Extending SynBioHub’s Functionality with

Plugins

Jeanet Mante,* Zach Zundel,*"* and Chris Myers* 91

T Department of Biomedical Engineering, University of Utah, Salt Lake Clity, USA
1School of Computing, University of Utah, Salt Lake City, USA
Y Department of Electrical and Computer Engineering, University of Utah, Salt Lake City,
USA

E-mail: j.mante@utah.edu; me@zachzundel.com; myers@ece.utah.edu

Abstract

SynBioHub is a repository for synthetic genetic designs represented in the Syn-
thetic Biology Open Language (SBOL). To integrate SynBioHub into more synthetic
biology workflows, its data processing capabilities need to be expanded. To this end,
a plugin interface has been developed. Plugins can be developed for data submission,
visualization, and download. This framework was tested by the development of three
example plugins, one of each type: one allowing the submission of SnapGene files, one
visualizing the co-use of different genetic parts, and one preparing plasmid maps for

download.

Synthetic biology is a movement to standardize genetic engineering and make it more
repeatable. One important advancement was the development of standardized genetic parts
known as BioBricks, which can be composed using restriction enzyme assembly .12 An-
other important advancement was the development of the Synthetic Biology Open Language

(SBOL), a standard language for describing these parts, among other things.** Finally, to

1

share these parts, design repositories, such as SynBioHub,® were developed. One recent
enhancement to SynBioHub is the introduction of plugin capabilities to allow third-party
developers to add functionality. This allows the researchers who know the workflow best
to develop new plugins to aid their workflow. Additionally, it allows different SynBioHub
instances to be customized to suit the needs of the user whilst streamlining the core for scal-
ability. This paper describes the plugin engine as well as one plugin of each of the 3 types:
submission, visualization, and download. The example submit plugin allows the submission
of SnapGene .dna files. The example visualization plugin was created to aid in part selection.
The example download plugin allows the download of annotated plasmid maps. A plugin
template was created in Python. The template was published on GitHub, and used as the

base for each of the three example plugins.

Results

SynBioHub was extended with a new plugin engine. Each plugin must be deployed as a web
service that is accessible by SynBioHub. Once an appopriate action (e.g. a page is rendered)
is taken on SynBioHub the plugin is engaged. The steps for this process are illustrated in
Figure 1.

First, the status of the plugin is checked to ensure it is ready to serve requests. Second,
the plugin evaluates its ability to run by comparing the data type received to the data types
it can handle. Depending on this evaluation, the plugin is run. Finally, SynBioHub waits
for a response and asynchronously reports it to the user. New plugins can be configured in
the administrative portal of SynBioHub as shown in Figure 2.

Submit Plugin Engine Specifics: Submit plugins are called whenever a new sub-
mission is created and a user selects a plugin to handle it. The plugin is sent a list of files
included in the submission via the evaluate protocol. The list of files includes some metadata

for each file, such as file name and type, and an access link for each file. The submit plugin

Sta’(_US Req Uest
cratus: Running

: Evaluate Request
SynBioHub « —
Type: Possible

Plugin

Run Request
Results

Figure 1: Flow diagram illustrating the different steps of communication between the plugin
server and SynBioHub with orange signifying messages from SynBioHub to the Plugin and
blue from the Plugin to SynBioHub. First, SynBioHub checks the status of the plugin. If
the plugin is running, the type of object is sent to the plugin. If the plugin responds that it
can handle the object type, the full data is sent to the plugin to run and return results to
SynBioHub.

uses this information to decide if it can process the submission. The plugin then responds:
whether or not it can process the submission. If the plugin cannot process the submission,
then SynBioHub falls back to the default submit handling code. If the plugin can handle the
submission, it does so to create a new submission data set. The resulting data set is then
deposited into SynBioHub following the default submission routines.

Example Submit Plugin: The submit plugin accepts SnapGene formatted .dna files
and converts them to SBOL which is then uploaded to SynBioHub. The plugin works
by submitting the .dna file to a local SnapGene server which returns a GenBank version
of the file. This file is then converted to SBOL via the SBOL Converter and Validator
(https://validator.sbolstandard.org). The SBOL file is then returned by the plugin to Syn-
BioHub for submission.

Visualization Plugin Engine Specifics: Visualization plugins are called when a part

Rendering

D Name URL

1 Co-used Components http://song.ece.utah.edu/couse-components/sankey/
2 Most Used Components http://song.ece.utah.edu/couse-components/bar/

g iGEM Main Page http://synbiohub.org:3000/main/

4 iGEM Design Page http://synbiohub.org:3000/design/

5 iGEM Experience Page http://synbiohub.org:3000/experience/
Submission

D Name URL

1 SnapGene DNA File http://song.ece.utah.edu/snapgene-submit/dnasubmit/

Download

ID Name URL

1 SnapGene Annotated GenBank http://song.ece.utah.edu/snapgene-download/gbAnnotate/

Figure 2: The administrative interface for configuring plugins on SynBioHub. Plugins are
given names which are displayed to the user, and the URL of the plugin must be given for
it to work properly.

page is rendered. The plugin is sent metadata about the part and links to its SBOL. The
plugin can use this data to render a webpage visualizing information about the part. The
webpage is described using HTML, which the plugin sends to SynBioHub to be displayed.
SynBioHub asynchronously updates the part page to contain the rendered HTML webpage.

Example Visualization Plugin: Our visualization plugin can assist designers to find
parts for their designs. In particular, our plugin displays one graph per part page. There is a
Sankey diagram that shows other parts that are commonly used with the part displayed on
the page of interest. Co-used parts are sorted by their role and their position before or after
the part of interest in the genetic sequence (see Figure 3). Some additional features that make
this visualisation interactive include the ability to: zoom in and out, scroll across the graphs,
show data about a part when hovering over it, dynamically add value comparison lines,

download a plot as a PNG, and navigate to a page describing that part in the corresponding

Parts Co-Located with GFP (a CDS)

BBa_B0034
BBa B0032

BBa_B0031:
BBa_B0033

a_] \ B
B0073 ol
BBa-B0035 ~_ | —
—— ollowing Terminator,
(e = - BBa. -EBOU i 1
Lac
PreceedingiPromoters = M a cl-+p»

pBad/ara e —

lux-pR = BBa_B00:

BBa=J23100
eceeding, Terminator el lam .- " BBEEBGO-}‘ "
Esﬂaﬂzaml | - X ng— gmﬂgﬁsﬂowi g RBS
Ioreceedn GALT —R801012 =7

RN BBa~B10CFollowi

CD. BBa_113453 MSHIWD |%‘ryte
\ BE ' BBa:Buom/‘FT:un g CDS

. BBa:Jmo:W/W
'BBa_B0034 ing Othere===

2800347 Followi

B8a_B0030”
0032/

lacl”
BBa 12032
5. BBa_K299801
BBa_K299801 \ BBa_ 170029
BBa”K2066529 BBa_K2066529
mCherry Cherry

Figure 3: Example visualization created by the plugin for the part BBa_E0040, more com-
monly known as GFP. Part co-occurrence by type: a diagram showing how the part of
interest (GFP) is combined with other parts (e.g. BBa_B0012) and what fraction of these
interactions are preceding (BBa_B0012 is before GFP) and following (BBa_B0012 is after
GFP).

SynBioHub instance.

Download Plugin Engine Specifics: Download plugins are called when a download
is requested. The plugin is sent metadata about the part and links to its SBOL. The plugin
can use this data however it likes to create a zip file representing the part. The zip file is
then sent to SynBioHub along with some metadata, which is used to update the browser

with the zip file to download.

F+ Created with SnapGene®

(3060) Zral
Verfication forward (VF2) primer binding site)
(2739) XmnI | |
(2620) Scal || AatII (s0e2)
[2362) FspI [| End of stem loop
2201) Bsal | EcoRI [31£8
() | ()
(2140) AhdI | | PspoOMI (3184
(2014) DraIII [| [| ApaI - McoI (31838)
| i
[1823) Nrul I | | | SnaBI (3556)
|
(1787) BspDI - Clal | [EcoRV (3568)
(1606} Smal | | | I BseRI (3804)
(1604) TspMI - Xmal || | I' | BspEI (3834)
(1567) EcoNI | | [f | BsaBI *{3859)
(1482) AsiSI | | | | | BtgzI (3381)
1| | | = 7
(1zz0) PAMI | | | ||] I' IPHFI Tth1111 (4071)
| | |
(631) AlwNI I ([[BsrGI (4234)
(523) PspFI | '|| | | ||.. [| Hincll [4374)
[519) BseYI |11 | | |'l| [Kasl [4388)
| | If | | Narl [4289)
(323) DrdI | | '|| | ||| ll,- l: || | sfol (2350)
Verification reverse (VR) primer binding site | II [| ||II I [PluTI [4352)
[20) PstL \ | I|| II" || [Stul (4625)
| | |
(2) Spel : . | | ((l | Xbal [£543)
(0) Start | | I| | |1 - End (4643)
1000l 20001 000t 4gool
0o - Iy |
BioBrick suffix pMB1 origin kanamycin resistance REK y ori ¥bal
E. coli his operon terminator AmpR promoter bacterial terminator Pc promoter
I <=] | 1.
-
Stern loop beta-lactamase (ampR) promoter REKg origin
Stem loop

Deletion of AC

BBa_I750017
4649 bp

Figure 4: Example of a download output created by the plugin for the part BBa_I1750017.

This is an annotated linear plasmid map created by the SnapGene server which was called
by the download plugin.

Example Download Plugin: The example plugin allows downloading of an annotated

plasmid map for the SBOL part (like Figure 4). The plugin uses the GenBank format
of the SBOL part provided by SynBioHub and submits it to a local SnapGene server. The
SnapGene server then returns an annotated plasmid map that is returned in a zip file together

with a GenBank file. This zip file is made available to SynBioHub for the user to download.

Discussion

The plugin paradigm has clearly demonstrated its usefulness for extending SynBioHub while
minimizing the relative complexity of both new features and the SynBioHub core. This
highlights some potential future directions for plugin development to bring new kinds of
features to SynBioHub.

One type of plugin that would be useful is a curation plugin. This type of plugin would
allow for the modification of SBOL already in SynBioHub to enhance its usefulness or cor-
rectness. For example, a curation plugin could identify duplicates of subcomponents and
remove them. This would improve the data available about usage statistics and connect
parts with characterization data.

Another type of plugin that may be useful is the search plugin. A search plugin could
have access to SynBioHub data, and be responsible for responding to search queries. This
would enable improvement of search whilst providing a robust and clean interface for inter-
acting with SynBioHub. This could also improve SynBioHub’s handling of failures in search
functionality by automating fallback to the default search routines. Search plugins would
require significantly more access to the SynBioHub triplestore. Additionally, because many
search techniques rely on precompiling indices, it would have to have near-constant access
to the database. This raises several concerns about data privacy and leakage. The search
plugin interface would have to be designed in such a way that a SynBioHub could audit
results to ensure a user is not presented with options they do not have access to view. It

would likely be up to a SynBioHub instance administrator to determine whether a specific

search plugin is trustworthy enough to grant access to their SynBioHub. To aid in making
such decisions a registry of plugins will be developed in the future. This necessary trust
could be reduced through techniques such as homomorphic encryption, which would allow
the search plugin to operate on data without necessarily having visibility into its meaning.

The code for running and managing plugins is generic enough that adding new plugins
which follow the same protocol would be very simple. The most complex additions are
around handling the result of the plugin run. Though adding plugins using the existing
protocol would be simple, the search and curation plugins were excluded from this work.
This is because their functionality cannot be implemented using the existing protocol. For
example, search plugins need a way to access the entirety of the data stored in SynBioHub.

They could not meaningfully operate on a single SBOL document.

Methods

Submit Plugin: Submit plugins operate on entire submissions, rather than individual
SBOL constructs. When a user submits something to SynBioHub, they can select a plugin
to handle that submission. A manifest for the submission is prepared, describing each file in
the submission. The manifest is first sent to the plugin’s evaluate endpoint, which responds
with a decision regarding whether the plugin can handle this submission. If the plugin can
handle the submission, the manifest is then re-sent to the plugin’s run endpoint. If the plugin
is successful, then it responds with a ZIP file containing a new set of files to be submitted
to SynBioHub. If the plugin’s run endpoint is not successful, or if the plugin responds
negatively to the evaluate request, SynBioHub falls back to the default submission handler.

The conversion tool is implemented as a plugin deployed on the development server for the
reference instance of SynBioHub (https://dev.synbiohub.org). The plugin is an HTTP
server, written in Python, using the Flask library. When a file is submitted, SynBioHub

sends a status and evaluate request to the plugin. If both have been answered correctly (the

plugin is running and can process the file type) SynBioHub then sends a post request to
this plugin with the content of the file. This file is then used in an HTTP POST request to
a local SnapGene server which creates a GenBank file. This file is then retrieved using an
HTTP GET request. The GenBank is then used in an HTTP GET request to the SBOL
Converter which returns SBOL. The SBOL is then returned to SynBioHub.

Visualization Plugin: The visualization tool is implemented as a plugin deployed on
the development server for the reference instance of SynBioHub (https://dev.synbiohub.
org). The plugin is an HTTP server, written in Python, using the Flask library. When a part
page is opened, SynBioHub sends a status and then evaluate request to the plugin. If both
are answered affirmatively (the plugin is running and can handle the part type) SynBioHub
sends a post request to this plugin which includes the URL for the part. This URL is used
in two different pre-written SPARQL queries which are sent to SynBioHub to gather the
necessary data. The data returned is processed to create the input for the visualization.
The visualization is made using the plotly library (https://plot.ly). Finally, the graphic
is transmitted to SynBioHub for rendering on a part page in SVG format embedded in
HTML.

Download Plugin: The plasmid map tool is implemented as a plugin deployed on the
development server for the reference instance of SynBioHub (https://dev.synbiohub.org).
The plugin is an HTTP server, written in Python, using the Flask library. When the
download button is pushed, SynBioHub checks the plugin is up (status request) and can
handle the part type (evaluate request) before sending a post request to the plugin. The post
request includes the GenBank URL of the part. This URL is used to obtain the GenBank
file for the part which is then submitted to a local SnapGene server using an HT'TP POST
request. The server creates a PNG file which is retrieved using an HTTP GET request. The

PNG and original GenBank is then returned to SynBioHub as a zip file.

Acknowledgement

This work is supported by the National Science Foundation under grants CCF-1748200 and
1939892 and DARPA grant FA8750-17-C-0229. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the funding agencies.

Supporting Information Available

The links below are to github repositories where the code for each of the elements mentioned
can be found.

Plugins:

Visualisation Plugin Repo: https://github.com/SynBioHub/component-use-plugin
Submit Plugin Repo: https://github.com/SynbioHub/Snapgene-submit-plugin
Download Plugin Repo: https://github.com/SynBioHub/snapgene-download-plugin
Plugin template: https://github.com/SynbioHub/plugin-template

SynBioHub:

SBOL Validator: https://github.com/SynBioDex/SBOL-Validator

SynBioHub: https://github.com/synbiohub/synbiohub

SynBioHub Web of Registries: https://github.com/SynBioHub/Web-of-Registries

References

(1) Knight, T. Idempotent Vector Design for Standard Assembly of Biobricks; 2003.

(2) Shetty, R. P.; Endy, D.; Knight, T. F. Engineering BioBrick vectors from BioBrick parts.
J. Biol. Eng. 2008, 2, 5.

(3) Galdzicki, M. et al. The Synthetic Biology Open Language (SBOL) provides a community

10

standard for communicating designs in synthetic biology. Nat. Biotechnol. 2014, 32,
545-550.

(4) Roehner, N. et al. Sharing Structure and Function in Biological Design with SBOL 2.0.
ACS Synth. Biol. 2016, 5, 498 506.

(5) McLaughlin, J. A.; Myers, C. J.; Zundel, Z.; Misirli, G.; Zhang, M.; Ofiteru, 1. D
Goni-Moreno, A.; Wipat, A. SynBioHub: A Standards-Enabled Design Repository for
Synthetic Biology. ACS Synth. Biol. 2018, 7, 682—688.

11

Graphical TOC Entry

tatus Reque
S St Submit

Cratus: Runn,',,g /
__ Evaluate Request _ Q Viion
SynBioHub Type: Possible Plugin

Run Request Download é
Results

12

