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Abstract—We study the problem of in-network execution of
data analytic services using multi-grade VNF chains. The nodes
host VNFs offering different and possibly time-varying gains
for each stage of the chain, and our goal is to maximize the
analytics performance while minimizing the data transfer and
processing costs. The VNFs’ performance is revealed only after
their execution, since it is data-dependent or controlled by third-
parties, while the service requests and network costs might also
vary with time. We devise an operation algorithm that learns, on
the fly, the optimal routing policy and the composition and length
of each chain. Our algorithm combines a lightweight sampling
technique and a Lagrange-based primal-dual iteration, allowing
it to be scalable and attain provable optimality guarantees. We
demonstrate the performance of the proposed algorithm using a
video analytics service, and explore how it is affected by different
system parameters. Our model and optimization framework is
readily extensible to different types of networks and services.

I. INTRODUCTION
A. Background & Motivation

Today we witness the rapid deployment of a new breed of
services that require collecting and processing data in (almost)
real-time. From data analytics in the Internet of Things [1], to
augmented information services [2], and big data streaming
[3], there is a plethora of applications where users create
data flows that need to be analyzed swiftly. This, in turn, has
spurred the deployment of edge computing servers and in-
network middle-boxes that can execute these tasks while the
data is en route. This transformation of networks is fueled
by technologies such as NFV and SDN, which enable the
dynamic management of network/computing resources, and
promise unprecedented performance gains.

However, a key challenge in these networks is the optimal
design of routing and processing policies. Typical multi-
commodity flow algorithms do not consider the need (or, pos-
sibility) of in-network processing, which requires to decide if,
where, and how to process the data while routed towards their
destination. With the increasing softwarization of networks,
such computations can be executed at different nodes (by
VNFs) and in multiple stages (VNF chains), and this plen-
itude of options compounds further the policy design. Several
works have recently focused on this problem. For instance,
[4] proposed flow optimization algorithms for networks with
middle-boxes, and [5] for cellular networks; [3] studied online
routing/computing policies for big data streams, and [6], [7]
for multi-stage processing tasks. However, a key question that
has received, surprisingly, less attention is: how these policies
affect the performance and cost of the services?
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Fig. 1. Video analytics service implemented in 3 stages at nodes 2 — 1 — 5.
The colored lines indicate the different types of data (outputs of each stage):
object detection with VNFs such as [8], [9]; refined object classification with
[10], [11]; image description with [12], [13].

In practice, the performance of analytics and information
services depends on (i) the actual data to be processed, (ii)
the VNF running at each node, and (iii) the service chain
composition. To exemplify, consider a network that collects
and analyzes video streams in order to detect objects of
interest, Fig. 1. Abundant experiments (including our own,
see Sec. V) show that the detection depends on the quality
of the features extractor, the algorithms that classify them,
and the extractor/classifier combination. Moreover, a classifier
that is trained to identify, say, animals might perform poorly if
the data depict plantation. Hence, it is impossible to quantify
the service performance before its execution, a problem that is
exaggerated when the network is not aware of the accuracy (or,
grade) of the VNFs running at each node.! And similar chal-
lenges arise with respect to service costs since, for instance,
the computation cost depends on the VNF configuration.

This paper aspires to fill this gap by introducing an
analytical framework for the in-network execution of such
multi-grade service chains, that enables us to maximize their
performance while overcoming key practical limitations.

B. Methodology & Contributions

We consider the time-slotted operation of a network with
arbitrary routing/processing costs and analytics performance.
The requests are generated by random processes with unknown
statistical properties, and might even be revealed after network
decisions are made in each slot. The links and nodes have
different (fixed or time-varying) transmission and processing

The networks may use computing nodes that are controlled by, e.g., over-
the-top providers, or nodes that change dynamically their training datasets.
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capacities. Each node might host one or more VNFs, which
are combined to create a multi-grade VNF chain. We allow
the possibility for early-exit from the chain, i.e., routing the
data to sink node(s) that execute the remaining computations.
The routing and processing decisions are coupled because
the VNFs modify the volume and type of their input.”> The
performance of the VNF(s) at each node is unknown, and
possibly time-varying, and we observe it only for the network
decisions x; made at each slot ¢. Unlike previous approaches,
e.g., [14], [15], that assume fixed statistical distributions for
these parameters, we develop an online mechanism which
gradually learns the analytics gains, network costs, and user
requests, and adapts its operation accordingly.

Our approach is inspired by the online convex optimization
(OCO) framework introduced in [16] which optimizes time-
varying convex functions over fixed constraints. We extend
these ideas here in order to cope with the limited observations
about the analytics performance and the network costs. To
this end, we combine a versatile sampling technique [17]
and a primal-dual online learning algorithm that handles, in
a unified fashion, unknown constraints and objectives. Our
main theorem proves that the proposed approach succeeds in
learning the optimal performance of the system, where the
benchmark is set by a hypothetical static policy that has access
to a complete-information oracle.

We demonstrate the performance of our solution using the
state-of-the-art Yolo v3 application [8] for video analytics
in different operation modes (to capture the multiple VNF
grades); representative data sets [12]; and synthetic experi-
ments with large networks. We verify that the proposed online
algorithm is scalable, lightweight, and succeeds in learning
the optimal network operation policy relatively fast. In fact,
it achieves asymptotically a zero optimality gap (or, sublinear
regret) and zero constraint violation when compared to a hy-
pothetical policy that has access to an oracle, i.e., the complete
information about future arrivals and VNF configurations.

This work makes the following technical contributions:

(i) Multi-Grade Service Performance: We propose and an-
alyze the problem of maximizing the performance of in-
network data analytics using multi-grade VNF chains. This
is an increasingly important problem, and we study it in its
general form, under several practical limitations.

(ii) Online Learning Algorithm: A new online network op-
timization framework is introduced, extending ideas from
OCO to account for network constraints and limited feedback.
Our algorithm achieves O(v/T) regret and O(1/\/T) average
constraint violation. This is a general and unifying algorithmic
framework of independent interest.

(iii) Experimental Evaluation: In a set of experiments and
synthetic simulations, we study the performance of our ap-
proach, namely how fast the algorithm learns the optimal
performance and does not violate the constraints. We use
a service with multi-stage execution, and demonstrate the
robustness of our approach in different/changing VNF grades.

2For example, feature extraction might reduce a video frame from several
MBytes to few KBytes; and changes the data from raw video to meta-data.
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Fig. 2. Service chain example. Each function (stage) processes the data,
changing their type, i.e., creating a new commodity, that is fed to the next
stage. The network can also decide to stop processing the data and directly
route them to destination (dashed line; changing to commodity ).

Organization. Sec. II presents the system model and Sec.
III the resource allocation algorithms. We discuss extensions
in Sec. IV, present the performance evaluation in Sec. V, and
related work in Sec. VI. All the proofs are in the Appendix.

II. SYSTEM MODEL

We model a communication network with a directed graph
G(V, E) consisting of V' := {v1,...,v;,} nodes and E :=
{e1,..., ey} links, m = |V|, n = |E|. The system model con-
sists of four parts: service chain, decision variables, network
constraints, and objective functions. To streamline exposition,
we present a basic model with one user. The case of multiple
users, and several other extensions, are presented in Sec. IV.

A. Service Chain and Commodities

We model a service chain for data analytics as an ordered
collection of 7 € N functions (or, VNFs) ¢, () (),
where the output of the i’th function, i € {1,...,r — 1},
is the input of the next function in the chain. The output of
each function is modeled as a new type of commodity, and
without loss of generality we assume that the last function
is a sink (does not generate data). Hence, there are r types
of commodities, the first of which, ¢ = 1, corresponds to
exogenous data arrivals (requests). We also allow functions
to terminate the in-network processing by transforming a
commodity from type ¢ € {1,...,r — 1} directly to type 7,
which is then routed to the end sink node, Fig. 2. This early-
exit option is useful, for instance, when the network resources
are scarce and/or the computations cost-inefficient, and offers
an additional degree of freedom in our policy.?

A node can execute more than one VNFs, and each VNF can
be executed by different nodes. We use vector w® € {0,1}™
to indicate the nodes where function ¢(*) runs. Specifically, if
the &’th component of vector w(? is equal to 1, it means that
node vy, runs function ¢(V. Similarly, we use vector \() € R’
to denote the exogenous arrivals of commodity ¢ € {1,...,7},
where its k’th component represents the arrivals at node vy,
k€ {1,...,m}. Finally, we collect every A*), i € {1,... 7}
in vector A = (AW A@) . A(™) Note that A € R™™.

B. Decision Variables

There are three types of variables per commodity, indicating
how much data to: (i) route over each link; (ii) process at
each node; and (iii) pull out from the service chain. Vector
z(® e R™?™ collects the variables of each commodity

3This model generalization captures several practical cases, e.g., chains that
have varying length, and analytics with performance that increases with the
processing stages. See also the discussion in Sec. IV.
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i € {1,...,r}. Specifically, the j’th component of (%)
indicates the amount of data we decide to route over link e;,
j€{l,...,n}; the (k4 n)’th component the amount of data
to process at node vi, k € {1,...,m}; and the (I +n+m)’th
component the amount of data node v;, [ € {1,...,m} decides
to transform to type r and send, possibly over multiple hops, to
the sink. We collect all decision variables for all commodities
in vector z = (z(M, ..., z(") ¢ Rr(»+2m),

C. Constraints

The capacity constraints capture the maximum amount of
data that can be routed over a link and processed by a node.
Let c(e;), c(vg) € Ry denote the capacities of link e; and
node vg, j € {1,...,n}, k € {1,...,m}, respectively. The
link capacity constraints are

> 2 0(e;) < eley) vie{l....,n} (D
=1

where x(i)(ej) denotes the j’th component of vector z(%).
Similarly, the node capacity constraints are given by

r

Z z® (vg) < c(vr)

=1

Vee{l,...,m} ()

where () (v),) denotes the (n + k)’th component of z(%).
We assume there is no capacity constraint associated with
retagging a commodity from type i € {1,...,7 — 1} to type
r. Finally, we collect the capacity constraints in set
C:={z € R"™™ | Eq. (1) and (2)}. (3)
We augment the typical per-node flow conservation con-
straints in order to account for the service chain operation.
In particular, the processing of the :’th commodity gener-
ates the (i + 1)’th commodity, and a commodity of type
i€ {1,...,r — 1} can be transformed into commodity r at
any stage (stopping in-network processing) and then routed to
the sink node(s). We write the augmented flow conservation
constraints as the system of equations
Ax+ Brx+ A =0, @)
where A, B € {—1,0,1}"™*7(+2m) are routing and process-
ing matrices respectively.
We describe first matrix A. Let Z € {—1,0,1, }""*™ be the
incidence matrix where the (i, j)’th entry is given by

1 if link 7 starts at node ¢
-1
0 otherwise

I(i,5) = if link j ends at node i

The incidence Z captures that the same amount of commodity
that leaves a node must enter another node [18, Chap. 1]. Next,
since the routing is not affected by the processing, we define

I:=[Z,0pxm, Omxm] where Oy, is @ m X m zero matrix.
The routing matrix of all the commodities in the network is

L 0 ... 0
A 0 I ’

: .0

o ... 0 I,

where I; = I for all 4 € {1,...,r}. Vector (Az) € R is
known as the nodes’ divergence and captures the net increment
of commodities in each of the nodes (see [18, Sec. 1E]).

Similarly for the processing matrix, we model how data
changes type, as if we had “virtual” links. Let

Ji = [Opxn, —diag(w®), —diag(w®)],

Ki - [Omxna dlag(w(l))a Ome]a

Li [Oan,Ome,diag(’w(i))],
and observe that J;, K;, L; € R™*("+2m) gince diag(w(?) is
an m X m matrix. Matrix J; captures the amount of commod-
ity ¢ processed, and K;, L; the commodity ¢ that is transformed
into a commodity of type ¢+1 and r, respectively. By arranging

the matrices accordingly, we can write the processing matrix
that captures the dynamics in the service chain as follows

[ Ji 0 . . 0
Ky Jy
B=10 K,
. . Jr_1 0
| L1 Ly Ky 1+L.—1 J]

Our model is built using minimal assumptions and, as we
explain in Sec. IV, it is readily extensible.

D. Cost Functions

Our objective is to maximize the analytics performance by
using the nodes that yield the highest task precision (or, other
service-specific metrics), while minimizing the data routing
and processing costs. Therefore, we define the function

f:Cx©— R+ (5)

which takes as input an eligible policy vector, x € C, and
outputs a cost vector* with a component for each decision
in z. Namely, the first n elements of f(-) correspond to
the routing cost parameters (one per link, capturing, e.g.,
the delay); the next m components to the ner reward, i.e.,
analytics gain minus processing cost (due to, e.g., energy
consumption of VNFs); and the last m components model
the impact for terminating early the in-network processing.
The randomness of rewards and costs is captured by 6 which
modulates function f(-,6). This parameter is drawn from
© :={61,...,0,} that collects the p different possible system
states, e.g., VNF conﬁgurations5 , link costs, etc. We consider

4To streamline exposition, f is referred as cost function, and we will be
minimizing the negative rewards (hence, maximizing performance).

SFor instance a node offers different accuracy in an image classification
function based on whether it uses AlexNet [10] or DenseNet [11]
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the most general case where 6 is allowed to vary arbitrarily.
Finally, we define the network cost function as:

(I)(xv 0) = <1a f($,9)>,

where 1 is the all ones vector and (-, -) the inner product.

Our model is general and imposes minimal assumptions on
the system operation, and © can be defined in any way that
suits the specific application. In case of a static system and
complete information, the problem to solve is

(6)

min ®(z,0) st. Az+Bx+A=0. @)
zeC

However, in practice the requests and system configurations
change with time, and moreover might not observable when
we select x. In the next section, we present an online learning
algorithm that addresses both of these issues.

III. ONLINE RESOURCE ALLOCATION

We formalize here the online resource allocation problem,
introduce our optimality criterion, and present our algorithm.

A. Online problem

The network operation is time slotted. Data analytic requests
arrive at nodes according to a stochastic process {\;} with
mean A € R™, and the system state 6; changes following
an arbitrary random process. At the beginning of slot ¢, the
network controller (NC) makes a resource allocation decision
z; € C C R ™M) which induces a (randomized) cost
vector Fy drawn from f(x¢,0;). Our goal is to find a policy
that minimizes the network cost, overcoming these key issues:

(I1) The statistics of the arrivals {\;} are not known. Also,
each \; might be revealed after decision x; is made.®

(I2) The cost vector F; associated with a resource allocation
decision z; is not known before implementing x;.

(I3) The system configuration {6;} might vary in an arbitrary
fashion. Therefore, the distribution from which the reward
vectors F}; are drawn might as well change.

Issue (I1) renders impossible to design an offline policy that
satisfies the network constraints. Hence, we replace the “static”
augmented flow conservation constraint in Eq. (4) with their
“relaxed” dynamic version:

lim E

T—o0

T

1

7 > (Azy + Bz + A) | =0. (8)
t=1

That is, we now enforce that all traffic is served asymptoti-
cally.” Observe that we can write Eq. (8) as E[AZ+ Bi+\] =
0 where Z := lim7_, o % Zthl Ty

Due to issue (I2), prior frameworks that decide resource
allocation assuming known gradients of cost functions, e.g.,
[19], [20], or by solving sequences of known programs, e.g.,
[21], [22], cannot be applied here. On the contrary, our

SFor example, because x; is implemented at the beginning of a time slot,
and some requests are created during the slot. This is important when slicing
or SDN is used, where often paths are established in advance. Knowing A¢
before setting x; is a simpler case that our model also addresses.

"The expectation is taken with respect to random variable A, ¢t € N.

approach works only by observing the specific outcome of
each action x;, and under the following minimal assumption:

Assumption 1. E[F}] = f(x,0) and Var(F;) < oo for all
t € N. The expectation is with respect to x; for a fixed 0.

This is a valid assumption here and holds when, e.g., the
information to analyze is in a database, and we can select it in
a randomized manner; or when we have streaming applications
(e.g., speech recognition) where information (e.g., words) is
drawn from the same source (e.g., conversation). Importantly,
we do not assume that the expected cost of the objective
functions is known, as this depends on the actual data.
Finally, (I3) might arise for various practical reasons. For
instance, the computing nodes might be owned by third parties
and hence the NC does not have access to their configuration
(vector 6;). Similarly, the nodes configuration can change
with time as they update their training data sets (used for
the analysis), or even the NC might on purpose try different
options in an effort to tailor the system on the received data.

B. Optimality Criterion

We quantify the algorithm’s performance using the criterion
of “regret”. This metric is extensively used in machine learning
(e.g., [16], [17], [23]) where the cost of making an action is not
known a priori and decided by an adversary. In our case, the
“adversary” corresponds to the random and changing system
states (due to (I1)-(I3)) that alter its operation, and force us to
relearn how to route and process data.

Definition 1 (Regret). Let {x:}, t = 1,...,T is a sequence
of actions from C, and define the static feasible set

X ={reC| Az + Bz +)\=0}. 9)
The regret is defined as
T T
Rp = ;@(xt,ﬁt) —ineigg@(xﬁt) (10)

where ®(xy,0;) = E[(1, F)] (by Assumption 1 and the
definition of the network cost in Eq. (6)).

Technically, the regret captures the difference between the
expected accumulated cost and the expected cost of the best
fixed policy designed in hindsight at time 7" € N. That is,
the best decision if the future events and costs were known
in advance, which is a hypothetical solution not available in
practice. The goal is to design a policy that obtains sub-linear
regret (i.e., limsupy_, . Ry/T < 0) and sublinear constraint
violation. Hence, the online algorithm will perform asymptot-
ically as good as the benchmark policy, while satisfying the
constraints.

C. Algorithm
We first relax the constraints and define the Lagrangian:
Et(xvy) = (I)(x>9) + <yt7Ax + Bz + )‘t>7

where y; € R/" is a non-negative penalty parameter. Also,
we make the following standard assumptions.
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Algorithm 1
1: Input: sets C' and matrices A, B

2: Set: 1 = 0; y1:0;g:0,p:1/\/f
3: fort=1,2,... do
4 w1 < Pe, (T — pgt)
s:  observe cost vector Fy,; € R"("+2m)
6 Gip1 < Fop(zigr) + (A+ B y)
7 Y1 < (Yo + p(Azipr + Brogy 4+ Ag)] T
8: end for
Decide: 0t+1 is set _| Observe: Update:
Lt+1 Airrarrive] 7| Fia 7 Ge+1 Yet1 —‘
Next Slot |

Fig. 3. Timing of system operation: (1) the current-slot policy is decided;
(2) the system configuration is set (gray box; not observable) and the requests
arrive; (3) the current service performance is observed (not the entire function
f); (4) the algorithm updates are calculated. Repeat from (1).

Assumption 2. There exists a n > 0 and an x € C such that
Ax+ Bz + X+ 1n = 0.

Assumption 3. {\;} is an i.i.d. process with expected value
A and finite variance.

Assumption 2 is a “one-sided” Slater condition, requiring that
the interior of the network capacity region is non-empty [24].

Algorithm 1 is a primal-dual stochastic subgradient method
on the Lagrangian with a time-varying action set® C;
{u € C | Au+ Bu + Y!Z1(Az; + Bz + \i) = 0}
First, there is a projected stochastic subgradient ascent on the
Lagrangian (line 4), where p is the learning rate and Pc, the
Euclidean projection onto Cy. Then, we observe the vector of
costs (line 5), and compute an unbiased estimate of the cost
functions gradient (line 6). Finally, we perform a stochastic
dual-subgradient descent update (line 7). See also Fig. 3.

The convergence of the algorithm relies on the subgradient
estimates being unbiased. For the dual variable update, this
holds because of Assumption 3. For the primal update, we
rely on the following proposition:

Proposition 1. Suppose that f(x,0) is linear in x for a fixed
0 € ©. Define p(y) =1/y if y # 0 and p(y) = 0 otherwise.
For a fixed 0 € ©, we have

V&(z,0) = E[F}; o p(z)],

where V®(x,0;) denotes a subgradient of ®(-,0;) at x, and
o the entry-wise product of two vectors.

The proof is presented in the Appendix, and relies on the fact
that the cost of each function is proportional to the amount
of resources allocated. Our main technical contribution is the
following theorem.

Theorem 1 (Online Primal-Dual SGD). Define constants o,
D, G such that 0® > max,ec ||[Au + Bu + \||?> Vt € N,

8Note that we use >, unlike other stochastic formulations, see [24], in order
to ensure we only process actual data (and not dummy data) and this way
avoid creating artificial/pseudo reward gains. This problem does not arise in
networks that do not have processing nodes.

D :=max, yec ||u—v]| and | Frop(xy)|| < G. If Assumptions
1, 2 and 3 are satisfied, Algorithm 1 ensures that

2
() Rr<(G+D*+ % | VT=0(T)

1 & r 1

BT 2 T \U7

(ii)

r= Wﬁ(gz +2GD + D2/2))2 + 202 + 4GD + D2.

Claim (i) shows that the regret increases at rate of Ry <
O(ﬁ ), and therefore, the gap between the average perfor-
mance of Algorithm 1 and the best fixed decision reduces
sub-linearly, i.e., limsup,_, . Rr/T < 0. Constants G, D,
o? capture how the regret scales with the network size, the
functions in the chain, and the variance of the arrival process.

Claim (ii) states that the constraint violation decreases with
T. Observe that F/\/T — 0 as T — oo, and hence the
“relaxed” dynamic constraint in Eq. (8) will be satisfied. We
note also that constant I" depends on 7 > 0 (see Assumption
2), which captures, qualitatively, the network capacity region
size. And the larger 7 is, the better.’ Finally, the bounds in
Theorem 1 hold for a fixed time horizon 7', but they can be
readily extended using the “doubling trick”; see [25, Sec. 2.3].

IV. EXTENSIONS & DISCUSSION

Our framework can be generalized for different system
architectures and different types of service chains. Due to lack
of space, we discuss briefly some representative cases.

1) Multiple users: The model is readily extensible to
scenarios of multiple users. To see this, let © € N be
the number users, and let us use subscripts to indicate the
user number. For example, z; indicates the decision vari-
ables of user ¢ € {1,...,u} as described in Sec. II-B.
We can redefine the variables and parameters as follows
x= (21, &), A= (A1,..., \), A =diag(Ay,..., Ay),
B = diag(By,...,B,)" and f = (f1,..., fu).!! Recall that
fi is a vector. The augmented flow conservation constraints
can be written as in Eq. (4). For the capacity constraints, we
must simply take into account that the sum of all commodities
needs to respect the capacity of each link/node.

2) Processing costs: Eq. (2) considers that all algo-
rithms have the same computational needs. However, we
can model the different requirements by replacing it with
S YD (vk)z® (ej) < c(e;), where v (vg) > 0 captures
the “cost” of processing a unit of commodity ¢ € {1,...,r}
at node vy, k € {1,...,m}.

3) Flow augmentations: In Sec. I, the processing of each
commodity ¢ generates a unit of commodity ¢+ 1. But, we can
relax this assumption and allow the flow volume to change
after each processing stage (e.g., to model data compression,
etc.). This extension is as simple as adding a multiplicative

7 can be seen as the additional data we could send over a link or process
in a node while still satisfying the augmented flow conservation constraints.

10Here, diag is a diagonal matrix where each diagonal entry is a matrix.

'The dimensions of f;, A; and B; depend on the number of function in
the service chain of each user.
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Fig. 4. Illustrating the network of the example in Sec. V. The first function
in the chain compresses the video frames; the second analyzes images with
a video frame; and the third display the results on a monitor. The functions
in the service chain can be executed in multiple modes.

factor to matrix K; in the matrix B. For instance, if the first
“commodity” column of B is (J1, k1K1, ..., L1) with k; > 0,
that means that 1 units of commodity 2 are generated as a
result of processing a unit of commodity 1 at node 1.

4) Wireless constraints: In case of a wireless network,
we might need to amend our model so as to handle time
varying link capacities and, possibly, interference. The former
can be incorporated in the changing action set C}, under
some assumptions about the Slater vector. The interference,
on the other hand, requires the calculation of link activation
schedules, which can be included in C;. Finding such sched-
ules might be challenging for large networks and/or requires
centralized calculations, but our framework can use any of the
existing solutions proposed for this problem; see [24].

5) Static Requests and Configurations: Algorithm 1 can be
directly applied when the requests and/or the system are static.

Corollary 1. Assume that Ay = X for all t € N. Replace C
for X in Algorithm 1. Then, Ry < (G + D?) VT.

To see why this holds, note that if z; € X and \; = A, Vi,
then the constraint violation is always zero. Also, we get:

Corollary 2. Assume that 0; = 6 € © for all t € N. Then,
g (1) — min &y (z) < (G2 + D?* + 62/2) /T
S

_ T L .
Tr= % > i_1Z¢. The constraint violation is as in Theorem 1.

6) Multiple Grades & Stages: In our model, we use the
term “grade” to refer to the different precision (quality, in
general) in which the analytics are executed by each VNF.
However, our model captures also the case of horizontal
grades, where the number of chain stages can increase to
improve the extracted information, at the expense of additional
resource costs. For instance, consider an ensemble learning
problem [26], where deciding to parse the data from one more
classifier amounts to adding one more stage in our chain—but
also paying more routing and computing costs. The early-exit
option in our model can directly capture this scenario, and
note that we can model (through f) cases where the remaining
functions are executed at the sink node (or a nearby server),
and cases where the remaining functions are omitted.

V. PERFORMANCE EVALUATION

We illustrate the results in Sec. III with a video analytics
example. Our goal is to show how the service chain and system

TABLE I
ILLUSTRATING THE MEAN AVERAGE PRECISION (MAP)
(HTTP://COCODATASET.ORG/#DETECTION-EVAL) OF YOLO V3 DEPENDING
ON THE COMPRESSION AND THE THE OBJECT-DETECTION MODEL.

Yolo v3 (full) Yolo v3 (split)

Obj.size | 1 1/2 1/4 | 1 1/2 1/4
small 0.2 007 009 | 020 0.9 020
medium | 032 024 028 | 041 040 041
large 046 044 040 | 0.11 0.0 0.10

parameters (network size, stochastic, arrivals, varying costs)
affect the bounds of Theorem 1.

A. System Setup

Consider the network in Fig. 4, which consists of 5 nodes
and 14 links. Node 1 receives two video streams that must
be processed by a three-stage chain. The first function re-
sizes/compresses the video frames; the second executes an
object-detection algorithm; and the third displays the results
on a monitor (the sink node). The functions can run in
different modes, i.e., have multiple grades. The first function
compresses the frames using three ratios, 1, 1/2, and 1/4
(indicating the portion of input), and the second runs the
object detection application Yolo v3 [8] either in full or split
mode. The full mode analyzes the entire image at once, with
a neural network of size 512 x 512,'2 and the split mode cuts
an image in half and analyzes each part with a 256 x 256
neural network, see example in Fig. 4.!3 In Table I we present
our measurements showing how Yolo performs with images
from the COCO data set [12] for different compression and
detection modes. Observe that the full mode outperforms the
split mode for large objects (and vice versa), and the prediction
accuracy decreases with compression.'*

We normalize the network parameter values to facilitate
presentation. Video frames are samples from the COCO data
set and arrive at node 1 at an average rate of 1 unit per
time slot, and each image has size of 1 unit. To diversify the
information in the video streams, we assume that the frames of
the first and second stream contain only small and large objects
respectively. Hence, the prediction accuracy of Yolo v3 will
vary across these streams. We model the prediction accuracy
(i.e., the rewards) of the object-detection algorithm as random
variables that take values in [0, 1] and have expected value as
indicated in Table I. Nodes 1 and 5 can process 2 units of
flow/commodity per time slot, while node 4 only 1 unit (i.e.,
node 4 can analyze at most one image per time slot).

B. Results

We illustrate the performance of Algorithm 1 when images
arrive at a constant rate of 1 frame per second (deterministic)
and in bursts of 10 frames according to a Poisson process

125 % s, s € N indicates the size of the input vector in the neural network.

See [8] and https://pjreddie.com/darknet/yolo/ for more details.
3That happens because splitting an image into two parts may result in
some objects being cut. This is particularly important for large objects.
14These values were measured for images in the COCO data set, and
therefore, do not represent the performance of Yolo v3 for any type of image.
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Fig. 5. Illustrating the average reward when the function in the service chain
switches between 67 and 05 every 100 time slots (left). The figure on the
right shows the rewards of the service chains when these are fixed.

(stochastic). To keep the exposition simple, we fix the com-
pression ratio in the service chain to 1/2, and play with the
object-detection mode in the second function. We use 0, and
0, to denote the service chains that use Yolo in full and split
mode, respectively. Also, to facilitate the interpretation of the
figures, we assume there are no costs associated with routing
and processing data. Hence, the objective function in Eq. (6)
represents the value of executing the data analytics, and thus
the results are shown in maximization terms (higher is better).

1) Regret convergence: Fig. 5 (left) shows the average
reward of Algorithm 1 when the service chain switches
between ¢ and 0, every 100 slots. Observe that Algorithm
1 tracks the performance of the best fixed decision for both
cases (det and sto), and that the gap (i.e., the regret) reduces
with time. Note also that the reward of the best fixed decision
oscillates because the service chains have different expected
performances. The latter is shown in Fig. 5 (right), where
we run the simulations with fixed service chains 6, 0, (we
show two simulations in the same plot). It is easy to see from
Fig. 5 (right) that the reward of the best fixed decision varies
over time since the output of the object-detection algorithm is
randomized. Finally, we recall that Algorithm 1 does not know
that images come from the COCO data set or when the service
chains switch in the network, and yet, it is able to constantly
“relearn” which is the best video stream to process by using
observations F}. Key message: Algorithm 1 has no-regret and
can operate with minimal system information.

2) Constraint violation: Fig. 6 (left) shows the constraint
violation obtained by Algorithm 1 in the previous simulation.
Observe that in both cases (det and st0), ||+ ZZZI(Axt +
Bz 4+ A\t)|| gets smaller as ¢ increases. Note also that the
stochastic case has a bursty behavior due to the nature of the
arrivals. Fig. 6 (right) shows the dual variables or Lagrange
multipliers of three commodities.!> Note that those remain
bounded and fluctuate due to the time-varying arrivals. Key
message: Algorithm 1 satisfies the constraints, which guaran-
tee that all traffic is served.

3) Network size and reward randomness: Now we show
how Algorithm 1 is affected by the system parameters. We
start by considering a larger network (Tutte graph [28] with
46 nodes and 138 directed links). We place the service chain
functions in three random nodes and select the rest of the
parameters as indicated at the beginning of the section. Fig.

151 agrange multipliers can be seen as scaled queue backlogs [27, pp. 305].

= algorithm 1 (det) user 1 (flow r, link 3 —5)
A=) 4 algorithm 1 (sto) w 04l T 2 (flow 7, link 3 — 5)
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Fig. 6. Illustrating (left) the constraint violation of Algorithm 1 with a time-
varying service chain; Fig. 5 (left). The figure on the right-hand-side shows
the Lagrange multipliers associated to the commodity of type r in the link
from node 3 to node 5.
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Fig. 7. Illustrating the average regret with a network of 46 nodes and 138
directed links. The figure on the right shows, in addition, the impact of the
randomness in the service chain functions.

7 (left) shows the simulations results when the service chains
are fixed. Observe that Algorithm 1 has the same behavior as
in Fig. 5 (right); however, with slower convergence. Especially
for the stochastic case. The reason for that is that constant 2
in the regret bound (Theorem 1) increases with the bustiness
of the arrivals and the network size—matrices A and B, and
the variance of the arrival process {\;}.

Next, we show that the randomness in the service chain
functions affects the convergence time. We illustrate this by
making the service chain ¢; deterministic (no randomness),
and increasing four times the variance of the randomness in
the 0, service chain utilities. Observe from the Fig. 7 (right)
that with 0, the convergence is smooth,'® whereas with 6,
the convergence degrades heavily. In the last case, the loss of
performance is because it is more difficult to learn the utilities.
Also, by increasing the randomness, we are affecting constant
D in the bound of Theorem 1. Key message: The randomness
in the utilities slows down the learning, thus the convergence.

VI. RELATED WORK

NFV Service Chains. VNFs are today the key building
blocks of services networks and data centers [29]. Prior
works have proposed heuristics or approximation algorithms
for their deployment [7], [30], [31], and optimized routing
[5]. However, in practice the network state and requests are
unknown and vary with time. Using a learning approach,
[32], [33] identify min-cost chains where the challenge lies
in learning the flow volume, and [34] handles VNF migration
costs. Yet, in analytic service chains: the performance depends

16That is because the algorithm obtains the “expected” performance of the
functions in the service chain executing them once.
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on the data and VNFs configuration; each stage might change
the flow volume; and decisions are made under unknown
demands, costs and performance observations.

In-Network Processing. More general, the idea of in-
network processing gains significant traction, as more and
more services involve both routing and (multi-stage) data
processing. This has spurred efforts to extend classical net-
work optimization algorithms. In [4] the authors summarized
static multicommodity flow and middlebox placement prob-
lems with complete information, while [3] assumed random
request arrivals and proposed a joint routing and process-
ing backpressure-type policy (fixed and known objectives).
Recently, [2], [6], proposed max-throughput processing and
routing policies for unicast/multicast flows, while [14] con-
sidered also energy cost criteria. Here, we make the next
step by maximizing the analytics performance, despite the
unknown/time-varying requests and system state.

Online Convex Optimization. OCO was introduced for prob-
lems with changing functions and fixed inelastic constraints
[16], and later extended for elastic/budget constraints [35],
[36], where one can trade off regret for constraint violation
[37]. Recently, [38] achieved O(\/T ) regret for inelastic
ii.d.-changing constraints; [39] considered elastic arbitrarily-
changing constraints; and [40] proved that sublinear regret is
not attainable for inelastic and arbitrary-changing constraints.
Here, we consider the practical case where the constraints are
elastic and changing, and we can observe only the outcome of
x4, Fy, and not function f;(z, 6;). By incorporating an effective
sampling technique [17], we manage to obtain O(v/T) regret
and O(1/v/T) average constraint violation.

OCO in Networks. OCO has shown promise for network
optimization. Considering wireless networks, [41] designed a
power control algorithm that adapts to fast-fading channels;
[42] studied the effect of channel feedback on throughput;
and [43] employed a UCB bandit algorithm to learn link
activation schedules. Similarly for fog/cloud computing, [44],
[45] proposed learning-based task offloading and service mi-
gration rules, while [46] used OCO to optimize reservation of
resources. Our problem is different as it involves multiple pro-
cessing stages, and we advance the algorithmic toolbox with
a unifying primal-dual approach that handles time-varying
unknown constraints and limited observations.

VII. CONCLUSIONS

As the number of network services requiring data processing
increases, it becomes imperative to develop the necessary
algorithmic tools for enabling the design of operational poli-
cies. In a first step towards this direction, we proposed an
analytical framework that fuses online learning and resource
allocation algorithms, and maximizes the performance of data
analytics under very general network conditions; unknown re-
quest arrival statistics; VNFs with multiple grades; and limited
information about their performance. Our algorithms achieve,
asymptotically, zero optimality gap and constraint violation, as
we demonstrated also in a series of experiments. This work,
we believe, paves the road for exciting future studies, either

focusing on the technical aspects of data analytics service
chains, or to extending this optimization framework.

APPENDIX

To keep notation short, we define £ := A + B and let
d := r(n + 2m). Also, to streamline exposition, we use C
instead of the time-varying set C; as not allowing to transmit
dummy data is equivalent to adding slack variables [47, pp.
131]. The difference, however, is that the slack variables do not
have to satisfy the augmented flow conservation constraints.
Also, there is not a cost associated with these variables, and
therefore, they do not affect the network utility objective.

A. Preliminaries

Lemma 1 presents an inequality related to projected gradient
descent, and Lemma 2 a relation between vectors in /5.

Lemma 1. Consider update x411 = Pc(xy— pvy) where x4 €
C, v; € R and p > 0. For any z € C, it holds

1

(e, ze41—2) < = (2 = 2e|® = Iz — 2l = Nlwesr — z¢]?)

Proof: Let Ic(u) be the indicator function, i.e., Ic(u) =
0 if u € C and +oo otherwise. It is well-known (see, for
example, [48, Sec. 2]) that

Ti41 = PC(% - PUt)
= argmin{(v;, u) + (1/p)[|u — 2]*}
ueC

= arg min {{v;, u) + (1/p)lju — wi||* + Io(uw)} (1)

That is, the projected gradient descent update can be regarded
as solving an unconstrained minimization problem. Since x;1
is a minimizer of the last equation, we have that

0 € Doy ((vey Tog1) + (/) |1 — @l + I (441))
= v+ (2/p) (X111 — ) + 5

where s is a vector in the normal cone of C at xuy1,
ie, s € No(w1) == {s € R | (5,2 — 3441) <
0,vz € C}. Next, multiply across by (z — z;+1) and use
the fact that (s,z — x441) < 0 to obtain 0 < (v, 2z —
i1y + (2/p){w4y1 — T4, 2 — w4y1). Finally, observe that
(Tt41 — T4, 2 — Tey1) = (2,Te41) — (2, 24) + (Te1, ) —
loerl? = 3 (12 =@l — 2 = 2eal? = oo — @il?)
and so the stated result. |

Lemma 2. Let u,v € R% and p > 0. It holds {(v,u) —
wllull? < ploll.

Proof: The proof follows from the definition of the convex
conjugate function and the fact that the {3-norm is convex and
self dual. That is, <v7u>—ﬁ||uH2 < SUP,eRd <U,u>—%||u\|2 =
(1/p)||pv)|2 = pl|v||?. See, for example, [49, Sec. 11-A] and
[47, Ex. 3.27]. [ |
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B. Proof of Theorem 1

We start by presenting the proof of Proposition 1. Let x :
R, — R be a linear function with x € R, and let K(z)
be a random variable with E(K (x)) = x(x) = k. Trivially,
k = E[K/z] (i.e., the gradient of k) when = # 0. If =
0, then k(x) is not differentiable and we cannot compute a
(sub)gradient by dividing by x. Instead, we use the fact that
the cost/reward of not-processing a flow is 0, and so the all-
zeroes vector is a subgradient of « at x = 0.

Proof outline. We start by establishing the upper bound
on the regret by using the stochastic primal and dual updates
(Lemmas 3 and 4). In Lemma 5, we prove the second claim
in the theorem, and in Lemma 6, characterize constant I'.

Lemma 3 (Primal online gradier;t descent). The regret is
upper bounded by Ry < GQTp—&-%—l—ZtT:l (e, E(z—x141)).

Proof: Let vy = V@ + (yi, E) = E[Fy0p(x) + (y1, E)]
in Lemma 1. Rearranging terms and adding (V®;, x; — x411)
to both sides of the bound in Lemma 1 we have (V®,, z; —
2) < Sz =P~ 2 = zepaP= zeen —2el?) + (VP 2 —
ZTi41) + (ys, E(z — x4 41)). By Lemma 2, (V®;, x4 — 2411) —
(1/p) |51 —z¢||* < p|| VP, ||* and therefore (V®,, 2, —2) <
(Y, E(z—m141)) oIV |2+ (1/ p) (|2 —2]* = [z = 2241 ]|%)-
Finally, since (V®,;, z; — 2) = ®y(x;) — P4(2), we can sum
fromt =1,...,T and use the fact that max, ,ec |[u—v| < D
and ||V®,|| < G to obtain the stated result. [ |

Lemma 4 (Dual online gradient descent). Fog any vector z €
X, it holds B[} (ye, E(z — 2111))] < p%T.

Proof: The third term in the RHS of the bound in
Lemma 3 can be written as EtT:l@Hl,E(z — Zty1))
Zthl (s, Ez—i—)\t}—zz;l (Y241, Exty1+Ae). The first term in
RHS of last equation is upper bounded by zero in expectation.
Observe that since z € X (i.e., it is a feasible point), then
B[, (v, Bz + \)] = 3, (i, B2 + E[\]) < 0. Hence,
B[y, B(z — 2141))] € —B[X_ (0, Bz a + Aega)].

We proceed to upper bound the RHS of the last equation.
Observe that

lyesll® = Tyl (12)

= |y + p(Ezepq + Aegr)] 711 = el
< llye + p(Bxesr + M) * = llwell®
< P Exisr + Aes1ll® + 20(ys, BT + Aeg1)

Rearrange terms, divide across by 2p, and use the fact that
the gradients of the dual function are bounded — (y;, Exs41 +
Ai+1) < ﬁ (lyell® = llyesall?) + p";. Finally, sum from
t = 1,...,7 to obtain — Zz:1<yt, Exipr + A1) <
(20) ! (ln1l1* = llyz|1?) + p(0®/2)T < p(0?/2)T where the
last equation follows since y; = 0 by assumption and ||y.|| > 0

Proof: Observe that yi+1 = [y + p(Exe1 + Aey1)] T =

Yyt + p(Exiy1 + Aig1). Rearrange terms and sum from ¢ =

1,...,T to obtain yri1 — y1 = Z;‘F:l(Ext + A¢). Use the

fact that y; = 0, 5, = 0 for all t € N to write yry1/p =

[ (Ex:+ ;)] Taking norms on both sides and dividing

by T yields the result. [ ]
We show that ||y¢|| is uniformly bounded in expectation.

Lemma 6 (Bounded dual variables). For any T' € N and
te{1,...,T}, we have that E[||y:||] < T where

re (o

Proof: We proceed to show that y; is a bounded vector
for all ¢ € N. Observe that
(e, Exepr + Aiy1)
= (Y, BExiq1 + My1) + (V@i 241 — Teg1)
= (V@ + (g1, E), Te41) + (Yes Aew1) — (Vy, p41)
(@) < (VO + (yr, E), 2) + (Y, A1) — (VP me41)
o7 Iz = el = NIz = 2o |? = lwegn — 2]?)
= (VO z — x411) + (Y, Bz + Aet1)
+o7 (I =il = Iz = 2o ? = lwegs — 2l?)
() < 2GD + (yp, Bz + A1) + 5 (|12 — 2l = Iz = 241 ]1?)
where (a) follows from Lemma 1 and holds for any z € C;|
and (b) by dropping p~!||xsy1 — x||? and (V®y, 2 — 2441) <
IV®|lz— 41| < 2GD by the Cauchy-Schwartz inequality.

Next, use Eq. (12) and take expectations on both sides w.r.t.
A; to obtain

Ellyer1ll? — [lyell’]
< p?0® +4GDp = 2npllyells + ||z — el|* = ||z = zeia ||

2
(c2+2GD + D2/2)) + 202 +4GD + D2

where the third term in the RHS of the last equation follows

by selecting a z € C that satisfies the Slater condition. Now

consider a span of k iterations. We have E[||y; x| —|y¢]|?] <
t+k

PPk +4pG Dk =20 5 Myl + |2 — el = |2 = zer ]|

1=t

Hence,
E[[lyerrll* = llyell”) (13)
< 20202k + 4pG Dk — 200 X2 iy + D2
Next, note that if 5~ (2p%02+4pGD+D?/k)k < 315 [|yi

then E[||ys+x > — |ly:]|?] < 0. The latter will be the case when
lyillh > %(02 +2GD + D?/(2kp)) for all i = t,...,t+ k
since k > 1 and p < 1. Selecting k := [1/p] we have ||y;||1 >
(52 4+ 2GD + D?/2). Using the equivalence of the norms
7 g q

(e, |lyllx < rm]y|| since y € R™), we have ||y;|| > x :=
—L_(02+2GD+ D?/2). Now, fix at € {1,...,T} such that

||yt7| := x and suppose that ||y;|| > x for all ¢ = 1,... k.
Then, from Eq. (13) we can write

for all t € N. ]
2 2 2 2
Lemma 5 (Feasibility). Consider update y; 1 = [ys + Efllye+l”] < X” +20° +4GD + D
P(Exii1+Ae1)] T Then, [|[% ] (Bay+M)] ]| < w. since pk < 1 and p < 1. Finally, by taking square roots on
both sides we obtain the stated result. [ ]
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