nodes

with multiple incoming edges in GΦ, Algorithm 4 makes sure those
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Algorithm 3: Storage Node Mapping

1 Input: 𝒙̄, 𝒛̄,𝑚𝑉
𝑘
, Q

2 for 𝑜 ∈ O do
3 Set X = R(𝑜)
4 Set Y = V

5 while |X | > 0 do
6 Pick a node 𝑢 ∈ Y with 𝑧𝑜𝑢 > 0

7 Set Y = Y\{𝑢 }
8 for 𝑖 ∈ X do

9 if 𝑥𝑖𝑢 > 0 then
10 Set𝑚𝑉

𝑘
(𝑖) = 𝑢

11 Set Q = Q ∪ {𝑖 }
12 Set X = X\{𝑖 }

end

end

end

end

13 Output:𝑚𝑉
𝑘
, Q

computation functions are only mapped once. Note also how the

procedure in Algorithm 4 terminates when all destination functions

are mapped to their corresponding physical hosts.

After completing the mapping procedures in lines 7-9, DSCE-RR

computes the probability 𝑝𝑘 associated with the extracted embed-

ding𝑚𝑘 as the minimum value among the LP variables associated

with such embedding (lines 10-11), and subtracts it from all such

variables (line 12), completing the extraction of embedding 𝑚𝑘 .

Note how the parameter 𝛾 that controls the termination of the de-

composition procedure is also reduced by 𝑝𝑘 after the extraction of

embedding𝑚𝑘 (line 13). At the end of the decomposition procedure

(when𝛾 = 0), embedding𝑚𝑘 is chosen with probability 𝑝𝑘 (lines 16).
In the end (lines 17-19), the associated embedding and placement

variables are computed.

4.2 Performance analysis

To facilitate the analysis of DSCE-RR algorithm, we introduce the

following definition.

Definition 1. A valid embedding M = (𝑚𝑉 ,𝑚𝐸 ) of service

collection GΦ on network G consists of a node mapping𝑚𝑉 : VΦ →

V and a link mapping𝑚𝐸 : EΦ → E, such that:

• Each source function 𝑖 ∈ VΦ,𝑠 is mapped to its corresponding

host {𝑢 ∈ V|𝑖 ∈ S(𝑢)}.
• Each destination function 𝑖 ∈ VΦ,𝑑 is mapped to its corre-

sponding host {𝑢 ∈ V|𝑖 ∈ D(𝑢)}.
• Each storage function 𝑖 ∈ VΦ,𝑟 is mapped to one physical node

in V that contains a copy of data object 𝑜 (𝑖) ∈ O.

• Each computation function 𝑖 ∈ VΦ,𝑐 is mapped to one physical

node in V .

• Each edge (𝑖, 𝑗) ∈ EΦ is mapped to one path starting at node

𝑚𝑉 (𝑖) and ending at node𝑚𝑉 ( 𝑗).

We then show the following two lemmas.

Lemma 1. For a given network graph G and service graph GΦ,

Algorithm 1 decomposes a solution (𝒙,𝒚, ¯𝒛) to the LP relaxation of

the DSCE problem into a convex combination of valid embeddings

M = {M𝑘 } withM𝑘 = {𝑚𝑘 , 𝑝𝑘 }, such that
∑
𝑘 𝑝𝑘 = 1.

Algorithm 4: Computation Node and Link Mapping

1 Input: 𝒙̄, 𝒚̄,𝑚𝑉
𝑘
,𝑚𝐸

𝑘 , Q

2 while |Q | > 0 do
3 Pick a node 𝑖 ∈ Q and remove it from set Q

4 for (𝑖, 𝑗) ∈ EΦ do

5 if𝑚𝑉
𝑘
( 𝑗) ≠ ∅ then

6 Find a path P connecting 𝑢 =𝑚𝑉
𝑘
(𝑖) to 𝑣 =𝑚𝑉

𝑘
( 𝑗) , such

that 𝑦𝑖 𝑗
𝑎𝑏

> 0 ∀(𝑎,𝑏) ∈ P

7 Set𝑚𝐸
𝑘 (𝑖, 𝑗) = P

end

8 else

9 Find a path P connecting 𝑢 =𝑚𝑉
𝑘
(𝑖) to a 𝑣 ∈ V with

𝑥 𝑗
𝑣 > 0, such that 𝑦𝑖 𝑗

𝑎𝑏
> 0 ∀(𝑎,𝑏) ∈ P

10 Set𝑚𝑉
𝑘
( 𝑗) = 𝑣

11 Set𝑚𝐸
𝑘 (𝑖, 𝑗) = P

end

12 Set Q = Q ∪ { 𝑗 }
end

end

13 Output:𝑚𝑉
𝑘
,𝑚𝐸

𝑘 , Q

Proof. We first show the validity of the embeddings obtained

by the DSCE-RR algorithm. To this end, we show that for each

embedding, Algorithm 1 ends up mapping every node and link in

GΦ, and that each node and link mapping is valid. It is immediate

to see that the mapping of the source nodes is valid since source

𝑖 is mapped to the only physical node 𝑢 where 𝑥𝑖𝑢 = 1 (Algorithm

2, line 4), i.e., the node where the placement of 𝑖 was initialized to
via constraint (4). Let’s now focus on the storage nodes. Note that

each storage function 𝑖 ∈ VΦ,𝑟 is associated with a unique data

object 𝑜 (𝑖). For each 𝑜 ∈ O, Algorithm 3 updates the set of current

unmapped storage functionsX associated with a given object every

time a new function is mapped, and it runs until the set is empty.

Hence, each storage function is mapped exactly once. In addition,

Line 6 assures that the node𝑢 to which storage function 𝑖 is mapped
has positive placement value 𝑧𝑜𝑢 . Themapping of computation nodes
is valid since 1) for a given edge (𝑖, 𝑗) ∈ EΦ, Algorithm 4 can only

map function 𝑗 after function 𝑖 has been mapped, 2) function 𝑗
can only be mapped to physical node 𝑣 if there is a path from the

location of already mapped function 𝑖 to 𝑣 where each edge (𝑎, 𝑏)

on the path has positive 𝑦
𝑖 𝑗
𝑎𝑏

value (lines 6 and 9 in Algorithm 4),

and 3) line 5 assures that if function 𝑗 is visited more than once, it
is only mapped once. Link mappings are valid since (𝑖, 𝑗) is always
mapped to a path starting at the already mapped location of 𝑖 and
ending at either the already mapped location of 𝑗 (line 6) or a valid

location of 𝑗 (line 9), via a path whose edges have positive 𝑦
𝑖 𝑗
𝑎𝑏

values. Finally, since each service node and link will be eventually

mapped, the overall embedding is valid. We now show that the

decomposition of valid embeddings is complete. Note that since 𝛾
starts with value 1, its value is reduced by 𝑝𝑘 at each iteration, and

the procedure continues as long as 𝛾 > 0, then
∑
𝑘 𝑝𝑘 cannot be

smaller than 1. On the other hand, since at each iteration at least

one variable’s value is set to 0, then
∑
𝑘 𝑝𝑘 cannot be larger than 1.

Hence, Algorithm 1 obtains a decompositionM = {M𝑘 } for which∑
𝑘 𝑝𝑘 = 1. �

136



Approximation Algorithms for Data-Intensive Service Chain Embedding Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

Lemma 2. Let 𝒙̂ (𝑘),𝒚(𝑘), 𝒛̂ (𝑘) denote the solution obtained by

Algorithm 1 when the chosen embedding isM𝑘 . Then, the expected

value of the solution obtained by Algorithm 1 is equal to the solution

to the LP relaxation of DSCE, i.e.,

E[𝒙̂] =
∑
𝑘

𝑝𝑘 𝒙̂ (𝑘) = 𝒙

E[𝒚] =
∑
𝑘

𝑝𝑘𝒚(𝑘) = 𝒚

E [̂𝒛] =
∑
𝑘

𝑝𝑘 𝒛̂ (𝑘) = ¯𝒛

Proof. We first show that the decomposition of Algorithm 1

is complete, in the sense that at the end of the decomposition

procedure, the residual values of LP variables (𝒙,𝒚, ¯𝒛) are all zero.
To this end, note that

∑
𝑢 𝑥

𝑖
𝑢 ,∀𝑖 , is initially equal to 1 by constraint

(5), and that at each iteration such value is reduced by 𝑝𝑘 (since

exactly one node 𝑢 will be chosen as the mapping of 𝑖). Given
that

∑
𝑘 𝑝𝑘 = 1 from Lemma 1, it follows that at the end of the

decomposition procedure,
∑
𝑢 𝑥

𝑖
𝑢 −

∑
𝑘 𝑝𝑘 = 0,∀𝑖 , and hence all 𝒙

residual values are zero. It is clear from constraints (6) and (10) that

if all 𝒙 residual values are zero, then the residual values of 𝒚 and ¯𝒛
must also be zero.

Now focus on a particular LP variable 𝑥𝑖𝑢 . At iteration 𝑘 , its value
is decreased by 𝑝𝑘 if 𝑢 is included as the mapping of 𝑖 in embedding
𝑘 , and by zero otherwise. Since the decomposition is complete and
all residual values end up being zero, then

∑
𝑘 𝑝𝑘1{𝑚

𝑉
𝑘
(𝑖) = 𝑢} = 𝑥𝑖𝑢 .

Notice that the solution of Algorithm 1 for 𝑥𝑖𝑢 is a Bernoulli ran-

dom variable with parameter
∑
𝑘 𝑝𝑘1{𝑚

𝑉
𝑘
(𝑖) = 𝑢}. Hence, E[𝑥𝑖𝑢 ] =∑

𝑘 𝑝𝑘1{𝑚
𝑉
𝑘
(𝑖) = 𝑢} = 𝑥𝑖𝑢 ,∀𝑖, 𝑢. A similar reasoning follows for the

𝒚 and 𝒛̂ variables. �

Building upon the above lemmas, the following theorem follows.

Theorem 1. Let 𝐽 and 𝐽̂ denote the optimal objective value and

the objective value obtained by Algorithm 1, respectively. Then,

P

(
𝐽̂ ≥ 𝛽 𝐽 𝐽

)
≤

(
𝜖

Ω(1)

)2Γ𝐽
(12)

P (𝑥𝑢 ≥ 𝛽𝑐𝐶𝑢 ) ≤

(
𝜖

|V|

)2Γ𝑐
(13)

P (𝑦𝑢𝑣 ≥ 𝛽𝑏𝐵𝑢𝑣) ≤

(
𝜖

|E |

)2Γ𝑏
(14)

P (𝑧̂𝑢 ≥ 𝛽𝑟𝑅𝑢 ) ≤

(
𝜖

|V|

)2Γ𝑟
(15)

where 𝜖 ∈ (0, 1) and Γ( ·) ∈ R
+ are constants satisfying 2Γ( ·) > 1. The

terms 𝛽 𝐽 = 1+
√
Γ𝐽 Δ𝐽 log(Ω(1)/𝜖), 𝛽𝑐 = 1+

√
Γ𝑐Δ𝑐 log ( |V|/𝜖), 𝛽𝑏 =

1 +
√
Γ𝑏Δ𝑏 log ( |E |/𝜖), and 𝛽𝑟 = 1 +

√
Γ𝑟Δ𝑟 log ( |V|/𝜖) are factors

of exceeding the optimal objective value and violating the resource ca-

pacities, where Δ𝐽 = (𝐽𝑚𝑎𝑥/𝐽 )
2, Δ𝑐 = (𝐿𝑐𝑢/𝐶𝑢 )

2, Δ𝑏 = (𝐿𝑏𝑢𝑣/𝐵𝑢𝑣)
2,

Δ𝑟 = (𝐿𝑟𝑢/𝑅𝑢 )
2, with 𝐽𝑚𝑎𝑥 = max𝑘 𝐽̂ (𝑘), 𝐿𝑐𝑢 = max𝑘 𝑥𝑢 (𝑘), 𝐿

𝑐
𝑢𝑣 =

max𝑘 𝑦𝑢𝑣 (𝑘), 𝐿
𝑐
𝑟 = max𝑘 𝑧̂𝑢 (𝑘) denoting the maximum objective

value and resource loads over all extracted embeddings.

Proof. We first bound the probability that the computation load

at a given node 𝑥𝑢 exceeds capacity𝐶𝑢 by a factor 𝛽𝑐 . We have that:

P (𝑥𝑢 ≥ 𝛽𝑐𝐶𝑢 ) ≤ P (𝑥𝑢 − 𝑥𝑢 ≥ (𝛽𝑐 − 1)𝐶𝑢 ) (16)

≤ exp

[
−
2((𝛽𝑐 − 1)𝐶𝑢 )

2

(𝐿𝑐𝑢 )
2

]
(17)

= exp

[
−
2Γ𝑐Δ𝑐 log( |V|/𝜖)𝐶2

𝑢

(𝐿𝑐𝑢 )
2

]
(18)

= exp [−2Γ𝑐 log( |V|/𝜖)] (19)

=

(
𝜖

|V|

)2Γ𝑐
(20)

Note that (16) follows from the fact that 𝑥𝑢 ≤ 𝐶𝑢 due to (7), and

that E[𝑥𝑢 ] = 𝑥𝑢 due to Lemma 2; (17) is due to Hoeffding’s lemma

[25] applied for one bounded variable 𝑥𝑢 ∈ [0, 𝐿𝑐𝑢 ]; (18) follows

from setting 𝛽𝑐 − 1 =
√
Γ𝑐Δ𝑐 log( |V|/𝜖) with 𝜖 ∈ (0, 1), Γ𝑐 ∈ R+

and Δ𝑐 > 0; and (19) follows from the definition of Δ𝑐 .
Following an equivalent procedure and choosing 𝛽𝑏 = 1 +√
Γ𝑏Δ𝑏 log( |E |/𝜖)withΔ𝑏 = (𝐿𝑏𝑢𝑣/𝐵𝑢𝑣)

2, and 𝛽𝑟 = 1+
√
Γ𝑟Δ𝑟 log( |V|/𝜖)

with Δ𝑟 = (𝐿𝑟𝑢/𝑅𝑢 )
2, (14) and (15) follow.

Finally, in order to prove (12), letting 𝐽 denote the objective
function value of the optimal fractional solution, we have:

P

(
𝐽̂ ≥ 𝛽 𝐽 𝐽

)
≤ P

(
𝐽̂ ≥ 𝛽 𝐽 𝐽

)
(21)

≤ exp

[
−
2((𝛽 𝐽 − 1) 𝐽 )2

(𝐽𝑚𝑎𝑥 )2

]
(22)

= exp

[
−
2Γ𝐽 Δ𝐽 log(Ω(1)/𝜖) 𝐽 2

(𝐽𝑚𝑎𝑥 )2

]
(23)

= exp
[
−2Γ𝐽 log(Ω(1)/𝜖)

]
(24)

=

(
𝜖

Ω(1)

)2Γ𝐽
(25)

�

We now introduce the following definition and state the approx-

imation guarantees of the DSCE-RR algorithm.

Definition 2. A multi-criteria (𝛽 𝐽 , 𝛽𝑐 , 𝛽𝑏 , 𝛽𝑟 )-approximation for

the DSCE problem is a solution where the objective value exceeds that

of the optimal solution by atmost a factor of 𝛽 𝐽 , while the computation,

bandwidth, and storage capacity constraints are violated by at most

a factor of 𝛽𝑐 , 𝛽𝑏 , and 𝛽𝑟 , respectively.

Theorem 2. As the size of G and GΦ grows, the DSCE-RR algo-

rithm returns with high probability a multi-criteria (𝛽 𝐽 , 𝛽𝑐 , 𝛽𝑏 , 𝛽𝑟 )-
approximation for the DSCE problem, with (𝛽𝑐 , 𝛽𝑏 , 𝛽𝑟 ) as given in

Theorem 1, 𝛽 𝐽 = 1 +
√
Γ𝐽 Δ𝐽 log(Θ( |V|)/𝜖), Γ𝑐 , Γ𝑏 , Γ𝑟 > 1 and

Γ𝐽 > 0.5.

Proof. Using the union bound and Theorem 1, we have that the

probability that any of the computation and storage capacities of the

|V| nodes and the bandwidth capacities of the |E | links are violated

by a factor 𝛽𝑐 , 𝛽𝑟 , and 𝛽𝑏 , respectively, and the objective value 𝐽̂ ex-
ceeds the optimal objective value 𝐽 by a factor 𝛽 𝐽 , is upper bounded

by |V|
( 𝜖
|V |

)2Γ𝑐 + |V|
( 𝜖
|V |

)2Γ𝑟 + |E|
( 𝜖
|E |

)2Γ𝑏 +
( 𝜖
Θ( |V |)

)2Γ𝐽 , where
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we have replaced Ω(1) with Θ( |V|) in the last term. This probabil-

ity is equal to 𝜖
( 𝜖
|V |

)2Γ𝑐−1+𝜖 ( 𝜖
|V |

)2Γ𝑟−1+𝜖 ( 𝜖
|E |

)2Γ𝑏−1+ ( 𝜖
Θ( |V |)

)2Γ𝐽 ,
which goes to zero as |V| and |E| increase for Γ𝑐 , Γ𝑟 , Γ𝑏 > 1 and

Γ𝐽 > 0.5, from which Theorem 2 follows. �

Note that Algorithm 1 only considers one rounding try (see line

16). To improve the performance, we can considermultiple rounding

tries and then pick the one with the minimum violations. This

way, we can show the following high probability bound without

requiring that the size of G and GΦ grows.

Theorem 3. Given fixed-size G and GΦ, the DSCE-RR algorithm

returns, after 𝑛 rounding tries, with probability 1 − (𝜖)𝑛 , a multi-

criteria (𝛽 𝐽 , 𝛽𝑐 , 𝛽𝑏 , 𝛽𝑟 )-approximation for the DSCE problem, with

(𝛽𝑐 , 𝛽𝑏 , 𝛽𝑟 ) as given in Theorem 1, 𝛽 𝐽 = 1 +
√
Γ𝐽 Δ𝐽 log(1/𝜖), Γ( ·) >

0.5, 𝜖 = 𝜖/4 and 𝜖 ∈ (0, 1).

Proof. Following considerations analogous to the ones in the

proof of Theorem 2, the statement in Theorem 3 readily follows.

The term 𝜖 = 𝜖/4 is due to the application of union bound and the
fact that there are 4 types of violation factors we seek to bound. �

5 EVALUATION RESULTS

In this section, we perform evaluations to show the efficiency of the

proposed DSCE-RR algorithm. We find that, in practical scenarios,

DSCE-RR achieves near optimal cost that is up to 27.8% better than

the case where storage is treated as a dedicated resource and thus

sharing of data among services is not permitted. In most scenarios,

there is at least one embedding extracted by DSCE-RR that has

minimal (less than 3%) capacity violation while the violation factors

vanish as the available capacities increase.

5.1 Evaluation Setup

We consider a similar setup as in [18], depicted in Figure 4. Cloud

resources (storage and computation) are distributed across nodes of

different tiers in a network; a head office (HO) node at the higher tier

that represents a centralized data center, intermediate office (IO) and

end-office (EO) nodes, and base station (BS) nodes associated with

mobile end-users at the bottom tier. We construct service chains

with the structure shown on the right of the figure. Each chain

contains a source and a destination vertex associated with specific

locations in the cloud network as well as storage and computation

functions, the location of which can be optimized. This structure

can capture various data-intensive services such as Augmented

Reality (AR).

Based on the above structure, we construct Φ = 100 AR service

chains that differ from one another in the location of source and

destination functions and the requirements of storage and compu-

tation functions. Specifically, we locate randomly the source and

destination of each service chain at one of the four BSs or the HO

node representing the demand of mobile users associated with the

BSs or the demand coming from other networks through the HO.

The data object required by each storage function is drawn from a

library of |O| = 100 data objects. For each function, the object is

picked randomly based on the Zipf probability distribution with

slope value 1 which is a common assumption for several types of

Figure 4: Distributed cloud network of |V| = 10 nodes and

|E | = 2 × 18 = 36 directed links (left) and service graph of

|V𝜙 | = 4 vertices and |E𝜙 | = 3 edges (right).

services [11]. This allows overlapping data requirements among

services and therefore couples their embedding decisions.

We set the size of each data object randomly within the interval

[1, 20] GBs. The bandwidth required for a source (storage function)
to pass input to a computation function is set randomly (propor-

tional to the object size) within [1, 10] Mbps. The output stream

of a computation function is passed to the destination node at the

aggregate data rate of the input streams coming from the source

and storage functions. The computation requirement is set within

[0.2,4] GHz assuming 200 cycles per bit of input data [11]. The

storage cost is set to 𝑟𝑢 = $0.01133 per GB, which is equivalent to
$0.34 per GB per month [26] amortized on a daily basis assuming

that data placement decisions are made at the beginning of each

day. The computation cost is set to 𝑐𝑢 = $0.036 per GHz which is
equivalent to $0.00001 per GHz per second [27] assuming that each
service lasts one hour spread over the day. Finally, the bandwidth

cost is set to 𝑏𝑢𝑣 = $0.009 per Mbps which is equivalent to $0.02
per GB of transferred data [28]. We remark that our evaluation

code is publicly available online in [29].

5.2 Evaluation Results

Throughout the evaluations, we consider three scenarios, each

characterized by its storage, computation, and bandwidth capacities:

(i) low capacity scenario with 𝑅𝑢 = 100GBs, 𝐶𝑢 = 20GHz, 𝐵𝑢𝑣 =
100Mbps; (ii) medium capacity scenario with 𝑅𝑢 = 150GBs, 𝐶𝑢 =
30GHz, 𝐵𝑢𝑣 = 150Mbps; and (iii) high capacity scenario with 𝑅𝑢 =
200GBs, 𝐶𝑢 = 40GHz, 𝐵𝑢𝑣 = 200Mbps. The capacity of the links

inter-connecting the base stations with one another (X2 links in

the figure) is always half of the capacity of the rest of the links.

For each scenario, we compute the total resource cost (objective

function value in (11)) and the maximal (worst) capacity violation

across all nodes and links achieved by four algorithms: (i) the opti-

mal solution to the linear relaxation of the DSCE problem (Optimal

LP), (ii) the proposed approximation algorithm (DSCE-RR) that

extracts a number of embeddings and randomly chooses one, and

(iii)-(iv) two baseline schemes (Greedy and Dedicated) that repre-

sent the output of DSCE-RR algorithm when BSs are restricted to

store the most popular data objects (intuitive naive solution) or

when storage is regarded as a dedicated resource and thus sharing

of data objects among services is not permitted (representative of

state of-the-art SCE methods).
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Figure 6: (a) Cost for different portions of AR and VS services in medium capacity scenario. (b) Breakdown of cost into band-

width, computation and storage components. (c) Impact of optimizing different objectives in low capacity scenario.

Figure 5a shows the results for each scenario and algorithm.

Note that Optimal LP does not violate any of the resource capaci-

ties. However, the solution it returns may contain fractional values

and therefore it only serves as a lower bound to the optimal integer

solution in order to measure how far from optimal the other algo-

rithms perform. While in all scenarios some capacities are violated,

the violation factors are not significant. The maximal violation of

DSCE-RR is 13.5% in the low capacity scenario. However, for the

medium and high capacity scenarios DSCE-RR achieves the optimal

cost and much smaller capacity violations (2.6% and 3.6%). We note

that if we increase the capacities even more (e.g., by 25%), then all

the violation factors become zero illustrating the fact that when ca-

pacities are high, there exists an Optimal LP solution that is, in fact,

integer, and our proposed approximation algorithm is able to find

it. Besides, DSCE-RR performs better than the Greedy and Dedicated

baseline schemes, with gains up to 6.1% and 12%, respectively.

Figure 5b shows the scatter plot of cost and maximal capacity

violation corresponding to all the embeddings extracted by DSCE-

RR. A total of 17, 10 and 12 embeddings are extracted in the low,

medium and high capacity scenarios, respectively. We notice that

the values vary largely from one embedding to another, especially

in the low capacity scenario where the maximal capacity violation

can even exceed 60%. In most cases, however, there is at least one

embedding to choose that does not incur excessive capacity violation

(less than 3% in two out of the three scenarios).

Figure 5c examines different slopes of the Zipf probability distri-

bution with which services are assigned to data objects. A higher

slope represents a steeper distribution where service requests are

concentrated on the same few data objects, and hence sharing of

data among services is more likely to happen. On the other hand, a

lower slope value represents a more shallow distribution of data

objects. To eliminate the impact of random sizes of data objects,

and focus instead on the demand distribution, we restrict all sizes

to 10GBs in this experiment. We find that the cost achieved by all

the algorithms but the Dedicated decreases with the slope value,

illustrating the fact that the effectiveness of the data placement deci-

sions improves with the steepness of the demand distribution. On the

other hand, Dedicated is unable to exploit any of the data sharing

opportunities and hence its performance does not improve with the

slope. The gains of DSCE-RR are up to 7% and 27.8% over Greedy

and Dedicated, respectively.

139



Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, and Leandros Tassiulas

So far, we focused on a specific type of services, AR. We next

examine a mixture of AR with video streaming (VS) services. The

VS service graph differs from the AR one in that there is no real-time

stream; the only stream comes from the access to the video stored in

the storage function. Therefore, the bandwidth and accompanying

computation requirements are lower than in the AR service. Figure

6a shows how the cost increases by more than a factor of 2 as we

move from the pure VS (0% on the x axis) to the pure AR (100%

on the x axis) operating point indicating the additional expenses

required to support resource hungry AR services. We also note

that DSCE-RR consistently outperforms the Greedy and Dedicated

baseline schemes. The gains are higher at the pure VS point, up to

15.82% and 27.81%, respectively.
Next, we take a close look at the components that contribute

to the overall cost. The cost breakdown in Figure 6b shows that

storage, computation and bandwidth costs are comparable to each

other where the largest contributor is the bandwidth cost. This

was expected as the other resources (storage and computation) are

usually available (or easy to deploy) to the network operator in

larger quantities and at lower prices. As we increase the available

capacities, the overall cost decreases, by 7.5% from the low to the

medium capacity scenario, and by 3.7% more from the medium to

the high capacity scenario. This is because for higher capacities,

there exist more options for allocating resources to satisfy service

requests at lower costs and the proposed DSCE-RR algorithm intel-

ligently finds these options. Specifically, DSCE-RR places more data

closer to the data demanding services, essentially trading expensive

bandwidth for cheaper storage resource units.

Next, we explore the impact of our algorithm on other metrics

such as delay. We can extend our algorithm to minimize delay by

changing the values of the coefficients in the objective function

(11). Specifically, we set 𝑐𝑢 and 𝑟𝑢 equal to zero for each node 𝑢 and

𝑏𝑢𝑣 equal to the delay of each link (𝑢, 𝑣) so that the new objective

function represents the aggregate delay of the traffic streams in the

service chains. Additional delay models may be used depending on

the exact type of service, but these are out of scope of this paper.

Figure 6c compares the cost and the delay of our algorithm when

we apply it with cost (original function) or delay (𝑐𝑢 = 𝑟𝑢 = 0

and 𝑏𝑢𝑣 = 5msec) as objective. As expected, when we minimize

delay we can improve this metric more than when we minimize

cost and vice versa. However, the two metrics are not conflicting;

by optimizing one, benefits are also realized for the other metric.

We remark that the running time of DSCE-RR (implemented on

a MacBook laptop with 2.3 GHz Core i5) is a few seconds in all the

evaluations. Even if we increase the number of nodes or services by

10 times the running time remains of the same order indicating that

DSCE-RR is not only near-optimal but also practical and scalable.

6 CONCLUSION

In this paper, we proposed and studied the SCE problem for ser-

vices with intensive data requirements, where the same data can

be shared by multiple service functions at possibly different lo-

cations. We provided a formulation that efficiently captures SCs’

consumption of storage, computation, and bandwidth resources,

and designed the first approximation algorithm for such problem

class. The proposed algorithm is based on randomized rounding

the linear relaxation of the original problem, where the service

embeddings to be chosen with a given probability are extracted

using a novel data-aware decomposition procedure, different from

existing SCE methods. Evaluation results show that the proposed

algorithm achieves near-optimal costs with up to 27.8% of the cost

savings owed to the sharing of the data.
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