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ARTICLE INFO ABSTRACT

With uniaxial composites, the matrix material properties dominate the overall transverse and shear composite
stiffness. Knowledge of these quantities are of practical importance in composite structures such as large wind
turbine blades, which despite having a predominantly uniaxial layup, have both their torsional response and
buckling behavior as critical design considerations. Accurate estimations of transverse and torsional rigidity for
high volume fraction composites are currently dependent on extensive experimental work due to the low re-
liability and precision of transverse/shear micromechanical models. The Continuous Periodic Fiber Model is
proposed to improve these predictions by considering fiber-fiber interactions through the use of periodic
boundary conditions. Experimental data and standard models are used to validate the results and quantify the
predictive improvements relative to traditional methods. The Continuous Periodic Fiber Model offers greatly
improved accuracy for transverse stiffness estimations, reducing the average difference from the experiments by
a factor of 1.7 (an average difference with experiment of 14% compared to the next best approach value of 24%)
as well as modest improvements for the shear moduli.
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1. Introduction

Composite materials, such as fiberglass or carbon fiber-reinforced
polymer, consist of a stiff fiber reinforcement infused with a more
compliant resin matrix. The reinforcement material provides enhanced
stiffness along its primary axis (fiber orientation), but the response of
the lamina off-axis is heavily dependent on the matrix material used.
More specifically, the matrix material dominates the lamina transverse
and shear properties. In most engineering applications the composite
laminates consist of layups of laminae with fiber axes oriented in
multiple directions, such that the effect of the transverse properties of a
single lamina on the overall behavior of the composite is overshadowed
by the axial properties of other plies. However, in certain large struc-
tures such as wind turbine blades, a significant portion of the plies
comprising the composite structure are uniaxially orientated.
Moreover, blade structural failures due to buckling and trailing edge
splitting are especially sensitive to its transverse and torsional rigidity
Schubel and Crossley (2012); Eder and Bitsche (2015); Griffith and
Ashwill (2011).

Efforts to optimize the resin/composite performance are reliant on
having a high fidelity micromechanical model that can accurately
characterize the matrix contribution. The transverse and shear prop-
erties are notoriously difficult to approximate for high volume fraction
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uniaxial composites due to the increased contribution of matrix-fiber
inter-facial strength and fiber-fiber interactions; see for example
Hyer (1998). Based on the pioneering work by Nemat-Nasser and his
coworkers Iwakuma and Nemat-Nasser (1983); Nemat-Nasser and
Hori (1993); Nantasetphong et al. (2016), an advanced micro-
mechanical method called the Continuous Periodic Fiber Model (CPFM)
was developed that incorporates the effects of fiber-fiber interactions
through Fourier series expansions of the periodic fiber distribution.
Using a collection of experimental data for fiberglass composite sys-
tems, the accuracy of this advanced model was validated. For per-
spective, the CPFM approximations were then compared to approx-
imations from three widely adopted models.

2. General assumptions

The micromechanical models used in this work include two varia-
tions of the Rule of Mixtures (ROM) method, the Composite Cylinder
Model (CCM), and the Continuous Periodic Fiber Model (CPFM).
Individual material assumptions for the matrix, fiber, and composite are
generally consistent between models.

The CPFM method utilizes a square repeating unit cell (RUC) with
periodic boundary conditions. CPFM has been developed using the
square cell to minimize the complexity of the calculations, though the
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formulations can be expanded to incorporate a hexagonal array.
Generally, the former is considered to be a less realistic representation
of the way the fibers would naturally align themselves at higher values
of volume fraction, where rather than settling in neat square rows and
columns, the round fibers would more realistically align themselves in a
triangular or hexagonal pattern.

Individually, the matrix and fibers are considered isotropic, al-
though this is not a requirement for CPFM. Fiber anisotropy will require
minor modifications to the CPFM approach as it is discussed here, while
potential matrix anisotropy requires recalculation of the periodic
Eshelby tensor introduced in Section 3.

In the following the Voigt notation is used, in which symmetric
tensors are represented as 6 X 1 vectors instead of 3 X 3 matrices.
Furthermore, the strain vector uses engineering shear strain quantities.
The 4th order elasticity tensor can therefore be represented by a sym-
metric 6x6 matrix. For example, orthotropic elasticity is written in
Voigt notation as

4 =0y, Ch Cp Gz 0 0 O h i €11
5= op Ch Cpy C3 0 0 O Y= &2
T =033 Cs3s C3 Gs 0 0 O % V3= E3
%4=03 "] 0 0 0 Cyuq 0 O Vs = 283
&= 013 0 0 0 0 Cs5 O %= 283
%6 =0 0 0 0 0 0 Ci ¥ = 26 )

The unidirectional laminate being approximated is always assumed
to be orthotropic, where the properties along the fiber length (1) are
distinct from the in-plane transverse direction (2) and out-of-plane
normal direction (3). The values of the orthotropic moduli may always
be calculated from considering the compliance tensor written in 6 by 6
matrix with Voigt’s notation:
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3. Continuous periodic fiber model (CPFM)
3.1. Background

In his highly celebrated work, Eshelby (1957) developed a model
that could account for the spontaneous phase change of an ellipsoidal
inclusion within an infinite matrix domain. His work has found tre-
mendous application, as the aspect ratios of an ellipsoid can be changed
to approximate a variety of geometries, including practical cases with
inclusions such as spherical beads, flat disks or platelets, and long thin
continuous fibers.

Nemat-Nasser et al. (1982) applied periodic boundary conditions to
a repeating unit cell and its eigenstrain fields following Eshelby’s work.
These boundary conditions led to a Fourier series solution for the ef-
fective bulk and shear moduli of the systems that could be improved by
increasing the number of terms. Their comparisons with experimental
results for sintered alumina, sintered perlite, and porous glass with
inclusion volume fractions up to 50% demonstrated excellent correla-
tion. The approach of expanding the periodic parts of field quantities
using Fourier series was also discussed by Mura (1987).

Iwakuma and Nemat-Nasser (1983) presented a more general so-
lution for periodic structures, outlining the procedure for determining
the overall properties of a composite with ellipsoidal inclusions of any
aspect ratio. They define the periodic version of Eshelby’s tensor as S,
whose components are dependent only on the geometry of the inclusion
and the Poisson’s ratio of the isotropic matrix. Their final solution is
written in terms of the matrix elasticity, inclusion elasticity, inclusion
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volume fraction, and ellipsoidal inclusion aspect ratio. Nemat-
Nasser and Hori (1993) collected their works into a book which features
an expansion of the periodic method. Step-by-step processes for de-
termining the overall properties of composites with assorted geometric
configurations are clearly presented, making this work an essential
reference for applying their method in practice or building upon it in
future works. Their text explicitly addresses cavities, cracks, and in-
clusions with aspect ratios suitable for application to spheres, platelets,
ellipsoids, and long fibers.

From Nemat-Nasser and Hori (1993), as well as Iwakuma and
Nemat-Nasser (1983), a periodic model for the transverse modulus si-
milar to the Continuous Periodic Fiber Model (CPFM) presented here
was produced by Luciano and Barbero (1994). Their approach differs in
that it explicitly separates the matrix elasticity from the transformation
tensor. They compare their results to the method of cells
(Aboudi, 1996) and a small set of experimentally obtained moduli for a
glass-epoxy system. Their work matched closely with the experiments,
suggesting that periodic models can accurately capture the complex
elastic behavior of high volume fraction composites.

Nantasetphong et al. (2016) applied a periodic method to ellipsoidal
glass inclusions within a polyurea matrix. The micromechanical models
they developed were validated for dilute periodic media (volume
fraction, V¥ < 20%) with randomly oriented and plane-aligned inclu-
sions with aspect ratios of L/d = 10. To estimate the overall response of
a composite with a specific distribution of inclusion orientations, they
used a Taylor averaging scheme (in 3D random and plane-aligned dis-
tributions). The determined moduli are based on a single periodic unit
cell of an aligned inclusion array. CPFM, described in this paper, is a
direct adaptation of the Nantasetphong et al. periodic method, specia-
lized to suit an ellipsoidal aspect ratio representing continuous fiber
bundles that are axially aligned (L/d = o). For this reason, no Taylor
averaging is required at this stage. The results are compared to the
coupon level test data after application of Classical Laminate Theory
(described in Section 4) to average the elasticity tensor components
over the complete layup. This adjustment also allows the model to
maintain its accuracy when applied to high volume fraction composites
(Vf = 50%).

3.2. Fourier series expansion of the field variables

The Continuous Periodic Fiber Model is formulated through a tra-
ditional derivation of the effective elasticity tensor for a composite with
periodic boundary conditions on the unit cell. When a uniform macro-
strain €° is prescribed to the boundary of the unit cell, the average strain
over this domain, & will match the applied strain & = €°. The overall
constitutive elasticity tensor of the composite C is calculated based on
the average stress over the combined fiber and matrix portions. The
elasticity tensors for the matrix (C) and fiber (C?) are known. These
tensors are determined from the isotropic components E, v, and G with
Eq. (2).

The first step in the derivation of CPFM is to replace the inclusion
with an eigenstrain in order to use the homogeneous field equations for
the heterogeneous medium, i.e., finding €*(x), such that

C'(x): e(x) = C: {e(x) — e*(x)}. 3

The left side of this consistency condition describes the stress state
of a heterogeneous cell, where the cell elasticity C’(x) has matrix
properties in the matrix domain M and inclusion properties in the in-
clusion domain Q. Both strain and stress states of the homogenized cell
on the right hand side must be consistent with those of the hetero-
geneous cell. The right side of the consistency condition assumes both
matrix and inclusion domains have the same matrix elasticity tensor, C,
so an eigenstrain is introduced to adjust for the presence of the inclu-
sion. In the rest of this section, the strain field in the homogenized cell
due to any eigenstrain distribution is calculated.

The periodicity of the cell allows the application of Fourier series
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expansions to the strain and displacement fields within the cell. The 3-
dimensional periodicity of the model is represented in the summation
vector £ (written in terms of the cell width a; and element number n;) for
each of the 3 directions in which one desires to consider the interaction
of the inclusions:

&=

M 21,2, 0r 3.
i 4
The Fourier series of the field functions are written as summations
over the full range of € and integrated over the full volume of the cell U.
This integration applies to all non-zero values of €. The general form of
the Fourier series expansion is:

a;

’
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¢ 5)

where

1 .
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and the superscript ¥’ indicates that the summation is made over only
the nonzero values of €.
The Fourier series expansion of the strain field is written based on
the symmetric parts of the displacement gradient tensor:

£(x) = Z' Fe(£)e™$
¢ 7)

where

P = e @+ ® &) ®

Similarly, the eigenstrain is written with a Fourier series expansion
to model the effect of repeating inclusion geometries.

g¥(x) = ) Fer(§)es,
£ (C)]

where
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Fer§) = - _/l; e*(x)e 4V, 10)

3.3. Periodic Eshelby’s tensor

A linear relationship between the strain and eigenstrain is enforced
using a fourth order tensor, S¥, that is similar to Eshelby’s Tensor. S” can
be written in the spatial domain with index form as it is used by
Eshelby (1957)

& = Sjuth, an
or in the Fourier tensorial form as it is being applied here:
Fe(§) = FS™(§): Fe*(§). 12)

In order to formulate S”, the displacement and stress field variables
must also be expanded. To calculate the average stress over the fiber

and matrix portions, consider Hooke’s law:
e=Clo+e¥ 13)
o=C:(e—¢"). a«

Considering the stress equilibrium, V. o =0, Eq. (14) can be ex-
panded and solved for the displacement when ¢ = 0,

V.o=V(C:(V® u)-— V:(C: e =0, (15)
i(£. C.&): Fu(§) = & (C: Fe*(§)), (16)
Fu(§) = —i(&. C. &)1 (&. (C: Fe*(£))). 17

The coefficient of the periodic Fourier series expansion FS” can now
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be solved for by substituting the displacement field (17) into the Fourier
series expansion of the strain (8). Comparing this result to the linear
relationship in Eq. (12) gives the definition of FSP(§) as

FSP@) =sym{f® . C.H'® &:C

A more detailed derivation of the strains and displacement fields
adjusted for the prescribed eigenstrain, as well as eigenstress, may be
found in Nemat-Nasser and Hori (1993).

All terms in FSP components are known and Eq. (18) is solvable.
Before applying it to CPFM, a formatting of FS® derived by Nemat-
Nasser et al. (1982) is considered to reduce the complexity of the so-
lution. The formula for FS? is split into sub-terms FS?, FS?, and FS3,
which are functions of only the unit cell geometry. As for material
dependencies, the isotropic matrix elasticity is extracted and simplified
such that the terms include only the matrix Poisson’s ratio. Note that
the solution is completely independent of the inclusion elasticity.

(€]

1 v
FSP (&) = FS'(§) — EFSZG) + EFSG(E), 19)

where the geometric components are defined with the normalized unit
vectors & = /¢ as

FS'(§) =29ymE ® 1® ® &) (20)
F*O=(® E® £ £ 21
FS}§=(@ E® 19 (22)

3.4. Determination of the strain fields

In order to determine the perturbation from uniform field quantities
due to the presence of the heterogeneous inclusion as a function of the
homogenizing eigenstrain, the consistency condition is written again,
separating the periodic disturbance in the strain, symbolized as €, from
the average (applied) strain.

CU{e® 4+ eP(x)} = C: {e° + P(x) + £*(x)} (23)

In general, this equation can be solved as an integral equation using
the results of the previous section. However, only the overall properties
are of interest. One approach is to average this version of the con-
sistency condition over the inclusion and solving for the average in-
clusion strain in terms of the average eigenstrain,

=gl 4P =—(C— )l CiEx 24)

Considering Eq. (12), one can introduce the one and only approx-
imation step in this process by assuming the eigenstrain field may be
replaced by its average over the inclusion domain Q to obtain

eP(x) = {Z Vfg(—E)FSP(é’)e"f"‘}: g*
£ (25)

where

g = é S e, 26)
is a purely geometric function. To calculate the overall properties, only
average values of the perturbation strains are needed and therefore the
approximation presented in Eq. (25) (using average eigenstrain and
solving the linear system of equations) yields excellent results. The fiber
volume fraction V/ = Q/U is introduced when the inclusion consistency
condition is integrated over each inclusion in the Fourier domain (for
all £ = 0). The periodic Eshelby’s tensor S” can now be estimated as

SP =7 Vig(—§)g(E)FS? (§).
¢ 27)

Eq. (25) can then be rewritten using this definition of the average
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perturbation strain (over the inclusion) as

1

— .p — P . g%

5 /;; P(x)dV, = SP(£): & 28)
Note that g(€) and g(—£) are complex conjugates so their product

generates a tensor with real values. This reduced relationship for the

average periodic strain disturbance is substituted into the averaged

consistency condition (23) over the inclusion to arrive at

C (€9 4 SP: g%} = C: {e0 + (SP — 149): &%), (29)

Solving this equation will provide a tensorial relationship between
the average eigenstrain, £*, and average (applied) strain:

F=—((C2=C)yhCc—Sh) el (30)

3.5. Constructing the elasticity tensor

A traditional derivation of the composite effective elasticity tensor is
usually based on stress partitioning

C:e®=C:e0 + VI(CQ = C): 2 31

The average strain in the fiber/inclusion £ is linearly related to the
applied strain, 2 = P/: ¢, defining the transformation tensor P/. This
relationship is used to eliminate the strain terms from the elasticity
equation, leaving only P, fiber volume fraction, and the independent
matrix/fiber stiffness properties

C=C+Vvice-c): Pl (32)

The transformation tensor P’ is determined for a periodic, cylind-
rical, axially aligned, short fiber by combining Egs. (24) and (30) to
reflect the linear relationship £ = Pf: €°. Solving this combined for-
mulation for P’ and substituting it into Eq. (29) leads to a useful for-
mulation for the overall elasticity tensor

Pl =(C-CcYtC: ((C-Cc¥hc—shHT, (33)

C=C{1® —vi(C-cHtC-sH (34)

With the knowledge of the periodic Eshelby’s tensor, Eq. (34) can be
used to calculate the overall composite elasticity. It is important to
point out that, using this method, the effective elasticity tensor is ex-
actly the inverse of the effective compliance tensor. This would permit
the same solution to be generated by instead calculating the compliance
tensor using eigenstress method and an applied stress approach. The
details of this approach may be found in Nemat-Nasser and Hori (1993).

4. Classical laminate theory (CLT)

The composites used to obtain the experimental data contained
approximately 5% of their structural fibers in the transverse direction
for handling stability (along with minimal through thickness stitching).
To permit a more precise analysis of composites with various layups,
Classical Laminate Theory (CLT) and in-plane rotation of unidirectional
lamina is used. Hyer (1998) outlines the methodology for determining
the moduli of a unidirectional laminate loaded along ply angles that are
rotated between the axial and transverse orientations.

For purely in-plane problems, the terms of the elasticity tensor that
define the material response to axial, transverse, and in-plane shear
strains may be constructed based on Voigt notation for any in-plane
rotation:

Ox Ex

9 ¢ =[Qily &t

Ty Yo (35)
Cyh Cp O

[Qj] =[R]|C, Cxn 0 [[B]
0 0 GCg (36)
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where [T;] and [T,] are the rotations matrices associated with stress
and strain, respectively, and are determined as functions of the ply
angle 6:

m = cos B, n=sin8 (37)
m?> n* 2mn
[Ll=| n2 m* —2mn
—mn mn m?— n? (38)
m? n? mn
[L] = n? m>  —mn
—2mn 2mn m? — n? 39)

A separate elasticity tensor, [Q/”], can be produced for each ply
angle in the layup. In the following it is assumed that the fiber volume
fraction is the same in all plies but the areal weight fraction of all of the
plies along a prescribed fiber angle is f,,. After the averaging/integration
of the elasticity tensors, the compliance is calculated by matrix inver-
sion and then the individual terms of the compliance are taken to de-
termine the effective engineering properties of the composite.

n —1
[s]=[cI! = [ pr[o,-f]} .
p=1 (40)

For systems that are not primarily uniaxial, the CLT approach alone
provides reasonable estimates for the transverse modulus, even with an
inaccurate transverse modulus for the uniaxial lamina, due to the fact
that the overall response of most layups that are not primarily uniaxial,
are dominated by the lamina modulus in the direction along the fibers.
By contrast, in applications such as wind turbine blade design, the use
of primarily uniaxial layups makes proper estimation of the transverse
properties significant.

5. Model validation and comparison with experimental data

The usefulness of a micromechanical model relates to its ability to
accurately and consistently produce a result that closely corresponds to
real world applications. A statistically significant database of measured
material properties, generally collected from coupon level experiments,
is necessary in order to prove the effectiveness and range of a newly
developed methodology to an acceptable level of confidence. However,
a compatible set of axial, transverse, and shear measured elastic prop-
erties for unidirectional composites is time-consuming and costly to
obtain.

In this study, the experimental data used for validation consists of
253 individual property measurements for 7 distinct fiberglass material
systems and was graciously provided by TPI Composites. They provided
a robust set of statistical data for each material system which averages
variations between laminates and samples within the same laminate.
The testing standards included ISO 527-5 for the axial/transverse ten-
sion measurements and ASTM D7078 for shear. While the data set was
mostly complete, a compatible set of three properties was not available
for all material systems. The experimental standard deviations ranged
from 1-7%, so a target for micromechanical model accuracy of around
7% would provide accuracy on par with what can be measured physi-
cally.

The calculated composite volume fractions in these comparisons
varied slightly between each laminate and range from 54-58% fiber
content. The CLT methodology discussed in Section 4 was used to apply
the layup correction to the predicted unidirectional properties in order
to account for the 5% transverse stabilizing fibers when comparing to
experimental data. The small amount of through thickness stitching
fibers are ignored in this study.

The results for the CPFM model and commonly used traditional
models are presented with the experimental dataset so that the ad-
vantages and discrepancies of each model as compared with the
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experimental data can be evaluated. The traditional models considered
include the most basic form of the Rule of Mixtures method (ROM)
(Voigt, 1889; Reuss, 1929; Hyer, 1998), a more complex form of the
Rule of Mixtures that incorporates the Poisson’s effect (ROMc)
(Hyer, 1998), and the Composite Cylinder Model (CCM) (Hill, 1963;
Hashin, 1966; Christensen and Lo, 1979). All these standard models
give a transversely isotropic elasticity tensor for the lamina. In contrast,
CPFM gives an orthotropic result with matching properties in 2 and 3
directions. While a Taylor averaging scheme may be used to get an
estimated transversely isotropic tensor based on CPFM, this procedure
is not used here. It is intuitively expected to observe an orthotropic
response in lamina, since the through thickness direction is physically
different the in-plane. The resin pockets (potentially with plane-like
geometry) between woven fiber sheets tend to reduce the through-
thickness stiffness significantly, while in contrast the average in-plane
spacing of the fibers should be less than expected from a simple square
packed array considered in this realization of CPFM. Ultimately, the
CPFM orthotropic results are used in the following analysis without any
changes, as a reasonable estimate in the absence of detailed knowledge
of directionality in the resin distribution and fiber-to-fiber spacing. In
all cases, the model inputs include the isotropic fiber/resin properties
(Young’s modulus, Poisson’s ratio, shear modulus), fiber volume frac-
tion, and layup distribution for each fiberglass system. The elastic
properties of the reinforcement were not made available from the
manufacturers, so standard properties of E-glass fibers were used for all
of the material systems. The elastic properties of the matrix materials
were available from the manufacturer’s data sheet for each specific
resin.

The experimental results and average predicted moduli values for
each of the 7 distinct material systems are plotted as functions of fiber
volume fraction in Fig. 1. Each experimental data point represents the
average of the specimen modulus values measured for each distinct
material systems. All of the modulus results are normalized by the
compatible modulus of the resin used to manufacture the specific
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Table 1
Accuracy of the micromechanical models as defined by the averaged difference
from the experimentally obtained properties provided by TPI Composites.

Model E; E, Gz

ROM 5+ 7% 41 = 4% 38 = 4%
ROMc 5+ 7% 36 + 4% 38 = 4%
CCM 5+ 7% 24 = 4% 9 + 6%
CPFM 5+ 7% 14 = 4% 7 £ 7%

material system. The standard deviations of the experimental results are
depicted using error bars.

This presentation of the model predictions reveals some trends
across the different approaches. All of the models under-predict the
transverse tensile modulus with the models stepping closer the ex-
perimental results from ROM, ROMc, CCM, and CPFM (least to most
accurate). The shear modulus is also under-predicted by all of the
models, but with CCM and CPFM offering a steep improvement in ac-
curacy relative to the ROM methods. The CPFM method provides a
slight advantage in comparison to the CCM shear result. To highlight
the model performances more exactly, the difference between the ex-
perimental result and the model predictions is quantified using

Xexp. - Xmod.

D= -100%,

(41)

exp.

where D represents the percent difference between the experimentally
measured and modeled values of quantity X. The average of the dif-
ferences for all material systems using each model are collected in
Table 1, which represents an overall quantification of the accuracy for
each model. The standard deviation of the predictions made with each
method are provided to quantify the repeatability or robustness of each
model.

The axial tensile modulus approximations using all of the models
are identical. The axial results demonstrate acceptable accuracy that is

a b .
17 : : : @56 : : : :
L5|E e ROM . e ROM
A ROMc = ROMc
% 1614 com 1 = 5r<acem * 1
Z s = Foa {.ﬁ
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= . $ 2 < &
S 14} 1 g3 e . 1
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Fig. 1. Comparisons of the Rule of Mixtures basic (ROM), complex (ROMc), Composite Cylinder Model (CCM), and Continuous Periodic Fiber Model (CPFM) results
with the experimental data for a) Axial tensile modulus E; b) Transverse tensile modulus E, and c) Axial shear modulus G;,, normalized by their resin moduli.
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within the range of experimental repeatability (7%), however the
standard deviation between material systems is fairly high. The trans-
verse tensile modulus proves to be the most difficult to predict, with an
average difference of 14% using CPFM to 41% using ROM. While the
deviation of the CPFM result from average experimental value is greater
than the desired accuracy range, it is substantially improved relative to
the traditional models, where the next closest result was CCM at 24%
difference. The CCM result is about 1.7 times further from the experi-
ment than that of CPFM. Based on the standard deviations, all of the
transverse models demonstrated better repeatability compared to that
of the axial moduli. Using CPFM, the shear modulus can be approxi-
mated to the same accuracy level as the experimental data and it is
marginally better than the results of CCM (7% difference versus 9%).
However, the CPFM model has a high standard deviation (7%) from one
material system to the next.

6. Conclusions

The Continuous Periodic Fiber Model (CPFM) presented in this work
offers great promise and improved accuracy in comparison with the
standard models used in practice, particularly for transverse properties
of primarily uniaxial composites. The CLT calculations have over-
shadowed the shortcomings of traditional models in accurately pre-
dicting the transverse properties of uniaxial lamina, as the overall re-
sponse of most engineering composites is heavily dominated by the
properties in the fiber direction when they are not primarily uniaxial.
Although the axial tensile and shear moduli were within the target
accuracy range of 1-7% difference from experimental values, the
transverse tensile modulus accuracy of 14% was greater than the de-
sired range. Nevertheless, the model predicts composite performance
with greater accuracy than previously achievable (e.g., 24% in CCM).
This case of primarily uniaxial composites has gained in industrial re-
levance in recent years due to increasing wind turbine blade lengths
that utilize nearly uniaxial skins, and whose transverse stiffness is
clearly underestimated, yet relevant in many design aspects, such as
their torsional rigidity and stability. Therefore, the more realistic values
obtained by CFPM provides an opportunity for potential cost savings
and weight reductions. While marked improvements in transverse va-
lues were achieved, the Continuous Periodic Fiber Model (CPFM) as
presented here has room for improvement. Future work on the model
may include changing the periodic unit cell geometry to reflect a hex-
agonal packed array, which generally provides a more realistic re-
presentation of the aligned fibers. The method could also be extended to
predict the material strength along with its elastic properties. Models of
material strength and composite failure would provide useful in-
formation regarding crack propagation and manufacturing related de-
fects such as voids or weak bond lines.
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