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S U M M A R Y
Estimation of ambient seismic source distributions (e.g. location and strength) can aid studies
of seismic source mechanisms and subsurface structure investigations. One can invert for
the ambient seismic (noise) source distribution by applying full-waveform inversion (FWI)
theory to seismic (noise) crosscorrelations. This estimation method is especially applicable for
seismic recordings without obvious body-wave arrivals. Data pre-processing procedures are
needed before the inversion, but some pre-processing procedures commonly used in ambient
noise tomography can bias the ambient (noise) source distribution estimation and should not
be used in FWI. Taking this into account, we propose a complete workflow from the raw
seismic noise recording through pre-processing procedures to the inversion. We present the
workflow with a field data example in Hartoušov, Czech Republic, where the seismic sources
are CO2 degassing areas at Earth’s surface (i.e. a fumarole or mofette). We discuss factors in
the processing and inversion that can bias the estimations, such as inaccurate velocity model,
anelasticity and array sensitivity. The proposed workflow can work for multicomponent data
across different scales of field data.

Key words: Waveform inversion; Seismic interferometry; Seismic noise; Surface waves and
free oscillations.

1 I N T RO D U C T I O N

Knowledge of the ambient seismic source distribution (e.g. strength
and location) is important in many research areas. For example, in
investigating the subsurface with crosscorrelation-based seismic
interferometry, one needs the source information to correct the
empirical Green’s functions or surface wave dispersion curves if
the seismic sources are not isotropically distributed in all directions
around sensors (e.g. Yao & van Der Hilst 2009; Nakata et al. 2015;
Cheng et al. 2016). When monitoring changes in the subsurface
with direct waves in seismic crosscorrelations, one needs to assess
or revise the monitoring results based on changes in the seismic
source(s) (e.g. Delaney et al. 2017; Takano et al. 2019). In addition,
spatial and temporal distributions of natural seismic sources (e.g.
ocean microseism) can aid studies of the actual source mechanism
(e.g. Cessaro 1994; Juretzek & Hadziioannou 2016).

To investigate the ambient (noise) seismic source distribution,
one can use a traditional imaging method or an adjoint-based
inversion method. The imaging methods (e.g. matched-field pro-
cessing) mainly focus on the source location, and do not provide
physical source properties like strength or amplitude (e.g. Cros
et al. 2011). In contrast, the adjoint-based inversion method can

estimate both source location and strength. Tromp et al. (2010)
and Fichtner et al. (2017) derived an adjoint for crosscorrelations,
and Ermert et al. (2017) applied this crosscorrelation adjoint to
long period (over 100 s) seismic crosscorrelations to study Earth’s
hum. For seismic sources such as tremors and ambient seismic
sources, there are usually no clear body-wave arrivals in the seis-
mic recordings and mainly traditional imaging methods have been
applied to the seismic crosscorrelations (e.g. Obara 2002; Zeng
& Ni 2010; Corciulo et al. 2012), largely composed of surface
waves.

To make a comparison between traditional methods and the
adjoint-based inversion, Xu et al. (2019) show that the matched-field
processing method can be written as the crosscorrelation waveform-
adjoint sensitivity kernel with zero initial sources. For surface wave
studies, Xu et al. (2019) further demonstrated that Rayleigh-wave
multicomponent crosscorrelations can better constrain estimation
of the source distribution compared to vertical-component cross-
correlations alone. The multicomponent data are vertical (Z) and
radial (R) components, where the R direction is parallel to a line or
great-circle path between two sensors. We refer to the crosscorre-
lation adjoint inversion for seismic sources as the source inversion
method in this paper.

2084 C© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/3/2084/5855990 by Boise State U

niversity user on 29 N
ovem

ber 2020

http://orcid.org/0000-0002-5670-6761
http://orcid.org/0000-0001-9900-9846
mailto:zongboxu@u.boisestate.edu


Multicomponent crosscorrelation source inversion workflow 2085

The source inversion method is well developed in theory, but in
practice still requires pre-processing of the raw seismic recordings.
Some procedures are the same as the pre-processing in ambient
noise tomography (ANT, Shapiro et al. 2005), such as stacking
and excluding high-amplitude transient signals (i.e. earthquakes).
However, there are some differences between the two sets of pre-
processing procedures because the final goal of ANT is to image
structure (i.e. velocity models), which is different from the source
inversion method used to image source distributions. For example,
if one inverts for Earth’s hum, one has to remove not only earth-
quakes, but also the primary microseism, which is normally the
signal source for ANT. In addition, the seismic source inversion
method requires known Green’s functions, while the focus of ANT
is to recover Green’s functions. It is easy to misuse some ANT
pre-processing procedures (e.g. normalization) in seismic source
studies (e.g. Tian & Ritzwoller 2015) and these procedures can bias
the consequent source estimation (e.g. Fichtner et al. 2017). Thus
the purpose of this study is to present clear data pre-processing pro-
cedures in a workflow for the source inversion method. We use an
L2 waveform misfit function in the inversion, and we use observed
ambient seismic noise data in the Hartoušov mofette field (Fig. 1),
Czech Republic, as a field data example to demonstrate the work-
flow. The parameters in the workflow are easy to adjust based on
different field scales.

We introduce the workflow from raw seismic recordings to the
source inversion. In the crosscorrelation adjoint-based inversion
used here (e.g. Ermert et al. 2017; Xu et al. 2019), there are two
major assumptions:

1.the subsurface structure is known (i.e. the Green’s function is
known);
2.all potential seismic sources share a similar shape in terms of
energy spectral density.

Thus in the workflow, we need to estimate both Green’s function
for the subsurface media and the source energy spectral density
shape (Section 2). We then estimate the spatial source distribution of
fumaroles from the field data, and compare our estimation to a field
CO2 flux map (Section 3). We finally discuss the effect of inaccurate
subsurface models, especially the anelastic property, and insufficient
sensitivity of the data to the source estimation (Section 4).

2 W O R K F L OW

We introduce the workflow in four steps (Fig. 2). We first select data
(i.e. observed crosscorrelations) based on a signal-to-noise ratio
(SNR) criteria; then we process the data to isolate targeted source
types (Section 2.1). We estimate Green’s functions (Section 2.2) and
present a novel method to calculate source energy spectral density
shape (Section 2.3). After these three steps, we introduce the source
waveform inversion briefly (Section 2.4). The whole workflow is
applicable for not only vertical component (Z), but also radial (R)
component seismic recordings. Thus we can use Z–Z component
crosscorrelations (CZZ) and/or R–R component crosscorrelations
(CRR) in the workflow.

2.1 Data selection and crosscorrelation

We refer to the crosscorrelations as the data in this source inversion
method. Counter to normal ambient seismic crosscorrelations for
ANT, as our focus is the ambient source location(s) and strength(s),

thus we do not apply time-domain or frequency-domain normaliza-
tion to the raw data prior to crosscorrelation because these proce-
dures bias the source estimation result (e.g. Fichtner et al. 2017).
Without the common ANT processing procedures, however, the
crosscorrelations for a seismic source study will be far from the
true Green’s functions if the source distribution is anisotropic. In
this case, direct body and surface waves can arrive any time between
time zero and the true (i.e. physical) direct-wave arrival time (e.g.
Shapiro et al. 2006; Snieder & Fleury 2010). The events that arrive
before the true direct wave are called spurious or non-physical ar-
rivals under the assumption that the crosscorrelation approximates
the Green’s function (e.g. Mikesell et al. 2009; Snieder & Fleury
2010). In contrast to ANT though, the spurious energy here is ac-
tually the important signal, used in the inversion to estimate the
seismic source distribution.

In addition to so-called spurious arrivals in the crosscorrelations,
noise can also be strong and thus affect the source estimation. This
noise can consist of (1) uncorrelated random noise and (2) untar-
geted seismic-source waves, which can be in a similar frequency
band as the targeted seismic sources. For the uncorrelated random
noise, one can use stacking to suppress this noise, similar to the
ANT processing (e.g. Bensen et al. 2007). We use linear stacking
here, which is common and does not distort information contained
in the crosscorrelation waveforms. Some stacking methods, such as
phase-weighted stacking (Schimmel & Paulssen 1997), do distort
the waveforms and thus affect the inversion results. Besides linear
stacking, we could also select high-SNR crosscorrelations from the
targeted sources in stacking (e.g. Cheng et al. 2016), but we do not
do that here. Instead we use a single consistent amount of time, over
which the targeted source dominates the crosscorrelations. Choos-
ing this time window is based on analysis of the SNR of the linear
crosscorrelation stack as we add more time.

One could use a SNR criterion to choose the crosscorrelations
with the least uncorrelated noise among all crosscorrelations (e.g.
Lin et al. 2008). However, we propose here a SNR measurement
similar to the SNR measurement algorithm in ANT (e.g. Bensen
et al. 2007). We set two time windows—a signal and a noise window.
As stated above, the direct wave signal can arrive between time zero
and the true arrival time, thus our signal window is different from
the signal window in the ANT SNR algorithm, where the signal
window is around the true surface wave arrival time. We set our
signal window be a wide time window that ranges from the acausal
to causal times, encompassing our estimate of the slowest possible
physical surface wave arrivals (–2 to 2 s in Fig. 3 for the fumarole
example). For our noise window, we select two noise windows
outside the signal window on both causal and acausal branches of
crosscorrelations (–5 to –3 s and 3–5 s in Fig. 3). The noise windows
are away from the signal time window by one second in our case.
We calculate the SNR as the ratio between the peak value in the
signal window and the RMS value in the two noise windows. We
set an SNR>15 criterion to select the crosscorrelations which we
use in the source inversion method. The time parameters, such as
time window length, in the SNR measurements need to be adjusted
based on different field data and array properties (e.g. interstation
spacing).

It is also necessary to separate the untargeted seismic-source
waves from the signal of interest as much as possible. Stacking
works to suppress uncorrelated random noise, but can increase the
amplitude of untargeted seismic-source waves (e.g. Shapiro et al.
2006; Zeng & Ni 2010). Thus the source inversion will not only
image the targeted seismic source, but also any untargeted seismic
sources. Therefore it is important to reduce or remove the untargeted
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2086 Z. Xu et al.

Figure 1. A site map of the seismic array and CO2 gas-flux distributions. Each triangle is a geophone. The empty triangle is the noisy one. The red-edge
triangle is the C601 sensor in Fig. 4. The gas-flux data are from Nickschick et al. (2015) and were acquired from 2007 to 2013. The star in the inset shows the
site location in the Czech Repulic. The coordinates are in WGS84/UTM zone 33.
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Figure 2. The source inversion workflow is divided into four steps: data selection and crosscorrelation (Section 2.1), velocity model estimation and Green’s
function computation (Section 2.2), source energy spectral density estimation (Section 2.3) and the source waveform inversion (Section 2.4).

seismic-source waves. For continental-scale source studies like for
microseisms, earthquake events are usually the strongest among
all correlated sources and need to be removed (e.g. Ermert et al.
2017). At the near-surface scale, as in this fumarole example, the
untargeted seismic-source waves are mainly due to anthropogenic

activity (e.g. traffic) and ground-coupled tree vibrations. Unfortu-
nately, these untargeted seismic sources and the fumaroles can both
emit high-frequency (>2 Hz) Rayleigh and/or body wave energy
(Cheng et al. 2016; Estrella et al. 2016; Roux et al. 2018). We
avoid the tree vibrations by using data above the tree resonance fre-
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Figure 3. An example of the SNR measurement. The blue dashed box indicates the signal window. The two grey areas indicate the two noise windows. SNR
is defined as the ratio of the peak in the signal window and the RMS in the two noise windows. We combine the recordings in the two noise windows and then
calculate the RMS from the combined recordings. The black (left-hand side) and red (right-hand side) numbers in the grey areas indicate the SNR for the two
waveforms, respectively. The waveforms are bandpass filtered between 3.5 and 10 Hz.

quency, approximately 2 Hz (e.g. Roux et al. 2018), and we avoid
the anthropogenic activity by using data recorded during the night
when there is less anthropogenic activity compared to daytime (e.g.
Yamanaka et al. 1993).

We first analyse the ambient seismic recordings from 01:00 to
04:00 local time on 23 November 2016. During this time period,
there are usually smaller wind speeds in inland areas than daytime
(e.g. He et al. 2013) which also reduces the likelihood of tree vibra-
tions, and we assume that the main seismic sources during this time
are fumaroles. We divide the 3-hr long raw data (01:00–04:00) into
60-s sections; then we remove the mean and linear trend in each
section. Because all of the sensors in the array are the same, we do
not need to remove the instrument response. We crosscorrelate these
sections and bandpass filter the crosscorrelations between 3.5 and
10 Hz. We then stack crosscorrelations for each sensor pair. We mon-
itor the SNR improvement as we stack more sections and find that
the SNR drops dramatically around 03:30 (Fig. 4a) in both CZZ and
CRR. The drop indicates that the number of station pairs with high-
SNR (>15) crosscorrelations decreases. This SNR change is due to
a different strong seismic source (Figs 4b and c), which has changed
the crosscorrelation dramatically. This transient source could be hu-
man activity or another fumarole. If one looks more closely at the
number of stations pairs, there are a few other small drops that are
related to other high-amplitude transient signals. We do not investi-
gate these transient signals further, but because of this large drop in
SNR, we do not use the raw data after the 03:30 and study only the
ambient seismic recordings from 01:00 to 03:30, a total of 2.5 hr, in
this source inversion example. Note that the SNR increases without
the drop if we skip the recordings between 03:30 and 03:35, and
drop again afterwards around 4:20 (Fig. S1). This observation indi-
cates that we could conduct a more sophisticated stacking than the
linear stacking, but this topic is beyond the research scope in this
paper.

We also winnow the CZZ waveforms based on the interstation
distance. Small interstation-distance CZZ waveforms are less sensi-
tive to source changes compared to large-distance waveforms (Ap-
pendix A). Furthermore, the ZZ sensitivity kernels do not change
much with source changes when the interstation distance is small.

However, due to the azimuth effect of the R component (e.g. Haney
et al. 2012; Xu & Mikesell 2017; Xu et al. 2019), the small-distance
CRR waveforms are still sensitive to source changes and help con-
strain source locations (Appendix A). Thus the small-distance CZZ

waveforms do not add much benefit to the source inversion, but CRR

waveforms do. Therefore we ignore small-distance CZZ waveforms,
but do not ignore CRR waveforms with small interstation distances.
In this study, we use CZZ waveforms when the interstation distance
is larger than 50 m, which is about the longest Rayleigh-wave wave-
length in our study.

2.2 Velocity model estimation and Green’s function
computation

Seismic source studies commonly assume that the subsurface ve-
locity model is known and thus use Green’s functions based on the
assumed velocity model. For the continental-scale source studies,
one can choose a reference velocity model, like AK135 (Kennett
et al. 1995). However, for near-surface studies, one usually does not
have a reference model and thus has to estimate the velocity model
somehow. There are many approaches to estimate near-surface ve-
locity models from ambient seismic data (e.g. Lin et al. 2013; Cheng
et al. 2015). In this example, we estimate Rayleigh-wave phase ve-
locities (Appendix B) and then use the phase velocities to calculate
Green’s functions. We assume that the subsurface at the Hartoušov
field is laterally homogeneous, isotropic and elastic and thus use
the far-field Rayleigh-wave Green’s function from a vertical-force
source to generate synthetic waveforms in the inversion:

G Z Z (r, ω) =
√

1

8πωr/c(ω)
e−i(ωr/c(ω)+π/4), (1)

and

G RZ (r, ω) = H (ω)

V (ω)

√
1

8πωr/c(ω)
e−i(ωr/c(ω)−π/4), (2)

where i is the imaginary unit, c(ω) is the surface wave phase
velocity, and r is the distance between the source and receiver.
H(ω)/V(ω) is the ratio of the horizontal-to-vertical motion (e.g.
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Figure 4. (a) The number of sensor pairs with SNR>15 changes with time as we stack more time sections of crosscorrelations. The time axis is from 01:00
to 04:00 on 23 November 2016. The red line is the continuous seismic recording for the C601 geophone during this time period. The recording is bandpass
filtered between 3.5 and 10 Hz. (b) A zoom of the continuous recording in the grey area in (a). The inset shows a zoom of the first event. (c) The spectrogram
of the C601 continuous recording in (a) from the short-time Fourier transform; the window for the Fourier transform is 60 s. The high-power signal in the black
box corresponds to the strong transient signal in (b) and causes the drop in the ZZ and RR curves in (a).

Haney et al. 2012). These two Green’s functions use the Rayleigh-
wave phase velocity function from Appendix B and the H(ω)/V(ω)
from Section 2.3. Note that although accurate Green’s functions
are important for seismic source studies, our focus for this paper
is the whole workflow for the source inversion, instead of esti-
mating accurate individual Green’s functions. We discuss the no-
tion estimating both sources and structure together in Section 4.1.
In addition, for laterally heterogeneous media, one can use wave
equation solvers to compute Green’s functions rather than use the
analytic models presented here (e.g. Ermert et al. 2017; Sager
et al. 2018).

2.3 Source energy spectral density estimation

We assume that all seismic sources share a similar energy spectral
density shape (S0

p). This assumption is valid in that the same types
of natural ambient seismic sources possess a similar source mecha-
nism, such as a river (e.g. Tsai et al. 2012) or an ocean (e.g. Ardhuin
et al. 2011). This assumption decreases the potential model space
because we only need a ratio (N) to indicate the strength of each po-
tential source (e.g. Ermert et al. 2017; Xu et al. 2019). To estimate
S0

p , we present a novel, data-driven approach.

We write the autocorrelation for each sensor as

Cmm(rA, ω) =
∫

V
Gmp(rA, rs, ω)G∗

mp(rA, rs, ω)Sp(ω)drs,

= S0
p(ω)

∫
V

|Gmp(rA, rs, ω)|2 N (rs)drs, (3)

where Sp and S0
p are non-negative (e.g. Xu et al. 2019). We then

combine the autocorrelation (eq. 3) and the far-field Rayleigh-wave
Green’s functions (eqs 1 and 2) as

CZ Z (rA, ω) = S0
Z (ω)

∫
V

1

8πωrAs/c(ω)
N (rs)drs

= S0
Z (ω)

ω/c(ω)

∫
V

N (rs)

8πrAs
drs, (4)

and

CR R(rA, ω) = S0
Z (ω)

∫
V

[
H (ω)

V (ω)

]2 1

8πωrAs/c(ω)
N (rs)drs

= S0
R(ω)

ω/c(ω)

∫
V

N (rs)

8πrAs
drs, (5)

where rAs is the distance between a source (rs) and the receiver
(rA). Noting that S0

R(ω) = [H (ω)/V (ω)]2 S0
Z (ω). The integral over

V in eqs (4) and (5) represents a geometric relationship between
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the receiver and all seismic sources. The integral is independent
of frequency, and thus we can write this integral as an amplitude
normalization constant

D(rA) =
∫

V

N (rs)

8πrAs
drs . (6)

Finally, we write:

S0
Z (ω) = ωCZ Z (rA, ω)

c(ω)D(rA)
, (7)

S0
R(ω) = ωCR R(rA, ω)

c(ω)D(rA)
. (8)

We estimate S0
Z (ω) and S0

R(ω) using the same raw ambient seis-
mic data in the observed crosscorrelations. We calculate the au-
tocorrelations (CZZ, CRR = CEE + CNN) for each sensor following
the processing procedures in Section 2.1. We then transform the
autocorrelations to the frequency domain. For each ZZ autocor-
relation we normalize by the value of that autocorrelation at the
lowest targeted frequency (D in eqs 7 and 8). For the corresponding
RR autocorrelation we normalize by the ZZ value to preserve the
H/V information. We then average the normalized autocorrelations
among different sensors. We multiply the averaged autocorrelation
with ω/c(ω) to estimate S0

Z (ω) and S0
R(ω) (Fig. 5). The S0

Z is differ-
ent from S0

R due to the H(ω)/V(ω) ratio as noted previously. Note
this estimation approach is for laterally homogeneous, isotropic and
elastic media. For heterogeneous media, one can choose a Gaussian
spectrum to approximate S0

Z in a narrow frequency band (e.g. Er-
mert et al. 2017; Sager et al. 2020).

2.4 Source waveform inversion scheme

We are now ready to conduct the source inversion after the three
previous steps. The inversion scheme has already been stated in
detail (e.g. Ermert et al. 2017; Xu et al. 2019). Thus we describe
the whole scheme briefly here. Note one can define the misfit func-
tion not only on crosscorrelation waveforms as we do, but also on
crosscorrelation symmetry (e.g. Ermert et al. 2015) or on crosscor-
relation envelope (e.g. Fichtner et al. 2008; Bozdağ et al. 2011).
We choose the waveform misfit function because the waveform in-
version can potentially recognize multiple seismic sources (e.g. Xu
et al. 2019). We define an L2-norm waveform misfit function and
present both the time- and frequency-domain versions, respectively:

χ = 1

2

∑
mn

∑
rArB

∫
[w(t)(Cmn(rA, rB, t) − Co

mn(rA, rB, t))]2dt, (9)

= 1

2

∑
mn

∑
rArB

∫
|w(ω) ∗ω (Cmn(rA, rB, ω) − Co

mn(rA, rB, ω))|2dω,

(10)

where w(t) is a time window, ∗ω denotes a convolution in the fre-
quency domain and Cmn(rA, rB, t) and Co

mn are the synthetic and
observed crosscorrelations, respectively. The crosscorrelations are
between sensor rA and rB; m, n represent the components, vertical
(Z) or radial (R), from each of the two sensors, respectively. One
can also use the transverse component here if the noise source is
thought to generate Love waves. We apply a global normalization to
each set of crosscorrelations. For example, we normalize all CZZ by
the global maximum value of CZZ from all available sensors pairs.
We normalize CRR in the same manner, taking the global maximum
value of CRR from all available sensor pairs.

We use the time window in eq. (10) to focus on the main arrivals
in the observed crosscorrelations (e.g. Maggi et al. 2009; Fichtner

et al. 2017). We set the time window to be the signal window in our
SNR measurement (Section 2.1). We calculate the observed cross-
correlations as described in Section 2.1. We calculate the synthetic
crosscorrelations in the frequency domain as

Cmn(rA, rB, ω) =
∫

V
Gmp(rA, rs, ω)G∗

np(rB, rs, ω)S0
p(ω)N (rs)drs

(11)

where Gmp(rA, rs, ω) is the Green’s function representing the mth
component displacement response at location rA due to a point
force in the p direction at the source position rs, ω is the angular fre-
quency, and the asterisk denotes complex conjugation. We estimate
the Green’s functions in Section 2.2 and S0

p(ω) in Section 2.3. In
this study, we create a potential source grid that is 41 by 41 elements
with a 5 m grid distance. We also assume that all sources only emit
vertical-direction forces on Earth’s surface.

In order to minimize the misfit function and ensure non-negative
solutions, we apply an iterative waveform inversion methodology to
update the ambient noise source distribution model (N). We mini-
mize the waveform misfit function using a gradient-descent strategy
(e.g. Ermert et al. 2017; Xu et al. 2019). The gradient is a sum of
source sensitivity kernels over the chosen sensor pairs

K (rs) =
∑
mn

∑
rArB

∫ ω2

ω1

Kmn(rA, rB, rs, ω)dω. (12)

If we only use vertical data, K is a summed KZZ; if we use both
CZZ and CRR, K = KZZ + KRR among the chosen sensor pairs. We
normalize K by the maximum of absolute values in K. We write the
waveform source kernel for a sensor pair as

Kmn(rA, rB, rs, ω) = Gmp(rA, rs, ω)G∗
np(rB, rs, ω)S0

p f, (13)

where f is the adjoint source (e.g. Fichtner 2015; Ermert et al. 2017;
Xu et al. 2019). The adjoint source is derived from the waveform
misfit function as

f (ω) = 1

π
[w(ω) ∗ω w(ω) ∗ω (Cmn(rA, rB, ω) − Co

mn(rA, rB, ω))]∗,

(14)

where w(ω) is the window function. We update the source strength
distribution as

Ni+1(rs) = Ni (rs)e−βNi (rs )K (rs ), (15)

which is written this way to ensure positivity (e.g. Johansen 1977;
Xu et al. 2019). We choose the step size (β) from many potential
step size values (e.g. β = 10−3, 10−2, ...102). For each step size
we generate an updated source distribution model (Ni+1). We apply
a 2-D Gaussian smoothing filter to the updated model, where the
standard deviation of the filter is the length of one source grid,
5 m, and compute synthetic crosscorrelations using eq. (11). We
then calculate the corresponding misfit. Among these misfit values,
we choose the step size that gives the minimum misfit; this is the
common line-search method. If the new minimum misfit is less than
99 per cent of the misfit in the last step, we adopt the step size and
update the source model; if not, we do not update this iteration and
instead expand the frequency band. We start from 4.5–6 Hz and
then extend to 4.5–9 Hz.

3 F I E L D DATA E X A M P L E

We process the ambient seismic recordings in the Hartoušov mofette
field, Czech Republic, as a near-surface example. Mofettes or
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Figure 5. Normalized source energy spectral density estimations, S0
Z and S0

R . We estimate S0
Z (a) and S0

R (b) (black lines) from the field data waveform
autocorrelations CZZ and CRR, respectively. We then use the two estimates in the forward model. In the forward model, if we use the elastic Green’s functions
(eqs 1 and 2), our estimated source energy spectral densities (red dashed lines) are the same shape as the real source energy spectral density. If we use the
anelastic Green’s functions, we estimate incorrect densities (blue lines). Here the spectral density is for displacement wavefield (Appendix C). The grey areas
indicate the frequency range we use in the waveform inversion, 4.5–9 Hz. Note here that we only focus on the shape, instead of the absolute values among real,
elastic and anelastic estimations. All S0

Z and S0
R in this figure are normalized by the S0

Z at the lowest frequency.

fumaroles, are openings in Earth’s surface where carbon diox-
ide (CO2) flows from depths to the free surface and then es-
capes. This CO2 degassing phenomenon generates high-frequency
seismic waves at depth and at the free surface (e.g. Estrella
et al. 2016; Bussert et al. 2017). The seismic waves behave like
tremor (e.g. Umlauft & Korn 2019) and thus in order to es-
timate the mofette distributions, we can use the source wave-
form inversion. We test the inversion with both synthetic and
field data.

A seismic observation was conducted at the Hartoušov mofette
field, Czech Republic (Umlauft & Korn 2019). The seismic ob-
servations are continuous from 21 to 24 November 2016. In this
paper we use a subset of the observation, a subarray that consists
of 23 three-component 4.5-Hz geophones (Fig. 1). The recording
sample rate is 250 Hz and we downsample the data to 200 Hz
to speed the crosscorrelation process. We abandon one of the 23
geophones because there is too much noise at the station. Thus
we use the 22 geophones to estimate the ambient seismic source
distribution. The area under the array is relatively flat. The maxi-
mum elevation difference is 1.5 m, which is negligible compared to
the shortest wavelength we use in this study, about 20 m. Through
the data selection (Section 2.1), we end up with 47 CZZ and 22

CRR as the observed crosscorrelations, noting that we only use RR
data that also had ZZ data to ensure we focus on the Rayleigh
wave.

3.1 Synthetic data tests

We examine our estimation algorithm for S0
p and the subsequent

inversion for N(rs) with synthetic data first to understand the reso-
lution limits of the 22-station array. We also compare the synthetic
waveform inversions with and without the smoothing filter because
in practice one commonly smooths the model in the waveform in-
version for structures (e.g. Tape et al. 2007; Groos et al. 2017), and
here we investigate the effectiveness of smoothing in the waveform
inversion for sources. We use the same array and same available
sensor pairs as in the field data (47 CZZ and 22 CRR). We cre-
ate a source strength distribution model with two in-array seismic
sources (e.g. Fig. 6a). We use synthetic data generated with an
elastic model as the observed data and thus use elastic Rayleigh-
wave Green’s functions (eqs 1 and 2) in the inversion. We use
the Rayleigh-wave phase velocities from the field data (Fig. B1)
in the Green’s functions; then use the source energy spectral den-
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Figure 6. The elastic and anelastic synthetic data inversion results. (a) The true source strength is zero everywhere except for the two source areas within the
array. Each triangle represents a geophone. From an initial source model (b), for the elastic synthetic crosscorrelations, we invert ZZ waveforms with and without
smoothing (c and d, respectively) and ZZ + RR waveforms with and without smoothing (e and f, respectively). For the anelastic synthetic crosscorrelations,
we invert ZZ waveforms with and without smoothing (g and h, respectively) and ZZ + RR waveforms with and without smoothing (i and j, respectively). The
empty squares indicate the true source areas. The grey lines in (a) indicate the 47 available CZZ sensor pairs; the blue lines in (b) indicate the 22 available CRR

sensor pairs that passed the data selection criteria.

sity shapes (S0
Z and S0

R) from the raw data (black lines in Fig. 5)
to calculate synthetic crosscorrelations (eq. 11) and autocorrela-
tions (eq. 3). Prior to the inversion, we apply our algorithm to
estimate the source energy spectral densities (Section 2.3). We ob-
serve that we recover the correct source energy spectral densities
(red dashed lines in Fig. 5). This observation fits our theory. Note
the peaks in the spectra (Fig. 5) do not affect the source inversion be-
cause the inversion already incorporates the spectra as S0

Z and S0
R in

eq. (13).

After estimating the source energy spectral densities, we use the
elastic synthetic data as the observed data and do the waveform
inversion (Fig. 6). For the elastic data, we obviously use the correct
S0

Z and S0
R (red dashed line in Fig. 5) in the waveform inversions.

We observe that the ZZ + RR inversion result (Fig. 6e) is closer
to the true source model than the ZZ inversion result (Fig. 6c) if
we do not use the smoothing filter. However, with smoothing, the
ZZ + RR gives a similar inversion result (Figs 6 d and f) and a
similar final misfit to ZZ (Table 1). Hence smoothing acts to sup-
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Table 1. Final waveform inversion misfits from the ZZ/ZZ + RR inversions in the synthetic data tests. We show the final misfits
in the 4.5–9 Hz band relative to the initial misfit (eq. 10). The number of iterations is provided in parenthesis next to the mistfit
value. The two-source elastic examples are presented in Section 3.1 and the other examples are presented in Section 4.

Method Elastic Elastic Anelastic Anelastic
without smoothing with smoothing without smoothing with smoothing

Two-source example 0.08(21)/0.10(15) 0.09(2)/0.10(4) 0.52(2)/0.43(3) 0.27(2)/0.34(2)
Out-of-array source – – – 0.41 (2)/0.24(3)
Three-source example 1 – 0.13(4)/0.12(3) – –
Three-source example 2 – 0.24(3)/0.20(7) – –
Three-source example 3 – 0.08(14)/0.10(7) – –

Table 2. Final waveform misfits from ZZ and ZZ + RR waveform inversions
on the Hartoušov crosscorrelations. We show the the final misfit in the 4.5–
9 Hz band. Misfit values are relative to the initial misfit (eq. 10) in each
case.

Data Iteration CZZ CRR CZZ and CRR

ZZ inversion 5 0.63 0.58 0.61
ZZ + RR inversion 4 0.69 0.47 0.62

press the improved resolution from the RR sensitivity kernels while
helping to recover the shape of seismic sources within fewer itera-
tions (Table 1). Therefore, we adopt the smoothing in the waveform
inversion of the field data, recognizing that our results are perhaps
overly smeared.

3.2 Source inversion results

We apply the waveform inversion to the Hartoušov observed data –
47 CZZ and 22 CRR waveforms, after the pre-processing procedures
(Sections 2.1–2.3). We use the estimated source energy spectral
densities (black lines in Fig. 5) in the forward model. We compare
the different waveform misfits for the different inversion models in
Table 2. For example, the waveforms from the ZZ inversion (Fig. 7a)
fit the observed CZZ well, but do not fit the observed CRR as well as
the ZZ + RR inversion (Table 2 and Fig. 8). The ZZ + RR inversion
model gives a similar misfit for CZZ waveforms and also a similar
total misfit for CZZ and CRR compared to the ZZ inversion. The ZZ
inversion result (Fig. 7b) indicates one strong and two weak (east
and west) sources. However, the ZZ + RR inversion only indicates
one source in a similar location as the west weak source in the ZZ
model (Fig. 9b). Note that the ZZ + RR inversion result explains
both CZZ and CRR waveforms, while the ZZ model only explains
the CZZ waveforms. Thus the one source estimation from the ZZ
+ RR inversion is more reasonable than the ZZ inversion result.
Moreover, based on a synthetic test in Section 4.1, the strong source
in the ZZ result is likely due to the anelasticity of the subsurface.
We further confirm the ZZ+RR inversion result by conducting the
inversions on a different initial model; this helps discern the role
of the starting model and can help identify if the inversion is in a
local minimum related to the starting model. Using the new starting
model, we achieve a similar result to the ZZ+RR inversion result
(Fig. S2). As another check, we find that the source location in
the ZZ+RR inversion result explains some of the transient event
moveouts across the array. This indicates that the transient events
could very well originate from the inverted source location (Fig. S4).

Besides the seismic data analysis, we use the CO2 flux data to
validate our inversion results. On top of the inversion results, we
overlay the CO2 flux map (Nickschick et al. 2015) collected 3 yr
before the seismic data here. The strong source in the ZZ result
is not close to any strong CO2 gas areas, acknowledging that we

lack complete data coverage of the gas data. However, the common
source in the ZZ and ZZ + RR results is near the strong gas sources to
the East (i.e. fluxes >50 g d–1 m–2), but does not perfectly coincide
with a high gas-flux area measured 3 yr prior. The location bias
for the common source could be due to our simplified 1-D velocity
model and/or the source actually occurring at depth or moving
laterally since the gas data were collected. We revisit the potential
velocity model bias in Section 4.1, but we assume that all seismic
sources are on the Earth’s surface in this workflow, even though the
CO2 flux can generate seismic energy at depth (e.g. Bussert et al.
2017; Umlauft & Korn 2019). Both of these potentially invalid
assumptions can lead to location biases. However we also note that
the CO2 data were not acquired at the same time as the seismic data,
and mofettes/fumaroles are known to turn on and off through time
(e.g. Nickschick et al. 2015).

Based on the waveform misfits and the location of strong de-
gassing, our conclusion is that the common source in the ZZ and ZZ
+ RR inversion results is likely a seismic source (or small region
of sources) active during the 2.5 hr over which the ambient seismic
data were collected. The other seismic sources in the ZZ model
can not explain the CRR waveforms. Thus the ZZ + RR inversion
provides a better result than the ZZ inversion. We also note that the
ZZ + RR inversion required one less iteration than the ZZ inversion
and from previous work (Xu et al. 2019) we know that RR data have
better resolution than ZZ data when the SNR of the two data are
comparable.

4 D I S C U S S I O N

It is important to estimate the uncertainty in inversion problems.
Uncertainty in inversion results is due to (1) errors in data, (2)
errors in the physics and (3) insufficient sensitivity (resolution) of
the inverse problem based on the spatial data sampling. We focus
on the latter two here, noting that it is difficult to assess the true
uncertainty in the source waveform inversion. For instance, we have
incorporated smoothing, a type of regularization, into the inversion.
Thus any estimated uncertainty would be for the regularized solution
rather than for the true solution (e.g. Aster et al. 2011). To address
the issue of uncertainty one could use Monte Carlo methods (e.g.
Sen & Stoffa 1991; Tarantola 2005) because one does not necessary
need to adopt a regularization.

4.1 Inaccurate velocity model

We make two major assumptions in the waveform inversion method
(listed in Section 1), and any violation of these assumptions leads to
errors in the physics of the inverse problem. Here we consider the
first assumption (that the subsurface structure is known) and focus
on the error due to (i) an inaccurate subsurface velocity model or
(ii) using an incorrect material model (e.g. elastic versus anelastic).
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Figure 7. The data comparison and source distribution map from the inversion of CZZ waveforms. (a) The observed and synthetic CZZ waveforms are arranged
based on the interstation distance of sensor pairs. Each waveform is bandpass filtered between 4.5 and 9 Hz and then normalized by its maximum amplitude
for visual comparison. (b) The red area indicates the seismic source area and the red colour indicates the source strength. The blue colour indicates measured
CO2 gas fluxes in the unit of gram per day per metre square (Nickschick et al. 2015). Black triangles are the geophones. The coordinates are in WGS84/UTM,
zone 33.

First, inaccurate velocity models are known to lead to artefacts and
biased source location in traditional source imaging methods (e.g.
Billings et al. 1994; Eisner et al. 2009). In full-waveform inversion
(FWI), one can not resolve a source distribution accurately with
an inaccurate velocity model because the two are coupled within
the misfit function (e.g. Fichtner 2015). Here we have neglected
that coupling, but Xu et al. (2019) study the source waveform
inversion using an incorrect elastic velocity model and find that
this increases the misfit and moves the estimated source location.
In the field data presented here, we assume that the subsurface is
laterally homogeneous and elastic, but the real subsurface is laterally
heterogeneous and anelastic (e.g. Nickschick et al. 2015).

The second violation we must consider is related to an anelastic
material. We know that wave propagation through anelastic media
influences the array sensitivity because, due to attenuation, some
stations may not record signal from a given source. Therefore, dif-
ferent stations will sense different sources, potentially leading to
competing source models within the inverse problem. Therefore,

we study the effect of the anelasticity on the source waveform in-
version here. Similar to the synthetic tests (Section 3.1), we generate
synthetic data with an anelastic model to use as the observed data.
From these data we estimate the incorrect S0

Z and S0
R , and then apply

the source waveform inversion using an elastic model. In doing so,
we make the assumption that the observed data are elastic, directly
leading to a violation of the inverse problem physics.

To generate anelastic data, we use anelastic Rayleigh-wave
Green’s functions:

Gα
Z Z (r, ω) =

√
1

8πωr/c
e−i(ωr/c+π/4)e−αr , (16)

and

Gα
RZ (r, ω) = H (ω)

V (ω)

√
1

8πωr/c
e−i(ωr/c−π/4)e−αr , (17)
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Figure 8. The CRR waveform comparisons from the inversion of ZZ (a) and ZZ + RR (b) crosscorrelations.

where α is the attenuation coefficient for Rayleigh waves (e.g. Lai
et al. 2002; Xia et al. 2002). We use α = 0.01ω/2π here. For the
source energy spectral density estimation, our estimations of S0

Z and
S0

R from the anelastic observed data autocorrelations (blue lines in
Fig. 5) are biased and should be corrected (e.g. Groos et al. 2014)
if possible. This bias is because our estimation procedure is based
on an elastic medium and does not compensate the amplitude loss
due to the anelastic attenuation, e−αr in eqs (16) and (17). Here
we do not correct this bias in order to assess the significance of
this violation on the two-source example. We use the biased source
energy spectral density estimates in the source waveform inversion,
and observe that in all cases the misfits for the anelastic data are
larger than the elastic model results (Table 1). The non-smoothed
ZZ and ZZ + RR anelastic data inversion results are similar to each
other (Figs 6g and i), and both models only resolve one source
instead of two. Thus the anelasticity can lead to missed sources, and
in this case the one-source model is likely due to the interstation
crosscorrelation coverage (Figs 6a and b), which largely samples
the one source that is resolved. Thus, in the case of anelastic data,
one should use an anelastic model (e.g. Groos et al. 2014, 2017).

We apply the above test to a model with one out-of-array source.
This source is in a similar location as the estimated source from the
field ZZ + RR data (Fig. 9b). The synthetic observed data come from
the anelastic model, and we use the elastic model in the inversion.
We observe that the ZZ inversion images spurious strong sources in
the array and a weak source in the true source area (Fig. 10a). In
contrast, the ZZ + RR inversion accurately estimates the true source
location (Fig. 10b). This observation indicates that even when the
source inversion uses an elastic model, but the observed data come

from an anelastic model, the multicomponent data provide a more
accurate source estimation than the vertical-component data alone.
Regardless of the lost resolution due to smoothing the kernels,
this highlights the usefulness of incorporating the multicomponent
crosscorrelations into source waveform inversion.

The last point to note related to violating the physics is that
the subsurface velocity model changes when the CO2 gas is moving
through the subsurface and escaping into the atmosphere (e.g. Ikeda
et al. 2016). Thus it is likely necessary to jointly estimate both the
source distribution and subsurface velocity models from ambient
seismic noise data either iteratively or simultaneously (e.g. Sager
et al. 2018) to get the most accurate results. This is an area of
future research and we plan to work on a joint inversion in the
future.

4.2 Insufficient sensitivity

Besides attenuation, insufficient sensitivity in the inverse problem is
due to the array geometry and the sensor pairs we choose based on
the SNR of the crosscorrelations. The array geometry can lead to
a null space in the inverse problem and thus there is zero sen-
sitivity to sources located in a particular region of the model.
To determine how significant the errors are in the final results,
one could do synthetic tests to characterize how the source loca-
tion and strength changes with array geometry. Xu et al. (2019)
study sources inside the array and outside of the array and find
that sources outside of the array are smeared due to the lack of
resolution.
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Figure 9. The data comparison and source distribution map from the inversion of CZZ and CRR waveforms. All inversion parameters match those in Fig. 7.

Figure 10. The anelastic synthetic data inversion results for one out-of-array source. The true source strength is zero everywhere except for the out-of-array
source area which is indicated by the empty box. We invert ZZ and ZZ + RR waveforms with smoothing (a and b, respectively). All inversion parameters match
those in Fig. 6.
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2096 Z. Xu et al.

Figure 11. The three out-of-array source inversion results. The true source strength is zero everywhere except for the two fixed sources within the array and
the one moving source outside of the array. The sources are represented by empty black squares. The initial inversion model is that in Fig. 6(b). For the elastic
model crosscorrelations, we invert the ZZ waveforms (c, e, g) and ZZ + RR waveforms (d, f, h). We use the same sensor pairs as in Fig. 6: 47 CZZ sensor pairs
(grey lines in a) and 22 CRR sensor pairs (blue lines in b).

To study the relationship between in- and out-of-array sources
here, we complete a third synthetic elastic test. We add an out-
of-array source region to our previous two-source synthetic elastic
model (Fig. 6) at three different locations. On the one hand, we ob-
serve that the waveform inversion resolves the out-of-array source,
but with a reduced amplitude compared to the in-array sources
(Fig. 11), even though the true amplitudes for all the sources are the
same. On the other hand, the waveform inversion may resolve out-
of-array sources in biased locations when only the ZZ waveforms
are used (Fig. 11e). This is in contrast to the ZZ + RR inversion,

which resolves the sources more accurately than the ZZ inversion
(Fig. 11f) in this numerical experiment. Thus, although we have
shown that the ZZ and ZZ + RR inversions result in similar models
and misfits after applying regularization (i.e. smoothing), we recom-
mend using all possible data in order to image sources as accurately
as possible. We note that we have not tried more than three sources
in our testing up to now.

In practice, seismic waves from out-of-array sources will be at-
tenuated due to the anelasticity in the subsurface. The attenuated
wave amplitude may be masked by random noise. Therefore the
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anelasticity can also decrease the source resolution on out-of-array
sources. This research area deserves further studies but is not the
focus of our study.

5 C O N C LU S I O N

We present a complete workflow to estimate the seismic source
distribution from ambient seismic noise data. In the workflow, we
propose an SNR measurement and apply a SNR criterion to select
high-quality seismic crosscorrelations. We determine that it is im-
portant to select time windows that contribute to the overall SNR of
the array, and to exclude untargeted seismic sources from the cross-
correlations. Under the assumption that the subsurface is elastic
and laterally homogeneous, we estimate the Green’s functions and
develop a novel algorithm to retrieve the source energy spectral den-
sity. Finally, we apply the waveform inversion to the highest quality
crosscorrelations of field data and synthetic data sets using the same
receiver geometries. We determine that ZZ + RR better constrains
the seismic source distribution than ZZ in elastic medium, and for
anelastic data both ZZ + RR and ZZ fail to recognize all seismic
sources. The field data inversion results indicate a strong seismic
source near the strong CO2 gas flux area. The workflow presented
is applicable for both vertical and multicomponent data, and also
different scale field data.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. The number of sensor pairs with SNR>15 changes
with time as we stack more time sections of crosscorrelations. The
dashed lines are the same as in Fig. 3. The solid lines are the SNR
results if we skip the seismic recordings between 03:30 and 03:35.
The time axis is from 01:00 to 05:00 on 23 November 2016.
Figure S2. The source distribution maps from MFP, the ZZ and
ZZ+RR inversions. We apply the MFP to the high-SNR CZZ and
all CZZ waveforms between 4.5 and 9 Hz to estimate MFP source
models (a and b, respectively). We then use the MFP result as
the initial model in the ZZ and ZZ+RR inversions (c and d). The
inversion parameters are the same as in Section 3.
Figure S3. The normalized misfits from the inversion of the field
data. We show the misfits over the whole frequency band, 4.5–
9 Hz, relative to the initial misfit at each iteration. The dashed lines
indicate the inversion results using the MFP initial model, while the
solid lines indicate the results using the initial model presented in
Section 3.
Figure S4. The seismic recordings across the 22 sensors between
146.3 and 146.5 minute (02:26). The recordings are filtered between
4.5 and 9 Hz in the frequency. The two red dash lines indicate a
velocity of 200 m s–1. The traces are plotted relative to the source–
receiver offset using the inverted source location in Fig. 9(b).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : S O U RC E K E R N E L S

We compare the ZZ and RR source sensitivity kernels for two differ-
ent interstation distances, 20 and 100 m. Although some previous
studies discussed the interstation distances (e.g. Bensen et al. 2007;
Luo et al. 2015), these studies are for ANT not for source estimation.
Furthermore, these studies did not consider the source sensitivity
kernels. Thus it is still necessary to discuss the effect of different
interstation distance on the source sensitivity kernels.
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Figure A1. ZZ and RR waveform energy source sensitivity kernels for out-of-line (left-hand column) and in-line (right-hand column) initial source models.
The two sensors are separated by 20 m (a, b, e and f) and 100 m (c, d, g and h). All the sensitivity kernels are normalized by the absolute maximum value in
(e). The black triangles are sensors. The black empty squares indicate the source locations. In each subplot, the number in the top left-hand corner indicates the
sensitivity value in the center of the square. We calculate the kernels from 4.5 to 6 Hz and use the same Green’s functions and S0

Z (S0
R) as in the paper.

We set the observed data be zeros (eq. 10) and focus on the syn-
thetic waveform energy in the time window –2 to 2 s. We examine
two initial source cases: (i) an out-of-line source (small black box
in upper right of Figs A1a, c, e, g) and (ii) an in-line source (small
black box on center right of Figs A1b, d, f, h). From these initial
distributions, we calculate synthetic crosscorrelations using the for-
ward model (eq. 11). The 20 m interstation distance synthetic CZZ

waveforms are similar for the two source cases (Fig. A2a), while

the 20 m CRR waveforms have significantly different amplitudes
(Fig. A2b). For the 100 m sensor pair, the CZZ waveforms are quite
different for the two source cases (Fig. A2c), as are the CRR wave-
forms (Fig. A2d) indicating that these crosscorrelations are more
sensitive to the source distribution than the small station spacing
crosscorrelations.

From the waveforms, we can calculate source sensitivity ker-
nels (eq. 13). The sensitivity kernels indicate how source strength
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Figure A2. Comparison of synthetic CZZ and CRR waveforms between the in-line and out-of-line source cases. The top row is for the 20 m interstation distance
sensor pair; the bottom row is for the 100 m interstation distance sensor pair. Each waveform is bandpass filtered between 4.5 and 9 Hz and then normalized
by the maximum amplitude of the in-line crosscorrelations so that relative amplitudes are preserved.

changes affect the synthetic waveform energy. We observe that the
first Fresnel zone in the source sensitivity kernels for the 20 m sen-
sor pair (Figs A1a, b, e and f) is much larger than for the 100 m
sensor pair (Figs A1c, d, g and h). For the small-distance sensor
pair, the ZZ sensitivity kernels are similar when the initial source
location changes (Figs A1a and b), while the RR sensitivity kernels
change more dramatically with initial source distribution (Figs A1e
and f); the two ZZ sensitivity values in the source locations are the
same order (a factor of 2 different) while the in-line RR sensitivity
values are almost an order of magnitude different (a factor of 10)
than the out-of-line source. This variation in sensitivity is because of
the azimuthal effect of the R component (e.g. van Wijk et al. 2011;
Haney et al. 2012; Xu & Mikesell 2017; Xu et al. 2019). Thus,
incorporating multicomponent crosscorrelations into the FWI pro-
vides additional sensitivity that helps resolve sources, even when
the station spacing is small. While we recognize that the RR kernels
provide important azimuthal information for the inversion, we have
not fully characterized the degree to which station-pair azimuth
sampling plays a role in the inversion, and this is one topic of future
research.

A P P E N D I X B : C A L C U L AT I N G
R AY L E I G H - WAV E P H A S E V E L O C I T I E S

We estimate the phase velocity by combining classic ambient seis-
mic noise processing (e.g. Bensen et al. 2007) and surface wave ve-
locity analysis (e.g. McMechan & Yedlin 1981; Park et al. 1998). In
order to calculate accurate surface wave phase velocities, one needs
to mitigate the effects of an anisotropic source distribution by us-
ing long recordings and/or time-/frequency-domain normalization
(e.g. Yang & Ritzwoller 2008). Here we use 2 days of geophone
recordings (22 and 23 November 2016). We divide the data into
60 s sections and remove the mean and linear trend from each sec-
tion. We then apply one-bit amplitude normalization to the sections,
crosscorrelate, and linearly stack. Note that we focus on accurate

Rayleigh-wave phase velocities, not waveforms. Thus we use the
one-bit time-domain normalization procedure.

We stack all of the crosscorrelations into 1 m offset bins to gen-
erate a virtual shot gather (Figs B1a and b). We sum the causal
and acausal parts of the gather and then create a dispersion image
(Figs B1c and d) by applying the phase-shift velocity transform
(Park et al. 1998). We observe a clear Rayleigh-wave dispersion
signal in the CZZ waveforms (Fig. B1c). We pick the Rayleigh-
wave phase velocity based on the maximum of coherence every
0.5 Hz in the 3–10 Hz band and smooth the phase velocities with
an average window (black line in Fig. B1c). Although the dis-
persion trend is continuous, these phase velocities can still be bi-
ased due to an anisotropic seismic source distribution (e.g. Yang
& Ritzwoller 2008; Yao & van Der Hilst 2009; Xu et al. 2017).
We examine the accuracy of the phase velocities in a qualitative
way by comparing the CZZ-derived phase velocity (the black line
in Fig. B1d) to the dispersion trend from CRR (Fig. B1d). CRR is
less sensitive to anisotropic seismic source distributions (e.g. Xu
& Mikesell 2017). In the dispersion image (Fig. B1d), we observe
that the phase velocities from CZZ are close to CRR in the 4–10 Hz
band. This similarity indicates that the phase velocities are reli-
able. Knowing that this dispersion estimation is an average phase
velocity for the subsurface (e.g. Wang et al. 2015), we use this
dispersion estimation in the analytical Green’s functions (eqs 1
and 2).

A P P E N D I X C : C O N V E RT I N G V E L O C I T Y
R E C O R D I N G S T O D I S P L A C E M E N T
R E C O R D I N G S

The geophones in this study recorded the ground motion velocity at
the geophone locations, while the Green’s functions (eqs 1 and 2) are
the displacement Green’s functions instead of the velocity Green’s
functions. Based on the Fourier transform, there is a ratio iω that
relates the spectra of velocity recordings (V) and the displacement
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Figure B1. The virtual shot gathers of CZZ (a) and CRR (b) after applying a 1 m bin-stack to all crosscorrelations. We apply the phase-shift transform to the sum
of causal and acausal parts of the crosscorrelations to generate the dispersion images (c and d). The black lines in the two dispersion images are the smoothed
phase velocities from CZZ. The waveforms are band-pass filtered between 2 and 12 Hz.

recordings (U):

V = iωU. (C1)

For crosscorrelations this relationship becomes

V V ∗ = ω2UU ∗. (C2)

Thus in the estimation of the source energy spectral density (eqs 7
and 8), because we use the autocorrelation of the geophone record-
ings, we have to divide the estimation by ω2 to estimate the dis-
placement source energy spectral density (Fig. 5).

The division is not necessary in the waveform inversions. Be-
cause the real crosscorrelations are for velocity, we need to transfer
GmpG∗

np from displacement to velocity in the forward model (eq. 11)
and the source kernel (eq. 13). The transfer requires multiplying by
ω2, and thus the division cancels with the multiplication. Therefore,

we do not need to divide or multiply by ω2 in the inversions. This
is only done in Fig. 5 because we wish to show the source energy
spectral density for the displacement Green’s function.
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