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Abstract

The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby
stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet
around the bright (V=7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a
long-period (∼1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16±0.08R⊕ and a mass of

-
+7.25 1.12
1.19 M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period,

not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density
of the transiting planet is 3.97 gcm−3, which is low enough to suggest that the planet has at least a small volatile
envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness,
planet period, and location of the planet near both the “radius gap” and the “hot Neptune desert,” HD 86226c is an
interesting candidate for transmission spectroscopy to further refine its composition.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet systems (484)

Supporting material: machine-readable tables

1. Introduction

The Transiting Exoplanet Survey Satellite (TESS) was
launched in 2018 April and has proven to be a successful
planet-finding machine, with more than 1100 new planet
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candidates having been detected so far.33 Compared to the
Kepler mission, which ended in 2018, the TESS mission is
observing much brighter stars, the brightest of which have
already been targeted in radial-velocity (RV) surveys that
stretch back a decade or more. The increased overlap between
TESS and RV programs has allowed for faster validation of
transiting planet candidates and immediate constraints on their
masses (e.g., Huang et al. 2018; Dragomir et al. 2019;
Dumusque et al. 2019). In turn, archival RV observations of
TESS targets allow for more efficient vetting of the best planets
for atmospheric spectroscopy. The initial interpretation of
atmospheric observations requires at least±50% mass preci-
sion, and more detailed analysis requires even higher-precision
(±20%) mass measurements (Batalha et al. 2019).

Such atmospheric observations are especially important for
deducing the composition of planets in the “super-Earth” to
“sub-Neptune” range, which are the most common type of
planet with orbital periods shorter than ∼100 days (Howard
et al. 2012; Fressin et al. 2013; Fulton et al. 2017). Mass and
radius measurements alone suggest intrinsic astrophysical
scatter in the 1–4R⊕ planet mass–radius relation (e.g., Weiss
& Marcy 2014; Wolfgang et al. 2016). Planets in this region of
the mass–radius parameter space have degenerate distributions
between core, mantle, water envelope, and/or H/He envelope
—especially for planets larger than ∼1.6R⊕ (Rogers 2015),
there is a range of combinations of iron, silicates, water, and
gas that can match mass and radius measurements (Valencia
et al. 2007; Adams et al. 2008; Rogers & Seager 2010). Interior
structure models of small planets that incorporate constraints on
the bulk refractory abundances of the host star have been
shown to improve constraints on mantle composition, relative
core size, ice mass fraction, etc., depending on the type of
model and size of planet being modeled (Bond et al. 2010;
Carter-Bond et al. 2012a, 2012b; Dorn et al. 2015, 2017; Wang
et al. 2019), although counter-examples of different planet and
host star abundance ratios certainly exist (e.g., Santerne et al.
2018). Transmission and/or emission observations provide an
additional window into the atmospheric compositions of small
planets (Miller-Ricci et al. 2009; Benneke & Seager 2012;
Morley et al. 2015; Diamond-Lowe et al. 2018) and even
their surfaces (Demory et al. 2016; Koll et al. 2019; Kreidberg
et al. 2019).

Understanding the diversity in compositions of super-Earth
and sub-Neptune exoplanets is important for tracing where and
when they formed in protoplanetary disks, and for comparing
their formation processes to those thought to have occurred in
the solar system. For example, in our Solar System, Jupiter
likely trapped solid material in the outer disk and created an
inner mass deficit (Lambrechts et al. 2014; Kruijer et al. 2017),
thereby limiting the masses of the inner planets (O’Brien et al.
2014; Batygin & Laughlin 2015). Jupiter’s growth and possible
migration are also thought to have scattered carbonaceous
chondrite bodies inward, possibly delivering water and other
volatile species to the Earth (Alexander et al. 2012; Marty 2012;
O’Brien et al. 2018). Could analogous processes have
happened in exoplanetary systems? How would this impact
the compositions of inner super-Earth and sub-Neptune
planets? From studies combining Kepler and long-term RV
data, it appears that about one-third of small planets (1–4 R⊕ or
1–10 M⊕ inside 0.5 au) have an outer giant planet companion

(0.5–20 MJup and 1–20 au), and that cool giant planets almost
always have inner small planet companions (Zhu & Wu 2018;
Bryan et al. 2019). To investigate whether outer giant
exoplanets have a similar influence on inner small planets as
they do in our solar system, we can look for compositional
differences between small inner planets that have outer giant
planet companions versus those that do not.
In this paper, we describe the TESS detection of a small

planet (∼2 R⊕) around the solar-type star HD 86226, a system
already known from RV studies to host a long-period giant
planet. TOI-652.01 (HD 86226c) is a ∼4 days-period planet on
the border between super-Earths and sub-Neptunes as defined
by the “radius gap” identified by Fulton et al. (2017). We also
present a mass measurement of HD 86226c, and use all of the
existing RV data to update the parameters of the known,
∼1600 day period giant planet. In Section 2, we begin by
reviewing what is known about the star and previously detected
planet, and then in Section 3, we detail the new or newly
analyzed observations from TESS, Las Cumbres Observatory,
All Sky Automated Survey (ASAS), ASAS for SuperNovae
(ASAS-SN), Southern Astrophysical Research (SOAR) Tele-
scope, CORALIE, and Planet Finder Spectrograph (PFS). We
present our analysis of the transit and RV observations in
Section 4, and our results in Section 5. Finally, we discuss
several interpretations of our results and summarize our
conclusions in Section 6. Overall, HD 86226c is an excellent
candidate for atmospheric studies that can help address
multiple small planet formation questions.

2. Previous Characterization of HD 86226

The proximity of HD 86226 and its similarity to the Sun
have made it a target in many photometric, spectroscopic, and
high-contrast imaging investigations, as well as planet
searches. Here, we highlight the most relevant examples. Basic
information about HD 86226 is listed in Table 1.

Table 1
HD86226 Catalog Information

HIP ID 48739
TIC ID 22221375
TOI ID 652
R.A.a (J2000) 09h56m29 84
Decl.a (J2000) −24°05′57 80
μα

a (mas yr−1) −177.11±0.09
μδ

a (mas yr−1) 46.87±0.08
ϖa (mas) 21.86±0.050
RVa (km s−1) 19.56±0.19
v isin b,c,d,e (km s−1) 2.4–4
SpTf G2 V
VT

g 8.004±0.013
BT–VT

g 0.699±0.03
( )¢Rlog HK

h −4.95

Notes.
a Gaia Collaboration et al. (2018).
b Nordström et al. (2004).
c Marmier et al. (2013).
d Glebocki & Gnacinski (2005).
e Also consistent with PFS measurement.
f Esa (1997b).
g Høg et al. (2000).
h Arriagada (2011).

33 NASA Exoplanet Archive, accessed 2020 February 20.
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This star was included in the original Geneva-Copenhagen
Survey (GCS) of the solar neighborhood (Nordström et al. 2004),
combining new RV measurements with existing uvbyβ photo-
metry, Hipparcos/Tycho-2 parallaxes, and proper motions to
derive stellar parameters, kinematics, and Galactic orbits for a
magnitude-limited sample of almost 16,700 F and G dwarfs. These
derivations were subsequently improved with new Hipparcos
parallaxes (Holmberg et al. 2009) to update the absolute
magnitudes, ages, and orbits, and by using the infrared flux
method (Casagrande et al. 2011) to update the stellar effective
temperatures, metallicities, and ages. The final stellar parameters in
the GCS reported by Casagrande et al. (2011) for HD 86226 are
as follows: Teff=5928±81K, logg=4.45 dex,

34 [Fe/H]=
0.0 dex,35 M*= -

+1.05 0.05
0.03 Me, and Age= -

+3.31 2.3
3.09 Gyr (using

the BASTI isochrones, but the result is similar with Padova
isochrones). Interestingly, Datson et al. (2012, 2015) conducted
a focused study of solar analogues in the GCS, and confirmed
that HD 86226 is not a solar twin, given the sufficiently great
differences in its measured absorption line equivalent width
(EW) values versus those measured from the solar spectrum.
HD 86226 is included in the SWEET-Cat catalog of stellar
parameters for stars with planets (Santos et al. 2013), with the
following parameters derived from high-resolution, high-
signal-to-noise ratio FEROS spectra based on the EWs of
Fe I and Fe II lines, as well as the iron excitation and ionization
equilibrium: Teff5947±21 K, logg=4.54±0.04 dex, [Fe/
H]=0.02±0.02 dex. The most recently published stellar
parameters of HD 86226 come from Maldonado et al. (2018) in
their investigation of the compositional differences between
stars hosting hot and cool gas giant planets. They reported
Teff=5854±13 K, logg=4.36±0.03 dex, [Fe/H] =
−0.05±0.01 dex, as well as abundances of C, O, Na, Mg,
Al, Si, S, Ca, Sci, Ti, V, Cr, and Mn. Along with their
parameters, the Hipparcos V magnitudes (Esa 1997a) and
parallaxes (van Leeuwen 2007) and PARSEC isochrones
(Bressan et al. 2012), Maldonado et al. computed the mass,
radius, and age of HD 86226 to be M*=1.00±0.01 Me,
R*=1.02±0.04 Re, and Age=4.64±1.51 Gyr.

HD 86226 was also part of the long-term Magellan planet
search program, initiated with the MIKE (Bernstein et al. 2003)
spectrograph on Magellan II fitted with an iodine absorption
cell (Marcy & Butler 1992; Butler et al. 1996). With 13 RV
observations from MIKE data spanning 6.5 yr, Arriagada et al.
(2010) reported the detection of HD 86226 b, a 1534±
280 days planet with an RV semi-amplitude K of
37±15 m s−1 and a moderately high eccentricity of 0.73±
0.21. The authors inferred the minimum mass of the planet to
be Mp sini=1.5±1.0 MJup (assuming M*=1.02 Me).
However, an additional 65 RV observations from the
CORALIE planet search (Udry et al. 2000) published in
Marmier et al. (2013) revealed that the long-period giant
planet was less massive and less eccentric than previously
thought. Those authors found K=15.3±1.7 m s−1,
e=0.15±0.09, P=1695±58 days, and Mp sin i=
0.92±0.10MJup (assuming M*=1.06±0.03 Me).

There have been no published updates to the planet
parameters of HD 86226 b since Marmier et al. (2013).
However, Mugrauer & Ginski (2015) included the star in a
search for nearby stellar and substellar companions to known

exoplanet host stars using the adaptive-optics imager NACO on
the Very Large Telescope (VLT) at ESO’s Paranal Observa-
tory. With their Ks band observations, the authors ruled out
companions of �53 MJup between 12 and 387 au around HD
86226.

3. New Observational Characterization of HD 86226

3.1. Photometry

Here, we describe the details of the new photometric
observations. Section 4 contains the analysis of these
observations.

3.1.1. TESS

A new transiting planet candidate around HD 86226, TOI-
652.01, was detected by the TESS Science Processing
Operations Center (SPOC) pipeline (Jenkins et al. 2016) and
announced in 2019 May. The TESS short-cadence (2 minute)
photometry was collected in Sector 9 (spanning 25.3 days from
2019 February 28 to 2019 March 26) using Camera 2. We
downloaded the short-cadence lightcurve file from the Mikulski
Archive for Space Telescopes (MAST), extracted the systema-
tics-corrected photometry (PDCSAP FLUX; Stumpe et al.
2012, 2014; Smith et al. 2012), removed data points flagged as
having low quality as well as out-of-transit 5σ outliers, and
normalized the lightcurve to have a mean value of unity outside
of the transits (based on the period and transit duration reported
in the SPOC Data Validation Report Summary for TOI-
652.01).
We detrended the lightcurve by modeling the low-order

variability with a simple low-amplitude sine function, and then
dividing by the sine function, which was derived by the
following procedure. We masked the transits of TOI-652.01,
then calculated a Lomb–Scargle (L–S) periodogram from the
resulting lightcurve to determine the variability period and its
error from the location and width of the highest L–S
periodogram peak. The variability amplitude, error, and epoch
were determined from the best-fitting sine function to the
lightcurve, at the period determined from the L–S periodogram.
The best-fit variability period is 6.4±0.7 days with an
amplitude of 79±3 ppm, as shown in Figure 1. We found that
removing this variability reduced the binned photometry cred

2

from 7.42 to 1.83 and rms from 65 to 34 ppm in the (L–S
period) phase-folded lightcurve with 100 bins, comparable to
the rms of ∼31 ppm for the 10th percentile of the least noisy
TESS lightcurves of similarly bright stars in Sector 9.36 We
checked the 10 nearest stars in the short-cadence mode during
Sector 9, ranging from between 484″ and 3000″ away from
TOI-652, and detected no similar variability, although we
cannot reject the possibility that the variability signal originates
from a nearby diluted object. The period of the variability in
TOI-652 is not near the reaction wheel desaturation events that
happened every 3.125 days, and it is very close to perfectly
sinusoidal, unlike the expected desaturation events. We
conclude that the variability signal is likely of astrophysical
origin, possibly half the rotation period or originating from
another nearby diluted star. Our analysis of the ground-based
photometry and activity indices below do not shed conclusive
light on the signal’s origin.

34 No error provided.
35 No error provided.

36 TESS Data Release Notes for S9,https://archive.stsci.edu/missions/tess/
doc/tess_drn/tess_sector_09_drn11_v04.pdf.
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We computed the box-fitting least squares (BLS) (Kovács
et al. 2002) periodogram of the detrended TESS lightcurve and
independently detected a periodic transit signal at 3.98 days
with a transit depth of 360 ppm and a signal-to-noise ratio of
20. This signal corresponds to TOI-652.01, reported by the
SPOC pipeline. Next, we masked the detected transits and
recomputed the BLS to search for any additional transiting
planets in the system. The residual BLS periodogram peaks
were all below 5σ and none of the main residual peaks revealed
a transit-like signal when phase folding the lightcurve at the
corresponding periods; this is consistent with the Data
Validation Report, which failed to find evidence of any
additional transiting planet signatures in the lightcurve. In
Figure 2, we show the TESS photometry with transits of TOI-
652.01 marked in the left panel, and our BLS-detected transit in
the right panel.

The Data Validation Report shows that TOI-652.01 passes all
validation tests (such as the odd–even transit depth test for
eclipsing binaries, the ghost diagnostics for scattered light, and
the bootstrap false alarm test), except the centroid test of the
difference image between the mean out-of-transit and in-transit
images. The pixel response function centroid in the difference
image relative to the TIC position and relative to the out of transit
centroid are both offset by 12″ (5σ) and in the same direction.
However, the centroid offsets were likely caused by a slight
saturation of the bright T=7.4 target, and because there are no
known stars near the subpixel centroid displacement, it is
reasonable to assume that the transit events happen on the target.
The optimal photometric extraction mask was roughly two

pixels in radius, and consisted of 17 pixels in total. Besides our
target, seven other, much fainter stars were also located within the
extraction mask and therefore contributed to the combined flux.

Figure 1. TESS photometric variability. Left panel: PDC lightcurve with transits masked (gray) and reaction wheel desaturation events marked with blue triangles.
Middle panel: L–S periodogram with the strongest peak at 6.4 days marked with a vertical gray line. Horizontal dashed line represents a FAP of 0.01. Right panel:
Phase-folded lightcurve at the variability period, with (black) and without binning (gray). Best-fitting variability function is shown in red.

Figure 2. TESS lightcurve of HD 86226 and our preliminary transit detection. Left panel shows the simple-aperture (SAP, top, black), systematics-corrected (PDC,
middle, red), and detrended (bottom, blue) TESS photometry, with the transits of TOI-652.01 (HD 86226c) marked with gray vertical lines at the bottom of the panel.
Right panel shows the detrended lightcurve in gray, and in phase bins of 0.001 in black, folded to the period of TOI-652.01 as identified by the BLS periodogram.
Detected transit is shown as a red line in the right panel.
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The SPOC performs a correction for crowding and for the finite
flux fraction of the target star’s flux in the photometric aperture
using the point-spread functions (PSFs) recovered during TESS
commissioning; for TOI 652, this CROWDSAP value is 0.9985,
indicating that the total contamination ratio based on the local
background stars in the TIC is 0.15%. Among the seven
contaminating stars, only one star (TIC 22221380, 38 9 away)
was bright enough (T=14.88) that it could be responsible for the
observed 360 ppm transit depths in the combined flux if it were an
eclipsing binary with eclipse depths of 36%. However, the
odd–even transit depth and the centroid tests did not indicate that
TIC22221380 was the likely source of the observed periodic
brightness dips. The Las Cumbres observations described in
3.1.2 also rule out an eclipse on TIC22221380. Moreover, the
RV follow-up observations (Section 3.3), which excluded
TIC22221380, revealed that the planetary signal comes from
the main target, TIC22221375. The small contamination from the
nearby stars has been accounted for by the Presearch Data
Conditioning (PDC) pipeline module (Jenkins et al. 2016), which
corrects for the dilution effect and also for any spilled flux of the
target outside the photometric extraction mask.

3.1.2. Las Cumbres Observatory: Sinistro

We acquired ground-based time-series follow-up photometry of
a full transit of TOI-652.01 on UTC 2019 May 15 in z-short band
from a Las Cumbres Observatory Global Telescope (LCOGT)
1.0m telescope (Brown et al. 2013) at Siding Spring Observatory.
We used the TESS Transit Finder, which is a customized
version of the Tapir software package (Jensen 2013), to schedule
the observations. The 4096×4096 LCO SINISTRO cameras
have an image scale of 0 389 pixel−1, resulting in a 26′×26′
field of view. The 269 minute observation used 70 s exposure
times, resulting in 162 images. The images were calibrated by the
standard LCOGT BANZAI pipeline and the photometric data were
extracted using the AstroImageJ (AIJ) software package
(Collins et al. 2017). Since the transit depth of TOI-652.01 is too
shallow to generally detect with ground-based photometric follow-
up observations, we saturated the target star in order to enable a
search of the faint nearby Gaia DR2 stars for nearby eclipsing
binary events that could have produced the TESS detection in the
irregularly shaped TESS aperture that generally extends ∼1′ from
the target star. A neighboring star that is fully blended in the TESS
aperture and that is fainter than the target star by 8.6 magnitudes in
TESS band and that has a 100% eclipse could produce the TESS
reported flux deficit at mid-transit. We therefore searched all stars
within 2 5 that have a delta-magnitude <9 for deep eclipse events
occurring within 3σof the predicted time of transit center. All such
nearby stars had lightcurves consistent with being flat with rms
values less (by at least a factor of eight) than the eclipse depth
required to produce the TESS detection in each of the stars. By
process of elimination, we conclude that the TESS detected transit
is indeed occurring in TOI-652.01, or a star so close to TOI-652.01
that it was not detected by Gaia.

3.1.3. ASAS and ASAS-SN

We found archival V-band photometry of HD 86226 from
the ASAS37 (Pojmanski 1997) and from the ASAS-SN
(Shappee et al. 2014) database.38 There are 660 ASAS

measurements from 2000 November 21 to 2009 December 3.
We selected the data flagged as “A” and “B,” indicating the
highest-quality measurements; data flagged as either “C” or
“D” were automatically discarded. After performing a 3σ
clipping rejection, we ended up with 615 useful observations.
ASAS-SN data spans from 2014 May 7 to 2018 July 5, with a
total of 279 observations. In this case, we only performed the
sigma-clipping process, yielding 274 measurements.
For both the ASAS and ASAS-SN photometry, we then

applied the GLS periodogram to search for periodic signals
embedded in the data that could be related to the rotation period
of the star. We defined a grid of 20,000 period samples from
0.5 to 1000 days, evenly spaced in frequency space. The
significance threshold levels were estimated in both cases
by running 10,000 bootstraps on the input measurements via
the Python module astropy.stats.false_alarm_
probability().39 Figures 3 and 4 show the time series
and GLS periodograms for the ASAS and ASAS-SN photo-
metry, respectively. In both cases, the power spectrum shows a
peak at ∼78 days, with the ASAS photometry also showing a
peak slightly longward of 100 days. However, we caution that
this should not necessarily be interpreted as the rotation period
of HD 86226; given its solar-like parameters, we expect its
period to be closer to 20–30 days (McQuillan et al. 2014).
Arriagada (2011) reported a rotation period of 25 days from
analysis of chromospheric activity indicators (S-indices; see
Section 3.3.2) of HD 86226, derived from their Magellan II/
MIKE observations. In our analysis of the ASAS and

Figure 3. GLS periodogram of the ASAS V-band photometry. Dashed lines
from top to bottom represent the 0.1,1 and 10% significance threshold levels,
respectively, obtained via 10,000 bootstraps samples.

Figure 4. GLS periodogram of the ASAS-SN V-band photometry. Dashed
lines from top to bottom represent the 0.1,1 and 10% significance threshold
levels, respectively, obtained via 10,000 bootstrap samples.

37 http://www.astrouw.edu.pl/asas/?page=aasc&catsrc=asas3
38 https://asas-sn.osu.edu 39 https://docs.astropy.org/en/stable/timeseries/lombscargle.html

5

The Astronomical Journal, 160:96 (17pp), 2020 August Teske et al.

http://www.astrouw.edu.pl/asas/?page=aasc&catsrc=asas3
https://asas-sn.osu.edu
https://docs.astropy.org/en/stable/timeseries/lombscargle.html


ASAS-SN ground-based photometric data, we do not detect
any significant peaks in the periodogram at/close to 25 days.
Given the typical precision of the ASAS and ASAS-SN
photometry (0.02–0.04 mag), we do not expect to detect the
79 ppm, 6.4 days TESS signal described in Section 3.1.1.

3.1.4. WASP-South Photometry

WASP-South is the southern station of the WASP transit-
search survey (Pollacco et al. 2006), and consisted of an array
of eight cameras observing fields with a typical cadence of
10 minutes. The field of HD 86226 was observed over spans of
150 nights each year in 2007 and 2008, during which WASP-
South was equipped with 200 mm, f/1.8 lenses, and then again
in 2013 and 2014, equipped with 85 mm, f/1.2 lenses. In all,
45,000 photometric observations were obtained. We searched
the data for any rotational modulation using the methods from
Maxted et al. (2011). We do not find any significant periodicity
in the range 2–100 days, with a 95% confidence upper limit on
the amplitude of 2 mmag (Figure 5).

3.2. High-resolution Imaging with SOAR

With a very wide PSF (∼1′), the TESS photometry may
include flux from previously unknown nearby sources,
including potential stellar companions, which can dilute the
observed transit signal, resulting in an underestimated
planetary radius. We searched for close companions to HD
86226 with speckle imaging on the 4.1 m SOAR telescope
(Tokovinin 2018) on 2019 May 18 UT. Observations were
performed in the Cousins-I passband, similar to that of the
TESS observations. No nearby stars were detected within 3″
of the planetary host, and the data are able to place an upper
limit of ΔI∼ 6 for any companions outside of 0 5 of the star.
Within that separation, the data do not rule out brighter
(Δ I<6) unresolved companions. The 5σ detection sensitiv-
ity and autocorrelation function of the latter observations are
shown in Figure 6.

3.3. Spectroscopy

Here, we describe the details of the new RV observations.
Section 4 contains the analysis of these observations to derive
the mass of TOI-652.01 (hereafter HD 86226c).

3.3.1. Euler/CORALIE

HD 86226 has been monitored by the high-resolution
spectrograph CORALIE (Queloz et al. 2001) on the Swiss
1.2 m Euler telescope in La Silla Observatory, Chile, starting in
1999 March. Since the report by Marmier et al. (2013), 27 new
CORALIE spectra have been acquired, making for a total of 78
RVs spanning 20 yr. The instrument underwent major upgrades
in 2007 and 2014, which introduced offsets into the RV scale.
For this reason, the CORALIE data presented in this study are
treated as having come from three different instruments:
CORALIE98, CORALIE07, and CORALIE14. The present
version, CORALIE14, has a resolving power of R∼60,000
and is fed by two fibers: one 2″ diameter on-sky science fiber
encompassing the star, and another that can either be connected
to a Fabry–Pérot etalon for simultaneous wavelength calibra-
tion (used in the case of HD 86226) or on-sky for background
subtraction of the sky flux. For bright stars such as HD 86226,
CORALIE14 can reach its noise floor precision of 3 m s−1.
We computed RVs for each epoch by cross-correlating the

spectra with a binary G2 mask (Pepe et al. 2002). Bisector
span, FWHM, and activity indicators were computed as well
using the standard CORALIE DRS. All the new RVs presented
here come from CORALIE14 and are presented in Table 2. The
periodogram of Hα activity index values (Boisse et al. 2009)

Figure 5. Periodogram of the WASP-South data from the 200 mm lenses (top)
and 85 mm lenses (bottom). Horizontal lines are the estimated 1%false-alarm
levels.

Figure 6. SOAR speckle results of HD 86226, showing the detection limit
curve and reconstructed image (inset).

Table 2
New CORALIE Radial Velocities for HD 86226

BJD RV σRV Hα-index

(−2450000) (−19700 m s−1) (m s−1)

7024.75050 60.88 3.02 0.187
7038.86008 59.01 4.06 0.190
7118.65893 59.31 6.58 0.187
7143.58148 67.54 2.99 0.187
7430.82012 49.40 10.94 0.188
7459.76833 58.61 4.43 0.189
7739.79877 54.72 3.64 0.189

L L L L

(This table is available in its entirety in machine-readable form.)
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derived from all of the existing CORALIE spectra is shown in
black at the top of Figure 7, with the window function in red.40

We see one significant peak in the periodogram around 750
days, but it also overlaps partially with the window function.

3.3.2. Magellan II/PFS

HD 86226 has been monitored as part of the Magellan
Exoplanet Search, first with MIKE (Bernstein et al. 2003) as
described above, and more recently with the PFS (Crane et al.
2006, 2008, 2010) as one of the targets of the long-term survey.
Each observation makes use of the iodine cell. A template
spectrum of the target star (without the iodine cell and at
R∼130,000) is needed for the computation of the RVs. We
bracket these template observations with the spectra of a
rapidly rotating B star that is used in the determination of the
instrumental profile (PSF), which is also necessary for the
forward-modeling process. The determination of precise RVs
follows an updated version of the steps described by Butler
et al. (1996). The PFS detector was upgraded in February 2018.
To take into account the change in the velocity zero-point offset
between the different setups, throughout the analysis we refer
to the data prior to the CCD upgrade as PFS1 and the post-fix
data with the new detector as PFS2. Much of the PFS1 iodine
data were observed with a 0 5 slit, resulting in a resolving
power of ∼80,000, whereas the PFS2 data were observed with
a 0 3 slit, resulting in a resolving power of ∼130,000.
Exposure times for HD 86226 ranged from roughly 5–15
minutes with PFS1 and 10–20 minutes with PFS2.

In an attempt to monitor the chromospheric activity of the
star, we also derive spectroscopic indices from the CaII H line
(S-index; after Wright et al. 2004) with our reduction pipeline.
Figure 7, bottom, shows the periodogram of the S-indices
derived from the PFS spectra, in which we see a collection of
significant peaks starting at ∼50 days and continuing to longer

periods, with a noticeable peak at ∼345 days. Again, many of
these peaks also overlap with the window function, shown
in red.
Table 3 shows the RV measurements for HD 86226 acquired

with PFS. The estimated parameters of HD 86226c met the
criteria for inclusion in the target list of the Magellan–TESS
Survey (MTS), a TESS follow-up program to measure the
masses of ∼30 Rp�3 R⊕ planets to construct an unbiased
mass–radius relation and investigate the relationship between
small planet density and insolation flux, host star composition,
and system architecture. More details of the survey will be
published in a forthcoming paper (J. Teske et al. 2020, in
preparation). We include in this publication a total of 105
individual spectra spanning ∼9.4 yr, from 2010 January 2 Jan
2019 May 24; as a result of HD 86226c being included in
MTS, our observing cadence increased during the 2019 May
observations.

4. Analysis

4.1. Stellar Characterization

We used EXOFASTv2 (Eastman et al. 2013; Eastman 2017)
to fit an spectral energy distribution (SED) and the MIST stellar
evolutionary models (Dotter 2016) to determine the stellar
parameters, as shown in Figure 8. We used spectroscopic priors
on the effective temperature and [Fe/H] of 5854±50 K and
−0.05±0.08 dex, respectively, from Maldonado et al. (2018),
rounding their quoted uncertainties up to account for systematic
error floors. We also applied a parallax prior of 21.943±
0.060 mas from Gaia DR2 (Gaia Collaboration et al. 2018),
after applying the 0.082 mas systematic offset determined by
Stassun & Torres (2018) and an upper limit on the V-band
extinction of 0.15097 mag from Schlafly & Finkbeiner (2011).
The SED fit was performed using an SED fitting code (Eastman
et al. 2019) that interpolates the 4D grid of logg, Teff, [Fe/H],
and extinction grid from C. Conroy et al. 2020, (in
preparation)41 to determine the bolometric corrections in each
of the observed bands, summarized in Table 4. This version of
the code is more accurate than the currently public version for
wide bandpasses like Gaia because it accounts for the detailed
shape of the filter. Note that the SED fitting takes into account

Figure 7. Top: GLS periodogram for Hα indices from CORALIE. Bottom:
Generalized L–S periodogram of S-indices from PFS. In both panels, the blue
vertical line represents the position of the 3.9 day period of the planet
candidate. Red power spectra show the window function.

Table 3
PFS Radial Velocities for HD 86226

BJDa RV σRV S-index Note

(−2450000) (m s−1) (m s−1)

5198.80046 4.20 1.64 0.165 PFS1
5198.80272 9.66 1.79 0.171 PFS1
5252.70830 5.98 1.59 0.157 PFS1
5256.67966 3.18 1.45 0.193 PFS1
5339.53760 12.55 1.47 0.159 PFS1
5339.54366 14.21 1.29 0.161 PFS1
5581.81336 3.98 1.42 0.165 PFS1

L L L L L

Note.
a These dates were converted from MJDUTC to BJDTDB using PEXO (Feng
et al. 2019).

(This table is available in its entirety in machine-readable form.)

40 Given the low signal-to-noise in the blue part of the CORALIE spectrum,
we chose to use Hα as our activity metric, instead of the S-index derived from
CaII H and K lines.

41 http://waps.cfa.harvard.edu/MIST/model_grids.html#bolometric
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errors in the zero points of the filters, but not systematics in the
stellar atmospheric models and their calibration to stellar data.
Thus, we round up the errors on R* to 2.5% and Teff to 1.5%.
Our resulting parameters in Table 5 are consistent (equivalent
within errors) with previous derivations for this star using both

photometric and spectroscopic data (e.g., Holmberg et al. 2009;
Casagrande et al. 2011; Marmier et al. 2013; Santos et al. 2013;
Gaia Collaboration et al. 2018), although we note that our
parameters place HD 86226 closer to spectral type G1 V versus
G2 V (Pecaut & Mamajek 2013).

4.2. Transit Modeling

First, we wanted to further constrain the orbital period and
center-of-transit time of HD 86226c. Using the exoplanet
photometry and RV analysis code juliet (Espinoza et al.
2018), we modeled the transit lightcurve from Section 3.1.1
with the priors defined in Table 6, based on our initial BLS
periodogram and the reported TESS SPOC pipeline results. We
tried incorporating an additional correlated noise term in the
form of a squared-exponential (SE) Gaussian process (GP)
kernel, but found the models to be indistinguishable based on
the model evidences (Δ ln Z<1). This makes sense, given the
low level of activity of the star. Moving forward, we only
account for white noise in the TESS lightcurve modeling for
HD 86226c, although we keep the additional “jitter” term
(σTESS) added in quadrature to the reported photometric
uncertainties to represent any residual signal.

4.3. RV Detection

Next, we reanalyzed the available RV observations accounting
for the inner transiting planet in addition to the already known
Jupiter-like companion, and searched for possible additional planet
signals. Figure 9 shows the Generalized Lomb–Scargle (GLS;
Lomb 1976; Scargle 1982; Zechmeister & Kürster 2009) of the
complete RV data set presented in Section 3.3. For each panel, we
compute the theoretical false alarm probability (FAP) as described

Figure 8. SED (top, see Table 4) and fit to MIST stellar evolutionary model
(bottom) for HD86226. Resulting parameters are listed in Table 5.

Table 4
HD86226 Photometry

Band Mag Used Catalog Catalog
mag error mag error

BT 8.703 0.020 0.019 Høg et al. (2000)
VT 8.004 0.020 0.013 Høg et al. (2000)
J2M 6.839 0.020 0.020 Cutri et al. (2003)
H2M 6.577 0.030 0.030 Cutri et al. (2003)
K2M 6.463 0.020 0.020 Cutri et al. (2003)
WISE1 6.446 0.078 0.078 Cutri et al. (2013)
WISE2 6.377 0.030 0.024 Cutri et al. (2013)
WISE3 6.447 0.030 0.016 Cutri et al. (2013)
WISE4 6.392 0.100 0.071 Cutri et al. (2013)
Gaia 7.771 0.020 0.001 Gaia Collaboration et al. (2018)
GaiaBP 8.108 0.020 0.002 Gaia Collaboration et al. (2018)
GaiaRP 7.333 0.020 0.004 Gaia Collaboration et al. (2018)

Table 5
Median Values and 68% Confidence Interval for HD86226, Created Using

EXOFASTv2 Commit Number 86bb5c9

Parameter Units Values

Stellar Parameters:
M* Mass (Me) -

+1.019 0.066
0.061

R* Radius (Re) -
+1.053 0.026
0.026

L* Luminosity (Le) -
+1.180 0.029
0.036

ρ* Density (g cm−3) -
+1.226 0.091
0.092

glog Surface gravity (dex, with g in cm s−2) -
+4.400 0.032
0.029

Teff Effective Temperature (K) -
+5863 88
88

[Fe/H] Metallicity (dex) -
+0.018 0.043
0.057

[Fe/H]0 Initial metallicitya -
+0.040 0.050
0.055

Age Age (Gyr) -
+4.6 2.7
3.7

EEP Equal evolutionary pointb -
+361 28
38

AV V-band extinction (mag) -
+0.05 0.03
0.04

σSED SED photometry error scalingc -
+1.72 0.35
0.55

ϖ Parallax (mas) -
+21.94 0.06
0.06

d Distance (pc) 45.57±0.12

Notes.
a This is the birth metallicity of the star, which is the input to the theoretical
model. The measured surface metallicity evolves throughout the life of the star.
For more details, see Choi et al. (2016).
b This represents a uniform basis to describe the evolution of all stars, such that
each phase of stellar evolution is represented by a fixed number of points. For
more details, see Dotter (2016) and Choi et al. (2016).
c Errors in the broadband photometry (Table 4) are scaled by this factor, which
essentially enforces the model has a χ2/dof=1.
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in Zechmeister & Kürster (2009), and show the 10%, 1%, and
0.1% levels. As seen in the top panel, the highest peak in the GLS
corresponds to the known long-period planet, although the peak is
wide and asymmetric meaning that its period is not well-
constrained. However, the second highest peak in the periodogram
is at P=3.98 days, with a FAP<10%, corresponding to the
reported transiting candidate from TESS data. Removing the RV

signature of the known long-period planet (fit with a Keplerian
orbit) from the RVs, we find that the peak at P=3.98 days
increased in significance and surpassed the FAP=0.1% threshold,
meaning that the planet might have been detected using the RV
data even without any knowledge of the transit signal. After
accounting for the signals produced by the two planets, no
significant peaks remain in the periodogram.
We used juliet to perform a systematic model comparison

analysis and computed the Bayesian model log evidence (ln Z)
using the dynesty package (Speagle 2020). As in Luque et al.
(2019), we consider a model to be moderately favored over
another if the difference in its Zln is greater than two, and strongly
favored if it is greater than five. If models are indistinguishable
(D <Zln 2), the one with fewer degrees of freedom is preferred.
Table 7 shows the different models tested to fit the RV data

together with the orbital period priors and the corresponding
Zln values. The rest of the priors of the fits are uniform and

Table 6
Priors Used in TESS Photometry-only Fits with juliet

Parameter Prior Description

no GP
Planet orbit parameters
P ( ) 3.9852, 0.01 Period of HD 86226c (d)
t0 ( ) 2548543.2458, 0.01 Center-of-transit time for HD 86226c (d)
a ( ) 12.5, 48 Scaled semimajor axis (a/R*) of orbit for HD 86226c
r1 ( ) 0, 1 Parameterization of p and b for HD 86226ca

r2 ( ) 0, 1 Parameterization of p and b for HD 86226ca

e 0 (fixed) Eccentricity of orbit for HD 86226cb

ω 90 (fixed) Argument of periastron passage of HD 86226cb orbit (deg)
TESS photometry parameters
q1 ( ) 0, 1 Quadratic limb-darkening parameterizationc

q2 ( ) 0, 1 Quadratic limb-darkening parameterizationc

DTESS 1 (fixed) Dilution factor for TESS photometry
MTESS ( ) 0.01, 1000 Relative out-of-transit target flux for TESS photometry
σTESS ( ) 0.01, 1000 Offset relative flux for TESS photometry (ppm)
Additional priors for squared-exponential GP kernel
GPσ ( ) 1, 100 Amplitude of the GP (ppm)

aGP 0 ( ) 1, 100 Inverse (squared) length-scale/normalized amplitude

Notes. The labels  ,  , and  represent uniform, normal, and Jeffrey’s (log-normal) distributions, respectively
a Here, p is the planet-to-star radius ratio and b is the impact parameter of the orbit. The juliet parameterization was proposed by Espinoza (2018) and only allows
for physically possible values (i.e., b<1+p); see reference for details. We also defined the minimum and maximum planet-to-star radius ratios to be 0 and 1,
respectively.
b We also tried allowing these parameters to float, only requiring that e<1, and found no significant difference in the planet orbital period or center-of-transit time.
c From Kipping (2013), the transformations from (q1, q2) to the quadratic limb-darkening coefficients (u1, u2) are q1=(u1+u2)

2 and q2=0.5u1×(u1+u2)
−1.

Figure 9. GLS periodogram of the RV data set presented in Section 3.3 of HD
86226. Red vertical line indicates the period of the known planet detected from
RVs (P=1700±60 days as measured by Marmier et al. (2013)) while the
blue vertical line indicates the period of the transiting candidate reported by the
TESS SPOC pipeline (P=3.98 days). Top panel: GLS of the complete RV
data set after fitting from the individual RV offsets. Middle panel: GLS of the
RV residuals after fitting a sinusoid to the highest peak in the top panel,
corresponding to the known Jupiter-like planet. Bottom panel: GLS of the RV
residuals after fitting with a sinusoid the highest peak in the middle panel,
corresponding to the transiting planet alerted by TESS. Horizontal lines show
the FAP levels of 10% (short-dashed line), 1% (long-dashed line), and 0.1%
(dotted–dashed line) for each panel.

Table 7
Model Comparison of RV-only Fits with juliet

Model Prior Pplanet (day) GP kernel D Zln

0pl L L 45.8
1pl ( ) 1350, 1750b L 15.0
2pl ( ) 1350, 1750b L 0.6

( ) 3.984, 0.001c
2

1pl+GP ( ) 1350, 1750b SE 14.2
2pl+GP ( ) 1350, 1750b SE 0.0

( ) 3.984, 0.001c
2

Note. The prior labels  and  represent a uniform and a normal distribution,
respectively. The final model used for the joint fit is marked in boldface (see
Section 4.3 for details about the selection of the final model).
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uninformative; the eccentricity and argument of periastron are
sampled through the parameterization ( )we sin , ( )we cos
with boundaries between −1 and 1. First, we note that
including the transiting planet in the fit improves the evidence
of the model significantly, again suggesting that the transiting
planet could have been detected using the RV data alone. To
account for additional systematics or correlated noise in the
data, we include in the model an SE GP kernel.42 Since
including a GP leads to an insignificant improvement in the
model, we conclude that the simpler, two-planet model is the
one that best describes the RV data.

4.4. Joint Transit+RV Fitting

We jointly analyzed the transit photometry and RV time
series using the juliet package, which as mentioned above
allows the user to fit the photometric time series and the RVs
from multiple instruments at the same time. We set up a two-
planet model consisting of a nontransiting planet and a
transiting planet with parameters from the TESS alert. The
priors for the orbital parameters for this joint fit were chosen
according to the information from the previous transit-only and
RV-only analyses (see Sections 4.2 and 4.3), except that we
allowed the eccentricity of HD 86226c to be a free parameter,
using a normal distribution between 0 and 1 truncated at 0.2
(thus, e>0.2 is allowed at much lower probability). We
performed the joint fit using the Dynamic Nested Sampling
algorithm via the Python module dynesty (Speagle &
Barbary 2018; Speagle 2020).

5. Results

The joint transit and RV fit (Section 4.4) is shown in
Figure 10, and the resulting parameters are tabulated in
Table 8; all of the planet parameters have the relevant stellar
parameter errors propagated. The final derived radius for HD
86226c is 2.16±0.08 R⊕, and the final derived mass is

-
+7.25 1.12
1.19 M⊕. At a period of ∼4 days, this planet is hot

(Teq=1311±28 K), making it typical of the TESS small
(Rp�4R⊕) planets that have been detected thus far, which
have a mean Teq of 1270 K.43 In Figure 11, we show a
comparison of HD 86226c and other detected planets for which
the mass and radius have been measured; this figure is
discussed further in Section 6.1. In terms of mass and radius,
HD 86226c most resembles K2-146 c (represented by a bold
pentagon symbol behind the star symbol in 11), Kepler-18 b,
Kepler-289 b, and Kepler-48 d (represented by pale squares in
the plot), but all of these other planets’ host stars are
V> 13 mag. HD 86226c has the same radius and nearly the
same insolation flux as piMen c at 2.04 R⊕, 4.82 M⊕ (Gandolfi
et al. 2018; Huang et al. 2018), but is 1.5×as massive.

5.1. Stellar Variability

Our analysis of the photometry in Section 3 does not give a
clear measurement of the rotation period of HD 86226, which
is perhaps to be expected, given only one sector of TESS data
(∼28 days). From the TESS photometry, the best-fit variability
period is 6.4±0.7 days, but with a low amplitude of

79±3 ppm. Given the lower precision of the ground-based
photometric measurements, we do not see this variability in the
WASP-South data, nor do we see peaks at such a short period
in the ASAS or ASAS-SN GLS periodograms (Figures 3 and
4); these data seem to indicate the most power at 80 days.
The S-index and Hα variability time series also show the most
significant power at longer periods, although with a larger
number of less distinct peaks than are present in the ASAS or
ASAS-SN photometry. In any case, given the resemblance of
HD 86226 to the Sun in temperature and age (see Table 5), it is
unlikely that its rotation period is as short as six days—or the
planet orbital period of four days (e.g., McQuillan et al. 2014).
Recent work by Nava et al. (2020) shows that, due to the

uneven and evolving nature of magnetic active regions in the
atmospheres of stars, signals related to magnetic activity can
cause significant peaks in the RV periodograms that do not
correspond to the stellar rotation period or even its harmonics.
This is true even when the active region lifetime is much
greater than the rotation period, such that one would expect the
rotation signal to dominate. The authors caution that spurious
periodogram peaks are inherent in RVs across many different
distributions of stellar activity, such that spurious power could
be added at planet periods and thus contributed to inaccurate
mass determinations. Detailed exploration of different magnetic
activity models, similar to what Nava et al. did for K2-131 and
Kepler-20, would provide an additional test on the robustness
of our derived masses, but is beyond the scope of this paper.
We also checked for linear correlations between the Hα

activity and CORALIE RV measurements (Figure 12, top) and
the S-index activity and PFS RV measurements (Figure 12,
bottom). While there are slight positive correlations in
both cases, they are not significant as determined by the
Pearson (testing a linear relationship) and Spearman rank
(testing a monotonic relationship) correlation coefficients,
which are r=0.10±0.4 and ρ=0.13 (p-value=0.24,
sample size=88) for CORALIE, and r=0.18±0.2 and
ρ=0.3 (p-value=0.02, sample size=58) for PFS, respec-
tively. Here, the errors on the r values were determined via
jackknife resampling.

6. Discussion and Conclusions

6.1. Interior Composition Estimates for HD 86226c

To explore the range of possible compositions of HD
86226c, we modeled the interior considering a pure iron core, a
silicate mantle, a pure water layer, and a H–He atmosphere.
The thickness of the planetary layers were set by defining their
masses and solving the structure equations. To obtain the
transit radius, we follow Guillot (2010) and evaluate where the
chord optical depth τch is 2/3. We followed the thermodynamic
model of Dorn et al. (2017), with the equation of state (EOS) of
the iron core taken from Hakim et al. (2018); the EOS of the
silicate mantle is calculated with PERPLE_X from Connolly
(2009), using the thermodynamic data of Stixrude & Lithgow-
Bertelloni (2011); and the EOS for the H–He envelope is
calculated assuming protosolar composition, based on the
semi-analytical H/He model of Saumon & Chabrier (e.g.,
Saumon et al. 1995, SCvH). For water, we used the QEOS of
Vazan et al. (2013) for low pressures and that of Seager et al.
(2007) for pressures above 44.3 GPa. Our input values for the
model were the derived planet mass, radius, and the stellar
abundances from Maldonado et al. (2018). Figure 11 shows

42 Squared-exponential (SE) GP kernel of the form s=ki j, GP,RV
2

( ( ) )a- -t texp i j0
2 .

43 From ExoFOP-TESS,https://exofop.ipac.caltech.edu/tess/, accessed on
2020 April 1.
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M–R curves tracing compositions of pure iron, Earth-like,
silicate, and pure water. The silicate composition line is
computed with the oxides Na2O–CaO–FeO–MgO–Al2O3–

SiO2, and the Mg/Si and Fe/Si ratios of the Earth’s mantle.
The water line corresponds to a surface pressure of 1 bar, which
corresponds to water worlds without water vapor atmospheres.
As shown in Figure 11, there are several small planets
following the Earth-like composition with relatively small
dispersion up to about 7M⊕. HD 86226c lies slightly above the
silicate composition line, suggesting that it is richer in water or
volatile elements like H–He than most of the planets below
7 M⊕ detected so far. Therefore, it might represent a new type
of terrestrial planet that differs significantly from Earth in terms
of bulk composition.

We then used a generalized Bayesian inference analysis with
a nested sampling scheme (e.g., Buchner et al. 2014) to

quantify the degeneracy between interior parameters and
produce posterior probability distributions. The interior para-
meters that were inferred include the masses of the pure iron
core, silicate mantle, water layer, and H–He atmospheres. We
assumed the Fe/Si and Mg/Si ratios inside the planet are the
same as the ratios observed in the stellar photosphere: 0.79 and
1.15, respectively, from Maldonado et al. (2018). Table 9 lists
the inferred mass fractions of the core, mantle, water layer, and
H–He atmosphere from our structure models. We found that
HD 86226c has a H–He envelope of 4.6×10−4M⊕ and
thickness of 0.39R⊕. The other three constituents of the planet
have relative mass fractions between 32% and 35% with large
uncertainties (see Table 9). This regime of the M–R relation is
strongly degenerate, and therefore even with more precise mass
and/or radius measurements, it would not be possible to
significantly improve the estimate of the mass ratio between the

Figure 10. Results from our joint fit for a two-planet model using juliet. Top: Phased-folded lightcurve from TESS photometry (blue points) and transit model
(black solid line) for the inner planet. Red points show binned photometry using a bin of 0.005 in phase. Residuals are shown in the bottom panel. Bottom: Phase-
folded RV curves for the two planets orbiting HD86226 (c on the left and b on the right). Solid back curves show the best-fit Keplerian model for each planet, with
light blue shading to represent the 68%, 95%, and 99% posterior credibility bands. White circles show the RVs in 0.1 phase bins. Data include CORALIE98 (orange),
CORALIE07 (red), CORALIE14 (purple), MIKE (blue), PFS1 (dark blue), and PFS2 (maroon). Residuals to the RV fit are shown in the bottom panels, with the same
symbol representation.
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core, mantle, and water layer. Atmospheric characterization
will be crucial to better constrain the volatile envelope ratio and
composition.

6.2. Potential for Atmospheric Characterization of HD 86226c

Figure 13 shows the position of HD 86226c in the radius–
insolation space. The planet is located toward the edge of
the hot Neptune desert (Szabó & Kiss 2011; Beaugé &
Nesvorný 2013; Mazeh et al. 2016), making it an interesting
target to study the processes leading to this dearth of planets
(e.g., Brunini & Cionco 2005; Helled et al. 2016; Owen &
Lai 2018). It is not located within the desert, however, which
makes it more likely that the planet retained its atmosphere
despite the intense radiation from the star (Owen &
Jackson 2012; Lopez & Fortney 2014; Owen & Wu 2013; Jin
et al. 2014; Lopez 2017). The detection of an escaping
envelope, or a stringent upper limit, could add a valuable data
point along the edge of this desert. To date, atmospheric studies
have only been conducted for a small number of exoplanets in
this regime, such as GJ 436 b (Butler et al. 2004), GJ 3470 b
(Bonfils et al. 2012), and HAT-P-11 b (Bakos et al. 2010). The
escaping atmospheres of exoplanets have been previously

detected using the cross-correlation function technique and
high-resolution spectroscopic data obtained during transit
(Hoeijmakers et al. 2018; Nortmann et al. 2018). The escaping
envelope could be observed via the He I triplet in the infrared
(Seager & Sasselov 2000; Turner et al. 2016; Oklopčić &
Hirata 2018; Oklopčić 2019) and the Balmer series of H I in the
visible range (Jensen et al. 2012; Cauley et al. 2017; Jensen
et al. 2018; Yan & Henning 2018; Casasayas-Barris et al.
2019). Additionally, if sodium exists in its neutral state in the
exoplanet atmosphere, it can be a tracer for the upper layers up
to the thermosphere of the planet (Redfield et al. 2008). The
size of the planet (transit depth of ∼400 ppm in the TESS
bandpass) makes the use of a large aperture telescope necessary
for such high-resolution, ground-based observations of its
atmosphere.
HD 86226c is observable from the Southern Hemisphere and is

thus a prime target for ESPRESSO at the VLT.44 ESPRESSO’s
wavelength range covers both the Na and Hα spectral features.
Using ESO’s tools to calculate necessary exposure times for a
signal to noise of 100 per exposure, one could achieve up to 29
exposures during one transit.45 Comparing with similar
observations performed with ESPRESSO (Chen et al. 2020),
we estimate that the sodium feature, if it exists, can be detected
at the 5σlevel by combining three transits. Additionally,
metals (e.g., Mg, Ti, Fe) could also be searched for in the
atmosphere of HD 86226c, thanks to ESPRESSO’s blue
wavelength coverage. Searching for near-infrared water
features in the atmosphere of HD 86226c is also feasible right
now with CRIRES+ at the VLT (Follert et al. 2014), and will
be in the future with the HIRES optical-to-NIR spectrograph at
the E-ELT (Marconi et al. 2016).
Tracing the potentially escaping volatile envelope of HD

86226c is also possible via the Lyα line. Due to the close
proximity (45.57 pc) and the solar-type host star, any potential
Lyα signal should be detectable with space-borne spectrographs
despite absorption by the interstellar medium, as has been detected
for similarly sized planets in the past, most notably GJ436b
(Kulow et al. 2014; Bourrier et al. 2015, 2016; Ehrenreich et al.
2015; Lavie et al. 2017). The planet’s size makes the study of
these lines challenging with the Hubble Space Telescope
(detection limits were simulated with the Pandexo Exposure
Time Calculator46). However, HD 86226c is a potential target
for James Webb Space Telescope in the future, not only to trace
the upper atmosphere but also to search for a potential water
feature in the infrared with NIRSpec.

6.3. HD 86226c: Another Small Planet with a Jupiter Analog

As discussed in the introduction, there is growing evidence
that some percentage (∼30%–40%) of stars hosting small
planets also host a larger, longer-period planet. This observa-
tion is intriguing because it suggests that the presence of outer
gas giant planets does not hinder the formation of inner smaller
planets, and in fact may facilitate the growth of some subset of
small planets. Whether there are differences in the properties of
small planets that have or do not have giant planet companions
is thus an interesting—but still open—question.

Table 8
Planetary Properties for HD 86226b and c

Property HD 86226c HD 86226b

Fitted Parameters
ρå (kg m−3) -

+1233 28
26

P (days) 3.98442±0.00018 -
+1628 21
22

T0 (BJDTDB—2450000) 8543.2539±0.0007 -
+7308 39
41

a/R* -
+10.11 0.08
0.07 L

b -
+0.63 0.08
0.06 L

K (m s−1) -
+2.89 0.43
0.46

-
+7.74 0.70
0.69

ip (deg) -
+86.45 0.16
0.26

e -
+0.075 0.048
0.065

-
+0.059 0.039
0.062

ω (deg) -
+196 90
60

-
+225 153
84

Derived Parameters
Mp -

+7.25 1.12
1.19 ME -

+0.45 0.05
0.04 MJ

Rp (RE) 2.16±0.08 L
a (au) 0.049±0.001 2.73±0.06
TD (hr) -

+3.12 0.05
0.12 L

ρp (g cm−3) -
+3.97 0.73
0.78 L

Teq
a (K) 1311±28 176±4

Instrumental Parameters
MTESS (ppm) 0.0000068±0.0000023
σw,TESS (ppm) -

+133.57 3.98
4.01

q1,TESS -
+0.33 0.18
0.29

q2,TESS -
+0.38 0.25
0.33

Instrument μ (m s−1) σw
b (m s−1) Nobs

COR98 -
+19744.07 2.72
2.59

-
+7.87 1.94
2.73 12

COR07 -
+19739.44 1.18
1.12

-
+7.22 0.88
1.01 50

COR14 -
+19761.52 1.32
1.29

-
+5.06 1.03
1.17 24

MIKE - -
+4.57 1.21
1.15

-
+4.21 2.54
2.89 13

PFS1 - -
+4.41 0.60
0.63

-
+4.27 0.49
0.58 44

PFS2 - -
+6.43 0.79
0.78

-
+1.70 0.30
0.35 23

Notes.
a Equilibrium temperature estimated considering Bond Albedo AB=0.
b Instrumental jitter term added in quadrature to measurement errors listed in
Tables 2 and 3, to produce the error bars shown in Figure 10, bottom panel.

44 Although HD 86226 is visible from Maunakea Observatory for a few hours
between mid-January and mid-March, there are no transits of planet c
observable in those windows in the next year.
45 Calculated with ESO’s Astronomical Toolshttp://eso.org/sci/facilities/
paranal/sciops/tools.html.
46 https://exoctk.stsci.edu/pandexo/

12

The Astronomical Journal, 160:96 (17pp), 2020 August Teske et al.

http://eso.org/sci/facilities/paranal/sciops/tools.html
http://eso.org/sci/facilities/paranal/sciops/tools.html
https://exoctk.stsci.edu/pandexo/


To place HD 86226c in context, we compared its properties
to those of the planets in the Bryan et al. (2019, hereafter B19)
sample, which consists of systems with at least one confirmed
planet with either a mass between 1 and 10 M⊕ or a radius
between 1 and 4 R⊕, depending on the detection technique.
Each of the 65 systems in the B19 sample have at least 10
published RV data points across a baseline of at least 100 days,
allowing the authors to search for long-period giant compa-
nions (with either resolved orbits or statistically significant
linear trends). However, we note that the sensitivity to long-
period companions is different, on average, for those systems
with the inner planet detected via RV versus transit. For
example, B19ʼs data and analysis would typically be sensitive
to a 1 MJup planet at about 6 au in the RV case, but only out to
about 1.5 au for the typical transit case. The RV-detected
systems have greater sensitivity because they typically have a
longer baseline of RV data (see Figure 5 in B19), therefore the
sample of small planets detected via transit that have giant
planet companions could be artificially small. Given the
existing RV data on HD 86226, it would be included in the
RV sample of B19.

When we restricted the B19 sample to only planets with
measured masses within ±2σ of HD 86226c’s mass, there were
22 planets that also had measured radii, 17 that did not show
evidence of a giant planet companion (“without companion”
sample), and five that did (“companion” sample). In the top
panel of Figure 14, we show how HD 86226c compares in
radius to these 22 similar-mass planets from B19. HD 86226c’s
radius is just above the median radius of the “with
companions” sample ( =

~
R 2.04p R⊕; blue vertical line).

Interestingly, the top panel of Figure 14 may point toward a
potential difference in size between small planets with and
without giant planet companions—it appears that small planets

without giant planet companions (green distribution, =
~
Rp

1.48 R⊕) may generally extend to smaller radii.
In the bottom panel of Figure 14, we show a comparison of

host star metallicities ([Fe/H]; taken from B19). Planets with
masses similar to that of HD 86226c that have a giant planet
companion (in blue) are skewed toward higher host star [Fe/H]
([ ] =
~
Fe H 0.30 dex) versus those without giant planet

companions (in green, [ ] =
~
Fe H 0.10 dex). B19 also found

evidence in their full sample that planets without giant
companions orbited lower-metallicity host stars than planets
with giant companions. If host star [Fe/H] is a proxy for
protoplanetary disk solid material content, then perhaps small
planets are larger in systems with giant planet companions
because there was more material around to form the core faster
and thus more readily acquire an atmosphere (Dawson et al.
2015; Owen & Murray-Clay 2018). This is in contrast to
Buchhave et al. (2018), who found that stars hosting Jupiter
analogs (1.5–5.5 au, e<0.25, 0.3–3 MJ planets) are on
average closer to solar metallicity ([Fe/H]=0). Based on
numerical simulations, Buchhave et al. suggested that metal-
rich systems form multiple Jupiter analog planets, leading to
planet–planet interactions and therefore eccentric cool or
circularized hot Jupiter planets. In the case of HD 86226c,
Figure 14 also shows that its host star [Fe/H] is below both the
“with companion” and “without companion” median values—
even though HD 86226c has a long-period giant planet
companion, its host star [Fe/H] is ∼0. Again, we note that
some of the “without companion” sample may actually contain
small planets with companions, if they remain undetected due
to lack of RV data. Perhaps this contributes to the difference
between the metallicity of HD 86226 and that of host stars of
other similar-mass small planets with companions.

Figure 11. Visualization of where HD 86226c (bold-outlined star symbol) falls among other detected planets in terms of its mass and radius. Circle symbols
correspond to planets with errors in radius and mass similar to those of HD 86226c (σRp�0.1 R⊕ and σMp�1.2 M⊕ errors), with masses measured via RV
observations. Pentagon symbols correspond to planets with the same σRp and σMp limits, but with masses measured via transit-timing observations. Bold-outlined
circles and pentagons correspond to multiplanet systems. Fainter background squares correspond to the remaining planets with lower-precision mass and radius
measurements from either RV or TTV observations. Colored curves represent estimates of different bulk compositions—H2O (light blue dotted), silicate (dark blue
dashed–dotted, no iron), Earth-like (purple dash), and pure iron (dark blue solid). See Section 6.1 for details on the interior modeling.
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Thus far, we have only compared HD 86226c to the B19
planets having measured masses within ±2σ of HD 86226c.
Given this small subset, we wanted to see if the same trends
with radius and host star metallicity held in the full sample. In
Figure 15, top panel, HD 86226c is again slightly above the
median radius of the “with companion” sample. In this figure,

we see that full sample of radii of planets without companions
(green) tends to be shifted toward radii slightly smaller
( =
~
R 1.62p R⊕) than those of planet with companions (blue;

=
~
R 1.98p R⊕). A comparison of the B19 planets with radii
<4 R⊕ to the full sample of known planets with <4 R⊕

47

Figure 12. Top: Correlations between RVs and Hα index from CORALIE.
Bottom: Correlations between RVs and S-index (SMW) values from PFS. On
each plot, we have subtracted the mean value of both Rv and the activity
indices.

Table 9
Inferred Interior Structure Properties of HD 86226c

Mcore/Mtotal -
+0.35 0.16
0.22

Mmantle/Mtotal -
+0.33 0.20
0.24

M Mwater total -
+0.32 0.17
0.21

Matm/Mtotal -
+0.000062 0.000023
0.000027

Figure 13. Insolation flux relative to Earth as a function of planet radius,
extracted from the NASA Exoplanet Archive. Data are presented in a fashion
similar to that in Fulton et al. (2017) and Fulton & Petigura (2018). Shading
represents point density, showing the different populations of sub-Neptunes
and super-Earths, with dense populations shown in darker shades. Light area in
the upper left of the plot indicates the hot Neptune desert. HD 86226c is shown
as a green star toward the edge of the desert.

Figure 14. Comparison of HD 86226c (purple, with shading corresponding to
1σ errors) to planets within ±2σ of its mass from the B19 sample. Top: Green
histogram (vertical line) represents the distribution (median) of the radii of
planets without giant planet companions. Blue histogram (vertical line)
represents the distribution (median) of the radii of planets with giant planet
companions. Bottom: Green histogram (vertical line) represents the distribution
(median) of the host star metallicities of planets without giant planet
companions. Blue histogram (vertical line) represents the distribution (median)
of the host star metallicities of planets with giant planet companions.

47 Retrieved from the NASA Exoplanet Archive on 2020 February 27.
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showed no significant difference in their radii distributions, so
we do not expect this result to be heavily biased by the B19
sample selection.

In the bottom panel of Figure 15, we plot the full B19 sample
of host star metallicities. Here, the means of the “no
companion” (green, [ ]~

Fe H =−0.04 dex) and “companion”
(blue, [ ] =
~
Fe H 0.14 dex) samples are shifted to lower values

but have roughly the same offset as the mass-restricted sample
above. The metallicity of HD 86226 falls in between “with”
and “without” companion host star median [Fe/H] values.
Again, a comparison of the B19 planets with radii <4 R⊕ to the
full sample of known planets with <4 R⊕ showed no
significant difference in their host star metallicity distributions,
so the B19 sample is not biased toward higher or lower host
star metallicities.

In the analysis above, there are hints that small planets
without giant planet siblings typically have a wider radius
distribution, extending to smaller radii. A full statistical
treatment including potential biases in the sample is beyond
the scope of this work. However, it is interesting to consider the
following questions: if small planets in systems with giant
planets are systematically larger, what is the origin of this
difference? Is it just an effect of higher metallicity enabling the
formation of bigger planets, as suggested above? Or, perhaps
there is something specifically related to the formation and
evolution of a giant planet in the system that makes the small
planets larger? A survey searching for giant planet companions
to small planets with host stars in a limited [Fe/H] range would
isolate one effect (host star [Fe/H]) while letting the other
(presence of giant planet companion) vary, and thus could
potentially help address the origin of the size difference in
small planets. In such a survey, it would also be important to
consider the potential effects of the host star irradiation over
time on the size of the small planets. Given its low host star

metallicity, size, and presence of an outer companion, HD
86226c may be important in addressing potential differences in
the population of small planets with giant companions versus
those without.
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