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The development of a viable structural health monitoring (SHM) technology for the oper-
ational condition monitoring of wind turbine blades is of great interest to the wind indus-
try. In order for any SHM technology to achieve the technical readiness and performance
required for an operational implementation, advanced signal processing algorithms need
to be developed to adaptively remove noise and retain the underlying signals of interest
that describe the damage-related information. The wavelet packet transform decomposes
a measured time domain signal into a time-frequency representation enabling the removal
of noise that may overlap with the signal of interest in time and/or frequency. However, the
traditional technique suffers from several assumptions limiting its applicability in an oper-
ational SHM environment, where the noise conditions commonly exhibit erratic behavior.
Furthermore, an exhaustive number of options exist when selecting the parameters used in
the technique with limited guidelines that can help select the most appropriate options for
a given application. Appropriately defining the technique tends to be a daunting task
resulting in a general avoidance of the approach in the field of SHM.

This work outlines an adaptive wavelet packet denoising algorithm applicable to numer-
ous SHM technologies including acoustics, vibrations, and acoustic emission. The algorithm
incorporates a blend of non-traditional approaches for noise estimation, threshold selec-
tion, and threshold application to augment the denoising performance of real-time struc-
tural health monitoring measurements. Appropriate wavelet packet parameters are
selected through a simulation considering the trade-off between signal to noise ratio
improvement and amount of signal energy retained. The wavelet parameter simulation
can be easily replicated to accommodate any SHM technology where the underlying signal
of interest is known, as is the case in most active-based approaches including acoustic and
wave-propagation techniques. The finalized adaptive wavelet packet algorithm is applied
to a comprehensive dataset demonstrating an active acoustic damage detection approach
on a ~46 m wind turbine blade. The quality of the measured data and the damage detection
performance obtained from simple spectral filtering is compared with the proposed wave-
let packet technique. It is shown that the damage detection performance is enhanced in all
but one test case by as much as 60%, and the false detection rate is reduced. The approach
and the subsequent results presented in this paper are expected to help enable advance-
ment in the performance of several established SHM technologies and identifies the con-
sidered acoustics-based SHM approach as a noteworthy option for wind turbine blade
structural health monitoring.
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1. Introduction

Over the past few decades the global cumulative installed wind capacity has grown at a significant rate, exceeding 500
GW in 2017 [1]. In order to accommodate the substantial growth in wind energy, the size of wind turbine towers and blades
increase due to the inverse relationship between the levelized cost of energy and wind turbine size [2,3]. As a result, wind
turbine blades are required to endure more challenging operational conditions increasing the frequency of fault events, wind
turbine downtime, and overall cost of maintenance [4-6] {Gilman, 2016 #181}. One solution to help reduce the costs
incurred from wind turbine blade maintenance would be to implement a condition-based maintenance strategy over the
event-based and preventative maintenance strategies currently implemented [7]. A condition-based monitoring system will
provide real-time assessment of the blades during operation enabling the ability to identify and track damage as it occurs,
curtail or seize wind turbine operation before the damage becomes catastrophic, and schedule maintenance as needed to
ultimately reduce overall turbine downtime and cost.

The structural health monitoring (SHM) approach featured in this paper assesses the integrity of cavity structures (e.g.
wind turbine blades) by monitoring differences in the acoustic energy transmitted into or out of the structure when subject
to damage [8]. Alternative SHM technologies including vibration-based, acoustic emission, thermal, ultrasonic, fiber optic,
and photogrammetry have received more attention for wind turbine blade condition monitoring and have performed well
in a simulated or laboratory setting [7,9-28]. However, these technologies are generally not well suited for monitoring in the
field, largely because of their limited damage detection range in composites requiring a significant number of sensors to
cover a large area of interest (e.g. strain gages, piezoelectric and acoustic emission sensors), cost (fiber optic sensors), or
effectiveness (accelerometers) [29]. The proposed acoustics-based technique is expected to be unaffected by the aforemen-
tioned challenges because the technique is based upon detection of changes in acoustic transmission loss through the cavity
structure walls and can be detected by few sensors at large distances from the defect due to the low attenuation of sound in
air.

A consistent issue for any SHM technology is measurement noise, and how to remove the noise while retaining the under-
lying signal of interest [7,27]. Noise becomes more problematic in an operational environment, especially for wind turbines
that are exposed to a broad spectrum of environmental noise, such as precipitation and thunder, as well as self-generated
noise from aerodynamic loads and the mechanical components of the turbine [30]. Simple spectral filtering is frequently
unable to sufficiently remove the noise due to its frequency overlap with the desired signal. In order for any SHM technology
to achieve the maturity level and performance required for an operational implementation, advanced signal denoising algo-
rithms need to be established. This work considers the wavelet packet transform (WPT) as a solution to noise removal and
signal enhancement.

The WPT decomposes a time domain signal into constituent temporal packets (nodes) pertaining to equal-width fre-
quency sub-bands of the original signal’s bandwidth [31,32]. The resultant time-frequency representation allows for the
identification of transient events, both desired (damage-induced) and undesired (noise), which may overlap in frequency
with the signal of interest. The time-frequency dependent nodal values (wavelet packet coefficients) can be adaptively
manipulated to remove undesired noise events and/or used to extract time-frequency damage-based features. Due to the
orthogonality of the WPT, the original signal can be perfectly reconstructed from the coefficients obtained from decompo-
sition. The WPT has received considerable attention for denoising data in the fields of image processing, speech processing,
audio processing, geophysics and even traffic flow analysis [32-37]. In regards to SHM, wavelets have been studied exhaus-
tively as a damage detection feature with limited consideration to its signal denoising capabilities [38]. This could be due to
the limiting assumptions of the traditional algorithm such as pure Gaussian-distributed noise exhibiting constant variance at
all frequencies of the measured bandwidth, which is an inappropriate assumption in many operational environments. Fur-
thermore, implementing the algorithm can be intimidating to adapt due to the abundant number of parameters (e.g. wavelet
function, decomposition level, threshold selection method, etc...) that can be selected to perform the algorithm with no
established method on how to select the most appropriate parameters for a given application [38]. This work applies a repli-
cable simulation to assist in selecting the appropriate parameters and modifies the overall algorithm to accommodate erratic
noise environments with non-uniform variance across the bandwidth of interest expected in many operational SHM
environments.

In this paper, a novel acoustics-based structural health monitoring approach is extended and significantly improved
through the development and application of an adaptive wavelet packet denoising (WPD) algorithm. The WPD algorithm
incorporates a blend of non-traditional approaches for noise estimation, threshold selection, and threshold application to
augment the denoising performance of real-time SHM measurements. The wavelet parameters are uniquely selected by con-
sidering the best trade-off between signal to noise ratio (SNR) improvement and the amount of signal energy retained as
determined through an intensive computational simulation. The adaptive WPD algorithm can be easily adopted and opti-
mized through similar simulations by alternative SHM technologies, especially vibration-based and acoustic emission based
ones. The finalized algorithm is applied to an experimental database acquired by applying the active acoustic damage detec-
tion approach on a 46 m utility-scale wind turbine blade. The wavelet enhanced results are compared with the results
obtained from applying simple spectral filters and the overall improvement to the damage detection performance is
highlighted.
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The paper is structured as follows. The remainder of Section 1 briefly covers the background of the acoustics-based SHM
technique and the need for an advanced signal denoising algorithm. Furthermore, the proposed non-traditional modifica-
tions to the WPD algorithm are discussed in regards to their purpose and their presence in other studies. In Section 2, the
active acoustic damage detection approach is conceptualized. An experimental demonstration of the active approach on
a ~ 46 m wind turbine blade from a previous study is summarized to be used later as a candidate set of operational SHM
data to verify the efficacy of the adaptive WPD algorithm [39]. The signal processing techniques applied to detect damage
in the previous work are also summarized. Section 3 describes the computational steps of the traditional WPD algorithm,
followed by the proposed adaptive WPD algorithm that enables denoising in operational SHM environments. Section 4 dis-
cusses the procedure and results of the replicable simulation study used to identify the wavelet parameters that yield the
best trade-off between improved SNR and retained signal energy. In Section 5, the candidate dataset is conditioned sepa-
rately using the previously considered high pass spectral filtering approach, and the newly developed adaptive WPD algo-
rithm to compare the damage detection performance improvement. Finally, Section 6 summarizes the potential of the
updated acoustics-based SHM technique, the applicability of the adaptive WPD algorithm to operational SHM environments,
and the replicability of the simulation study.

1.1. Background in active acoustic damage detection

The acoustics-based SHM technique was first conceptualized by Niezrecki and Inalpolat for wireless damage detection in
operational wind turbine blades [8]. The technique is comprised of an active and a passive approach that collaboratively
monitor the condition of the structure using a combination of user-generated and naturally generated acoustic excitations
measured by externally mounted and cavity-internal microphones. However, only the active acoustic damage detection
approach will be considered in this paper. Since its conceptualization, several computational studies have investigated
the augmented directivity and transmissibility of acoustic energy from cavity structures exposed to damage and internal
acoustic excitation [40-42]. The first experimental investigation of the approach considered a lab-scale wind turbine struc-
ture instrumented with a single external microphone on the tower and three wireless Bluetooth speakers, one in each blade
[43]. Using simple statistics-based features and a cubic support vector machine learning algorithm, 98% of all damage, con-
sisting of holes and edge splits individually implemented on one of the blades, were detected. Most recently, the active
acoustic damage detection approach was applied to a ~46 m wind turbine blade [39]. Damage was detected using differences
in the acoustic band power measured by external microphones when compared to an undamaged baseline. The overall dam-
age detection performance was appropriate after manually sifting through the data and removing outliers pertaining to mea-
surements significantly contaminated by noise. However, for the active damage detection approach to be a viable solution
for condition-based monitoring of utility-scale wind turbine blades, the computation process needs to be autonomous and
the detection performance needs to be significantly enhanced. For this purpose, an adaptive WPD algorithm is developed and
applied to the previously acquired data for enhanced damage detection performance with the outcomes presented in this

paper.
1.2. Background in wavelet packet denoising

Despite the denoising capabilities of the WPT, the traditional algorithm suffers from several assumptions limiting its per-
formance in many applications, especially when denoising data measured in an operational SHM environment. The modified
algorithm developed in this work attempts to mitigate these limitations with the following approaches: node dependent
noise estimation, interval dependent threshold application, and SNR dependent threshold selection. Several other studies
have attempted similar modifications to the traditional WPD algorithm. Node dependent noise estimation has been used
in seismic and speech signal denoising to appropriately model ambient noise characterized by non-uniform variance fre-
quency distributions [44-46]. Interval dependent thresholding has been used in the denoising of gamma ray signals to opti-
mize the thresholds applied to the wavelet coefficients using prior knowledge of the signal of interest’s time-frequency
structure [46-49]. Lastly, SNR dependent threshold selection has been investigated to enhance the WPD performance of
speech signals enabling better estimates of the threshold to be computed based on the signal and noise conditions in
real-time [46-48]. In regards to denoising operational SHM data, limited studies have applied WPD in general or considered
at least one of the aforementioned modifications. Furthermore, no studies have incorporated all the modifications together in
a complementary way and none have identified the parameters using the simulation approach developed in this work
[38,50-54].

2. Acoustics-based structural health monitoring
2.1. Active acoustic damage detection approach
The active acoustic damage detection approach, schematically represented in Fig. 1 for a wind turbine blade, targets

damage-induced shifts in the acoustic energy transmitted from the internal cavities of the structure to its exterior. Internal
acoustic excitations are user-generated by an internal speaker, and the acoustic pressure response in the external air domain
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Fig. 1. Schematic of the active acoustic damage detection approach that can be applied to a wind turbine blade.

is measured by a microphone. Over the lifecycle of the structure, damage will occur and progress in severity providing an
open-interface between the internal and external air domains of the structure. The damage interface will provide a path
for acoustic energy to easily transmit and the damage will manifest itself in the externally measured acoustic pressure
responses.

2.2. Active acoustic damage detection data set

The most recently published experimental investigation of the active acoustic damage detection approach was considered
in this work for three reasons. First, to enhance the damage detection performance previously acquired. Second, to empha-
size the potential of an acoustics-based approach for condition-based monitoring of operational wind turbine blades. Lastly,
to serve as a candidate dataset for testing the efficacy of the adaptive WPD algorithm to operational SHM environments. The
comprehensive experimental campaign is only briefly summarized to cover the information necessary in this work and com-
plete detail can be found in literature [39].

The active acoustic damage detection approach was demonstrated on a 46 m utility-scale wind turbine blade located at
the Wind Technology and Testing Center (WTTC) in Charlestown, Massachusetts. The test matrix, schematically summarized
in Fig. 2, included five individually tested damage locations distributed at various distances along the length of the blade
(Fig. 2a) [39]. Damage was implemented in the form of cracks or edge splits over six levels of damage severity (Fig. 2b) rang-
ing in length from 0 cm in the undamaged state (DO) to 40.6 cm in the maximum level of damage (D5). Damage was imposed
on the blade using an angle grinder with a ~0.2 cm thick blade by grinding the surface until an open interface between the
internal cavity and exterior was obtained of the appropriate length. After testing all levels of damage severity, the blade was
repaired by sealing the damage interface with 3 M Bondo all-purpose putty.

Two separate hardware configurations were implemented depending on the location of damage and are summarized in
Fig. 3. Configuration A (Fig. 3a) was used when damage was implemented before the mid-length of the blade (L1-L3). Two
700 Watt Yamaha CBR10 speakers driven by a Crown XLS 1502 2-channel amplifier were used to acoustically excite the lead-
ing edge and trailing edge cavities of the blade. Six microphones were used to acquire acoustic pressure responses consisting
of a single microphone internal to the structure (Mic 1) and five external to the structure (Mic 2-6). Microphones 2, 3, and 4
were positioned in-line with the damage at a distance of 3.0 m, 7.6 m, and 15.2 m away from the blade surface, respectively.
Microphones 5 and 6 were fixed in position at the mid-length of the blade (~22.9 m down from the root) at a distance of
7.6 m and 15.2 m away from the surface, respectively. Each microphone was equipped with a wind screen and all were
PCB model 378A21 random incidence microphones except for Mic 4, which was a PCB model 378B02 free-field microphone.

Configuration B (Fig. 3b) was established after preliminary testing identified issues detecting damage when implemented
beyond the mid-length of the blade (L4-L5). It was hypothesized that damage was undetectable due to two major factors.
First, two speakers may be unable to sufficiently excite the internal cavities of the voluminous structure when damage was
implemented far from the speakers. Therefore, three 700 Watt Yamaha CBR10 speakers driven by a Behringer iNuke NU4-
6000 4-channel amplifier were used to acoustically excite all three partially coupled internal cavities of the blade. Second,
the improper orientation of the blade, angled 45° up from the horizontal, directed the bulk of the acoustic energy leaking
from the damage towards the ground inducing complex acoustic reflections (see Fig. 2a). In order to see if any damage-
induced shifts in acoustic transmissibility could be captured, microphones 2, 4, 3, and 6 were repositioned in-line with
the damage at shorter distances of 0.3 m, 0.6 m, 3.0 m, and 7.6 m away from the surface, respectively. The positioning of
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Fig. 2. Schematic of the active acoustic damage detection test matrix demonstrated on the ~46 m blade outlining the (a) location of damage and (b) each
individual damage severity level.
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Fig. 3. Schematic of the active acoustic damage detection hardware configurations used when (a) damage was implemented before the mid-length of the
blade and when (b) damage was implemented after the mid-length of the blade (All dimensions are in meters).

microphones 1 (internal) and 5 (~22.9 m from the root and 7.6 m from the surface) were unchanged from Configuration A to
maintain partial consistency between test cases.

In all tests, data was acquired using an 8-channel m + p VibPilot spectrum analyzer and data acquisition system. A sample
rate of 51.2 kHz was used to cover the entire audible spectrum and each measurement block was 131,072 points in length
equating to a 2.56 s measurement. In every measurement, the analog output of the VibPilot supplied a linear chirp signal to
the amplifier ranging from 0.2 to 20 kHz in frequency over the first 75% of the measurement block (1.92 s). Using a burst
chirp signal provided a short period with no excitation allowing proper dissipation of acoustic energy in the internal cavity
before the start of the next measurement. For each unique damage location (L1-L5) and each unique damage severity (DO-
D5), 150 measurements were acquired to establish a concrete experimental dataset.

2.3. Acoustic damage detection signal processing

The signal processing techniques established to detect damage and distinguish between the different damage states of
the blade are based on quantifying the differences between the measured acoustic power spectral density (PSD) estimates
and an undamaged baseline. The technique applied in the previous study is replicated in this work with modifications to the
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approach taken to remove outliers [39]. All data processing was performed in Matlab® following the procedure schematically
depicted in Fig. 4 and briefly summarized as follows [55].

1. The data corresponding to a set of measured acoustic pressure responses from a single microphone, damage location, and
damage severity was selected (e.g. all 150 measurements corresponding to the data acquired by Mic 3 during test case L3
at damage level D4).

2. The data was denoised using one of the considered signal conditioning approaches, a high pass spectral filter or the adap-
tive WPD algorithm, for removing noise contamination and the DC component contained within the data.

3. The acoustic (PSD) was estimated for each of the filtered measurement blocks using Welch’s method to assist in reducing
spectral leakage and variance using Eq. (1) [56].

N— 2

Z [n)x[n]e 2™

n=0

PSD[f] = (1)

In Eq. (1), PSD[f] (W-Hz!) is the power spectral density estimate of the f™ (Hz) frequency component, h[n] is a window
function, and x[n] (Pa) is the time domain signal collected.

4. The acoustic power over larger frequency bands was computed from the PSD estimates to reduce the size of the data con-
sidered for detecting damage and the variability amongst individual spectral lines.

fb
blk] = blf,.fs] = > PSDIfIAf (2)

f=fa

In Eq. (2), bk] (W) is the average power in thek™ frequency band defined by frequencies f, and f},, and Af (Hz) is the fre-
quency resolution.
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Fig. 4. Schematic depiction of the signal processing procedure used for detecting and distinguishing damage from the experimental database acquired from
the active acoustic damage detection demonstration.
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5. In order to quantify damage-induced differences in the acoustic transmissibility, the band power estimates were sub-
tracted by an averaged baseline corresponding to the average band power of the undamaged data sub-set measured
by the same microphone in the same test case (damage location).

Abg[k] = bg[k] — bu[K] 3)

In Eq. (3), Aby[k] (W) is the band power difference of the d" damage level (DO, D1...D5), by[k] is the band power estimate
of the d™ damage level and b,[k] is the average band power estimate of the undamaged (D0) data sub-set.

6. The spectral differences were rolled into a single metric for detecting and distinguishing damage, the Sum of Absolute
Difference (SAD), simply computed as the sum of the absolute value of the band power differences for each data block.

K
SADg =, ,|Aby[k]| 4)
In Eq. (4), SAD, is the Sum of Absolute Difference of the d™ damage level.

7. An outlier analysis was performed on the SAD values by removing data points corresponding to three median absolute
deviations (MAD) above or below the median of the entire dataset.
a.

If the data corresponds to the undamaged level of severity (D0), the average undamaged band power and the SAD were

recomputed considering only the measurement blocks retained after removing outliers.

8. The finalized set of processed and outlier-free SAD values were stored for subsequent comparison with the SAD data sub-
sets of the same microphone and test location for detecting and distinguishing between the undamaged and damaged
states of the blade. A damage detection threshold equal to three standard deviations above the mean of the undamaged
data sub-set was established for classifying SAD values that exceeded this threshold as damaged.

The entire eight-step procedure was repeated for each individual set of data corresponding to a unique microphone, dam-
age location, and damage severity starting with the undamaged state (DO). Because all SAD values were computed using the
average undamaged band power as a baseline, it was essential to remove outliers in the undamaged set first. As alluded in
step eight, only the SAD data sub-sets corresponding to all damage severities (D0-D5) of a single microphone (Mic 2 or Mic3
or etc...) and test case (L1 or L2 or etc...) were compared for evaluation of the damage detection performance. As a result,
ambiguity between data acquired on separate days, from separate sensors, under different environmental conditions, and
using different test configurations could be avoided.

As previously mentioned, a slight modification was applied to the outlier analysis with respect to the previous work [39].
The previous work considered removing outliers with respect to the individual band power estimates followed by a manual
inspection to remove outliers missed by the algorithm. In order to reduce complexity and appropriately evaluate the tech-
nique as an autonomous process (optimal for an operational SHM system), the SAD values were considered instead and the
manual portion of the outlier analysis was removed. Furthermore, the adaptive WPD algorithm will be more appropriately
assessed in regards to how well it can reduce the number of outliers predominantly resulting from noise in the measured
data.

3. Wavelet packet denoising
3.1. Wavelet packet denoising concept

The purpose of the WPT is to decompose a measured time response into a series of coefficients that describe its time-
frequency structure. The decomposition is performed by correlating the measured response with scaled and shifted wavelet
basis functions (waveforms that average to zero and have limited time duration). The resultant coefficients are organized
into packets (nodes) corresponding to a specific frequency sub-band related to the scaled wavelets. In each node, the coef-
ficients are temporally ordered based on the shifted position of the scaled wavelets with respect to the measured signal
when the correlation was computed. Information can be distinguished at specific frequencies by considering the appropriate
node and at specific time intervals by considering the appropriate coefficient indices. Time-frequency localized events, usu-
ally representative of the signal of interest or undesired transients, are easily distinguished by large-valued coefficients.
Ambient noise, usually exhibiting relatively uniform energy over all time and frequency, results in small-valued coefficients
distributed across all the wavelet packet nodes. Therefore, the measured time responses can be denoised by strategically
manipulating the coefficients to retain large valued signal-related coefficients, remove large valued transient noise-
related coefficients, and threshold small valued ambient noise-related coefficients. The denoised time response is recon-
structed by performing the inverse wavelet packet transform (IWPT) on the manipulated coefficients completing the general
WPD process.
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3.2. Wavelet packet transform computation

Previously mentioned in Section 3.1, the WPT is computed by correlating the measured response with scaled and shifted
wavelet basis functions yielding the desired time-frequency dependent wavelet coefficients. However, it is much more com-
putationally efficient and simple to compute the wavelet packet coefficients using a filter-decimation scheme, or filter bank,
as illustrated in Fig. 5 [57].

In Fig. 5a, the N-point time domain signal x[n] (where,n=1---N) is decomposed into the first level (j = 1) of wavelet
packets (nodes) by separately filtering the signal with a low pass scaling filter G and high pass wavelet filter H followed
by a downsampling by 2. The resultant N/2-point wavelet packet nodes W7o and W1 ; correspond to the temporal informa-
tion of the original signal in the frequency ranges [0, f,/4] and [f,/4,f,/2], respectively. Finer resolution in the frequency
domain is obtained by applying the same filtering and downsampling operations to the wavelet packet coefficients at the
previous stage (W;o and Wy ). The result is four N/4-point wavelet packets corresponding to the temporal information
of the original signal split into four equal-width bands of the Nyquist frequency. The process can be repeated until the
desired level is reached or until the length of the wavelet packet coefficients are too low to continue computation. The wave-
let packets at the lowest level of the wavelet packet tree (W, o, W51, W, , and W, 5 in the case of Fig. 5a) are referred to as the
terminal nodes. The wavelet packet node that is split and the two wavelet packet nodes that result are referred to as the
parent and children nodes, respectively. The original signal is perfectly reconstructed by simply reversing the steps taken
to obtain the decomposition, as illustrated in Fig. 5b. The coefficients of a parent node are obtained by adding the coefficients
of the children nodes after upsampling by 2 (insert zeros between its values) and filtering with the respective reconstruction
filters G’ and H'.

It is noted that in Fig. 5, the order of the low pass and high pass filters (G, H, G, and H') were swapped when decomposing
and reconstructing node W ;. The swap is required to ensure that the terminal nodes of the WPT are in frequency order, as
opposed to natural order [58]. The need for their exchange is a product of the filtering and downsampling operation, and the
nodes that require the filter swap to maintain frequency ordering can be determined by a simple two-part rule [57].

3.3. Traditional wavelet packet denoising approach

The actual removal of noise in the WPD process takes place at the terminal nodes after completing the WPT and before
performing the IWPT. In order to remove noise in an efficient and simple manner, a broad range of applications have adopted
the same or a similar approach to WPD shown schematically in Fig. 6 and summarized as follows [44-46,59,60].

1. The WPT is computed from the measured response to the desired level of decomposition as illustrated in Fig. 5a.

2. An estimation of the noise standard deviation is obtained under the assumptions that the noise is Gaussian distributed
and contributes entirely, or dominantly, to the high frequency content of the measured response. An appropriate and
robust estimate of the noise standard deviation under these assumptions is obtained by computing the MAD of the high
frequency wavelet coefficients in the first level of decomposition, node Wy, [57].

_ median{|W |} 5
B 0.6745 ()

(a) Wavelet Packet Decomposition Texe] (b) Wavelet Packet Reconstruction
evel

I x[n] =Wy, | j=0 | x[n] =Wy I

@ @

= =]

| j=1 |
I Wo I W34 “ I W3 | j=2 I Wo I W34 I W, I W3
5 A A 5 o £ 3L 5
8 4— 8 2 8 4 8 2
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Fig. 5. General filter bank process flow used to recursively (a) decompose the time domain signal into the constituent wavelet packet bases, and (b)
reconstruct the time domain signal from the wavelet packet coefficients.
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Fig. 6. Traditional wavelet packet denoising algorithm process flow.

In Eq. (5), o is the standard deviation estimate scaled to a Gaussian distributed random variable. The noise standard devi-
ation is assumed valid for all nodes and frequencies.

3. A threshold value is selected and scaled by the noise standard deviation that represents an appropriate separation
between coefficients considered to be noise-related (below the threshold) and signal-related (above the threshold).
Although many threshold selection methods exist, the Universal threshold proposed by Donoho and Johnstone is the
most common [46,59].

Ty = g4/2log (N log,(N)) (6)

In Eq. (6), Ty is the Universal threshold which can be shown to equate to or slightly exceed the maximum amplitude of a
Gaussian distributed random variable [32].

4. The coefficients are suppressed by applying the threshold to all coefficients of each wavelet packet node. The thresholds
can be applied with one of two common approaches, hard or soft. Hard thresholding sets all coefficients below the thresh-
old to zero, and retains all coefficients above the threshold. Soft thresholding similarly sets all coefficients below the
threshold to zero, but subtracts the remaining coefficients by the threshold value.

5. The enhanced (denoised) time response is reconstructed by applying the IWPT to the modified coefficients as illustrated
in Fig. 5b.

3.4. Adaptive wavelet packet denoising approach

When considering the noise conditions expected in an operational SHM environment, the assumptions established in the
traditional WPD approach are no longer valid, rendering the algorithm more or less ineffective depending on the severity of
the noise. To accommodate the stringent requirements of an operational SHM environment, significant modifications to the
algorithm were established consisting of: (i) node dependent noise estimation, (ii) interval dependent threshold application,
and (iii) SNR dependent threshold selection. The purpose of each modification is elaborated in further detail as follows.

3.4.1. Node dependent noise estimation

Traditionally, the WPD approach assumes that the ambient noise is Gaussian distributed with constant variance over the
entire bandwidth of the signal and estimates the noise standard deviation from the high frequency wavelet packet coeffi-
cients at the first decomposition level (W1 ;). However, if the ambient noise cannot be entirely characterized with uniform
variance across all frequencies (e.g. ocean and wind turbine environments) the noise standard deviation will be inaccurately
modeled [30,33,61]. In order to model noise with non-uniform frequency distributions, a frequency dependent noise esti-
mate can be obtained by computing the MAD of each frequency band, or terminal node, separately. Therefore, the threshold
of each frequency sub-band (terminal node) will be scaled by the noise standard deviation of the same frequency sub-band.
The noise is still assumed to be Gaussian, but with a different variance for each frequency sub-band defined by the terminal
nodes as opposed to a single variance for the entire bandwidth defined by the first level high frequency coefficients, which is
a more appropriate estimate for the noise environment experienced by wind turbines.

_ median{|W,|}
U= 06745 @)

In Eq. (7), 01 is the noise standard deviation of the k™ node at the maximum decomposition level, L.

3.4.2. Interval dependent thresholding

In the traditional WPD algorithm, the threshold was applied to all wavelet packet coefficients. This method is appropriate
if no information is known about the time-frequency structure of the signal of interest, but exhibits difficulty handling tran-
sient events and extraneous noise coefficients that may exceed the threshold. If the time-frequency structure of the under-
lying signal is known, the wavelet packet coefficients in each node can be partitioned into intervals where only the noise is



10 C. Beale et al./Mechanical Systems and Signal Processing 142 (2020) 106754

known to exist and where the signal and noise are known to exist together. Therefore, the noise-only intervals can be
removed entirely mitigating the issue of high amplitude extraneous coefficients and transient events. Furthermore, the
noise-only intervals can be used to obtain better estimates of the noise standard deviation using Eq. (7) without any influ-
ence from the signal-related coefficients. The time-frequency structure of the signal in this study is known to be a chirp that
sweeps linearly from 0.2 kHz to 20 kHz over a 1.92 s time window. Explicit intervals within the time-frequency plane can be
defined by computing the wavelet packet transform of the chirp signal and bounding the coefficients that yield non-
negligible value. In order to account for reverberation and signal reflections, the bounds were widened by approximately
0.05 s on either side. When considering the experimental data, a time delay corresponding to the time it takes for the source
signal to reach the external microphone was applied to appropriately shift and align the bounds with the signal of interest. A
snapshot of the signal intervals defined for the source signal can be observed in step 5 of Fig. 7, where the intervals are indi-
cated by the solid red lines and the regions outside the intervals containing noise-only coefficients are faded.

3.4.3. SNR dependent threshold selection

Lastly, the traditional WPD algorithm uses a single threshold selection method that is scaled by the noise estimate to
compute the threshold value. Several threshold selection methods exist (Universal, SURE, minimax, etc...) that have varying
levels of risk in regards to adversely affecting (suppressing) the signal coefficients. Generally, higher risk thresholds are
desired when the signal dominates (high SNR) to obtain good SNR improvements and lower risk thresholds are desired when
the noise dominates (low SNR) to ensure lower valued signal coefficients are retained. Thresholding in this manner ensures
an appropriate tradeoff exists between SNR improvement and retained signal energy. In the adaptive WPD algorithm, the
desired tradeoff between SNR improvement and retained signal energy is maintained by adjusting the risk of the selected
threshold based on the SNR of the measured time response. The risk-dependent threshold is computed using Birgé and Mas-
sart’s adaptive density estimation strategy that determines the best projection of an unknown density from the minimum of
a risk function [62,63]. The strategy is easily related and applied to wavelet thresholding, in which the projection of wavelet
coefficients that best approximates an unknown signal is determined. Computationally, the threshold value that yields the
wavelet coefficients corresponding to the best approximation is determined. The risk function, or penalization criterion, is
computed as follows [60,62,63]:

t
risk(t) = —X:Ws(k)2 + ZoLykt<oc +In (?));t: 1,2,---,N (8)

k=1

In Eq. (8), Ws(k) is the absolute value of all wavelet coefficients sorted in descending order, « is the sparsity penalizing
term, N is the total number of wavelet coefficients, and t is the current index (number of coefficients in the current subset).
It can be observed that the risk function is representative of a trade-off between subsets of the wavelet coefficients and a
penalty function that depends on the size of the sample space and the sparsity parameter, . Increasing or decreasing the

1. Compute Wavelet 2. Estimate SNR w.r.t. 3. Node Dependent Nois N
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Fig. 7. Adaptive wavelet packet denoising algorithm process flow.
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sparsity parameter (risk) will increase or decrease the sparsity of the wavelet coefficients after thresholding, respectively.
The index corresponding to the minimum of the risk function, t.,y, is related to the threshold value that yields the best pro-
jection of wavelet coefficients obtained as follows:

TBM(OC) = Ws(tmin) (9)

In Eq. (9), T (o), is the threshold value obtained from the Birgé-Massart strategy for a given value of «. In the adaptive
WPD algorithm, the sparsity parameter is adjusted with respect to the estimate of the SNR for each measurement to main-
tain the appropriate tradeoff between SNR improvement and retained signal energy. Furthermore, the SNR is recomputed for
each successive measurement to appropriately account for fluctuations in the behavior of the noise environment. The SNR is
computed for each individual node to obtain a frequency dependent estimate as follows.

(10)

2 2
SNR, — 1 Olo&g(RMS(WL,k) — RMS(W ;) D

RMS(Wy,)°

In Eq. (10), SNR, is the signal to noise ratio corresponding to the frequency sub-band of the wavelet packet node W, and
Wik are the coefficients corresponding to the noise-only interval of the wavelet packet node W_.

3.4.4. Adaptive wavelet packet denoising algorithm
Considering all modifications, the entire adaptive WPD algorithm is outlined schematically in Fig. 7 and summarized as
follows.

1. The WPT is computed from the measured response to the desired level of decomposition as illustrated in Fig. 5a.

2. The SNR is estimated with respect to frequency by computing Equation (10) for each terminal node.

3. The noise standard deviation is computed using Equation (7) for each terminal node only considering the coefficients in
the noise-only interval.

4. The threshold value is computed for each terminal node using Eqs. (8) and (9) and the appropriate sparsity parameter a,
selected based on the results obtained in the adjusted according to the SNR computed in step 2. The relationship between
o and the estimated SNR was obtained from the numerical simulation study and is presented in Section 4.4.4

5. The coefficients corresponding to the noise-only intervals are set to O for each terminal node and the remaining coeffi-
cients (signal and noise) are suppressed by the respective threshold values computed in step 4.

6. The enhanced (denoised) time response is reconstructed by applying the IWPT to the modified coefficients as illustrated
in Fig. 5b.

4. Wavelet packet parameter simulation study

The ultimate goal of the WPT is to obtain the sparsest representation of wavelet coefficients where a few large coefficients
exist that describe the signal of interest while all remaining coefficients are small and describe the noise. In this represen-
tation, the signal is easily distinguished from noise and thresholding can be performed with minimal risk (loss of small-
valued signal-related coefficients). However, the WPT can be applied using an abundant number of parameters that can
be modified to yield different representations of the wavelet coefficients all describing the same measured response. In order
to determine the ideal wavelet parameters, a simulation study was performed considering each wavelet parameter’s influ-
ence on the tradeoff between improved SNR and retained signal energy. Performing the simulation in this manner enables
the parameters to be selected that best benefit the performance of signal denoising for operational SHM purposes. The fol-
lowing sub-sections outline the simulation study as applied to the active acoustic damage detection tests described in Sec-
tion 2.2, and can be easily applied for other SHM applications.

4.1. Wavelet parameters

The wavelet parameters considered to have a substantial influence on the WPD algorithm performance are the following:
the wavelet function used in the WPT, the level of decomposition considered, the threshold selected for suppressing the coef-
ficients (value of the sparsity parameter, o), and the method applied to threshold the coefficients (hard or soft). The effec-
tiveness of each parameter will depend on the shape and time-frequency structure of the signal of interest, the severity
of noise, and the ultimate goal of denoising (e.g. signal quality improvement in speech processing versus SNR improvement
in signal denoising). This work considers a total of 23 wavelet functions, 10 decomposition level, 10 thresholds, and 2 thresh-
old application methods summarized in Table 1. However, different variations of the same parameters could be included for
any desired application. In total, simulating all the considered parameters would make 4600 different combinations. In actu-
ality, the number of combinations simulated was less as optimal parameters were identified and less appropriate parameters
ruled out.
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Table 1
Summary of wavelet parameters considered in the simulation study. (O corresponds to the wavelet filter order).
Parameter Simulated Options Total
Wavelet Function DaubechiesO (dbO) : 0=1,5,10,15,20,25,30,35,40,45 23
SymletsO (symO) : 0=5,10,15,20,25,30,35
CoifletsO (coifO) : 0=1,3,5
Fejer — KorovkinO (fkO) : 0=4,14,22
DiscreteMeyer (dmey) : NotApplicable
Decomposition Level L: L=1,2,3,4,5,6,7,8,9,10 10
Threshold Selection Tem(o) : «=1,2,3,4,56,7,8,9,10 10
Threshold Application Method : Hard, Soft 2

4.2. Quality assessment metrics

The effectiveness of each wavelet parameter on the denoising performance was evaluated by three quality assessment
metrics: the SNR improvement, the percentage of energy retained after denoising considering solely the signal of interest,
and the entropy of the wavelet coefficients. Each of the three metrics were selected specifically to quantify how well the
approximation preserved the clean signals energy (percent energy retained) and how much the approximation enhanced
the distinguishability of the clean signal from the noise (SNR improvement and entropy). As implied by the signal processing
techniques outlined in Section 2.3, the active damage detection approach relies on quantifying the spectral magnitudes esti-
mated from external acoustic pressure responses. The ability to accurately quantify the spectral magnitudes in the presence
of noise is essential to the damage detection performance of the acoustics-based technique, which is also essential for many
other SHM techniques such as acoustic emission and vibration based techniques.

4.2.1. Signal to noise ratio improvement

The SNR is defined as a ratio between the signal of interest power and the noise power. In order to quantify the SNR
improvement, the SNR after applying the WPD algorithm must be quantified. It is common to estimate this posterior SNR
by using the original clean signal as the signal power or the residual noise after denoising as the noise power
[50,54,64,65]. However, this is not entirely true due to the inevitability that the smaller signal-related coefficients (below
the threshold) will be removed. Therefore, the actual amount of clean signal power after denoising may be less than the orig-
inal clean signal power and the residual noise may contain a portion of the original clean signal or exclude noise that was
missed during the WPD process (e.g. noise coefficients that were above the threshold). In order to accurately estimate the
posterior SNR, the WPD process was applied to the clean signal without any added noise using the thresholds established
from the clean signal with added noise. The resultant reconstructed response corresponds solely to the signal content
retained from the WPD process, labeled the denoised clean signal. Furthermore, the denoised clean signal was subtracted
from the reconstructed response obtained by applying the WPD process to the clean signal with added noise to obtain
the noise-content remaining after denoising. Now the SNR improvement can be appropriately calculated as follows:

2 2
ASNR = SNRp — SNR; = 10 log,, Mﬂ)z ~10 logy, m (11)
RMS(Xg — Xsq) RMS(x,)

In Eq. (10), ASNR is the SNR improvement, SNR; is the posterior SNR, SNR; is the initial SNR, x,, is the denoised response
without added noise, x, is the denoised response with added noise, x; is the signal of interest, and x, is the noise. Larger val-
ues of ASNR correspond to better denoising performance.

4.2.2. LyR ratio
The percentage of energy retained corresponding solely to the signal of interest was computed as a ratio between the I-2
norm of the denoised response without added noise and the original signal of interest.

_ Za Xl

L,R
I )P

(12)

In Eq. (12), LyR is the [-2 norm ratio. The ideal value of L,R is unity, implying that no energy was lost during the WPD
process. Careful inspection of the ASNR and LR is required to ensure that the desired tradeoff between noise removed
and energy preserved is maintained.

4.2.3. Entropy
Entropy serves as a metric for quantifying the disorder of the wavelet packet coefficients (how evenly/unevenly dis-
tributed the values are), and can be computed as follows [66].

Qi = —Z/ W (t)log, (W},(0)) (13)
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In Eq. (13), Q; is the entropy of the k™ node at the j" level, t corresponds to the coefficient index of the wavelet packet

node, and T; is the number of coefficients in the wavelet packet nodes at the j™ level. The entropy will be large when the
value of coefficients is evenly distributed, and small when large values coincide with few coefficients. Smaller values of
entropy are desired corresponding to fewer large valued signal coefficients, enhancing the ability to distinguish the signal
of interest and transient noise events from the ambient noise.

4.3. Simulation process flow

The simulation was performed considering the same acoustic excitation signal used in the active damage detection
approach (a 2.56 s, 75% burst chirp from 0.2 kHz to 20 kHz) described in Section 2.2 as the signal of interest. The signal
of interest can be easily adjusted based on the desired application. The initial SNR conditions ranged from —12 dB to
12 dB in steps of 1 dB and were generated by superimposing the Gaussian distributed noise to the signal of interest. The
entire computational simulation is outlined schematically in Fig. 8 and summarized as follows. The procedure was repeated
until all desired parameter combinations were evaluated.

. The clean signal of interest is generated and superimposed with noise to the desired initial SNR.

. A wavelet function is selected for the WPT.

. The WPT is computed using the selected wavelet function to the desired level of decomposition.

. All considered thresholds are computed corresponding to the desired risks ().

. The threshold is applied to the wavelet packet coefficients using the desired threshold application method.
. The three quality assessment metrics are computed from the reconstructed response.

AU A WN =

4.4. Simulation results

4.4.1. Threshold application method

Hard thresholding was selected as the appropriate threshold application method for the adaptive WPD algorithm because
it best preserved the signal energy. Fig. 9 compares the time response (Fig. 9a) and PSD estimates (Fig. 9b) obtained by
denoising with hard and soft thresholding against the original clean simulated chirp signal. The chirp signal that was
denoised had a SNR of 0 dB and the WPD process was performed with a decomposition level of 7, dmey wavelet function,
and the Tpy(5) threshold. Inspecting Fig. 9, it is easily observed that the amplitude of the time response obtained when hard
thresholding was used closely matches the amplitude of the clean signal. Similarly, the magnitude of the PSD obtained from
hard thresholding closely matches the clean signal as shown in Fig. 9b. On the other hand, the amplitude of the time
response and magnitude of the PSD obtained from soft thresholding is generally less than the clean signal. In Section 3.3,
soft thresholding was defined to subtract all coefficients above the threshold by the threshold value. The coefficients above
the threshold ideally (and in most cases) correspond to the signal-related coefficients and their suppression results in signal
energy attenuation as observed in Fig. 9. The reason soft thresholding has received interest resides in its ability to preserve
signal regularity, which is beneficial for enhancing audio or speech signals. In the case of denoising data in an operational
SHM environment, energy preservation is critical and hard thresholding is required.

4.4.2. Level of decomposition
The selected level of decomposition was determined by comparing the tradeoff between the SNR improvement (ASNR)
and signal energy preserved (L,R). In this work, it was desired to preserve most of the signal energy due to the dependency
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Fig. 8. General computational simulation process flow performed to evaluate the efficiency of the desired wavelet parameters.
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(a) Time Response (b) Power Spectral Density
2 2 40 40
1 1
E 2 (\ /\ /\ /\ = & sl T ST M
2 2 b=t -
2o — 20 2 | a
E . | E , 2 60 2 60
2 2 -70 L -70
o o5 1 15 2 25 0196 0197 0198  0.199 0 5 10 15 20 5 52 54 56 58 6
Time [s] Time [s] Frequency [kHz] Frequency [kHz]
| = Clean Signal = Hard Thresholding Soft Thresholding

Fig. 9. (a) Time response of the clean simulated chirp, and the resultant responses obtained from denoising the simulated chirp with different thresholding
approaches when contaminated with noise at an SNR of 0 dB using a level 7 WPT, dmey wavelet function, and Tgy(5) threshold, and (b) the power spectral
density estimates corresponding to each of the time responses.

of accurately quantifying the spectral magnitudes. Therefore, a minimal limit of L,R > 0.9 was established. This limit can be
adjusted to consider preserving more or less than at least 90% of the signal energy depending on how essential energy
preservation is for the desired application. Fig. 10 shows a heatmap of the ASNR obtained using the WPD algorithm with
a db35 (Daubechies wavelet 35) wavelet function for three thresholds corresponding to a high (Fig. 10a), moderate
(Fig. 10b), and low risk (Fig. 10c). The conditions of initial SNR and decomposition level that yielded a LR < 0.9 are washed
out to easily distinguish the appropriate conditions that satisfy the desired L,R conditions. Regardless of the severity of
thresholding risk, the level of decomposition that could preserve at least 90% of the signal energy at the lowest SNR was con-
sistently level 7. Furthermore, the largest ASNR for all applicable (LR > 0.9) initial SNR conditions was obtained using a
decomposition level of 7. Similar conclusions were observed even when reviewing the results obtained by applying the other
considered wavelet functions and thresholds. This is true because the time-frequency structure of the chirp signal is the
same regardless of the other parameters and was described best by the time-frequency resolution corresponding to a decom-
position level of 7.

4.4.3. Wavelet function

The wavelet function was selected based on all three quality metrics using the selected decomposition level of 7. Consid-
ering the entropy, Fig. 11 shows a heatmap of the average nodal entropy with respect to the initial SNR of the signal and the
wavelet function used in the WPT. Each row of the heatmap is scaled such that the wavelet functions yielding the lowest
entropy could be easily identified regardless of the initial SNR (shading that corresponds to O in the color bar). In Fig. 11,
the average nodal entropy at an initial SNR of 6 dB was extracted and ordered from worst to best showing select examples
of the W5 ¢, coefficients and the wavelet function used to compute them. It can be observed how the wavelet coefficients
become increasingly sparse as the entropy decreases. Furthermore, the shape and regularity of the wavelet function aligns
with that of a chirp function as the entropy decreases and the filter order increases.

R R N R
High Risk [ Y Low Risk
(a) ASNR: Ty (6) Threshold (b) ASNR: Ty (2) Threshold (c) ASNR: TBM(I) Threshold
= 366 o1 L 12 3 5 12 13
Inf -1 5 86 -1
-10 LzR < 09 9 9 9.34 -10 LzR < 0 9
9 -9
8 nt 0560 8
il I 7 7 4: L
-6 5|67 6
5 5
4 4 0
-3 3 0
2 04 2 8.08_ g1
o 3756] N8 e 1) 950 0 89 o 1 8.06 6 7.38
b4 13.91 12384 Zz of 961 0 935 Z 0 7.99 02 EGAEF N
2 13.96 12.66 (I = 9.67 0 1164 KO 0 1 7.95 (ELN 9.46 | 7.16 | 5.08
6 13.93 1252 20 970 )] 9.18 | 6.82 2 7.85 iz 9.35 | 7.06 | 5.00
13.72 1256 FHOH7 S 3 969 8 7Sl 9.05 | 6.76 | 3 7.73 [ 968 ROEEN 021 [ 6.01 | 4.92
1369 12.48 4 CX7M 1170 126 894 | 6.68 4 767 | 956 [¥5Al 9.06 | 6.78 | 483
1369 1235 54 958 RAIC 6 885 | 6.61 5 7.57 | 9.43 |11l 8.88 | 6.68 | 4.76
1056/ 1281 1372 1231 6 0 1247 11.07 I 6 7.48 | 934 IRCN 877 | 6.58 | 467 |
1053 1277 1373 1221 | 7 865 | 6.46 7 741922 8.63 | 6.46 | 4.69
1049 1275 1364 12.1 8 2 657 | 639 8 732 [ 913 852 | 6.36 | 452
1049 1270 1362 12.11 9 846 | 634 9 7.26 [ 9.04 837 | 6.23 | 444
foar T2 B 1052 12.65 10 el 837 | 6.27 10 7.7 | 897 | 973 | 825 | 6.14 | 437
000 (292 [EX 1054 1264 13. Z 1 £ 830 | 620 11 711 | 889 | 961 | 8.13 | 6.06 | 428
s01e 4 12 1 le2 12 Zoilezotaetl oot e oe o0 | 0
12 3 4 9 10 5 6i7i8 9 10
Level }
Vi )
1 Level U Level i Level H 4 Level
© ASNR i f ASNR © ASNR ©+ ASNR

Fig. 10. Heatmap of SNR improvement highlighting parameter combinations that yielded an L,R > 0.9 when WPD was performed with a db35 wavelet
function using a (a) Tgw(6) threshold (high risk), (b) Tgw(2) threshold (moderate risk), and (c) Ty (1) threshold (low risk).
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In order to select a wavelet function appropriate for the denoising application under consideration, the wavelet functions
were ranked based on the number of occurrences in which they were amongst the five wavelets yielding the largest LR,
largest ASNR, and lowest entropy for each initial SNR. The top five and last wavelets are ranked and tabulated in Table 2.
Although the dmey wavelet function is consistently one of the best in terms of LR and ASNR, it doesn’t appear at all within
the top five wavelets for entropy. The wavelet function that consistently appears in the top five wavelets for all quality met-
rics is the db35 wavelet. Therefore, the db35 was selected for the adaptive WPD algorithm.

4.4.4. SNR-dependent threshold selection limits

In order to determine the appropriate threshold yielding the desired tradeoff between energy preserved and noise
removed with respect to initial SNR, a heatmap of the ASNR was analyzed, and is shown in Fig. 12. The results in Fig. 12 were
obtained by applying the wavelet function (db35), level of decomposition (7), and thresholding application method (hard)
selected as the most appropriate in sections 4.4.1-4.4.3. The parameters that yielded a L,R < 0.9 are faded out and all but
the parameters yielding the best ASNR are grayed out in the heatmap. The intervals in which each threshold selection
method yields the best ASNR were extracted from the ASNR heatmap and employed in the adaptive WPD algorithm. Specif-
ically, Tgy(1) yields the best SNR improvements when the initial SNR is between [co, —4] dB, Tgy(2) is best between [—4, —3]
dB, Tgu(3) is best between [—3, —2] dB, Tgy(4) is best between [—2,0] dB, and Ty (5) is best between [0, oo] dB.

The intervals extracted from Fig. 12 correspond to the threshold selection method that should be used, given the initial
SNR is correct. However, the SNR is estimated from measured data and will exhibit uncertainty. The uncertainty was quan-
tified during the simulation by subtracting the estimated SNR by the known initial SNR. The average error bounded by a stan-
dard deviation was computed and is shown in Fig. 12. The limits extracted from the ASNR heatmap were modified by adding
the standard deviation value corresponding to the appropriate SNR.

Note that the interval in Fig. 12 corresponding to the lowest risk threshold (A1) extends beyond the lowest initial SNR (-5
dB) that satisfies the desired LyR limit of L,R > 0.9. Intuitively it makes sense to reject the response when the signal is dra-
matically contaminated with noise, which would correspond to setting all coefficients of the wavelet nodes exhibiting lower
SNRs to zero. Several issues arise from applying such a dramatic threshold. First, suppressing the coefficients entirely would
preserve none of the signal energy over the corresponding frequency sub-bands which is counterintuitive to the ultimate
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Fig. 11. Heatmap of the average nodal entropy from the WPT computed to a decomposition level of 7 with respect to initial SNR and wavelet function used.
The average nodal entropy values corresponding to an initial SNR of 6 dB are extracted and ordered from worst to best showing select examples of the W55,
coefficients and the wavelet function used to compute them.
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Table 2
Wavelet functions ranked by the number of occurrences in which they were amongst the five wavelets yielding the largest L,R, largest ASNR, and lowest
entropy for each initial SNR.

Order L2R ASNR Entropy
Wavelet Frequency Wavelet Frequency Wavelet Frequency

1 dmey 23 sym35 23 db30 20

2 sym30 22 dmey 22 db35 19

3 sym35 22 sym30 21 fk22 19

4 db35 14 db40 16 db45 18

5 db40 14 db35 12 db40 16

Last db1 0 db1 0 db1 0

ASNR with respect to Threshold and Initial SNR
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Fig. 12. Heatmap of the ASNR with respect to initial SNR and threshold selection method applying the WPD algorithm with a db35 wavelet, decomposition
level of 7, and hard thresholding. The average error of the SNR estimates bounded by a single standard deviation is shown with respect to the initial SNR.
The standard deviations extracted from the SNR uncertainty plot are added to the initial SNR limits to obtain the updated SNR limits.

goal of the denoising process. Secondly, thresholding the response in such a dramatic manner will disrupt the time-
frequency structure of the signal of interest after reconstruction. Lastly, spectral analysis of the reconstructed signals, such
as the signal processing techniques outlined in Section 2.3, will yield results with larger uncertainties. Consider a frequency
sub-band that fluctuates around the SNR limit of the lowest risk threshold. When the SNR is just above the lower limit, minor
attenuation of the spectral magnitude over the corresponding frequency sub-band will be observed (up to as much as 10% of
the energy). Any time the SNR drops just below the lower SNR limit, the spectral magnitude will exhibit severe attenuation
(100% of the energy). The uncertainty will grow as the responses are averaged, the noise conditions shift, and transient
events occur. In summary, the adaptive WPD algorithm was configured to apply the lowest risk threshold whenever the
SNR drops below —5 dB (-4.4 dB accounting for uncertainty) in an attempt to preserve the integrity of the signal of interest.

5. Adaptive wavelet packet denoising algorithm implementation

The results of the simulation study were incorporated into the adaptive WPD algorithm and applied to the entire active
acoustic damage detection database introduced in Section 2.2. The enhanced time responses were supplied to the signal pro-
cessing techniques outlined in Section 2.3 to evaluate the enhanced damage detection performance and compare it against
the performance obtained by applying a simple high pass filter. The high pass filter applied was a sixth order Butterworth
filter with a cutoff frequency of 1 kHz. In both cases, data was analyzed considering only the frequency range of 1 kHz to
20 kHz due to the substantial low frequency noise contributions from the ambient environment and transient noise events
(e.g. airplane pass-by noise).
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5.1. Wavelet enhanced results

The data corresponding to a single test case and microphone are presented to generalize the enhancements observed
across the entire database by applying the adaptive WPD algorithm. Test case L1 (edge split implemented 7.6 m down from
the root) and Mic 5 (22.9 m from the root and 7.6 m from the surface) were selected and the results obtained using each
signal conditioning approach are compared in Fig. 13. Specifically, two example time responses (Fig. 13a), the average band
power differences (Fig. 13b), and the SAD distributions (Fig. 13c) are presented.

The time responses shown in Fig. 13a correspond to two consecutive chirp excitations measured when the blade was
undamaged (DO0) and exposed to a 40.6 cm long crack, the maximum level of damage (D5). Regardless of the level of severity,
both time responses conditioned with the adaptive WPD algorithm exhibited a significant reduction in the ambient noise
across all time and the underlying burst chirp signal was more easily distinguishable. Furthermore, the ambient noise during
damage level DO increased in amplitude (power) during damage level D5 and was still successfully removed. Lastly, a tran-
sient event in damage level D5 around 2 s was still present after spectral filtering, but removed entirely after wavelet
filtering.

Considering the average band power differences (Fig. 13b), transient low frequency noise between 1 and 5 kHz during
damage level D1 and D2 remained after spectral filtering but was removed when the WPD algorithm was used. The magni-
tudes of the average band power differences were larger after WPD due to the reduction in noise floor and enhanced ability
to distinguish the chirp signal from all other noise.

The SAD distributions in Fig. 13c are shown as histograms overlaid with a normally distributed curve computed from the
SAD values grouped by damage severity level. The vertical triangular line in each plot represents the damage detection
threshold corresponding to three standard deviations above the mean of the undamaged SAD data set. All damage distribu-
tions to the right of the threshold were considered to be damage. When the spectral filter was used to condition the signals,
the only damage that could be detected was damage level D5. Furthermore, the undamaged (DO0) distribution exhibited sig-
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Fig. 13. Comparison of the results obtained using a high pass filter and the adaptive WPD algorithm on the data acquired from Mic 5 during test case L1. The
results include: (a) undamaged (D0) and maximally damaged (D5) time responses, (b) average band power differences, and (c) SAD distributions with a
damage detection threshold established as three standard deviations above the mean of the undamaged SAD dataset.
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Fig. 14. Comparison of the overall damage detection performance obtained using a high pass filter and the adaptive WPD algorithm with respect to damage
location.

nificant variance spreading over the SAD distributions for damage levels D1-D4. When using the adaptive WPD algorithm,
the undamaged SAD distribution exhibited far less variance and damage as low as severity level D2 was easily detected.

5.2. Wavelet enhanced damage detection performance

The overall damage detection performance of the active damage detection approach was determined by recording the
number of instances the mean SAD of the damage datasets (D1-D5) exceeded the damage detection threshold (three stan-
dard deviations above the mean of the undamaged data set for the respective test case and microphone). The resultant dam-
age detection performance is shown in Fig. 14 with respect to damage location. The performance obtained when the high
pass filter and WPD algorithm were used are shown in the left and right tables, respectively. The change in detection rate
from the spectral filtered results to the wavelet enhanced results is identified for each location and microphone. Considering
the damage detection performance with respect to location, almost all instances exhibited an improvement. Most notably
was L1, in which a 60% increase was observed in the damage detection rate to a total of 84%. Test case L4 was the only loca-
tion that exhibited a decrease in the detection rate. However, this was due to the reduction in false detections. Several
unavoidable transient events contaminated the data acquired in test case L4 including truck engine idle noise, chain clank-
ing, car horn honking, and airplane pass-by noise. The additional spectral content contributed by the transient events pushed
the mean SAD of a few damage data sets above the damage detection threshold. Damage detected in this manner was due to
the transient events and not the damage-induced differences in acoustic transmissibility. Even though damage existed dur-
ing the time of measurement, the detection resulted from information completely unrelated to the damage and is undesired.
Therefore, the WPD algorithm reduced the sensitivity of the damage detection performance to transient noise in the
measurement.

5.3. Practical considerations

In regards to this work, several assumptions were made in the study that must be considered when implementing both
the acoustics-based SHM approach and the adaptive WPD algorithm on a utility-scale wind turbine blade. First, the blade
that was tested was completely stationary. In reality, the blade will be mounted to the nacelle of a wind tower and rotate
as the turbine operates. Several complications will arise in regards to the interval dependency of the adaptive WPD algorithm
and the acoustic propagation when applying the active damage detection approach. The time of arrival of the excitation sig-
nal will change as the relative position of the blade differs during operation. Furthermore, the time-frequency structure will
no longer be linear due to Doppler shifts from the non-stationary blade when excitation is provided. In order to combat these
issues, new algorithms will be needed to accurately quantify the time of arrival and signal intervals. Despite these potentially
minor limitations, the active acoustic damage detection approach was applied to a 46 m utility-scale wind turbine blade and
the damage detection performance was enhanced significantly using the adaptive WPD algorithm.

6. Conclusions

The need for efficient signal denoising in SHM, the potential of WPD as a solution, and the limiting assumptions of the
traditional algorithm were identified. Three non-traditional approaches consisting of node-dependent noise estimation,



C. Beale et al./ Mechanical Systems and Signal Processing 142 (2020) 106754 19

interval dependent thresholding, and SNR dependent threshold selection were implemented to accommodate the severe
noise conditions inherent to many operational SHM environments, such as wind turbines. In order to appropriately param-
eterize the algorithm for denoising in operational SHM environments, a simulation study was defined that considers the
tradeoff between the energy preserved corresponding to the signal of interest and the improvement to the SNR. The proce-
dure of the simulation study was outlined such that it can be replicated for a broad range of SHM technologies, such as vibra-
tion and acoustic emission.

An active acoustic damage detection study applied to a 46 m wind turbine blade from previous work was introduced and
considered as a candidate operational SHM dataset for evaluating the performance of the proposed adaptive WPD algorithm.
The simulation study considering the burst chirp excitation signal used in the active acoustic damage detection tests iden-
tified the most appropriate parameters to use (wavelet function (db35), decomposition level (7), and thresholds
(Tgm(5),. - -, Tem(1)) depending on the SNR (0.4 dB,...,—3.5 dB) of the measured response). The appropriately parameterized
adaptive WPD algorithm was applied to the active acoustic damage detection dataset and compared with the results
obtained by using a high pass filter. It was observed that the adaptive WPD algorithm could efficiently remove both ambient
noise and transient noise from the measured time responses that the high pass filter was incapable of accomplishing. The
enhanced time responses yielded larger band power differences and less variance when distinguishing between damage
states using the considered SAD damage detection feature. The overall damage detection performance was enhanced signif-
icantly using the adaptive WPD algorithm in place of the high pass filter. A 60% improvement in the detection rate was
observed from test case L1 and a reduction in the amount of false detections was observed in test case L4. The enhanced
results obtained further demonstrates the capability of the acoustics-based SHM technique as a solution for wind turbine
blade condition monitoring. Similar enhancements in the results and damage detection performance of other SHM technolo-
gies are expected if the adaptive WPD algorithm is considered.
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