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Abstract—5G technologies promise to revolutionize mobile
networks and push them to the limits of resource utilization.
Besides better capacity, we also need better resource management
via virtualization. End-to-end network slicing not only involves
the core but also the Radio Access Network (RAN) which makes
this a challenging problem. This is because multiple alternative
radio access technologies exist (e. g. ,LTE, WLAN, and WiMAX),
and there is no unifying abstraction to compare and compose
from diverse technologies. In addition, existing work assumes
that all RAN infrastructure exists under a single administrative
domain. Software-Defined Radio Access Network (SD-RAN)
offers programmability that facilitates a unified abstraction for
resource sharing and composition across multiple providers
harnessing different technology stacks. In this paper we propose
a new architecture for heterogeneous RAN slicing across multiple
providers. A central component in our architecture is a service
orchestrator that interacts with multiple network providers and
service providers to negotiate resource allocations that are jointly
optimal. We propose a double auction mechanism that captures
the interaction among selfish parties and guarantees convergence
to optimal social welfare in finite time. We then demonstrate the
feasibility of our proposed system by using open source SD-RAN
systems such as EmPOWER (WiFi) and FlexRAN (LTE).

Index Terms—Mechanism Design, Auctions, Network Slicing,
SD-RAN

I. INTRODUCTION

5G technologies will revolutionize mobile networks and
push them to the limit. Besides the significant improvement
in efficiency and capacity, the network has better support to a
wide range of services with distinct requirements by virtual-
ization. On the same physical infrastructure, multiple virtual
networks are established as slices, and network resources are
isolated into each slice to meet the requirement of different
services.

An end-to-end virtualization involves slicing not only in
the core but also in the radio access networks (RANs).
One challenging problem of RAN slicing is the coexistence
of heterogeneous radio access technologies (RATs) such as
LTE, WLAN and WiMAX, where types of resources are not
identical and cannot be allocated under a uniform mechanism.
Moreover, it is common for a mobile device (such as a
smartphone) to have multiple network interfaces and utilize
them simultaneously. Therefore, slicing and radio resource
allocation across multiple RANs is required.

This publication was supported partly by the Army Research Office under
Agreement Number W911NF-18-10-378 and the National Science Foundation
under Grant CNS 1815676. This work was initiated and partially finished
during the Bell Labs internship program.

Aiming towards more advanced coordination of heteroge-
neous RANs, 3GPP has developed standards like LTE-WLAN
Aggregation and LTE-WLAN Radio Level Integration. Several
slicing architectures across RANs have also been proposed [1]
[2]. These solutions usually enforce changes or deploy new
components in the network infrastructure. They also assume
RANs are owned by the same network provider or they are
fully cooperative. These requirements cannot be satisfied in
a more general case when multiple network providers have
private infrastructures and compete in selling resources to
services.

Software-Defined Radio Access Network (SD-RAN) brings
new possibilities to this problem. By separating the control
plane and data plane, Software-Defined Networking (SDN)
provides us with a centralized and programmable management
layer over the network. SDN was popularized for datacenters
and wired networks, but now they are also being applied to
RAN dissagregation. Radio resource allocations at physical
devices (e.g., eNodeBs of LTE and Access Points of WLAN)
can be achieved in a flexible manner through a central con-
troller.

Building on the flexibility of SD-RAN, we proposed a
novel architecture towards heterogeneous RAN slicing. Our
architecture includes a slicing orchestrator which coordinates
multiple network providers and service providers to reach a
joint slicing allocation by negotiations. In our architecture, the
SD-RAN controller of each network provider has an associated
agent which runs as an SDN application and takes part in
the resource allocation mechanism. Compared with existing
approaches, our architecture has more flexible and modular
support of heterogeneous RANs. As a network application, it
can be dynamically deployed on SD-RAN platforms owned
by either the same or different operators without any infras-
tructure changes and is not limited within specific RATs. At
the same time, it takes advantage of the functions that already
exist in the RAN such as access control, handover and resource
abstractions.

Specifically, we make the following contributions:
• We design an architecture of a novel type of orchestra-

tor which realizes network slicing across heterogeneous
radio access technologies and SD-RAN platforms, taking
diversity of network services, competing network owners
and users’ multi-connectivity into account.

• We propose theoretical models capturing interactions
and competitions among different roles (e.g., network
providers and service providers) during slicing configura-
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tion. We guarantee optimal social welfare by an iterative
double auction algorithm.

• We develop a prototype of our proposed architecture
based on state-of-the-art SD-RAN open-source projects
and real commercial mobile devices. We evaluate our
system by taking measurements from multiple realistic
use-cases and evaluating multiple performance metrics.

II. RELATED WORKS

SD-RAN. The concept of Software-Defined Networking
has been applied to heterogeneous RANs with some success.
[3] implements CAPWAP protocol enabling a controller to
manage a collection of WLAN access points. Odin [4] pro-
poses light virtual access point (LVAP) abstraction to provide
WLANs with SDN services. With similar abstraction, [5], [6]
support more applications including network slicing. For LTE
networks, FlexRAN [7] is the first SD-RAN platform which
separates RAN control and data planes and achieves network
slicing. Then, Orion [8] proposes an improved architecture by
enabling functional isolation and novel abstractions of slices.

Slicing in Heterogeneous RANs. Among SD-RAN ap-
proaches above, [5] aims at having centralized control on not
only WiFi access points but also LTE eNodeB. Similarly, ar-
chitectures of applying control and slicing over heterogeneous
RANs are discussed in [1] and [2]. More specifically, [9] and
[10] address the control architecture and resource allocation
problem across LTE and WLAN. [11] discusses the slicing
problem in heterogeneous cellular networks. Most of these
works adopt centralized management, ignoring interactions
and competitions occur among RANs owned by different
parties. In our work we utilize game theoretic modeling and
mechanism design to deal with self-interested parties.

Game Theory in Slicing and Resource Allocation. Game
theory [12] and mechanism design [13] has been widely
applied to slicing and resource allocation of wireless net-
works [14], [15]. Congestion games and Price of Anarchy
(PoA) [16] have been analyzed for network slicing [17]. The
authors in [18], [19] design combinatorial auctions for efficient
spectrum resource allocation. [20] proposes truthful auctions to
enforce cooperation among wireless relay nodes in a network.
The authors in [21] propose a share-constrained proportional
allocation for network slicing games. Compared with existing
works, we take more realistic factors into consideration at the
same time, including heterogeneous RATs, services and multi-
connectivity of users.

Multi-Connectivity. It is one promising feature of 5G, per-
mitting a single user to make use of multiple access networks
simultaneously. Currently there has been different approaches
towards multi-connectivity. Multipath TCP (MPTCP) [22] is
a solution extending TCP protocol to multiple paths, and
has been implemented in different platforms. [23] analyzes
MPTCP in mobile devices and propose a proxy-based solu-
tions as an improvement. There are also similar solutions in
both commercial software, e. g. , Speedify [24] and open-
source projects such as Dispatch-proxy [25]. The authors
in [26] adopt an SDN-based method and control multiple
interfaces by Open vSwitch [27]. In the design and evaluation
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Fig. 1. Architecture of proposed system. The new components we introduce
(Slicing Orchestrator and Slicing Agents) are marked in red.

of our system, we take the diversity of multi-connectivity
solutions into consideration.

Mobile Data Offloading. Another possible way to make
better use of multiple RATs for a cellular network operator
is offloading its traffic to third-party owned WiFi access
points [28]. Both centralized algorithms [29], [30] and game
theory models [31]–[33] are developed towards this approach.
Mobile data offloading schemes merely consider interaction
between two specific RATs, with the cellular operator as the
game leader. Our proposed architecture is not RAT-dependent,
and demonstrates the advantages of introducing an orchestrator
taking the leader role instead of one of the network providers.
This ensures that any single network provider cannot monop-
olize the market.

III. SYSTEM MODEL

A. Overview

In this section, we propose an architecture and system model
for achieving network slicing across heterogeneous SD-RANs.
In a typical slicing scenario, there will be multiple network
providers of same or different radio access technologies (RAT)
represented by a set K = {1, 2, ...,K}, and multiple service
providers represented by M = {1, 2, ...,M}. Each service
provider owns a slice with a certain amount of isolated
resources (e. g., power, bandwidth, speed). Such resource
slicing (isolation) tasks are challenging, as they should permit
a slice to purchase resources from more than one RAN, and
make decisions on the amount of resources to allocate that
satisfy the demands of all network and service providers.

To solve this problem, a key component in our design is
the Slicing Orchestrator. It is a centralized entity establishing
connections to all network and service providers. However,
it is owned and operated by a third party different from the
network and service providers. Although the orchestrator does
not have the full access to either control or private information
of each RAN, it is capable of managing the competitions
among network and service providers by holding auctions.
The purpose of the orchestrator is to maximize the slicing
efficiency, which is represented by social welfare maximiza-
tion, while making profits for itself. Social welfare is typically
defined as the sum of utilities of every agent involved in the
auction. In order for heterogeneous providers to communicate

2372
Authorized licensed use limited to: Yale University. Downloaded on September 13,2020 at 00:43:31 UTC from IEEE Xplore.  Restrictions apply. 



with the Slicing Orchestrator through a uniform protocol, a
Slicing Agent is deployed at each network and service provider,
which is another significant component in our design. We
do not require any modifications or new components in the
devices of network and service users.

Figure 1 shows the overall system architecture. To demon-
strate the incentive of deploying the orchestrator and the
auction mechanism, we first model the problem in aspects of
both service and network providers.

B. Service Provider Slicing Agent
Each slice is owned by a service provider. We assume that

a Slicing Agent is deployed for requesting resources from
network providers. The Slicing Agent aggregates the demands
of all service users to estimate the amount of resource required.

User Connectivity Profile. A service provider m ∈ M
usually has multiple users to serve through its slice. The
connectivity of a user i ∈ Im can be denoted by a vector
βi = (βki)k∈K. βki is a non-negative number representing
factors such as the link quality (e.g., (0, 1] depending on
the path loss). The values can be determined according to
related indicators (e.g., Channel Quality Indicator (CQI) in
LTE, Received Signal Strength Indicator (RSSI) in 802.11)
reported by users.

Intra-slice Resource Allocation. The service provider
should consider all its users when requesting resources for
its slice, which is an optimization problem of intra-slice
resource allocation. Suppose a service provider m requests
a certain amount of resources from every RAN k denoted by
a vector xm = (xmk)k∈K, then it allocates a portion of them,
zi = (zki)k∈K to each user i. Depending on the resource
allocated, user i has its utility umi(zi) (the form varies based
on the type of service). In order to maximize the sum of all
user utilities, an optimization problem should be solved by
service provider m:

Um(xm) = max
zi

Im∑
i=1

umi(zi) (1)

s.t.
Im∑
i=1

zki
βki
≤ xmk,∀k ∈ K (2)

zki ≥ 0, ∀i ∈ Im, k ∈ K (3)

We can make an assumption that user utility umi(.) is
an increasing and concave function, which holds in most
scenarios, e.g., elastic traffic [34], or services that guarantee
fairness [35].

Objective during Slicing. The Slicing Agent determines
xm, the amount of resources to request which maximizes the
service provider’s own interest, denoted by the utility function
Um(xm) of this service provider m.

C. Network Provider Slicing Agent
Similarly, a Slicing Agent exists as an application of each

SD-RAN platform, determining the type and amount of re-
sources allocated to different services.

Resource Abstraction. Although an SD-RAN may have its
own abstraction of radio resources (e.g., Resource Blocks in

LTE, airtime control in WLAN), it is able to quantify them
as the performance level of the same network metric (e.g.,
downlink throughput), which will be a crucial function of the
Slicing Agent. If we consider one specific network metric in
this way, the resource offered by a network provider k can
be denoted by a vector yk = (ykm)m∈M. Without loss of
generality1, capacity Ck limits the amount of resources that
can be offered, i.e.,

∑M
m=1 ykm ≤ Ck.

Objective during Slicing. Similar to the service provider,
the Slicing Agent of a network provider aims at maximizing its
own profit, i.e., minimizing a cost function Vk(yk). This cost
occurs because of the operation and management overheads
of the RAN, as well as the opportunity cost since the network
provider cannot use these resources for other purposes. In
this paper, we mainly discuss the representative cases where
Vk(yk) function is increasing and convex. [36]

D. Slicing Orchestrator

A service provider requests resources for its slice which
maximize its utility, while network providers aim at min-
imizing their costs. Since these goals are at conflict it is
hardly possible to achieve it without negotiations through
a third party. This is the job of the Slicing Orchestrator
which leads to an agreement of resource requests and offers
through double auctions. In other words, a legal slicing scheme
requires ykm = xmk for any service provider m and network
provider k. Beyond that, we consider maximizing the total
utility of all providers, which can be regarded as a social
welfare optimization problem:

max
xm,yk

M∑
m=1

Um(xm)−
K∑
k=1

Vk(yk) (4)

s.t. ykm = xmk,∀k ∈ K,m ∈M (5)
M∑
m=1

ykm ≤ Ck,∀k ∈ K (6)

ykm ≥ 0, xmk ≥ 0,∀k ∈ K,m ∈M (7)

Although the Slicing Orchestrator acts as a centralized com-
ponent connecting to Slicing Agents of all providers, it cannot
solve this problem directly. First, it is a reasonable assumption
that each provider is selfish and cares about their own utility or
cost, rather than the social welfare. Second, the orchestrator
does not have full access to information private to network
and service providers. More specifically, providers do not
always have the incentive to reveal their utility and cost
functions Um(xm) and Vk(yk). Moreover, the orchestrator
should be profiting during the resource allocation in order to
maintain itself. In the next section, we will introduce a double
auction mechanism to solve this problem, where the Slicing
Orchestrator is the broker and each Slicing Agent is a bidder.

1Although the capacity can be dependent of k in the cases such as WiFi
channel conflicts, the orchestrator introduced later is capable to notify each
provider to prevent such conflicts. In addition, it is easy to extend the algorithm
described in the next section to other forms of linear constraints.
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IV. METHODOLOGY

In this section, we introduce the methods to solve the social
welfare optimization problem described in the last section. We
also analyze the benefit of proposed mechanism theoretically
in comparison with other possible slicing architectures.

A. User Utility Optimization

First, we focus on the properties of the service provider
utility function Um(xm). It is the aggregation of each single
service user’s utility, where a subproblem of the intra-slice
resource allocation exists, as stated in (1).

If xm has been determined by the orchestrator, the service
provider can directly solve this subproblem by itself. For
example, the unique optimal can be efficiently found by
applying Karush-Kuhn-Tucker (KKT) conditions [37]. What
is more, Um(xm) has following important property:

Lemma 1. Um(xm) is an increasing and concave function.

Proof. For the monotonicity, with an increased xmk, allocating
the marginal value to any arbitrary user i improves umi(zi)
and

∑Im
i=1 umi(zi). Therefore, the optimal allocation Um(xm)

is increasing as well.
For the concavity, define z = (zki)k∈K,i∈Im , and

f(z,xm) =

{∑Im
i=1 umi(

∑K
k=1 zki) if constraint (2) holds

−∞ otherwise

f(z,xm) is a concave function of both z and xm. According
to [37], its partial maximization (i.e., Um(xm)) preserves
concavity.

B. Iterative Double Auction

The result of the subproblem above implies the concavity
of the social welfare function, making it possible for us to
adopt a double auction mechanism similar to [33] optimizing
the resource allocation during slicing.

By applying KKT conditions and introducing Lagrange
multipliers, the problem (4) has a unique optimal solution
because of the concavity. However, it cannot be acquired
without information of Um(xm), Vk(yk). Instead, we consider
the following alternative optimization problem:

L(x,y,λ,µ) =
M∑
m=1

K∑
k=1

(pmk log xmk −
akm
2
y2km)

−
K∑
k=1

λk(
M∑
m=1

ykm − Ck)

−
K∑
k=1

M∑
m=1

µmk(xmk − ykm) (8)

where λ = (λk ≥ 0)k∈K and µ = (µmk ≥ 0)k∈K,m∈M
are Lagrange multipliers. There are undetermined parameters
ak = (akm ≥ 0)k∈K,m∈M in this alternative problem, which
are the bids that the broker expects each network provider
k to submit. Similarly, pm = (pkm ≥ 0)k∈K are bids from
each service provider m. Two sets of rules are required for
the auctions. First, we need allocation rules to solve this

alternative problem. Second, payment rules will guide the
providers to submit bids determining the parameters of this
alternative problem, which should lead the optimal solution
coincide with the original problem.

Allocation Rules. Optimal results x∗ and y∗ of this al-
ternative problem can be calculated by KKT conditions of
L(x,y,λ,µ):

x∗mk =
pmk
µ∗mk

, y∗km =
µ∗mk − λ∗k
akm

(9)

µ∗mk(x
∗
mk − y∗km) = 0, λ∗k(

M∑
m=1

y∗km − Ck) = 0 (10)

Equation (9) shows the allocation rules of the double auc-
tion, revealing how the orchestrator determine the amount of
resources allocated to each slice based on bids received.

Payment Rules. By comparing the alternative problem (8)
with the original one (4), we notice that they have the same
optimal solution x∗ and y∗ only when:

pmk = x∗mk
∂Um(x∗m)

∂xmk
, akm =

1

y∗km

∂Vk(y
∗
k)

∂ykm
(11)

The orchestrator applies payment rules to induce bidders
submitting the above values. More specifically, the broker
charges gm(pm) to each service provider m for the resource
it bids to request, and pays hk(ak) to each network provider
k for the resource it bids to offer.

In this case, each service provider m determines its bid that
maximizes their payoff:

p∗m = argmax
pm

(Um(xm)− gm(pm)) (12)

Similarly, each network provider k makes decisions according
to:

a∗k = argmax
ak

(−Vk(yk) + hk(ak)) (13)

Payment rules should make these results coincide with
Equation (11). It can be calculated by combining the allocation
rules (9) with bids expressions (11)(12) and (13). As a result,
the payments and charges are proportional to the resources
demanded/offered:

gm(pm) =
K∑
k=1

pmk, hn(ak) =
M∑
m=1

(µmk − λk)2

akm
(14)

Iterative Algorithm. The allocation and payment rules
above are parameterized by the Lagrange multipliers λ and
µ, which can be calculated in a gradient descent manner by
running auctions of multiple rounds. The procedure of the
iterative double auctions is listed in Algorithm 1.

Defining a Lyapunov function summing the quadratic drifts
of λ(t) and µ(t), the convergence can be proved [33] under the
assumption that bidders are price-takers, where they passively
accept the price raised by the broker, rather than strategically
exert impact on it. It is true in perfect competition market,
which is reasonable in our architecture because we are con-
sidering multiple network and service providers with limited
information of each other.
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Algorithm 1 Iterative Double Auction
1: t← 0
2: Initialize x(0),y(0),λ(0),µ(0)

3: IsConverged← False
4: while IsConverged is False do
5: The broker announces λt,µt

6: Each service provider m submits bids pm
(t+1) by

(12); each network provider n submits bids an
(t+1) by

(13)
7: The broker calculates x(t+1) and y(t+1) by (9)
8: The broker calculates λ(t+1) and µ(t+1) by:
µ
(t+1)
mk = (µ(t) + s(t) · (x(t)mk − y

(t)
km))+

λ
(t+1)
k = (λ

(t)
k + s(t) · (

∑M
m=1 y

(t)
km − Ck))+

∀k ∈ K,m ∈M, and s(t) > 0 is the step size of gradient
descent.

9: if |p
(t+1)
mk −p(t)mk

p
(t)
mk

| < ε1 and |a
(t+1)
km −a(t)km

a
(t)
km

| < ε2, ∀k ∈
K,m ∈M then

10: IsConverged ← True
11: end if
12: t← t+ 1
13: end while
14: Output x(t),y(t),λ(t),µ(t)
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Fig. 2. PoA with different utilities and costs when disabling the orchestrator.

According to (12)(13), the algorithm is efficient and indi-
vidually rational, i.e., optimal social welfare is reached when
every bidder maximizes their own payoffs. This conclusion can
easily be extended to the case where a service provider owns
multiple slices or a network provider owns multiple sets of
RAN infrastructures. The provider can simply make decisions
for each of its slice/infrastructure independently.

The algorithm is scalable in aspects of both computing
(concave minimization with linear constraints) and synchro-
nization overheads (O(M · K) messages in each round).
In addition, it is straightforward to demonstrate that the
profit

∑M
m=1 gm(p∗m)−

∑K
k=1 hk(a

∗
k) is always non-negative.

Therefore, the orchestrator faces no problem of maintaining
itself (it never runs a loss) and has the incentive to hold
auctions.

C. Social Welfare Improvement

The optimal social welfare achieved by introducing the
Slicing Orchestrator is nontrivial. In particular, we demonstrate
that while our method can guarantee optimality with Price
of Anarchy (PoA) = 1, alternative distributed architectures
without centralized control (where providers directly negotiate
with each other as described below) can lead to sub-optimal

performance with PoA < 1. Thus the central orchestrator of
our architecture is an essential component for RAN slicing.

The Stackelberg game is a typical model to depict such
distributed architectures and widely discussed in related liter-
ature [38] [39], in which a leader and followers take actions
sequentially. The interaction of each service provider m and
network providers in this alternative architecture can therefore
be captured by a two-stage Stackelberg game:
• Stage 1: The service provider announces Pm, the price it

is willing to pay for every unit resource offered.
• Stage 2: Each network provider k submits xmk = ykm.
To analyze the price of anarchy (PoA) for the Stackelberg

game model, we need to make a few additional assumptions.
First, we assume network providers are able to interact with
every service provider independently, by assuming Vk(yk) =∑M
m=1 Vkm(ykm). Secondly, the capacity of resources is no

longer a constraint. We also assume all information are pub-
lic. These assumptions actually weaken the practicality of
such models. A strength of our proposed design is that the
difficulties due to these assumptions are avoided. Moreover,
we demonstrate that the Stackelberg game has inferior social
welfare even if all these extra assumptions are satisfied.

The game has an equilibrium. At Stage 2, given the price
Pm, a network provider responds maximizing its payoff:

y∗mk(Pm) = argmax
ykm

(Pm · ykm − Vkm(ykm)) (15)

Anticipating the response, the service provider will determine
the price in Stage 1 as:

P ∗m = argmax
Pm

(Um(y∗m(Pm))− Pm ·
K∑
k=1

y∗mk(Pm)) (16)

Correspondingly, the social welfare under the equilibrium
is SWequil =

∑M
m=1 Um(y∗m(P ∗m))−

∑K
k=1 Vk(y

∗
k(P

∗
m)).

We introduce Price of Anarchy (PoA), the ratio of social
welfare between the worst equilibrium and the centralized
optimal solution, as a metric to demonstrate the benefits
gained by setting up an orchestrator. For instance, we consider
following power functions as utility and cost, i.e., Um(xm) =
A · (

∑K
k=1 xmk)

r1 and Vk(ykm) = Bk ·
∑M
m=1 y

r2
km, ∀k ∈ K,

r1 ∈ (0, 1), r2 ∈ (1,∞). Then the equilibrium social welfare
SWequil can be calculated following (15) and (16). It is also
trivial to acquire the unique optimal solution SWopt by making
xmk = ykm and taking derivatives of

∑M
m=1 Um(xm) −∑K

k=1 Vk(yk). Finally the PoA has following expression:

PoA =
SWequil

SWopt
=
r

2r1
r1−r2
2 − r

2r2
r1−r2
2 · r1

r
r1

r1−r2
2 − r

r2
r1−r2
2 · r1

(17)

The PoA is impacted by the extent of concavity/convexity
of utility/cost functions. In Figure 2 we calculate PoA in
different combinations of r1 and r2. The results are lower than
0.8 in worst cases, indicating that our proposed architecture
is able to improve the social welfare by more than 25% in
specific scenarios. Later in the evaluation section, we will also
demonstrate this improvement in realistic settings.
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V. IMPLEMENTATION

We develop a prototype of proposed Slicing Agents and
Slicing Orchestrator and test them over several SD-RAN
controllers. In this section, we introduce some details of our
implementation.

We define two protocols in the system. First, RESTful
APIs are exposed to operators for the database update and
lookup. The orchestrator is open for network and service
providers to register in the system, update their information
or quit the system. It also keeps an account recording the
history charges and compensations caused by auctions to each
provider. Similarly, the agent has APIs for a service provider
to update the profiles of its users, including the list of RANs
a user is connecting to, the signal quality it receives and its
identification in each RAN. The double auction is also initiated
at the side of service provider, by specifying the type of
resource to request, the agent will send an auction message
to the Slicing Orchestrator.

Once the auction message is accepted by the orchestrator,
it will broadcast to all agents to start an auction through
the second protocol. The auction proceeds automatically by
the communications between the orchestrator and agents,
following the steps described in Algorithm 1. The auction
protocol defines several types of messages, representing ac-
tions during a double auction such as bidding and parameter
updating. When the orchestrator ensures the convergence of
the algorithm, it broadcasts a message to end the auction, and
sends a summary to each bidder, containing the final slicing
scheme and a bill of charges/compensations. The auction
module of our prototype is implemented in Python 3, with
bidding decisions calculated by Scipy [40] optimizer.

{ “slicing_scheme”:
[ { “identification”:

[  {“type”: “IMSI”,
“value”:

“208930000000002 ”},
{“type”: “MAC_WLAN”,

“value”:
“DC:A2:66:18:46:97”} ],

“resource”:
[  {“type”:”Bandwidth_DL”,

“value”: 1.35 } ] },

{ “identification”:
……

Slice Configuration:
• ID: 1
• DL Resource Blocks: 9%

Slice Association:
• IMSI: 208930000000002
• DL Slice ID: 1

Slice Configuration:
• DSCP: 0x20
• Airtime Quantum: 3176
• Traffic Rule:

• dl_dst = DC:A2:66:18:46:97
• dl_type = 0x0800
• ……

Slicing 
Agent 1

Slicing 
Agent 2

Configuration in FlexRAN Protocol

Configuration in EmPOWER Protocol

Fig. 3. Abstract of a slicing scheme as the result of an auction, from which
agents of network providers extract information and convert it into a readable
format for heterogeneous SD-RANs.

Receiving the slicing scheme, the agent of network provider
calls its SD-RAN controller to actually execute slicing. The
Slicing Agent works as a bridge enabling the interaction
between Slicing Orchestrator and SD-RAN controller. It es-
tablishes southbound communications with the SD-RAN fol-
lowing the controller’s protocols and interfaces (which may be
heterogeneous). As an instance, we implement the downlink
bandwidth auction with FlexRAN LTE controller and Em-
POWER WLAN controller. FlexRAN identifies a user by its
International Mobile Subscriber Identity (IMSI), and realizes
bandwidth slicing by allocating specific number of Resource
Blocks (RBs), the smallest resource unit of an LTE frame.

Virtual Machine
Network Provider 1

Virtual Machine
Network Provider 2

FlexRAN
Controller

EmPOWER
Controller

OpenAirInterface
Core Network

OpenAirInterface
eNodeB

Wi-Fi
Access Point

Desktop Computer
Service Provider 1

Desktop Computer
Service Provider 2

Desktop Computer
Slicing Orchestrator

Smartphone
Service User

Laptop
Service User

Video Server Web Server

Load Balancing MPTCP

Router Desktop & SDR

Fig. 4. Testbed setup and experimentation scenario of two services (video
streaming and web browsing) and two RANs (WLAN and LTE).

On the other hand, EmPOWER marks flows classified by
OpenFlow [41] rules with a Differentiated Services Code
Point (DSCP) header, and applies the Airtime Deficit Round
Robin (ADRR) packet scheduling policy [42] for downlink
bandwidth slicing. Correspondingly, the Slicing Agent has two
major tasks. First, for each user it picks the proper identi-
fication (e.g., IMSI for FlexRAN and OpenFlow fields for
EmPOWER) from the a multiple ones provided by the service
provider. Then, it will translate the amount of bandwidth
requested into the unit which the SD-RAN controller adopts,
e.g., number of Resource Blocks for FlexRAN, and airtime
portion for EmPOWER. Figure 3 shows the details of above
example about the resource and user identity abstraction.
Although protocol-dependent, development of such a module
is not a bottleneck when a new SD-RAN joins the coordination
of Slicing Orchestrator. In our prototype, lines of this module’s
codes account for less than 10% in total. And remaining codes
are identical for all providers. This enables the modular and
fast deployment of proposed architecture in heterogeneous
RANs with no infrastructure modification and minor code
development required.

VI. EVALUATION

In this section, we evaluate our proposed architecture and
algorithm with both our implementation in real devices and
numerical simulations in large-scale network topologies.

A. Testbed Setup

To quantitatively evaluate the performance of realistic sce-
narios, we build a testbed containing heterogeneous SD-RANs,
multiple network services and different types of user devices,
as shown in Figure 4.

We set up two network providers, one of LTE and another
of WLAN. In the LTE network, a desktop computer (3.6 GHz,
16 GB of RAM) with USRP B210 deploying OpenAirInter-
face [43] eNodeB works as the data plane on LTE band 7. We
also deploy virtual machines in a server (HP ProLiant DL360)
running components of LTE core network (HSS, MME and
SPGW) and the FlexRAN control plane. The WLAN network
has similar setting, while deploying EmPOWER control plane
and using a router (TP-Link AC1750) as data plane on
802.11g, channel 11 instead. Control planes of both RANs
run our Network Provider Agent.
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We also set up two service providers (one web server and
one video streaming server) in another desktop computer, both
deploying our Service Provider Agent. The Slicing Orchestra-
tor exists in third desktop computer. 1Gb/s Ethernet links are
set between RAN data planes and RAN control planes, as well
as the agents and orchestrator.

Two types of user devices, one HP Omen laptop and two
Nexus 6P Android smartphones are deployed for experiments.
The laptop connects to LTE network with a Huawei E3372
LTE USB modem. Besides, we consider multiple approaches
enabling multi-connectivity and deploy different solutions in
user devices.

B. Experimentation

Video Streaming Service. First, we consider a scenario
where a single service provider requests downlink band-
widths from both LTE and WLAN providers, in order to
support HTTP video streaming to a laptop through MPTCP
v0.93 [22]. We assume that network providers have cost
functions Vk(yk) = wnk ·

∑M
m=1 y

2
km. Here we have k = 1

for LTE and k = 2 for WLAN. According to the actual
performance of infrastructure, we set C1 = 15Mbps and
C2 = 9Mbps. On the user side, we choose the quality of
received video as its utility. Although it would not be easy
to deduct its exact relationship with downlink bandwidth,
the network provider can estimate it using an elastic utility
function umi(zi) = wsm ·

∑K
k=1(1 − e−α·zki), m = 1, i = 1,

which is general to cover various services [34]. Value of α can
be estimated depending on the video bitrate. We use a 1080P
video (around 7000 kbps) for experimentation, and assume
α = 1.6 correspondingly.

We fix wn1 = 0.2, wn2 = 0.1 and run the system with
different ws1 values, which represent the willingness of the
service provider to purchase resources for its slice. Figure 5(a)
shows the results of proposed double auction algorithm, in
which the service provider requests a share of bandwidth from
both RANs. With a larger ws1, the service provider acquires
more resources, indicating the capability of proposed system
to balance the offer and request with different utilities/costs
of providers. The result is concave in ws1, which suits the
video streaming service because redundant bandwidth beyond
the video bitrate adds little value. The orchestrator receives
payments from the service provider and make compensations
to network providers. In this scenario, these two amounts are
balanced. And it is intuitive that the service provider pays
more for larger requests.

We also measure the actual performance of video streaming.
After the whole video is streamed, we quantify the received
video quality by measuring its peak signal-to-noise ratio
(PSNR). A larger PSNR value indicates a smaller quality loss
during streaming. Figure 5(b) shows how the PSNR values
increase with larger bandwidth allocated.

Another crucial performance metric of proposed system is
the time spent on finishing the slice configuration. Figure 5(c)
shows the procedure of the iterative double auction. With
gradient descent step size 0.1, the offers and requests quickly
converge in 11 bidding rounds. We also measure the actual

time spent on finishing an auction as Figure 5(d), in which
we hold auctions for 100 times and plot the cumulative
distribution function (CDF). With all participants placed in the
same room with wired connections, it always takes less than
0.1 second. Then we add a simulated delay on all outgoing
traffic from the Slicing Orchestrator. The auctions can still be
finished quickly within 1 and 2 seconds, when the delay is set
to 10ms and 20ms.

Furthermore, to verify above conclusions from another
aspect, we monitor the traffic of video streaming through
both RANs in real time. As depicted in Figure 6, initially
the throughput from each RAN is consistent with the slicing
scheme in Figure 5(a). Then, we assume that the service
provider changes its willingness ws1 from 5 to 25 and therefore
starts a new auction at the 15th second. As a result, the
throughput starts to increase within 1 second, and becomes
stable again within 5 seconds, indicating the whole procedure
of slicing has been finished. In the figure, the WLAN through-
put shows fluctuations, because we set the temporal interval
of the curve as 0.1 second to better indicate the system’s
dynamic response. The queueing-based slicing mechanism of
EmPOWER cannot achieve the same level of fine-grained
control as the Resource Block allocation of LTE. However, it
is able to follow the auction result correctly on a larger time
scale, e.g., when measuring the average bandwidth of every
1 second. Therefore, we assert that the auction and slicing
mechanisms work smoothly as designed and is flexible enough
to adapt dynamic changes of user demands.

Web Browsing Service. We then consider another scenario
of two Android smartphones surfing the Internet to investigate
different performance metrics. Instead of MPTCP, we consider
another multi-connectivity case, the load balancing assignment
of flows to different network interfaces. With each smartphone,
we send the same amount of HTTP requests to download a
large HTML page (around 1.2 MB) through both LTE and
WLAN connections. And we measure the average page load
time as the performance metric. Corresponding to this metric,
the service provider may choose a different utility function
in the form of minimum potential delay fairness, umi(zi) =
wsm ·

∑K
k=1(−1/zki), m = 2, i = 1, 2. We assume the setting

of network providers are the same as in the last scenario.
Figure 7(a) shows that the auction algorithm also succeeds

in balancing the requests and offers with this new utility func-
tion. We repeat the download for 100 times using both network
interfaces and take the average value of page load time for each
slicing scheme. As Figure 7(b) indicates, the delay decreases
if the service provider requests more bandwidth for its users.

We also investigate how the proposed system is able to
tackle with device mobility. Keeping ws2 = 5, we change
the location of the second smartphone so that its LTE signal
strength falls to around −115 dB from −95 dB. (The WLAN
signal strength is less impacted.) In this case, the user can
report its signal strength to the service provider, reflecting
in an updated β12 parameter in the formulation. Then the
service provider can call a new auction to adjust its bids.
Figure 7(c) compares the auction results before (Case 1) and
after (Case 2) the movement, considering which the service

2377
Authorized licensed use limited to: Yale University. Downloaded on September 13,2020 at 00:43:31 UTC from IEEE Xplore.  Restrictions apply. 



1.5

2

2.5

3

3.5

4

P
a

y
m

e
n

t

5 10 15 20 25
Willingness of Purchase (w

s

1
)

0

1

2

3

4

5

6
D

L
 B

a
n

d
w

id
th

 (
M

b
p

s
)

LTE Bandwidth

WLAN Bandwidth

Payment

(a) Converged resource allocation.

5 15 25

Willingness of Purchase (w
s

1
)

22

24

26

28

30

P
S

N
R

 (
d

B
)

(b) Performance of video streaming.

0 2 4 6 8 10 12
Bidding Rounds

3

4

5

6

7

8

D
L

 B
a

n
d

w
id

th
 (

M
b

p
s
)

25

26

27

28

S
o

c
ia

l 
W

e
lf
a

re

Offer

Request

Social Welfare

(c) Convergence of an auction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Convergence Time (Sec)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

0

10 ms

20 ms

(d) Time to finish auctions.

Fig. 5. The (a) resource allocation and payment schemes determined by double auction with different weights of service provider utilities. (b) Actual
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provider requests more LTE bandwidth, and allocates a larger
portion of it to its second user. In Figure 7(d), we measure
the performance of this new allocation, in comparison of
an average allocation, where two smartphones still acquire
the same portion of resources. It indicates that there is an
improvement on the load time of the second user. The negative
impact of worse signal is not totally eliminated, because the
service provider needs to pay for the extra resource allocated.
However, it is able to find a balance and achieve the optimal
social welfare.

Multiple Slices. The proposed design also handles com-
petitions among service providers. In this scenario, we run
the two services above simultaneously. Figure 8(a) shows
the performance of two services under different combinations
of ws1 and ws2. The service provider with higher purchase
willingness is able to achieve better performance over the other
one. We compare these results with the case in which slicing is
not applied, e.g., the WLAN applies no queueing policies, and
the LTE eNodeB allocates the same number of resource blocks
to every user. We examine cases in which the eNodeB offers
20%, 60% and 100% of resource blocks. These plans lead to
different costs as well, as depicted in Figure 8(b). In each case,
either great performance degradation or significant additional
cost incurs, and the resources allocated to two services are
also severely imbalanced. All these factors lead to a worse
(and even negative) social welfare than our optimal result.

The time required for convergence does not dramatically
increase with more bidders. Figure 8(c) shows the procedure of
an auction with ws1 = 15 and ws2 = 5. Here the social welfare
appears to decrease with time, because the constraints are not
yet satisfied. The final result is still optimal. The performance
of larger scale auctions will be further analyzed in the next

subsection.
In Figure 8(d) we measure the CPU usage (of two cores)

and memory consumption of SD-RAN components. The first
column shows a baseline, the consumption of the original SD-
RAN controller (EmPOWER and SDN controller for WLAN,
FlexRAN and OpenAirInterface EPC for LTE) without the
deployment of our agents. In the second column, the Slic-
ing Agents are deployed. When not processing auctions, no
additional CPU resource is required. Only a small extra
portion of memory is occupied. In the third column we keep
initiating auctions with an interval of 1 second, therefore the
Slicing Agents are busy bidding and implementing the slicing
schemes, leading to larger while still affordable CPU usage.
From the results shown in the table, the Slicing Agent is
lightweight and does not exert heavy extra burden on the SD-
RAN controller.

C. Numerical Results

Scalability. Having verified our design and implementation
in the small-scale testbed, we now run simulations of larger
network topology to guarantee that the performance of pro-
posed design will not degrade when the network scaling up.
More specifically, we consider multiple RANs and services in
a 100m×100m area. Among K RANs, the first two are LTE
while remaining are WLAN providers each with an Access
Point. Each of M different service providers has I users
with dual-connectivity of LTE and WLAN. Entities above are
distributed uniformly in this area. A user’s LTE provider is
randomly assigned with uniform probability, and it connects to
its nearest WLAN access point. Each LTE network covers the
whole area with βki = 1, while WLAN’s βki is proportional to
the spectral efficiency of Shannon formula, following Rayleigh
fading depending on the distance between the user and the
Access Point. All other parameters (e.g., wnk , wsm, α) and
utility/cost functions are identical to the testbed, except that
we multiply each of them with a random factor uniformly
distributed in [0.9, 1.1], and enlarge the capacity by I times
consistent with the increasing amount of users.

We investigate the impact of network scale by observing the
speed of convergence with different numbers of network and
service providers. Figure 9(a) depicts the number of bidding
rounds until convergence with up to 8 network providers and
8 services (each has 10 users). It does not grow dramatically
with more providers participating the auction. Besides, the
convergence speed can be adjusted by setting proper step size
of gradient descent at the orchestrator.
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(c) Number of bidding rounds until convergence. (d) CPU and memory consumption of SD-RANs.
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Fig. 9. (a) The number of bidding rounds required for convergence when the network scales up. (b) Box plots and average values of auctions among 8
network providers and different number of service providers. (c) Social welfare of proposed architecture where an orchestrator holds Double Auctions and
another architecture where providers compete as a Stackelberg game. (d) Price of Anarchy in slicing games without an orchestrator.

Noticing that the marginal increase of bidding rounds be-
comes even slighter with more providers, we investigate it
further and have Figure 9(b) changing the number of service
providers (and users) while keeping 8 network providers. Both
variance and average values are larger when there are fewer
services, because users sparse in the area are more likely to
result in unbalanced resource requests to each RAN, which
need more iterations to converge. Due to features shown above,
our approach has good scalability.

PoA. In Figure 9(c) and 9(d), we investigate the social wel-
fare improvement compared with the Stackelberg game model
without an orchestrator, as stated in the previous section. we
plot the box plot and the average values of PoA in different
topology, indicating an improvement of social welfare between
7% and 10% in most cases.

VII. CONCLUSION

In this paper we have proposed a new architecture for re-
source slicing across multiple selfish network providers using
diverse technologies. Our proposed double auction mechanism
guarantees convergence to optimal social welfare in finite time.

Our central Slicing Orchestrator enables a unified resource
abstraction to compare and compose resources exposed by di-
verse RAN technologies. We have demonstrated the feasibility
of our architecture by deploying our orchestrator along with
open source RAN slicing systems such as EmPOWER and
FlexRAN. Our future plans include deploying our prototype
in a larger testbed with many network and service providers
to have more scalable and comprehensive evaluations. In
addition, we will incorporate other RATs and different types
of resources into our architecture.
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